substantial refactor to movement code
[fishladder.git] / vg / vg_m.h
1 // Copyright (C) 2021 Harry Godden (hgn) - All Rights Reserved
2
3 // Util
4 // ==================================================================================================================
5
6 #define VG_PIf 3.14159265358979323846264338327950288f
7 #define VG_TAUf 6.28318530717958647692528676655900576f
8
9 // Simple min/max replacements
10 static inline float vg_minf( float a, float b )
11 {
12 return a < b? a: b;
13 }
14
15 static inline float vg_maxf( float a, float b )
16 {
17 return a > b? a: b;
18 }
19
20 static inline float vg_clampf( float a, float min, float max )
21 {
22 return vg_minf( max, vg_maxf( a, min ) );
23 }
24
25 #define VG_MIN( A, B ) ((A)<(B)?(A):(B))
26 #define VG_MAX( A, B ) ((A)>(B)?(A):(B))
27
28 // Hopefully deprecate this!!
29 static inline int vg_min( int a, int b )
30 {
31 return a < b? a: b;
32 }
33
34 static inline int vg_max( int a, int b )
35 {
36 return a > b? a: b;
37 }
38
39 // Convert degrees to radians
40 static inline float vg_rad( float deg )
41 {
42 return deg * VG_PIf / 180.0f;
43 }
44
45 // Vector 2
46 // ==================================================================================================================
47
48 static inline void v2_copy( v2f a, v2f b )
49 {
50 b[0] = a[0]; b[1] = a[1];
51 }
52
53 static inline void v2i_copy( v2i a, v2i b )
54 {
55 b[0] = a[0]; b[1] = a[1];
56 }
57
58 static inline void v2i_add( v2i a, v2i b, v2i d )
59 {
60 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
61 }
62
63 static inline void v2_minv( v2f a, v2f b, v2f dest )
64 {
65 dest[0] = vg_minf(a[0], b[0]);
66 dest[1] = vg_minf(a[1], b[1]);
67 }
68
69 static inline void v2_maxv( v2f a, v2f b, v2f dest )
70 {
71 dest[0] = vg_maxf(a[0], b[0]);
72 dest[1] = vg_maxf(a[1], b[1]);
73 }
74
75 static inline void v2_sub( v2f a, v2f b, v2f d )
76 {
77 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
78 }
79
80 static inline float v2_cross( v2f a, v2f b )
81 {
82 return a[0] * b[1] - a[1] * b[0];
83 }
84
85 static inline void v2_add( v2f a, v2f b, v2f d )
86 {
87 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
88 }
89
90 static inline void v2_muls( v2f a, float s, v2f d )
91 {
92 d[0] = a[0]*s; d[1] = a[1]*s;
93 }
94
95 static inline void v2_divs( v2f a, float s, v2f d )
96 {
97 d[0] = a[0]/s; d[1] = a[1]/s;
98 }
99
100
101 static inline void v2_mul( v2f a, v2f b, v2f d )
102 {
103 d[0] = a[0]*b[0]; d[1] = a[1]*b[1];
104 }
105
106 static inline void v2_div( v2f a, v2f b, v2f d )
107 {
108 d[0] = a[0]/b[0]; d[1] = a[1]/b[1];
109 }
110
111 static inline void v2_muladds( v2f a, v2f b, float s, v2f d )
112 {
113 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s;
114 }
115
116 static inline float v2_length2( v2f a )
117 {
118 return a[0]*a[0] + a[1]*a[1];
119 }
120
121 static inline float v2_length( v2f a )
122 {
123 return sqrtf( v2_length2( a ) );
124 }
125
126 static inline float v2_dist2( v2f a, v2f b )
127 {
128 v2f delta;
129 v2_sub( a, b, delta );
130 return v2_length2( delta );
131 }
132
133 static inline float v2_dist( v2f a, v2f b )
134 {
135 return sqrtf( v2_dist2( a, b ) );
136 }
137
138 // Vector 3
139 // ==================================================================================================================
140
141 static inline void v3_zero( v3f a )
142 {
143 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f;
144 }
145
146 static inline void v3_copy( v3f a, v3f b )
147 {
148 b[0] = a[0]; b[1] = a[1]; b[2] = a[2];
149 }
150
151 static inline void v3_add( v3f a, v3f b, v3f d )
152 {
153 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
154 }
155
156 static inline void v3_sub( v3f a, v3f b, v3f d )
157 {
158 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
