level smooth transition camera
[fishladder.git] / vg / vg_m.h
1 // Copyright (C) 2021 Harry Godden (hgn) - All Rights Reserved
2
3 // Util
4 // ==================================================================================================================
5
6 #define VG_PIf 3.14159265358979323846264338327950288f
7 #define VG_TAUf 6.28318530717958647692528676655900576f
8
9 // Simple min/max replacements
10 static inline float vg_minf( float a, float b )
11 {
12 return a < b? a: b;
13 }
14
15 static inline float vg_maxf( float a, float b )
16 {
17 return a > b? a: b;
18 }
19
20 static inline float vg_clampf( float a, float min, float max )
21 {
22 return vg_minf( max, vg_maxf( a, min ) );
23 }
24
25 #define VG_MIN( A, B ) ((A)<(B)?(A):(B))
26 #define VG_MAX( A, B ) ((A)>(B)?(A):(B))
27
28 // Hopefully deprecate this!!
29 static inline int vg_min( int a, int b )
30 {
31 return a < b? a: b;
32 }
33
34 static inline int vg_max( int a, int b )
35 {
36 return a > b? a: b;
37 }
38
39 // Convert degrees to radians
40 static inline float vg_rad( float deg )
41 {
42 return deg * VG_PIf / 180.0f;
43 }
44
45 // Vector 2
46 // ==================================================================================================================
47
48 static inline void v2_copy( v2f a, v2f b )
49 {
50 b[0] = a[0]; b[1] = a[1];
51 }
52
53 static inline void v2i_copy( v2i a, v2i b )
54 {
55 b[0] = a[0]; b[1] = a[1];
56 }
57
58 static inline int v2i_eq( v2i a, v2i b )
59 {
60 return ((a[0] == b[0]) && (a[1] == b[1]));
61 }
62
63 static inline void v2i_add( v2i a, v2i b, v2i d )
64 {
65 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
66 }
67
68 static inline void v2i_sub( v2i a, v2i b, v2i d )
69 {
70 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
71 }
72
73 static inline void v2_minv( v2f a, v2f b, v2f dest )
74 {
75 dest[0] = vg_minf(a[0], b[0]);
76 dest[1] = vg_minf(a[1], b[1]);
77 }
78
79 static inline void v2_maxv( v2f a, v2f b, v2f dest )
80 {
81 dest[0] = vg_maxf(a[0], b[0]);
82 dest[1] = vg_maxf(a[1], b[1]);
83 }
84
85 static inline void v2_sub( v2f a, v2f b, v2f d )
86 {
87 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
88 }
89
90 static inline float v2_cross( v2f a, v2f b )
91 {
92 return a[0] * b[1] - a[1] * b[0];
93 }
94
95 static inline void v2_add( v2f a, v2f b, v2f d )
96 {
97 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
98 }
99
100 static inline void v2_muls( v2f a, float s, v2f d )
101 {
102 d[0] = a[0]*s; d[1] = a[1]*s;
103 }
104
105 static inline void v2_divs( v2f a, float s, v2f d )
106 {
107 d[0] = a[0]/s; d[1] = a[1]/s;
108 }
109
110
111 static inline void v2_mul( v2f a, v2f b, v2f d )
112 {
113 d[0] = a[0]*b[0]; d[1] = a[1]*b[1];
114 }
115
116 static inline void v2_div( v2f a, v2f b, v2f d )
117 {
118 d[0] = a[0]/b[0]; d[1] = a[1]/b[1];
119 }
120
121 static inline void v2_muladds( v2f a, v2f b, float s, v2f d )
122 {
123 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s;
124 }
125
126 static inline float v2_length2( v2f a )
127 {
128 return a[0]*a[0] + a[1]*a[1];
129 }
130
131 static inline float v2_length( v2f a )
132 {
133 return sqrtf( v2_length2( a ) );
134 }
135
136 static inline float v2_dist2( v2f a, v2f b )
137 {
138 v2f delta;
139 v2_sub( a, b, delta );
140 return v2_length2( delta );
141 }
142
143 static inline float v2_dist( v2f a, v2f b )
144 {
145 return sqrtf( v2_dist2( a, b ) );
146 }
147
148 static inline void v2_lerp( v2f a, v2f b, float t, v2f d )
149 {
150 d[0] = a[0] + t*(b[0]-a[0]);
151 d[1] = a[1] + t*(b[1]-a[1]);
152 }
153
154 // Vector 3
155 // ==================================================================================================================
156
157 static inline void v3_zero( v3f a )
158 {
159 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f;
160 }
161
162 static inline void v3_copy( v3f a, v3f b )
163 {
