misc & math
[vg.git] / vg_m.h
1 /* Copyright (C) 2021-2023 Harry Godden (hgn) - All Rights Reserved
2 *
3 * 0. Misc
4 * 1. Scalar operations
5 * 2. Vectors
6 * 2.a 2D Vectors
7 * 2.b 3D Vectors
8 * 2.c 4D Vectors
9 * 3. Quaternions
10 * 4. Matrices
11 * 4.a 2x2 matrices
12 * 4.b 3x3 matrices
13 * 4.c 4x3 matrices
14 * 4.d 4x4 matrices
15 * 5. Geometry
16 * 5.a Boxes
17 * 5.b Planes
18 * 5.c Closest points
19 * 5.d Raycast & Spherecasts
20 * 5.e Curves
21 * 5.f Volumes
22 * 6. Statistics
23 * 6.a Random numbers
24 **/
25
26 #ifndef VG_M_H
27 #define VG_M_H
28
29 #include "vg_platform.h"
30 #include <math.h>
31 #include <stdlib.h>
32
33 #define VG_PIf 3.14159265358979323846264338327950288f
34 #define VG_TAUf 6.28318530717958647692528676655900576f
35 /*
36 * -----------------------------------------------------------------------------
37 * Section 0. Misc Operations
38 * -----------------------------------------------------------------------------
39 */
40
41 /* get the f32 as the raw bits in a u32 without converting */
42 static u32 vg_ftu32( f32 a )
43 {
44 u32 *ptr = (u32 *)(&a);
45 return *ptr;
46 }
47
48 /* check if f32 is infinite */
49 static int vg_isinff( f32 a )
50 {
51 return ((vg_ftu32(a)) & 0x7FFFFFFFU) == 0x7F800000U;
52 }
53
54 /* check if f32 is not a number */
55 static int vg_isnanf( f32 a )
56 {
57 return !vg_isinff(a) && ((vg_ftu32(a)) & 0x7F800000U) == 0x7F800000U;
58 }
59
60 /* check if f32 is a number and is not infinite */
61 static int vg_validf( f32 a )
62 {
63 return ((vg_ftu32(a)) & 0x7F800000U) != 0x7F800000U;
64 }
65
66 static int v3_valid( v3f a ){
67 for( u32 i=0; i<3; i++ )
68 if( !vg_validf(a[i]) ) return 0;
69 return 1;
70 }
71
72 /*
73 * -----------------------------------------------------------------------------
74 * Section 1. Scalar Operations
75 * -----------------------------------------------------------------------------
76 */
77
78 static inline f32 vg_minf( f32 a, f32 b ){ return a < b? a: b; }
79 static inline f32 vg_maxf( f32 a, f32 b ){ return a > b? a: b; }
80
81 static inline int vg_min( int a, int b ){ return a < b? a: b; }
82 static inline int vg_max( int a, int b ){ return a > b? a: b; }
83
84 static inline f32 vg_clampf( f32 a, f32 min, f32 max )
85 {
86 return vg_minf( max, vg_maxf( a, min ) );
87 }
88
89 static inline f32 vg_signf( f32 a )
90 {
91 return a < 0.0f? -1.0f: 1.0f;
92 }
93
94 static inline f32 vg_fractf( f32 a )
95 {
96 return a - floorf( a );
97 }
98
99 static f32 vg_cfrictf( f32 velocity, f32 F )
100 {
101 return -vg_signf(velocity) * vg_minf( F, fabsf(velocity) );
102 }
103
104 static inline f32 vg_rad( f32 deg )
105 {
106 return deg * VG_PIf / 180.0f;
107 }
108
109 /*
110 * -----------------------------------------------------------------------------
111 * Section 2.a 2D Vectors
112 * -----------------------------------------------------------------------------
113 */
114
115 static inline void v2_copy( v2f a, v2f d )
116 {
117 d[0] = a[0]; d[1] = a[1];
118 }
119
120 static inline void v2_zero( v2f a )
121 {
122 a[0] = 0.f; a[1] = 0.f;
123 }
124
125 static inline void v2_add( v2f a, v2f b, v2f d )
126 {
127 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
128 }
129
130 static inline void v2_sub( v2f a, v2f b, v2f d )
131 {
132 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
133 }
134
135 static inline void v2_minv( v2f a, v2f b, v2f dest )
136 {
137 dest[0] = vg_minf(a[0], b[0]);
138 dest[1] = vg_minf(a[1], b[1]);
139 }
140
141 static inline void v2_maxv( v2f a, v2f b, v2f dest )
142 {
143 dest[0] = vg_maxf(a[0], b[0]);
144 dest[1] = vg_maxf(a[1], b[1]);
145 }
146
147 static inline f32 v2_dot( v2f a, v2f b )
148 {
149 return a[0] * b[0] + a[1] * b[1];
150 }
151
152 static inline f32 v2_cross( v2f a, v2f b )
153 {
154 return a[0]*b[1] - a[1]*b[0];
155 }
156
157 static inline void v2_abs( v2f a, v2f d )
158 {
159 d[0] = fabsf( a[0] );
160 d[1] = fabsf( a[1] );
161 }
162
163 static inline void v2_muls( v2f a, f32 s, v2f d )
164 {
165 d[0] = a[0]*s; d[1] = a[1]*s;
166 }
167
168 static inline void v2_divs( v2f a, f32 s, v2f d )
169 {
170 d[0] = a[0]/s; d[1] = a[1]/s;
171 }
172
173 static inline void v2_mul( v2f a, v2f b, v2f d )
174 {
175 d[0] = a[0]*b[0];
176 d[1] = a[1]*b[1];
177 }
178
179 static inline void v2_div( v2f a, v2f b, v2f d )
180 {
181 d[0] = a[0]/b[0]; d[1] = a[1]/b[1];
182 }
183
184 static inline void v2_muladd( v2f a, v2f b, v2f s, v2f d )
185 {
186 d[0] = a[0]+b[0]*s[0];
187 d[1] = a[1]+b[1]*s[1];
188 }
189
190 static inline void v2_muladds( v2f a, v2f b, f32 s, v2f d )
191 {
192 d[0] = a[0]+b[0]*s;
193 d[1] = a[1]+b[1]*s;
194 }
195
196 static inline f32 v2_length2( v2f a )
197 {
198 return a[0]*a[0] + a[1]*a[1];
199 }
200
201 static inline f32 v2_length( v2f a )
202 {
203 return sqrtf( v2_length2( a ) );
204 }
205
206 static inline f32 v2_dist2( v2f a, v2f b )
207 {
208 v2f delta;
209 v2_sub( a, b, delta );
210 return v2_length2( delta );
211 }
212
213 static inline f32 v2_dist( v2f a, v2f b )
214 {
215 return sqrtf( v2_dist2( a, b ) );
216 }
217
218 static inline void v2_lerp( v2f a, v2f b, f32 t, v2f d )
219 {
220 d[0] = a[0] + t*(b[0]-a[0]);
221 d[1] = a[1] + t*(b[1]-a[1]);
222 }
223
224 static inline void v2_normalize( v2f a )
225 {
226 v2_muls( a, 1.0f / v2_length( a ), a );
227 }
228
229 static void v2_normalize_clamp( v2f a )
230 {
231 f32 l2 = v2_length2( a );
232 if( l2 > 1.0f )
233 v2_muls( a, 1.0f/sqrtf(l2), a );
234 }
235
236 static inline void v2_floor( v2f a, v2f b )
237 {
238 b[0] = floorf( a[0] );
239 b[1] = floorf( a[1] );
240 }
241
242 static inline void v2_fill( v2f a, f32 v )
243 {
244 a[0] = v;
245 a[1] = v;
246 }
247
248 static inline void v2_copysign( v2f a, v2f b )
249 {
250 a[0] = copysignf( a[0], b[0] );
251 a[1] = copysignf( a[1], b[1] );
252 }
253