159 }
160
161 static inline void v3_mul( v3f a, v3f b, v3f d )
162 {
163 d[0] = a[0]*b[0]; d[1] = a[1]*b[1]; d[2] = a[2]*b[2];
164 }
165
166 static inline void v3_div( v3f a, v3f b, v3f d )
167 {
168 d[0] = a[0]/b[0]; d[1] = a[1]/b[1]; d[2] = a[2]/b[2];
169 }
170
171 static inline void v3_muls( v3f a, float s, v3f d )
172 {
173 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s;
174 }
175
176 static inline void v3_divs( v3f a, float s, v3f d )
177 {
178 d[0] = a[0]/s; d[1] = a[1]/s; d[2] = a[2]/s;
179 }
180
181 static inline void v3_muladds( v3f a, v3f b, float s, v3f d )
182 {
183 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s; d[2] = a[2]+b[2]*s;
184 }
185
186 static inline float v3_dot( v3f a, v3f b )
187 {
188 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
189 }
190
191 static inline void v3_cross( v3f a, v3f b, v3f d )
192 {
193 d[0] = a[1] * b[2] - a[2] * b[1];
194 d[1] = a[2] * b[0] - a[0] * b[2];
195 d[2] = a[0] * b[1] - a[1] * b[0];
196 }
197
198 static inline float v3_length2( v3f a )
199 {
200 return v3_dot( a, a );
201 }
202
203 static inline float v3_length( v3f a )
204 {
205 return sqrtf( v3_length2( a ) );
206 }
207
208 static inline float v3_dist2( v3f a, v3f b )
209 {
210 v3f delta;
211 v3_sub( a, b, delta );
212 return v3_length2( delta );
213 }
214
215 static inline float v3_dist( v3f a, v3f b )
216 {
217 return sqrtf( v3_dist2( a, b ) );
218 }
219
220 static inline void v3_normalize( v3f a )
221 {
222 v3_muls( a, 1.f / v3_length( a ), a );
223 }
224
225 static inline float csr_lerpf( float a, float b, float t )
226 {
227 return a + t*(b-a);
228 }
229
230 static inline void v3_lerp( v3f a, v3f b, float t, v3f d )
231 {
232 d[0] = a[0] + t*(b[0]-a[0]);
233 d[1] = a[1] + t*(b[1]-a[1]);
234 d[2] = a[2] + t*(b[2]-a[2]);
235 }
236
237 static inline void v3_minv( v3f a, v3f b, v3f dest )
238 {
239 dest[0] = vg_minf(a[0], b[0]);
240 dest[1] = vg_minf(a[1], b[1]);
241 dest[2] = vg_minf(a[2], b[2]);
242 }
243
244 static inline void v3_maxv( v3f a, v3f b, v3f dest )
245 {
246 dest[0] = vg_maxf(a[0], b[0]);
247 dest[1] = vg_maxf(a[1], b[1]);
248 dest[2] = vg_maxf(a[2], b[2]);
249 }
250
251 static inline float v3_minf( v3f a )
252 {
253 return vg_minf( vg_minf( a[0], a[1] ), a[2] );
254 }
255
256 static inline float v3_maxf( v3f a )
257 {
258 return vg_maxf( vg_maxf( a[0], a[1] ), a[2] );
259 }
260
261 static inline void v3_fill( v3f a, float v )
262 {
263 a[0] = v;
264 a[1] = v;
265 a[2] = v;
266 }
267
268 // Vector 4
269 // ==================================================================================================================
270
271 static inline void v4_copy( v4f a, v4f b )
272 {
273 b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];
274 }
275
276 static inline void v4_zero( v4f a )
277 {
278 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f; a[3] = 0.f;
279 }
280
281 // Matrix 2x2
282 // ===========================================================================================================
283
284 #define M2X2_INDENTIY {{1.0f, 0.0f, }, \
285 { 0.0f, 1.0f, }}
286
287 #define M2X2_ZERO {{0.0f, 0.0f, }, \
288 { 0.0f, 0.0f, }}
289
290 static inline void m2x2_copy( m2x2f a, m2x2f b )
291 {
292 v2_copy( a[0], b[0] );
293 v2_copy( a[1], b[1] );
294 }
295
296 static inline void m2x2_identity( m2x2f a )
297 {
298 m2x2f id = M2X2_INDENTIY;
299 m2x2_copy( id, a );
300 }
301
302 static inline void m2x2_create_rotation( m2x2f a, float theta )
303 {
304 float s, c;
305
306 s = sinf( theta );
307 c = cosf( theta );
308
309 a[0][0] = c;
310 a[0][1] = -s;
311 a[1][0] = s;
312 a[1][1] = c;
313 }
314
315 // Matrix 3x3
316 //======================================================================================================
317
318 #define M3X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