164 b[0] = a[0]; b[1] = a[1]; b[2] = a[2];
165 }
166
167 static inline void v3_add( v3f a, v3f b, v3f d )
168 {
169 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
170 }
171
172 static inline void v3_sub( v3f a, v3f b, v3f d )
173 {
174 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
175 }
176
177 static inline void v3_mul( v3f a, v3f b, v3f d )
178 {
179 d[0] = a[0]*b[0]; d[1] = a[1]*b[1]; d[2] = a[2]*b[2];
180 }
181
182 static inline void v3_div( v3f a, v3f b, v3f d )
183 {
184 d[0] = a[0]/b[0]; d[1] = a[1]/b[1]; d[2] = a[2]/b[2];
185 }
186
187 static inline void v3_muls( v3f a, float s, v3f d )
188 {
189 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s;
190 }
191
192 static inline void v3_divs( v3f a, float s, v3f d )
193 {
194 d[0] = a[0]/s; d[1] = a[1]/s; d[2] = a[2]/s;
195 }
196
197 static inline void v3_muladds( v3f a, v3f b, float s, v3f d )
198 {
199 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s; d[2] = a[2]+b[2]*s;
200 }
201
202 static inline float v3_dot( v3f a, v3f b )
203 {
204 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
205 }
206
207 static inline void v3_cross( v3f a, v3f b, v3f d )
208 {
209 d[0] = a[1] * b[2] - a[2] * b[1];
210 d[1] = a[2] * b[0] - a[0] * b[2];
211 d[2] = a[0] * b[1] - a[1] * b[0];
212 }
213
214 static inline float v3_length2( v3f a )
215 {
216 return v3_dot( a, a );
217 }
218
219 static inline float v3_length( v3f a )
220 {
221 return sqrtf( v3_length2( a ) );
222 }
223
224 static inline float v3_dist2( v3f a, v3f b )
225 {
226 v3f delta;
227 v3_sub( a, b, delta );
228 return v3_length2( delta );
229 }
230
231 static inline float v3_dist( v3f a, v3f b )
232 {
233 return sqrtf( v3_dist2( a, b ) );
234 }
235
236 static inline void v3_normalize( v3f a )
237 {
238 v3_muls( a, 1.f / v3_length( a ), a );
239 }
240
241 static inline float vg_lerpf( float a, float b, float t )
242 {
243 return a + t*(b-a);
244 }
245
246 static inline void v3_lerp( v3f a, v3f b, float t, v3f d )
247 {
248 d[0] = a[0] + t*(b[0]-a[0]);
249 d[1] = a[1] + t*(b[1]-a[1]);
250 d[2] = a[2] + t*(b[2]-a[2]);
251 }
252
253 static inline void v3_minv( v3f a, v3f b, v3f dest )
254 {
255 dest[0] = vg_minf(a[0], b[0]);
256 dest[1] = vg_minf(a[1], b[1]);
257 dest[2] = vg_minf(a[2], b[2]);
258 }
259
260 static inline void v3_maxv( v3f a, v3f b, v3f dest )
261 {
262 dest[0] = vg_maxf(a[0], b[0]);
263 dest[1] = vg_maxf(a[1], b[1]);
264 dest[2] = vg_maxf(a[2], b[2]);
265 }
266
267 static inline float v3_minf( v3f a )
268 {
269 return vg_minf( vg_minf( a[0], a[1] ), a[2] );
270 }
271
272 static inline float v3_maxf( v3f a )
273 {
274 return vg_maxf( vg_maxf( a[0], a[1] ), a[2] );
275 }
276
277 static inline void v3_fill( v3f a, float v )
278 {
279 a[0] = v;
280 a[1] = v;
281 a[2] = v;
282 }
283
284 // Vector 4
285 // ==================================================================================================================
286
287 static inline void v4_copy( v4f a, v4f b )
288 {
289 b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];
290 }
291
292 static inline void v4_zero( v4f a )
293 {
294 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f; a[3] = 0.f;
295 }
296
297 // Matrix 2x2
298 // ===========================================================================================================
299
300 #define M2X2_INDENTIY {{1.0f, 0.0f, }, \
301 { 0.0f, 1.0f, }}
302
303 #define M2X2_ZERO {{0.0f, 0.0f, }, \
304 { 0.0f, 0.0f, }}
305
306 static inline void m2x2_copy( m2x2f a, m2x2f b )
307 {
308 v2_copy( a[0], b[0] );
309 v2_copy( a[1], b[1] );
310 }
311
312 static inline void m2x2_identity( m2x2f a )
313 {
314 m2x2f id = M2X2_INDENTIY;
315 m2x2_copy( id, a );
316 }
317
318 static inline void m2x2_create_rotation( m2x2f a, float theta )
319 {
320 float s, c;
321
322 s = sinf( theta );
323 c = cosf( theta );
324
325 a[0][0] = c;
326 a[0][1] = -s;
327 a[1][0] = s;
328 a[1][1] = c;
329 }