254 /* integer variants
255 * ---------------- */
256
257 static inline void v2i_copy( v2i a, v2i b )
258 {
259 b[0] = a[0]; b[1] = a[1];
260 }
261
262 static inline int v2i_eq( v2i a, v2i b )
263 {
264 return ((a[0] == b[0]) && (a[1] == b[1]));
265 }
266
267 static inline void v2i_add( v2i a, v2i b, v2i d )
268 {
269 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
270 }
271
272 static inline void v2i_sub( v2i a, v2i b, v2i d )
273 {
274 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
275 }
276
277 /*
278 * -----------------------------------------------------------------------------
279 * Section 2.b 3D Vectors
280 * -----------------------------------------------------------------------------
281 */
282
283 static inline void v3_copy( v3f a, v3f b )
284 {
285 b[0] = a[0]; b[1] = a[1]; b[2] = a[2];
286 }
287
288 static inline void v3_zero( v3f a )
289 {
290 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f;
291 }
292
293 static inline void v3_add( v3f a, v3f b, v3f d )
294 {
295 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
296 }
297
298 static inline void v3i_add( v3i a, v3i b, v3i d )
299 {
300 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
301 }
302
303 static inline void v3_sub( v3f a, v3f b, v3f d )
304 {
305 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
306 }
307
308 static inline void v3i_sub( v3i a, v3i b, v3i d )
309 {
310 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
311 }
312
313 static inline void v3_mul( v3f a, v3f b, v3f d )
314 {
315 d[0] = a[0]*b[0]; d[1] = a[1]*b[1]; d[2] = a[2]*b[2];
316 }
317
318 static inline void v3_div( v3f a, v3f b, v3f d )
319 {
320 d[0] = b[0]!=0.0f? a[0]/b[0]: INFINITY;
321 d[1] = b[1]!=0.0f? a[1]/b[1]: INFINITY;
322 d[2] = b[2]!=0.0f? a[2]/b[2]: INFINITY;
323 }
324
325 static inline void v3_muls( v3f a, f32 s, v3f d )
326 {
327 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s;
328 }
329
330 static inline void v3_fill( v3f a, f32 v )
331 {
332 a[0] = v;
333 a[1] = v;
334 a[2] = v;
335 }
336
337 static inline void v3_divs( v3f a, f32 s, v3f d )
338 {
339 if( s == 0.0f )
340 v3_fill( d, INFINITY );
341 else
342 {
343 d[0] = a[0]/s;
344 d[1] = a[1]/s;
345 d[2] = a[2]/s;
346 }
347 }
348
349 static inline void v3_muladds( v3f a, v3f b, f32 s, v3f d )
350 {
351 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s; d[2] = a[2]+b[2]*s;
352 }
353
354 static inline void v3_muladd( v2f a, v2f b, v2f s, v2f d )
355 {
356 d[0] = a[0]+b[0]*s[0];
357 d[1] = a[1]+b[1]*s[1];
358 d[2] = a[2]+b[2]*s[2];
359 }
360
361 static inline f32 v3_dot( v3f a, v3f b )
362 {
363 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
364 }
365
366 static inline void v3_cross( v3f a, v3f b, v3f dest )
367 {
368 v3f d;
369 d[0] = a[1]*b[2] - a[2]*b[1];
370 d[1] = a[2]*b[0] - a[0]*b[2];
371 d[2] = a[0]*b[1] - a[1]*b[0];
372 v3_copy( d, dest );
373 }
374
375 static inline f32 v3_length2( v3f a )
376 {
377 return v3_dot( a, a );
378 }
379
380 static inline f32 v3_length( v3f a )
381 {
382 return sqrtf( v3_length2( a ) );
383 }
384
385 static inline f32 v3_dist2( v3f a, v3f b )
386 {
387 v3f delta;
388 v3_sub( a, b, delta );
389 return v3_length2( delta );
390 }
391
392 static inline f32 v3_dist( v3f a, v3f b )
393 {
394 return sqrtf( v3_dist2( a, b ) );
395 }
396
397 static inline void v3_normalize( v3f a )
398 {
399 v3_muls( a, 1.f / v3_length( a ), a );
400 }
401
402 static inline f32 vg_lerpf( f32 a, f32 b, f32 t ){
403 return a + t*(b-a);
404 }
405
406 static inline void vg_slewf( f32 *a, f32 b, f32 speed ){
407 f32 d = vg_signf( b-*a ),
408 c = *a + d*speed;
409 *a = vg_minf( b*d, c*d ) * d;
410 }
411
412 static inline f64 vg_lerp( f64 a, f64 b, f64 t )
413 {
414 return a + t*(b-a);
415 }
416
417 /* correctly lerp around circular period -pi -> pi */
418 static f32 vg_alerpf( f32 a, f32 b, f32 t )
419 {
420 f32 d = fmodf( b-a, VG_TAUf ),
421 s = fmodf( 2.0f*d, VG_TAUf ) - d;
422 return a + s*t;
423 }
424
425 static inline void v3_lerp( v3f a, v3f b, f32 t, v3f d )
426 {
427 d[0] = a[0] + t*(b[0]-a[0]);
428 d[1] = a[1] + t*(b[1]-a[1]);
429 d[2] = a[2] + t*(b[2]-a[2]);
430 }
431
432 static inline void v3_minv( v3f a, v3f b, v3f dest )
433 {
434 dest[0] = vg_minf(a[0], b[0]);
435 dest[1] = vg_minf(a[1], b[1]);
436 dest[2] = vg_minf(a[2], b[2]);
437 }
438
439 static inline void v3_maxv( v3f a, v3f b, v3f dest )
440 {
441 dest[0] = vg_maxf(a[0], b[0]);
442 dest[1] = vg_maxf(a[1], b[1]);
443 dest[2] = vg_maxf(a[2], b[2]);
444 }
445
446 static inline f32 v3_minf( v3f a )
447 {
448 return vg_minf( vg_minf( a[0], a[1] ), a[2] );
449 }
450
451 static inline f32 v3_maxf( v3f a )
452 {
453 return vg_maxf( vg_maxf( a[0], a[1] ), a[2] );
454 }
455
456 static inline void v3_floor( v3f a, v3f b )
457 {
458 b[0] = floorf( a[0] );
459 b[1] = floorf( a[1] );
460 b[2] = floorf( a[2] );
461 }
462
463 static inline void v3_ceil( v3f a, v3f b )
464 {
465 b[0] = ceilf( a[0] );
466 b[1] = ceilf( a[1] );
467 b[2] = ceilf( a[2] );
468 }
469
470 static inline void v3_negate( v3f a, v3f b )
471 {
472 b[0] = -a[0];
473 b[1] = -a[1];
474 b[2] = -a[2];
475 }
476
477 static inline void v3_rotate( v3f v, f32 angle, v3f axis, v3f d )
478 {
479 v3f v1, v2, k;
480 f32 c, s;
481
482 c = cosf( angle );
483 s = sinf( angle );
484
485 v3_copy( axis, k );
486 v3_normalize( k );
487 v3_muls( v, c, v1 );
488 v3_cross( k, v, v2 );
489 v3_muls( v2, s, v2 );
490 v3_add( v1, v2, v1 );
491 v3_muls( k, v3_dot(k, v) * (1.0f - c), v2);
492 v3_add( v1, v2, d );
493 }
494
495 static void v3_tangent_basis( v3f n, v3f tx, v3f ty ){
496 /* Compute tangent basis (box2d) */
497 if( fabsf( n[0] ) >= 0.57735027f ){
498 tx[0] = n[1];
499 tx[1] = -n[0];
500 tx[2] = 0.0f;
501 }
502 else{
503 tx[0] = 0.0f;
504 tx[1] = n[2];
505 tx[2] = -n[1];
506 }
507
508 v3_normalize( tx );