319 { 0.0f, 1.0f, 0.0f, },\
320 { 0.0f, 0.0f, 1.0f, }}
321
322 #define M3X3_ZERO {{0.0f, 0.0f, 0.0f, },\
323 { 0.0f, 0.0f, 0.0f, },\
324 { 0.0f, 0.0f, 0.0f, }}
325
326
327 static inline void m3x3_copy( m3x3f a, m3x3f b )
328 {
329 v3_copy( a[0], b[0] );
330 v3_copy( a[1], b[1] );
331 v3_copy( a[2], b[2] );
332 }
333
334 static inline void m3x3_identity( m3x3f a )
335 {
336 m3x3f id = M3X3_IDENTITY;
337 m3x3_copy( id, a );
338 }
339
340 static inline void m3x3_zero( m3x3f a )
341 {
342 m3x3f z = M3X3_ZERO;
343 m3x3_copy( z, a );
344 }
345
346 static inline void m3x3_inv( m3x3f src, m3x3f dest )
347 {
348 float a = src[0][0], b = src[0][1], c = src[0][2],
349 d = src[1][0], e = src[1][1], f = src[1][2],
350 g = src[2][0], h = src[2][1], i = src[2][2];
351
352 float det = 1.f /
353 (+a*(e*i-h*f)
354 -b*(d*i-f*g)
355 +c*(d*h-e*g));
356
357 dest[0][0] = (e*i-h*f)*det;
358 dest[0][1] = -(b*i-c*h)*det;
359 dest[0][2] = (b*f-c*e)*det;
360 dest[1][0] = -(d*i-f*g)*det;
361 dest[1][1] = (a*i-c*g)*det;
362 dest[1][2] = -(a*f-d*c)*det;
363 dest[2][0] = (d*h-g*e)*det;
364 dest[2][1] = -(a*h-g*b)*det;
365 dest[2][2] = (a*e-d*b)*det;
366 }
367
368 static inline void m3x3_transpose( m3x3f src, m3x3f dest )
369 {
370 float a = src[0][0], b = src[0][1], c = src[0][2],
371 d = src[1][0], e = src[1][1], f = src[1][2],
372 g = src[2][0], h = src[2][1], i = src[2][2];
373
374 dest[0][0] = a;
375 dest[0][1] = d;
376 dest[0][2] = g;
377 dest[1][0] = b;
378 dest[1][1] = e;
379 dest[1][2] = h;
380 dest[2][0] = c;
381 dest[2][1] = f;
382 dest[2][2] = i;
383 }
384
385 static inline void m3x3_mul( m3x3f a, m3x3f b, m3x3f d )
386 {
387 float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
388 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
389 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
390
391 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
392 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
393 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2];
394
395 d[0][0] = a00*b00 + a10*b01 + a20*b02;
396 d[0][1] = a01*b00 + a11*b01 + a21*b02;
397 d[0][2] = a02*b00 + a12*b01 + a22*b02;
398 d[1][0] = a00*b10 + a10*b11 + a20*b12;
399 d[1][1] = a01*b10 + a11*b11 + a21*b12;
400 d[1][2] = a02*b10 + a12*b11 + a22*b12;
401 d[2][0] = a00*b20 + a10*b21 + a20*b22;
402 d[2][1] = a01*b20 + a11*b21 + a21*b22;
403 d[2][2] = a02*b20 + a12*b21 + a22*b22;
404 }
405
406 static inline void m3x3_mulv( m3x3f m, v3f v, v3f d )
407 {
408 v3f res;
409
410 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
411 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
412 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
413
414 v3_copy( res, d );
415 }
416
417 static inline void m3x3_projection( m3x3f dst, float const left, float const right, float const bottom, float const top )
418 {
419 float rl, tb;
420
421 m3x3_zero( dst );
422
423 rl = 1.0f / (right - left);
424 tb = 1.0f / (top - bottom);
425
426 dst[0][0] = 2.0f * rl;
427 dst[1][1] = 2.0f * tb;
428 dst[2][2] = 1.0f;
429 }
430
431 static inline void m3x3_translate( m3x3f m, v3f v )
432 {
433 m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0];
434 m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1];
435 m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2];
436 }
437
438 static inline void m3x3_scale( m3x3f m, v3f v )
439 {
440 m[0][0] = m[0][0] * v[0];
441 m[0][1] = m[0][1] * v[0];
442 m[0][2] = m[0][2] * v[0];
443
444 m[1][0] = m[1][0] * v[1];
445 m[1][1] = m[1][1] * v[1];
446 m[1][2] = m[1][2] * v[1];
447 }
448
449 static inline void m3x3_rotate( m3x3f m, float angle )
450 {
451 float m00 = m[0][0], m10 = m[1][0],
452 m01 = m[0][1], m11 = m[1][1],
453 m02 = m[0][2], m12 = m[1][2];
454 float c, s;
455
456 s = sinf( angle );
457 c = cosf( angle );