330
331 // Matrix 3x3
332 //======================================================================================================
333
334 #define M3X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
335 { 0.0f, 1.0f, 0.0f, },\
336 { 0.0f, 0.0f, 1.0f, }}
337
338 #define M3X3_ZERO {{0.0f, 0.0f, 0.0f, },\
339 { 0.0f, 0.0f, 0.0f, },\
340 { 0.0f, 0.0f, 0.0f, }}
341
342
343 static inline void m3x3_copy( m3x3f a, m3x3f b )
344 {
345 v3_copy( a[0], b[0] );
346 v3_copy( a[1], b[1] );
347 v3_copy( a[2], b[2] );
348 }
349
350 static inline void m3x3_identity( m3x3f a )
351 {
352 m3x3f id = M3X3_IDENTITY;
353 m3x3_copy( id, a );
354 }
355
356 static inline void m3x3_zero( m3x3f a )
357 {
358 m3x3f z = M3X3_ZERO;
359 m3x3_copy( z, a );
360 }
361
362 static inline void m3x3_inv( m3x3f src, m3x3f dest )
363 {
364 float a = src[0][0], b = src[0][1], c = src[0][2],
365 d = src[1][0], e = src[1][1], f = src[1][2],
366 g = src[2][0], h = src[2][1], i = src[2][2];
367
368 float det = 1.f /
369 (+a*(e*i-h*f)
370 -b*(d*i-f*g)
371 +c*(d*h-e*g));
372
373 dest[0][0] = (e*i-h*f)*det;
374 dest[0][1] = -(b*i-c*h)*det;
375 dest[0][2] = (b*f-c*e)*det;
376 dest[1][0] = -(d*i-f*g)*det;
377 dest[1][1] = (a*i-c*g)*det;
378 dest[1][2] = -(a*f-d*c)*det;
379 dest[2][0] = (d*h-g*e)*det;
380 dest[2][1] = -(a*h-g*b)*det;
381 dest[2][2] = (a*e-d*b)*det;
382 }
383
384 static inline void m3x3_transpose( m3x3f src, m3x3f dest )
385 {
386 float a = src[0][0], b = src[0][1], c = src[0][2],
387 d = src[1][0], e = src[1][1], f = src[1][2],
388 g = src[2][0], h = src[2][1], i = src[2][2];
389
390 dest[0][0] = a;
391 dest[0][1] = d;
392 dest[0][2] = g;
393 dest[1][0] = b;
394 dest[1][1] = e;
395 dest[1][2] = h;
396 dest[2][0] = c;
397 dest[2][1] = f;
398 dest[2][2] = i;
399 }
400
401 static inline void m3x3_mul( m3x3f a, m3x3f b, m3x3f d )
402 {
403 float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
404 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
405 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
406
407 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
408 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
409 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2];
410
411 d[0][0] = a00*b00 + a10*b01 + a20*b02;
412 d[0][1] = a01*b00 + a11*b01 + a21*b02;
413 d[0][2] = a02*b00 + a12*b01 + a22*b02;
414 d[1][0] = a00*b10 + a10*b11 + a20*b12;
415 d[1][1] = a01*b10 + a11*b11 + a21*b12;
416 d[1][2] = a02*b10 + a12*b11 + a22*b12;
417 d[2][0] = a00*b20 + a10*b21 + a20*b22;
418 d[2][1] = a01*b20 + a11*b21 + a21*b22;
419 d[2][2] = a02*b20 + a12*b21 + a22*b22;
420 }
421
422 static inline void m3x3_mulv( m3x3f m, v3f v, v3f d )
423 {
424 v3f res;
425
426 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
427 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
428 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
429
430 v3_copy( res, d );
431 }
432
433 static inline void m3x3_projection( m3x3f dst, float const left, float const right, float const bottom, float const top )
434 {
435 float rl, tb;
436
437 m3x3_zero( dst );
438
439 rl = 1.0f / (right - left);
440 tb = 1.0f / (top - bottom);
441
442 dst[0][0] = 2.0f * rl;
443 dst[1][1] = 2.0f * tb;
444 dst[2][2] = 1.0f;
445 }
446
447 static inline void m3x3_translate( m3x3f m, v3f v )
448 {
449 m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0];
450 m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1];
451 m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2];
452 }
453
454 static inline void m3x3_scale( m3x3f m, v3f v )
455 {
456 m[0][0] = m[0][0] * v[0];
457 m[0][1] = m[0][1] * v[0];
458 m[0][2] = m[0][2] * v[0];
459
460 m[1][0] = m[1][0] * v[1];
461 m[1][1] = m[1][1] * v[1];
462 m[1][2] = m[1][2] * v[1];
463 }
464
465 static inline void m3x3_rotate( m3x3f m, float angle )
466 {
467 float m00 = m[0][0], m10 = m[1][0],
468 m01 = m[0][1], m11 = m[1][1],