509 v3_cross( n, tx, ty );
510 }
511
512
513 /*
514 * -----------------------------------------------------------------------------
515 * Section 2.c 4D Vectors
516 * -----------------------------------------------------------------------------
517 */
518
519 static inline void v4_copy( v4f a, v4f b )
520 {
521 b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];
522 }
523
524 static inline void v4_add( v4f a, v4f b, v4f d )
525 {
526 d[0] = a[0]+b[0];
527 d[1] = a[1]+b[1];
528 d[2] = a[2]+b[2];
529 d[3] = a[3]+b[3];
530 }
531
532 static inline void v4_zero( v4f a )
533 {
534 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f; a[3] = 0.f;
535 }
536
537 static inline void v4_muls( v4f a, f32 s, v4f d )
538 {
539 d[0] = a[0]*s;
540 d[1] = a[1]*s;
541 d[2] = a[2]*s;
542 d[3] = a[3]*s;
543 }
544
545 static inline void v4_muladds( v4f a, v4f b, f32 s, v4f d )
546 {
547 d[0] = a[0]+b[0]*s;
548 d[1] = a[1]+b[1]*s;
549 d[2] = a[2]+b[2]*s;
550 d[3] = a[3]+b[3]*s;
551 }
552
553 static inline void v4_lerp( v4f a, v4f b, f32 t, v4f d )
554 {
555 d[0] = a[0] + t*(b[0]-a[0]);
556 d[1] = a[1] + t*(b[1]-a[1]);
557 d[2] = a[2] + t*(b[2]-a[2]);
558 d[3] = a[3] + t*(b[3]-a[3]);
559 }
560
561 static inline f32 v4_dot( v4f a, v4f b )
562 {
563 return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
564 }
565
566 static inline f32 v4_length( v4f a )
567 {
568 return sqrtf( v4_dot(a,a) );
569 }
570
571 /*
572 * -----------------------------------------------------------------------------
573 * Section 3 Quaternions
574 * -----------------------------------------------------------------------------
575 */
576
577 static inline void q_identity( v4f q )
578 {
579 q[0] = 0.0f; q[1] = 0.0f; q[2] = 0.0f; q[3] = 1.0f;
580 }
581
582 static inline void q_axis_angle( v4f q, v3f axis, f32 angle )
583 {
584 f32 a = angle*0.5f,
585 c = cosf(a),
586 s = sinf(a);
587
588 q[0] = s*axis[0];
589 q[1] = s*axis[1];
590 q[2] = s*axis[2];
591 q[3] = c;
592 }
593
594 static inline void q_mul( v4f q, v4f q1, v4f d )
595 {
596 v4f t;
597 t[0] = q[3]*q1[0] + q[0]*q1[3] + q[1]*q1[2] - q[2]*q1[1];
598 t[1] = q[3]*q1[1] - q[0]*q1[2] + q[1]*q1[3] + q[2]*q1[0];
599 t[2] = q[3]*q1[2] + q[0]*q1[1] - q[1]*q1[0] + q[2]*q1[3];
600 t[3] = q[3]*q1[3] - q[0]*q1[0] - q[1]*q1[1] - q[2]*q1[2];
601 v4_copy( t, d );
602 }
603
604 static inline void q_normalize( v4f q )
605 {
606 f32 l2 = v4_dot(q,q);
607 if( l2 < 0.00001f ) q_identity( q );
608 else {
609 f32 s = 1.0f/sqrtf(l2);
610 q[0] *= s;
611 q[1] *= s;
612 q[2] *= s;
613 q[3] *= s;
614 }
615 }
616
617 static inline void q_inv( v4f q, v4f d )
618 {
619 f32 s = 1.0f / v4_dot(q,q);
620 d[0] = -q[0]*s;
621 d[1] = -q[1]*s;
622 d[2] = -q[2]*s;
623 d[3] = q[3]*s;
624 }
625
626 static inline void q_nlerp( v4f a, v4f b, f32 t, v4f d )
627 {
628 if( v4_dot(a,b) < 0.0f ){
629 v4_muls( b, -1.0f, d );
630 v4_lerp( a, d, t, d );
631 }
632 else
633 v4_lerp( a, b, t, d );
634
635 q_normalize( d );
636 }
637
638 static inline void q_m3x3( v4f q, m3x3f d )
639 {
640 f32
641 l = v4_length(q),
642 s = l > 0.0f? 2.0f/l: 0.0f,
643
644 xx = s*q[0]*q[0], xy = s*q[0]*q[1], wx = s*q[3]*q[0],
645 yy = s*q[1]*q[1], yz = s*q[1]*q[2], wy = s*q[3]*q[1],
646 zz = s*q[2]*q[2], xz = s*q[0]*q[2], wz = s*q[3]*q[2];
647
648 d[0][0] = 1.0f - yy - zz;
649 d[1][1] = 1.0f - xx - zz;
650 d[2][2] = 1.0f - xx - yy;
651 d[0][1] = xy + wz;
652 d[1][2] = yz + wx;
653 d[2][0] = xz + wy;
654 d[1][0] = xy - wz;
655 d[2][1] = yz - wx;
656 d[0][2] = xz - wy;
657 }
658
659 static void q_mulv( v4f q, v3f v, v3f d )
660 {
661 v3f v1, v2;
662
663 v3_muls( q, 2.0f*v3_dot(q,v), v1 );
664 v3_muls( v, q[3]*q[3] - v3_dot(q,q), v2 );
665 v3_add( v1, v2, v1 );
666 v3_cross( q, v, v2 );
667 v3_muls( v2, 2.0f*q[3], v2 );
668 v3_add( v1, v2, d );
669 }
670
671 /*
672 * -----------------------------------------------------------------------------
673 * Section 4.a 2x2 matrices
674 * -----------------------------------------------------------------------------
675 */
676
677 #define M2X2_INDENTIY {{1.0f, 0.0f, }, \
678 {0.0f, 1.0f, }}
679
680 #define M2X2_ZERO {{0.0f, 0.0f, }, \
681 {0.0f, 0.0f, }}
682
683 static inline void m2x2_copy( m2x2f a, m2x2f b )
684 {
685 v2_copy( a[0], b[0] );
686 v2_copy( a[1], b[1] );
687 }
688
689 static inline void m2x2_identity( m2x2f a )
690 {
691 m2x2f id = M2X2_INDENTIY;
692 m2x2_copy( id, a );
693 }
694
695 static inline void m2x2_create_rotation( m2x2f a, f32 theta )
696 {
697 f32 s, c;
698
699 s = sinf( theta );
700 c = cosf( theta );
701
702 a[0][0] = c;
703 a[0][1] = -s;
704 a[1][0] = s;
705 a[1][1] = c;
706 }
707
708 /*
709 * -----------------------------------------------------------------------------
710 * Section 4.b 3x3 matrices
711 * -----------------------------------------------------------------------------
712 */
713
714 #define M3X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
715 { 0.0f, 1.0f, 0.0f, },\
716 { 0.0f, 0.0f, 1.0f, }}
717
718 #define M3X3_ZERO {{0.0f, 0.0f, 0.0f, },\
719 { 0.0f, 0.0f, 0.0f, },\
720 { 0.0f, 0.0f, 0.0f, }}
721
722
723 static void euler_m3x3( v3f angles, m3x3f d )
724 {
725 f32 cosY = cosf( angles[0] ),
726 sinY = sinf( angles[0] ),
727 cosP = cosf( angles[1] ),
728 sinP = sinf( angles[1] ),
729 cosR = cosf( angles[2] ),
730 sinR = sinf( angles[2] );
731
732 d[2][0] = -sinY * cosP;
733 d[2][1] = sinP;
734 d[2][2] = cosY * cosP;
735
736 d[0][0] = cosY * cosR;
737 d[0][1] = sinR;
738 d[0][2] = sinY * cosR;
739
740 v3_cross( d[0], d[2], d[1] );
741 }
742
743 static void m3x3_q( m3x3f m, v4f q )
744 {
745 f32 diag, r, rinv;
746
747 diag = m[0][0] + m[1][1] + m[2][2];
748 if( diag >= 0.0f )
749 {
750 r = sqrtf( 1.0f + diag );
751 rinv = 0.5f / r;
752 q[0] = rinv * (m[1][2] - m[2][1]);
753 q[1] = rinv * (m[2][0] - m[0][2]);
754 q[2] = rinv * (m[0][1] - m[1][0]);