458
459 m[0][0] = m00 * c + m10 * s;
460 m[0][1] = m01 * c + m11 * s;
461 m[0][2] = m02 * c + m12 * s;
462
463 m[1][0] = m00 * -s + m10 * c;
464 m[1][1] = m01 * -s + m11 * c;
465 m[1][2] = m02 * -s + m12 * c;
466 }
467
468 // Matrix 4x3
469 // ==================================================================================================================
470
471 #define M4X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
472 { 0.0f, 1.0f, 0.0f, },\
473 { 0.0f, 0.0f, 1.0f, },\
474 { 0.0f, 0.0f, 0.0f }}
475
476 static inline void m4x3_to_3x3( m4x3f a, m3x3f b )
477 {
478 v3_copy( a[0], b[0] );
479 v3_copy( a[1], b[1] );
480 v3_copy( a[2], b[2] );
481 }
482
483 static inline void m4x3_copy( m4x3f a, m4x3f b )
484 {
485 v3_copy( a[0], b[0] );
486 v3_copy( a[1], b[1] );
487 v3_copy( a[2], b[2] );
488 v3_copy( a[3], b[3] );
489 }
490
491 static inline void m4x3_identity( m4x3f a )
492 {
493 m4x3f id = M4X3_IDENTITY;
494 m4x3_copy( id, a );
495 }
496
497 static inline void m4x3_mul( m4x3f a, m4x3f b, m4x3f d )
498 {
499 float
500 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
501 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
502 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
503 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2],
504 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
505 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
506 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2],
507 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2];
508
509 d[0][0] = a00*b00 + a10*b01 + a20*b02;
510 d[0][1] = a01*b00 + a11*b01 + a21*b02;
511 d[0][2] = a02*b00 + a12*b01 + a22*b02;
512 d[1][0] = a00*b10 + a10*b11 + a20*b12;
513 d[1][1] = a01*b10 + a11*b11 + a21*b12;
514 d[1][2] = a02*b10 + a12*b11 + a22*b12;
515 d[2][0] = a00*b20 + a10*b21 + a20*b22;
516 d[2][1] = a01*b20 + a11*b21 + a21*b22;
517 d[2][2] = a02*b20 + a12*b21 + a22*b22;
518 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30;
519 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31;
520 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32;
521 }
522
523 static inline void m4x3_mulv( m4x3f m, v3f v, v3f d )
524 {
525 v3f res;
526
527 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0];
528 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1];
529 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2];
530
531 v3_copy( res, d );
532 }
533
534 // Affine transforms
535 // ====================================================================================================================
536
537 static inline void m4x3_translate( m4x3f m, v3f v )
538 {
539 v3_muladds( m[3], m[0], v[0], m[3] );
540 v3_muladds( m[3], m[1], v[1], m[3] );
541 v3_muladds( m[3], m[2], v[2], m[3] );
542 }
543
544 static inline void m4x3_scale( m4x3f m, float s )
545 {
546 v3_muls( m[0], s, m[0] );
547 v3_muls( m[1], s, m[1] );
548 v3_muls( m[2], s, m[2] );
549 }
550
551 static inline void m4x3_rotate_x( m4x3f m, float angle )
552 {
553 m4x3f t = M4X3_IDENTITY;
554 float c, s;
555
556 c = cosf( angle );
557 s = sinf( angle );
558
559 t[1][1] = c;
560 t[1][2] = s;
561 t[2][1] = -s;
562 t[2][2] = c;
563
564 m4x3_mul( m, t, m );
565 }
566
567 static inline void m4x3_rotate_y( m4x3f m, float angle )
568 {
569 m4x3f t = M4X3_IDENTITY;
570 float c, s;
571
572 c = cosf( angle );
573 s = sinf( angle );
574
575 t[0][0] = c;
576 t[0][2] = -s;
577 t[2][0] = s;
578 t[2][2] = c;
579
580 m4x3_mul( m, t, m );
581 }
582
583 static inline void m4x3_rotate_z( m4x3f m, float angle )
584 {
585 m4x3f t = M4X3_IDENTITY;
586 float c, s;
587
588 c = cosf( angle );
589 s = sinf( angle );
590
591 t[0][0] = c;
592 t[0][1] = s;
593 t[1][0] = -s;
594 t[1][1] = c;
595
596 m4x3_mul( m, t, m );
597 }
598
599 // Warning: These functions are unoptimized..