469 m02 = m[0][2], m12 = m[1][2];
470 float c, s;
471
472 s = sinf( angle );
473 c = cosf( angle );
474
475 m[0][0] = m00 * c + m10 * s;
476 m[0][1] = m01 * c + m11 * s;
477 m[0][2] = m02 * c + m12 * s;
478
479 m[1][0] = m00 * -s + m10 * c;
480 m[1][1] = m01 * -s + m11 * c;
481 m[1][2] = m02 * -s + m12 * c;
482 }
483
484 // Matrix 4x3
485 // ==================================================================================================================
486
487 #define M4X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
488 { 0.0f, 1.0f, 0.0f, },\
489 { 0.0f, 0.0f, 1.0f, },\
490 { 0.0f, 0.0f, 0.0f }}
491
492 static inline void m4x3_to_3x3( m4x3f a, m3x3f b )
493 {
494 v3_copy( a[0], b[0] );
495 v3_copy( a[1], b[1] );
496 v3_copy( a[2], b[2] );
497 }
498
499 static inline void m4x3_copy( m4x3f a, m4x3f b )
500 {
501 v3_copy( a[0], b[0] );
502 v3_copy( a[1], b[1] );
503 v3_copy( a[2], b[2] );
504 v3_copy( a[3], b[3] );
505 }
506
507 static inline void m4x3_identity( m4x3f a )
508 {
509 m4x3f id = M4X3_IDENTITY;
510 m4x3_copy( id, a );
511 }
512
513 static inline void m4x3_mul( m4x3f a, m4x3f b, m4x3f d )
514 {
515 float
516 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
517 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
518 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
519 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2],
520 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
521 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
522 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2],
523 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2];
524
525 d[0][0] = a00*b00 + a10*b01 + a20*b02;
526 d[0][1] = a01*b00 + a11*b01 + a21*b02;
527 d[0][2] = a02*b00 + a12*b01 + a22*b02;
528 d[1][0] = a00*b10 + a10*b11 + a20*b12;
529 d[1][1] = a01*b10 + a11*b11 + a21*b12;
530 d[1][2] = a02*b10 + a12*b11 + a22*b12;
531 d[2][0] = a00*b20 + a10*b21 + a20*b22;
532 d[2][1] = a01*b20 + a11*b21 + a21*b22;
533 d[2][2] = a02*b20 + a12*b21 + a22*b22;
534 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30;
535 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31;
536 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32;
537 }
538
539 static inline void m4x3_mulv( m4x3f m, v3f v, v3f d )
540 {
541 v3f res;
542
543 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0];
544 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1];
545 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2];
546
547 v3_copy( res, d );
548 }
549
550 // Affine transforms
551 // ====================================================================================================================
552
553 static inline void m4x3_translate( m4x3f m, v3f v )
554 {
555 v3_muladds( m[3], m[0], v[0], m[3] );
556 v3_muladds( m[3], m[1], v[1], m[3] );
557 v3_muladds( m[3], m[2], v[2], m[3] );
558 }
559
560 static inline void m4x3_scale( m4x3f m, float s )
561 {
562 v3_muls( m[0], s, m[0] );
563 v3_muls( m[1], s, m[1] );
564 v3_muls( m[2], s, m[2] );
565 }
566
567 static inline void m4x3_rotate_x( m4x3f m, float angle )
568 {
569 m4x3f t = M4X3_IDENTITY;
570 float c, s;
571
572 c = cosf( angle );
573 s = sinf( angle );
574
575 t[1][1] = c;
576 t[1][2] = s;
577 t[2][1] = -s;
578 t[2][2] = c;
579
580 m4x3_mul( m, t, m );
581 }
582
583 static inline void m4x3_rotate_y( m4x3f m, float angle )
584 {
585 m4x3f t = M4X3_IDENTITY;
586 float c, s;
587
588 c = cosf( angle );
589 s = sinf( angle );
590
591 t[0][0] = c;
592 t[0][2] = -s;
593 t[2][0] = s;
594 t[2][2] = c;
595
596 m4x3_mul( m, t, m );
597 }
598
599 static inline void m4x3_rotate_z( m4x3f m, float angle )
600 {
601 m4x3f t = M4X3_IDENTITY;
602 float c, s;
603
604 c = cosf( angle );
605 s = sinf( angle );
606
607 t[0][0] = c;
608 t[0][1] = s;
609 t[1][0] = -s;
610 t[1][1] = c;
611
612 m4x3_mul( m, t, m );
613 }
614
615 // Warning: These functions are unoptimized..