755 q[3] = r * 0.5f;
756 }
757 else if( m[0][0] >= m[1][1] && m[0][0] >= m[2][2] )
758 {
759 r = sqrtf( 1.0f - m[1][1] - m[2][2] + m[0][0] );
760 rinv = 0.5f / r;
761 q[0] = r * 0.5f;
762 q[1] = rinv * (m[0][1] + m[1][0]);
763 q[2] = rinv * (m[0][2] + m[2][0]);
764 q[3] = rinv * (m[1][2] - m[2][1]);
765 }
766 else if( m[1][1] >= m[2][2] )
767 {
768 r = sqrtf( 1.0f - m[0][0] - m[2][2] + m[1][1] );
769 rinv = 0.5f / r;
770 q[0] = rinv * (m[0][1] + m[1][0]);
771 q[1] = r * 0.5f;
772 q[2] = rinv * (m[1][2] + m[2][1]);
773 q[3] = rinv * (m[2][0] - m[0][2]);
774 }
775 else
776 {
777 r = sqrtf( 1.0f - m[0][0] - m[1][1] + m[2][2] );
778 rinv = 0.5f / r;
779 q[0] = rinv * (m[0][2] + m[2][0]);
780 q[1] = rinv * (m[1][2] + m[2][1]);
781 q[2] = r * 0.5f;
782 q[3] = rinv * (m[0][1] - m[1][0]);
783 }
784 }
785
786 /* a X b == [b]T a == ...*/
787 static void m3x3_skew_symetric( m3x3f a, v3f v )
788 {
789 a[0][0] = 0.0f;
790 a[0][1] = v[2];
791 a[0][2] = -v[1];
792 a[1][0] = -v[2];
793 a[1][1] = 0.0f;
794 a[1][2] = v[0];
795 a[2][0] = v[1];
796 a[2][1] = -v[0];
797 a[2][2] = 0.0f;
798 }
799
800 static void m3x3_add( m3x3f a, m3x3f b, m3x3f d )
801 {
802 v3_add( a[0], b[0], d[0] );
803 v3_add( a[1], b[1], d[1] );
804 v3_add( a[2], b[2], d[2] );
805 }
806
807 static inline void m3x3_copy( m3x3f a, m3x3f b )
808 {
809 v3_copy( a[0], b[0] );
810 v3_copy( a[1], b[1] );
811 v3_copy( a[2], b[2] );
812 }
813
814 static inline void m3x3_identity( m3x3f a )
815 {
816 m3x3f id = M3X3_IDENTITY;
817 m3x3_copy( id, a );
818 }
819
820 static void m3x3_diagonal( m3x3f a, f32 v )
821 {
822 m3x3_identity( a );
823 a[0][0] = v;
824 a[1][1] = v;
825 a[2][2] = v;
826 }
827
828 static void m3x3_setdiagonalv3( m3x3f a, v3f v )
829 {
830 a[0][0] = v[0];
831 a[1][1] = v[1];
832 a[2][2] = v[2];
833 }
834
835 static inline void m3x3_zero( m3x3f a )
836 {
837 m3x3f z = M3X3_ZERO;
838 m3x3_copy( z, a );
839 }
840
841 static inline void m3x3_inv( m3x3f src, m3x3f dest )
842 {
843 f32 a = src[0][0], b = src[0][1], c = src[0][2],
844 d = src[1][0], e = src[1][1], f = src[1][2],
845 g = src[2][0], h = src[2][1], i = src[2][2];
846
847 f32 det = 1.f /
848 (+a*(e*i-h*f)
849 -b*(d*i-f*g)
850 +c*(d*h-e*g));
851
852 dest[0][0] = (e*i-h*f)*det;
853 dest[0][1] = -(b*i-c*h)*det;
854 dest[0][2] = (b*f-c*e)*det;
855 dest[1][0] = -(d*i-f*g)*det;
856 dest[1][1] = (a*i-c*g)*det;
857 dest[1][2] = -(a*f-d*c)*det;
858 dest[2][0] = (d*h-g*e)*det;
859 dest[2][1] = -(a*h-g*b)*det;
860 dest[2][2] = (a*e-d*b)*det;
861 }
862
863 static f32 m3x3_det( m3x3f m )
864 {
865 return m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])
866 - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
867 + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
868 }
869
870 static inline void m3x3_transpose( m3x3f src, m3x3f dest )
871 {
872 f32 a = src[0][0], b = src[0][1], c = src[0][2],
873 d = src[1][0], e = src[1][1], f = src[1][2],
874 g = src[2][0], h = src[2][1], i = src[2][2];
875
876 dest[0][0] = a;
877 dest[0][1] = d;
878 dest[0][2] = g;
879 dest[1][0] = b;
880 dest[1][1] = e;
881 dest[1][2] = h;
882 dest[2][0] = c;
883 dest[2][1] = f;
884 dest[2][2] = i;
885 }
886
887 static inline void m3x3_mul( m3x3f a, m3x3f b, m3x3f d )
888 {
889 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
890 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
891 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
892
893 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
894 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
895 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2];
896
897 d[0][0] = a00*b00 + a10*b01 + a20*b02;
898 d[0][1] = a01*b00 + a11*b01 + a21*b02;
899 d[0][2] = a02*b00 + a12*b01 + a22*b02;
900 d[1][0] = a00*b10 + a10*b11 + a20*b12;
901 d[1][1] = a01*b10 + a11*b11 + a21*b12;
902 d[1][2] = a02*b10 + a12*b11 + a22*b12;
903 d[2][0] = a00*b20 + a10*b21 + a20*b22;
904 d[2][1] = a01*b20 + a11*b21 + a21*b22;
905 d[2][2] = a02*b20 + a12*b21 + a22*b22;
906 }
907
908 static inline void m3x3_mulv( m3x3f m, v3f v, v3f d )
909 {
910 v3f res;
911
912 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
913 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
914 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
915
916 v3_copy( res, d );
917 }
918
919 static inline void m3x3_projection( m3x3f dst,
920 f32 const left, f32 const right, f32 const bottom, f32 const top )
921 {
922 f32 rl, tb;
923
924 m3x3_zero( dst );
925
926 rl = 1.0f / (right - left);
927 tb = 1.0f / (top - bottom);
928
929 dst[0][0] = 2.0f * rl;
930 dst[1][1] = 2.0f * tb;
931 dst[2][2] = 1.0f;
932 }
933
934 static inline void m3x3_translate( m3x3f m, v3f v )
935 {
936 m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0];
937 m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1];
938 m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2];
939 }
940
941 static inline void m3x3_scale( m3x3f m, v3f v )
942 {
943 v3_muls( m[0], v[0], m[0] );
944 v3_muls( m[1], v[1], m[1] );
945 v3_muls( m[2], v[2], m[2] );
946 }
947
948 static inline void m3x3_scalef( m3x3f m, f32 f )
949 {
950 v3f v;
951 v3_fill( v, f );
952 m3x3_scale( m, v );
953 }
954
955 static inline void m3x3_rotate( m3x3f m, f32 angle )
956 {
957 f32 m00 = m[0][0], m10 = m[1][0],
958 m01 = m[0][1], m11 = m[1][1],
959 m02 = m[0][2], m12 = m[1][2];
960 f32 c, s;
961
962 s = sinf( angle );
963 c = cosf( angle );
964
965 m[0][0] = m00 * c + m10 * s;
966 m[0][1] = m01 * c + m11 * s;
967 m[0][2] = m02 * c + m12 * s;
968
969 m[1][0] = m00 * -s + m10 * c;
970 m[1][1] = m01 * -s + m11 * c;
971 m[1][2] = m02 * -s + m12 * c;
972 }
973
974 /*
975 * -----------------------------------------------------------------------------
976 * Section 4.c 4x3 matrices
977 * -----------------------------------------------------------------------------