600 static inline void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point )
601 {
602 v3f v;
603 m4x3_mulv( m, point, v );
604
605 v3_minv( box[0], v, box[0] );
606 v3_maxv( box[1], v, box[1] );
607 }
608
609 static inline void box_concat( boxf a, boxf b )
610 {
611 v3_minv( a[0], b[0], a[0] );
612 v3_maxv( a[1], b[1], a[1] );
613 }
614
615 static inline void box_copy( boxf a, boxf b )
616 {
617 v3_copy( a[0], b[0] );
618 v3_copy( a[1], b[1] );
619 }
620
621 static inline void m4x3_transform_aabb( m4x3f m, boxf box )
622 {
623 v3f a; v3f b;
624
625 v3_copy( box[0], a );
626 v3_copy( box[1], b );
627 v3_fill( box[0], INFINITY );
628 v3_fill( box[1], -INFINITY );
629
630 m4x3_expand_aabb_point( m, box, a );
631 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], a[2] } );
632 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], a[2] } );
633 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], a[2] } );
634 m4x3_expand_aabb_point( m, box, b );
635 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], b[2] } );
636 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], b[2] } );
637 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], b[2] } );
638 }
639
640 // Planes (double precision)
641 // ==================================================================================================================
642
643 static inline void tri_to_plane( double a[3], double b[3], double c[3], double p[4] )
644 {
645 double edge0[3];
646 double edge1[3];
647 double l;
648
649 edge0[0] = b[0] - a[0];
650 edge0[1] = b[1] - a[1];
651 edge0[2] = b[2] - a[2];
652
653 edge1[0] = c[0] - a[0];
654 edge1[1] = c[1] - a[1];
655 edge1[2] = c[2] - a[2];
656
657 p[0] = edge0[1] * edge1[2] - edge0[2] * edge1[1];
658 p[1] = edge0[2] * edge1[0] - edge0[0] * edge1[2];
659 p[2] = edge0[0] * edge1[1] - edge0[1] * edge1[0];
660
661 l = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
662 p[3] = (p[0] * a[0] + p[1] * a[1] + p[2] * a[2]) / l;
663
664 p[0] = p[0] / l;
665 p[1] = p[1] / l;
666 p[2] = p[2] / l;
667 }
668
669 static inline int plane_intersect( double a[4], double b[4], double c[4], double p[4] )
670 {
671 double const epsilon = 1e-8f;
672
673 double x[3];
674 double d;
675
676 x[0] = a[1] * b[2] - a[2] * b[1];
677 x[1] = a[2] * b[0] - a[0] * b[2];
678 x[2] = a[0] * b[1] - a[1] * b[0];
679
680 d = x[0] * c[0] + x[1] * c[1] + x[2] * c[2];
681
682 if( d < epsilon && d > -epsilon ) return 0;
683
684 p[0] = (b[1] * c[2] - b[2] * c[1]) * -a[3];
685 p[1] = (b[2] * c[0] - b[0] * c[2]) * -a[3];
686 p[2] = (b[0] * c[1] - b[1] * c[0]) * -a[3];
687
688 p[0] += (c[1] * a[2] - c[2] * a[1]) * -b[3];
689 p[1] += (c[2] * a[0] - c[0] * a[2]) * -b[3];
690 p[2] += (c[0] * a[1] - c[1] * a[0]) * -b[3];
691
692 p[0] += (a[1] * b[2] - a[2] * b[1]) * -c[3];
693 p[1] += (a[2] * b[0] - a[0] * b[2]) * -c[3];
694 p[2] += (a[0] * b[1] - a[1] * b[0]) * -c[3];
695
696 p[0] = -p[0] / d;
697 p[1] = -p[1] / d;
698 p[2] = -p[2] / d;
699
700 return 1;
701 }
702
703 static inline double plane_polarity( double p[4], double a[3] )
704 {
705 return
706 (a[0] * p[0] + a[1] * p[1] + a[2] * p[2])
707 -(p[0]*p[3] * p[0] + p[1]*p[3] * p[1] + p[2]*p[3] * p[2])
708 ;
709 }