616 static inline void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point )
617 {
618 v3f v;
619 m4x3_mulv( m, point, v );
620
621 v3_minv( box[0], v, box[0] );
622 v3_maxv( box[1], v, box[1] );
623 }
624
625 static inline void box_concat( boxf a, boxf b )
626 {
627 v3_minv( a[0], b[0], a[0] );
628 v3_maxv( a[1], b[1], a[1] );
629 }
630
631 static inline void box_copy( boxf a, boxf b )
632 {
633 v3_copy( a[0], b[0] );
634 v3_copy( a[1], b[1] );
635 }
636
637 static inline void m4x3_transform_aabb( m4x3f m, boxf box )
638 {
639 v3f a; v3f b;
640
641 v3_copy( box[0], a );
642 v3_copy( box[1], b );
643 v3_fill( box[0], INFINITY );
644 v3_fill( box[1], -INFINITY );
645
646 m4x3_expand_aabb_point( m, box, a );
647 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], a[2] } );
648 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], a[2] } );
649 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], a[2] } );
650 m4x3_expand_aabb_point( m, box, b );
651 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], b[2] } );
652 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], b[2] } );
653 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], b[2] } );
654 }
655
656 // Planes (double precision)
657 // ==================================================================================================================
658
659 static inline void tri_to_plane( double a[3], double b[3], double c[3], double p[4] )
660 {
661 double edge0[3];
662 double edge1[3];
663 double l;
664
665 edge0[0] = b[0] - a[0];
666 edge0[1] = b[1] - a[1];
667 edge0[2] = b[2] - a[2];
668
669 edge1[0] = c[0] - a[0];
670 edge1[1] = c[1] - a[1];
671 edge1[2] = c[2] - a[2];
672
673 p[0] = edge0[1] * edge1[2] - edge0[2] * edge1[1];
674 p[1] = edge0[2] * edge1[0] - edge0[0] * edge1[2];
675 p[2] = edge0[0] * edge1[1] - edge0[1] * edge1[0];
676
677 l = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
678 p[3] = (p[0] * a[0] + p[1] * a[1] + p[2] * a[2]) / l;
679
680 p[0] = p[0] / l;
681 p[1] = p[1] / l;
682 p[2] = p[2] / l;
683 }
684
685 static inline int plane_intersect( double a[4], double b[4], double c[4], double p[4] )
686 {
687 double const epsilon = 1e-8f;
688
689 double x[3];
690 double d;
691
692 x[0] = a[1] * b[2] - a[2] * b[1];
693 x[1] = a[2] * b[0] - a[0] * b[2];
694 x[2] = a[0] * b[1] - a[1] * b[0];
695
696 d = x[0] * c[0] + x[1] * c[1] + x[2] * c[2];
697
698 if( d < epsilon && d > -epsilon ) return 0;
699
700 p[0] = (b[1] * c[2] - b[2] * c[1]) * -a[3];
701 p[1] = (b[2] * c[0] - b[0] * c[2]) * -a[3];
702 p[2] = (b[0] * c[1] - b[1] * c[0]) * -a[3];
703
704 p[0] += (c[1] * a[2] - c[2] * a[1]) * -b[3];
705 p[1] += (c[2] * a[0] - c[0] * a[2]) * -b[3];
706 p[2] += (c[0] * a[1] - c[1] * a[0]) * -b[3];
707
708 p[0] += (a[1] * b[2] - a[2] * b[1]) * -c[3];
709 p[1] += (a[2] * b[0] - a[0] * b[2]) * -c[3];
710 p[2] += (a[0] * b[1] - a[1] * b[0]) * -c[3];
711
712 p[0] = -p[0] / d;
713 p[1] = -p[1] / d;
714 p[2] = -p[2] / d;
715
716 return 1;
717 }
718
719 static inline double plane_polarity( double p[4], double a[3] )
720 {
721 return
722 (a[0] * p[0] + a[1] * p[1] + a[2] * p[2])
723 -(p[0]*p[3] * p[0] + p[1]*p[3] * p[1] + p[2]*p[3] * p[2])
724 ;
725 }