978 */
979
980 #define M4X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
981 { 0.0f, 1.0f, 0.0f, },\
982 { 0.0f, 0.0f, 1.0f, },\
983 { 0.0f, 0.0f, 0.0f }}
984
985 static inline void m4x3_to_3x3( m4x3f a, m3x3f b )
986 {
987 v3_copy( a[0], b[0] );
988 v3_copy( a[1], b[1] );
989 v3_copy( a[2], b[2] );
990 }
991
992 static inline void m4x3_invert_affine( m4x3f a, m4x3f b )
993 {
994 m3x3_transpose( a, b );
995 m3x3_mulv( b, a[3], b[3] );
996 v3_negate( b[3], b[3] );
997 }
998
999 static void m4x3_invert_full( m4x3f src, m4x3f dst )
1000 {
1001 f32 t2, t4, t5,
1002 det,
1003 a = src[0][0], b = src[0][1], c = src[0][2],
1004 e = src[1][0], f = src[1][1], g = src[1][2],
1005 i = src[2][0], j = src[2][1], k = src[2][2],
1006 m = src[3][0], n = src[3][1], o = src[3][2];
1007
1008 t2 = j*o - n*k;
1009 t4 = i*o - m*k;
1010 t5 = i*n - m*j;
1011
1012 dst[0][0] = f*k - g*j;
1013 dst[1][0] =-(e*k - g*i);
1014 dst[2][0] = e*j - f*i;
1015 dst[3][0] =-(e*t2 - f*t4 + g*t5);
1016
1017 dst[0][1] =-(b*k - c*j);
1018 dst[1][1] = a*k - c*i;
1019 dst[2][1] =-(a*j - b*i);
1020 dst[3][1] = a*t2 - b*t4 + c*t5;
1021
1022 t2 = f*o - n*g;
1023 t4 = e*o - m*g;
1024 t5 = e*n - m*f;
1025
1026 dst[0][2] = b*g - c*f ;
1027 dst[1][2] =-(a*g - c*e );
1028 dst[2][2] = a*f - b*e ;
1029 dst[3][2] =-(a*t2 - b*t4 + c * t5);
1030
1031 det = 1.0f / (a * dst[0][0] + b * dst[1][0] + c * dst[2][0]);
1032 v3_muls( dst[0], det, dst[0] );
1033 v3_muls( dst[1], det, dst[1] );
1034 v3_muls( dst[2], det, dst[2] );
1035 v3_muls( dst[3], det, dst[3] );
1036 }
1037
1038 static inline void m4x3_copy( m4x3f a, m4x3f b )
1039 {
1040 v3_copy( a[0], b[0] );
1041 v3_copy( a[1], b[1] );
1042 v3_copy( a[2], b[2] );
1043 v3_copy( a[3], b[3] );
1044 }
1045
1046 static inline void m4x3_identity( m4x3f a )
1047 {
1048 m4x3f id = M4X3_IDENTITY;
1049 m4x3_copy( id, a );
1050 }
1051
1052 static void m4x3_mul( m4x3f a, m4x3f b, m4x3f d )
1053 {
1054 f32
1055 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
1056 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
1057 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
1058 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2],
1059 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
1060 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
1061 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2],
1062 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2];
1063
1064 d[0][0] = a00*b00 + a10*b01 + a20*b02;
1065 d[0][1] = a01*b00 + a11*b01 + a21*b02;
1066 d[0][2] = a02*b00 + a12*b01 + a22*b02;
1067 d[1][0] = a00*b10 + a10*b11 + a20*b12;
1068 d[1][1] = a01*b10 + a11*b11 + a21*b12;
1069 d[1][2] = a02*b10 + a12*b11 + a22*b12;
1070 d[2][0] = a00*b20 + a10*b21 + a20*b22;
1071 d[2][1] = a01*b20 + a11*b21 + a21*b22;
1072 d[2][2] = a02*b20 + a12*b21 + a22*b22;
1073 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30;
1074 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31;
1075 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32;
1076 }
1077
1078 #if 0 /* shat appf mingw wstringop-overflow */
1079 inline
1080 #endif
1081 static void m4x3_mulv( m4x3f m, v3f v, v3f d )
1082 {
1083 v3f res;
1084
1085 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0];
1086 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1];
1087 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2];
1088
1089 v3_copy( res, d );
1090 }
1091
1092 /*
1093 * Transform plane ( xyz, distance )
1094 */
1095 static void m4x3_mulp( m4x3f m, v4f p, v4f d )
1096 {
1097 v3f o;
1098
1099 v3_muls( p, p[3], o );
1100 m4x3_mulv( m, o, o );
1101 m3x3_mulv( m, p, d );
1102
1103 d[3] = v3_dot( o, d );
1104 }
1105
1106 /*
1107 * Affine transforms
1108 */
1109
1110 static void m4x3_translate( m4x3f m, v3f v )
1111 {
1112 v3_muladds( m[3], m[0], v[0], m[3] );
1113 v3_muladds( m[3], m[1], v[1], m[3] );
1114 v3_muladds( m[3], m[2], v[2], m[3] );
1115 }
1116
1117 static void m4x3_rotate_x( m4x3f m, f32 angle )
1118 {
1119 m4x3f t = M4X3_IDENTITY;
1120 f32 c, s;
1121
1122 c = cosf( angle );
1123 s = sinf( angle );
1124
1125 t[1][1] = c;
1126 t[1][2] = s;
1127 t[2][1] = -s;
1128 t[2][2] = c;
1129
1130 m4x3_mul( m, t, m );
1131 }
1132
1133 static void m4x3_rotate_y( m4x3f m, f32 angle )
1134 {
1135 m4x3f t = M4X3_IDENTITY;
1136 f32 c, s;
1137
1138 c = cosf( angle );
1139 s = sinf( angle );
1140
1141 t[0][0] = c;
1142 t[0][2] = -s;
1143 t[2][0] = s;
1144 t[2][2] = c;
1145
1146 m4x3_mul( m, t, m );
1147 }
1148
1149 static void m4x3_rotate_z( m4x3f m, f32 angle )
1150 {
1151 m4x3f t = M4X3_IDENTITY;
1152 f32 c, s;
1153
1154 c = cosf( angle );
1155 s = sinf( angle );
1156
1157 t[0][0] = c;
1158 t[0][1] = s;
1159 t[1][0] = -s;
1160 t[1][1] = c;
1161
1162 m4x3_mul( m, t, m );
1163 }
1164
1165 static void m4x3_expand( m4x3f m, m4x4f d )
1166 {
1167 v3_copy( m[0], d[0] );
1168 v3_copy( m[1], d[1] );
1169 v3_copy( m[2], d[2] );
1170 v3_copy( m[3], d[3] );
1171 d[0][3] = 0.0f;
1172 d[1][3] = 0.0f;
1173 d[2][3] = 0.0f;
1174 d[3][3] = 1.0f;
1175 }
1176
1177 static void m4x3_decompose( m4x3f m, v3f co, v4f q, v3f s )
1178 {
1179 v3_copy( m[3], co );
1180 s[0] = v3_length(m[0]);
1181 s[1] = v3_length(m[1]);
1182 s[2] = v3_length(m[2]);
1183
1184 m3x3f rot;
1185 v3_divs( m[0], s[0], rot[0] );
1186 v3_divs( m[1], s[1], rot[1] );
1187 v3_divs( m[2], s[2], rot[2] );
1188
1189 m3x3_q( rot, q );
1190 }
1191
1192 static void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point )
1193 {
1194 v3f v;
1195 m4x3_mulv( m, point, v );
1196
1197 v3_minv( box[0], v, box[0] );
1198 v3_maxv( box[1], v, box[1] );
1199 }
1200
1201 static void m4x3_transform_aabb( m4x3f m, boxf box )
1202 {
1203 v3f a; v3f b;
1204
1205 v3_copy( box[0], a );
1206 v3_copy( box[1], b );
1207 v3_fill( box[0], INFINITY );
1208 v3_fill( box[1], -INFINITY );
1209
1210 m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], a[2] } );
1211 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], a[2] } );
1212 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], a[2] } );
1213 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], a[2] } );
1214
1215 m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], b[2] } );
1216 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], b[2] } );
1217 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], b[2] } );
1218 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], b[2] } );
1219 }
1220
1221 static inline void m4x3_lookat( m4x3f m, v3f pos, v3f target, v3f up )
1222 {
1223 v3f dir;
1224 v3_sub( target, pos, dir );
1225 v3_normalize( dir );
1226
1227 v3_copy( dir, m[2] );
1228
1229 v3_cross( up, m[2], m[0] );
1230 v3_normalize( m[0] );
1231
1232 v3_cross( m[2], m[0], m[1] );
1233 v3_copy( pos, m[3] );
1234 }
1235
1236 /*
1237 * -----------------------------------------------------------------------------
1238 * Section 4.d 4x4 matrices
1239 * -----------------------------------------------------------------------------
1240 */
1241
1242 #define M4X4_IDENTITY {{1.0f, 0.0f, 0.0f, 0.0f },\
1243 { 0.0f, 1.0f, 0.0f, 0.0f },\
1244 { 0.0f, 0.0f, 1.0f, 0.0f },\
1245 { 0.0f, 0.0f, 0.0f, 1.0f }}
1246 #define M4X4_ZERO {{0.0f, 0.0f, 0.0f, 0.0f },\
1247 { 0.0f, 0.0f, 0.0f, 0.0f },\
1248 { 0.0f, 0.0f, 0.0f, 0.0f },\
1249 { 0.0f, 0.0f, 0.0f, 0.0f }}
1250
1251 static void m4x4_projection( m4x4f m, f32 angle,
1252 f32 ratio, f32 fnear, f32 ffar )
1253 {
1254 f32 scale = tanf( angle * 0.5f * VG_PIf / 180.0f ) * fnear,
1255 r = ratio * scale,
1256 l = -r,
1257 t = scale,
1258 b = -t;
1259
1260 m[0][0] = 2.0f * fnear / (r - l);
1261 m[0][1] = 0.0f;
1262 m[0][2] = 0.0f;
1263 m[0][3] = 0.0f;
1264
1265 m[1][0] = 0.0f;
1266 m[1][1] = 2.0f * fnear / (t - b);
1267 m[1][2] = 0.0f;
1268 m[1][3] = 0.0f;
1269
1270 m[2][0] = (r + l) / (r - l);
1271 m[2][1] = (t + b) / (t - b);
1272 m[2][2] = -(ffar + fnear) / (ffar - fnear);
1273 m[2][3] = -1.0f;
1274
1275 m[3][0] = 0.0f;
1276 m[3][1] = 0.0f;
1277 m[3][2] = -2.0f * ffar * fnear / (ffar - fnear);
1278 m[3][3] = 0.0f;
1279 }
1280
1281 static void m4x4_translate( m4x4f m, v3f v )
1282 {
1283 v4_muladds( m[3], m[0], v[0], m[3] );
1284 v4_muladds( m[3], m[1], v[1], m[3] );
1285 v4_muladds( m[3], m[2], v[2], m[3] );
1286 }
1287
1288 static inline void m4x4_copy( m4x4f a, m4x4f b )
1289 {
1290 v4_copy( a[0], b[0] );
1291 v4_copy( a[1], b[1] );
1292 v4_copy( a[2], b[2] );
1293 v4_copy( a[3], b[3] );
1294 }
1295
1296 static inline void m4x4_identity( m4x4f a )
1297 {
1298 m4x4f id = M4X4_IDENTITY;
1299 m4x4_copy( id, a );
1300 }
1301
1302 static inline void m4x4_zero( m4x4f a )
1303 {
1304 m4x4f zero = M4X4_ZERO;
1305 m4x4_copy( zero, a );
1306 }
1307
1308 static inline void m4x4_mul( m4x4f a, m4x4f b, m4x4f d )
1309 {
1310 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1311 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1312 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1313 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1314
1315 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2], b03 = b[0][3],
1316 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2], b13 = b[1][3],
1317 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2], b23 = b[2][3],
1318 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2], b33 = b[3][3];
1319
1320 d[0][0] = a00*b00 + a10*b01 + a20*b02 + a30*b03;
1321 d[0][1] = a01*b00 + a11*b01 + a21*b02 + a31*b03;
1322 d[0][2] = a02*b00 + a12*b01 + a22*b02 + a32*b03;
1323 d[0][3] = a03*b00 + a13*b01 + a23*b02 + a33*b03;
1324 d[1][0] = a00*b10 + a10*b11 + a20*b12 + a30*b13;
1325 d[1][1] = a01*b10 + a11*b11 + a21*b12 + a31*b13;
1326 d[1][2] = a02*b10 + a12*b11 + a22*b12 + a32*b13;
1327 d[1][3] = a03*b10 + a13*b11 + a23*b12 + a33*b13;
1328 d[2][0] = a00*b20 + a10*b21 + a20*b22 + a30*b23;
1329 d[2][1] = a01*b20 + a11*b21 + a21*b22 + a31*b23;
1330 d[2][2] = a02*b20 + a12*b21 + a22*b22 + a32*b23;
1331 d[2][3] = a03*b20 + a13*b21 + a23*b22 + a33*b23;
1332 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30*b33;
1333 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31*b33;
1334 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32*b33;
1335 d[3][3] = a03*b30 + a13*b31 + a23*b32 + a33*b33;
1336 }
1337
1338 static inline void m4x4_mulv( m4x4f m, v4f v, v4f d )
1339 {
1340 v4f res;
1341
1342 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3];
1343 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3];
1344 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3];
1345 res[3] = m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3];
1346
1347 v4_copy( res, d );
1348 }
1349
1350 static inline void m4x4_inv( m4x4f a, m4x4f d )
1351 {
1352 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1353 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1354 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1355 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1356 det,
1357 t[6];
1358
1359 t[0] = a22*a33 - a32*a23;
1360 t[1] = a21*a33 - a31*a23;
1361 t[2] = a21*a32 - a31*a22;
1362 t[3] = a20*a33 - a30*a23;
1363 t[4] = a20*a32 - a30*a22;
1364 t[5] = a20*a31 - a30*a21;
1365
1366 d[0][0] = a11*t[0] - a12*t[1] + a13*t[2];
1367 d[1][0] =-(a10*t[0] - a12*t[3] + a13*t[4]);
1368 d[2][0] = a10*t[1] - a11*t[3] + a13*t[5];
1369 d[3][0] =-(a10*t[2] - a11*t[4] + a12*t[5]);
1370
1371 d[0][1] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1372 d[1][1] = a00*t[0] - a02*t[3] + a03*t[4];
1373 d[2][1] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1374 d[3][1] = a00*t[2] - a01*t[4] + a02*t[5];
1375
1376 t[0] = a12*a33 - a32*a13;
1377 t[1] = a11*a33 - a31*a13;
1378 t[2] = a11*a32 - a31*a12;
1379 t[3] = a10*a33 - a30*a13;
1380 t[4] = a10*a32 - a30*a12;
1381 t[5] = a10*a31 - a30*a11;
1382
1383 d[0][2] = a01*t[0] - a02*t[1] + a03*t[2];
1384 d[1][2] =-(a00*t[0] - a02*t[3] + a03*t[4]);
1385 d[2][2] = a00*t[1] - a01*t[3] + a03*t[5];
1386 d[3][2] =-(a00*t[2] - a01*t[4] + a02*t[5]);
1387
1388 t[0] = a12*a23 - a22*a13;
1389 t[1] = a11*a23 - a21*a13;
1390 t[2] = a11*a22 - a21*a12;
1391 t[3] = a10*a23 - a20*a13;
1392 t[4] = a10*a22 - a20*a12;
1393 t[5] = a10*a21 - a20*a11;
1394
1395 d[0][3] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1396 d[1][3] = a00*t[0] - a02*t[3] + a03*t[4];
1397 d[2][3] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1398 d[3][3] = a00*t[2] - a01*t[4] + a02*t[5];
1399
1400 det = 1.0f / (a00*d[0][0] + a01*d[1][0] + a02*d[2][0] + a03*d[3][0]);
1401 v4_muls( d[0], det, d[0] );
1402 v4_muls( d[1], det, d[1] );
1403 v4_muls( d[2], det, d[2] );
1404 v4_muls( d[3], det, d[3] );
1405 }
1406
1407 /*
1408 * -----------------------------------------------------------------------------
1409 * Section 5.a Boxes
1410 * -----------------------------------------------------------------------------
1411 */
1412
1413 static inline void box_addpt( boxf a, v3f pt )
1414 {
1415 v3_minv( a[0], pt, a[0] );
1416 v3_maxv( a[1], pt, a[1] );
1417 }
1418
1419 static inline void box_concat( boxf a, boxf b )
1420 {
1421 v3_minv( a[0], b[0], a[0] );
1422 v3_maxv( a[1], b[1], a[1] );
1423 }
1424
1425 static inline void box_copy( boxf a, boxf b )
1426 {
1427 v3_copy( a[0], b[0] );
1428 v3_copy( a[1], b[1] );
1429 }
1430
1431 static inline int box_overlap( boxf a, boxf b )
1432 {
1433 return
1434 ( a[0][0] <= b[1][0] && a[1][0] >= b[0][0] ) &&
1435 ( a[0][1] <= b[1][1] && a[1][1] >= b[0][1] ) &&
1436 ( a[0][2] <= b[1][2] && a[1][2] >= b[0][2] )
1437 ;
1438 }
1439
1440 static int box_within( boxf greater, boxf lesser )
1441 {
1442 v3f a, b;
1443 v3_sub( lesser[0], greater[0], a );
1444 v3_sub( lesser[1], greater[1], b );
1445
1446 if( (a[0] >= 0.0f) && (a[1] >= 0.0f) && (a[2] >= 0.0f) &&
1447 (b[0] <= 0.0f) && (b[1] <= 0.0f) && (b[2] <= 0.0f) )
1448 {
1449 return 1;
1450 }
1451
1452 return 0;
1453 }
1454
1455 static inline void box_init_inf( boxf box )
1456 {
1457 v3_fill( box[0], INFINITY );
1458 v3_fill( box[1], -INFINITY );
1459 }
1460
1461 /*
1462 * -----------------------------------------------------------------------------
1463 * Section 5.b Planes
1464 * -----------------------------------------------------------------------------
1465 */
1466
1467 static inline void tri_to_plane( f64 a[3], f64 b[3],
1468 f64 c[3], f64 p[4] )
1469 {
1470 f64 edge0[3];
1471 f64 edge1[3];
1472 f64 l;
1473
1474 edge0[0] = b[0] - a[0];
1475 edge0[1] = b[1] - a[1];
1476 edge0[2] = b[2] - a[2];
1477
1478 edge1[0] = c[0] - a[0];
1479 edge1[1] = c[1] - a[1];
1480 edge1[2] = c[2] - a[2];
1481
1482 p[0] = edge0[1] * edge1[2] - edge0[2] * edge1[1];
1483 p[1] = edge0[2] * edge1[0] - edge0[0] * edge1[2];
1484 p[2] = edge0[0] * edge1[1] - edge0[1] * edge1[0];
1485
1486 l = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
1487 p[3] = (p[0] * a[0] + p[1] * a[1] + p[2] * a[2]) / l;
1488
1489 p[0] = p[0] / l;
1490 p[1] = p[1] / l;
1491 p[2] = p[2] / l;
1492 }
1493
1494 static int plane_intersect3( v4f a, v4f b, v4f c, v3f p )
1495 {
1496 f32 const epsilon = 1e-6f;
1497
1498 v3f x;
1499 v3_cross( a, b, x );
1500 f32 d = v3_dot( x, c );
1501
1502 if( (d < epsilon) && (d > -epsilon) ) return 0;
1503
1504 v3f v0, v1, v2;
1505 v3_cross( b, c, v0 );
1506 v3_cross( c, a, v1 );
1507 v3_cross( a, b, v2 );
1508
1509 v3_muls( v0, a[3], p );
1510 v3_muladds( p, v1, b[3], p );
1511 v3_muladds( p, v2, c[3], p );
1512 v3_divs( p, d, p );
1513
1514 return 1;
1515 }
1516
1517 int plane_intersect2( v4f a, v4f b, v3f p, v3f n )
1518 {
1519 f32 const epsilon = 1e-6f;
1520
1521 v4f c;
1522 v3_cross( a, b, c );
1523 f32 d = v3_length2( c );
1524
1525 if( (d < epsilon) && (d > -epsilon) )
1526 return 0;
1527
1528 v3f v0, v1, vx;
1529 v3_cross( c, b, v0 );
1530 v3_cross( a, c, v1 );
1531
1532 v3_muls( v0, a[3], vx );
1533 v3_muladds( vx, v1, b[3], vx );
1534 v3_divs( vx, d, p );
1535 v3_copy( c, n );
1536
1537 return 1;
1538 }
1539
1540 static int plane_segment( v4f plane, v3f a, v3f b, v3f co )
1541 {
1542 f32 d0 = v3_dot( a, plane ) - plane[3],
1543 d1 = v3_dot( b, plane ) - plane[3];
1544
1545 if( d0*d1 < 0.0f )
1546 {
1547 f32 tot = 1.0f/( fabsf(d0)+fabsf(d1) );
1548
1549 v3_muls( a, fabsf(d1) * tot, co );
1550 v3_muladds( co, b, fabsf(d0) * tot, co );
1551 return 1;
1552 }
1553
1554 return 0;
1555 }
1556
1557 static inline f64 plane_polarity( f64 p[4], f64 a[3] )
1558 {
1559 return
1560 (a[0] * p[0] + a[1] * p[1] + a[2] * p[2])
1561 -(p[0]*p[3] * p[0] + p[1]*p[3] * p[1] + p[2]*p[3] * p[2])
1562 ;
1563 }
1564
1565 /*
1566 * -----------------------------------------------------------------------------
1567 * Section 5.c Closest point functions
1568 * -----------------------------------------------------------------------------
1569 */
1570
1571 /*
1572 * These closest point tests were learned from Real-Time Collision Detection by
1573 * Christer Ericson
1574 */
1575 VG_STATIC f32 closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2,
1576 f32 *s, f32 *t, v3f c1, v3f c2)
1577 {
1578 v3f d1,d2,r;
1579 v3_sub( q1, p1, d1 );
1580 v3_sub( q2, p2, d2 );
1581 v3_sub( p1, p2, r );
1582
1583 f32 a = v3_length2( d1 ),
1584 e = v3_length2( d2 ),
1585 f = v3_dot( d2, r );
1586
1587 const f32 kEpsilon = 0.0001f;
1588
1589 if( a <= kEpsilon && e <= kEpsilon )
1590 {
1591 *s = 0.0f;
1592 *t = 0.0f;
1593 v3_copy( p1, c1 );
1594 v3_copy( p2, c2 );
1595
1596 v3f v0;
1597 v3_sub( c1, c2, v0 );
1598
1599 return v3_length2( v0 );
1600 }
1601
1602 if( a<= kEpsilon )
1603 {
1604 *s = 0.0f;
1605 *t = vg_clampf( f / e, 0.0f, 1.0f );
1606 }
1607 else
1608 {
1609 f32 c = v3_dot( d1, r );
1610 if( e <= kEpsilon )
1611 {
1612 *t = 0.0f;
1613 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1614 }
1615 else
1616 {
1617 f32 b = v3_dot(d1,d2),
1618 d = a*e-b*b;
1619
1620 if( d != 0.0f )
1621 {
1622 *s = vg_clampf((b*f - c*e)/d, 0.0f, 1.0f);
1623 }
1624 else
1625 {
1626 *s = 0.0f;
1627 }
1628
1629 *t = (b*(*s)+f) / e;
1630
1631 if( *t < 0.0f )
1632 {
1633 *t = 0.0f;
1634 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1635 }
1636 else if( *t > 1.0f )
1637 {
1638 *t = 1.0f;
1639 *s = vg_clampf((b-c)/a,0.0f,1.0f);
1640 }
1641 }
1642 }
1643
1644 v3_muladds( p1, d1, *s, c1 );
1645 v3_muladds( p2, d2, *t, c2 );
1646
1647 v3f v0;
1648 v3_sub( c1, c2, v0 );
1649 return v3_length2( v0 );
1650 }
1651
1652 VG_STATIC int point_inside_aabb( boxf box, v3f point )
1653 {
1654 if((point[0]<=box[1][0]) && (point[1]<=box[1][1]) && (point[2]<=box[1][2]) &&
1655 (point[0]>=box[0][0]) && (point[1]>=box[0][1]) && (point[2]>=box[0][2]) )
1656 return 1;
1657 else
1658 return 0;
1659 }
1660
1661 VG_STATIC void closest_point_aabb( v3f p, boxf box, v3f dest )
1662 {
1663 v3_maxv( p, box[0], dest );
1664 v3_minv( dest, box[1], dest );
1665 }
1666
1667 VG_STATIC void closest_point_obb( v3f p, boxf box,
1668 m4x3f mtx, m4x3f inv_mtx, v3f dest )
1669 {
1670 v3f local;
1671 m4x3_mulv( inv_mtx, p, local );
1672 closest_point_aabb( local, box, local );
1673 m4x3_mulv( mtx, local, dest );
1674 }
1675
1676 VG_STATIC f32 closest_point_segment( v3f a, v3f b, v3f point, v3f dest )
1677 {
1678 v3f v0, v1;
1679 v3_sub( b, a, v0 );
1680 v3_sub( point, a, v1 );
1681
1682 f32 t = v3_dot( v1, v0 ) / v3_length2(v0);
1683 t = vg_clampf(t,0.0f,1.0f);
1684 v3_muladds( a, v0, t, dest );
1685 return t;
1686 }
1687
1688 VG_STATIC void closest_on_triangle( v3f p, v3f tri[3], v3f dest )
1689 {
1690 v3f ab, ac, ap;
1691 f32 d1, d2;
1692
1693 /* Region outside A */
1694 v3_sub( tri[1], tri[0], ab );
1695 v3_sub( tri[2], tri[0], ac );
1696 v3_sub( p, tri[0], ap );
1697
1698 d1 = v3_dot(ab,ap);
1699 d2 = v3_dot(ac,ap);
1700 if( d1 <= 0.0f && d2 <= 0.0f )
1701 {
1702 v3_copy( tri[0], dest );
1703 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1704 return;
1705 }
1706
1707 /* Region outside B */
1708 v3f bp;
1709 f32 d3, d4;
1710
1711 v3_sub( p, tri[1], bp );
1712 d3 = v3_dot( ab, bp );
1713 d4 = v3_dot( ac, bp );
1714
1715 if( d3 >= 0.0f && d4 <= d3 )
1716 {
1717 v3_copy( tri[1], dest );
1718 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1719 return;
1720 }
1721
1722 /* Edge region of AB */
1723 f32 vc = d1*d4 - d3*d2;
1724 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1725 {
1726 f32 v = d1 / (d1-d3);
1727 v3_muladds( tri[0], ab, v, dest );
1728 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1729 return;
1730 }
1731
1732 /* Region outside C */
1733 v3f cp;
1734 f32 d5, d6;
1735 v3_sub( p, tri[2], cp );
1736 d5 = v3_dot(ab, cp);
1737 d6 = v3_dot(ac, cp);
1738
1739 if( d6 >= 0.0f && d5 <= d6 )
1740 {
1741 v3_copy( tri[2], dest );
1742 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1743 return;
1744 }
1745
1746 /* Region of AC */
1747 f32 vb = d5*d2 - d1*d6;
1748 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1749 {
1750 f32 w = d2 / (d2-d6);
1751 v3_muladds( tri[0], ac, w, dest );
1752 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1753 return;
1754 }
1755
1756 /* Region of BC */
1757 f32 va = d3*d6 - d5*d4;
1758 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1759 {
1760 f32 w = (d4-d3) / ((d4-d3) + (d5-d6));
1761 v3f bc;
1762 v3_sub( tri[2], tri[1], bc );
1763 v3_muladds( tri[1], bc, w, dest );
1764 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1765 return;
1766 }
1767
1768 /* P inside region, Q via barycentric coordinates uvw */
1769 f32 d = 1.0f/(va+vb+vc),
1770 v = vb*d,
1771 w = vc*d;
1772
1773 v3_muladds( tri[0], ab, v, dest );
1774 v3_muladds( dest, ac, w, dest );
1775 }
1776
1777 enum contact_type
1778 {
1779 k_contact_type_default,
1780 k_contact_type_disabled,
1781 k_contact_type_edge
1782 };
1783
1784 VG_STATIC enum contact_type closest_on_triangle_1( v3f p, v3f tri[3], v3f dest )
1785 {
1786 v3f ab, ac, ap;
1787 f32 d1, d2;
1788
1789 /* Region outside A */
1790 v3_sub( tri[1], tri[0], ab );
1791 v3_sub( tri[2], tri[0], ac );
1792 v3_sub( p, tri[0], ap );
1793
1794 d1 = v3_dot(ab,ap);
1795 d2 = v3_dot(ac,ap);
1796 if( d1 <= 0.0f && d2 <= 0.0f )
1797 {
1798 v3_copy( tri[0], dest );
1799 return k_contact_type_default;
1800 }
1801
1802 /* Region outside B */
1803 v3f bp;
1804 f32 d3, d4;
1805
1806 v3_sub( p, tri[1], bp );
1807 d3 = v3_dot( ab, bp );
1808 d4 = v3_dot( ac, bp );
1809
1810 if( d3 >= 0.0f && d4 <= d3 )
1811 {
1812 v3_copy( tri[1], dest );
1813 return k_contact_type_edge;
1814 }
1815
1816 /* Edge region of AB */
1817 f32 vc = d1*d4 - d3*d2;
1818 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1819 {
1820 f32 v = d1 / (d1-d3);
1821 v3_muladds( tri[0], ab, v, dest );
1822 return k_contact_type_edge;
1823 }
1824
1825 /* Region outside C */
1826 v3f cp;
1827 f32 d5, d6;
1828 v3_sub( p, tri[2], cp );
1829 d5 = v3_dot(ab, cp);
1830 d6 = v3_dot(ac, cp);
1831
1832 if( d6 >= 0.0f && d5 <= d6 )
1833 {
1834 v3_copy( tri[2], dest );
1835 return k_contact_type_edge;
1836 }
1837
1838 /* Region of AC */
1839 f32 vb = d5*d2 - d1*d6;
1840 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1841 {
1842 f32 w = d2 / (d2-d6);
1843 v3_muladds( tri[0], ac, w, dest );
1844 return k_contact_type_edge;
1845 }
1846
1847 /* Region of BC */
1848 f32 va = d3*d6 - d5*d4;
1849 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1850 {
1851 f32 w = (d4-d3) / ((d4-d3) + (d5-d6));
1852 v3f bc;
1853 v3_sub( tri[2], tri[1], bc );
1854 v3_muladds( tri[1], bc, w, dest );
1855 return k_contact_type_edge;
1856 }
1857
1858 /* P inside region, Q via barycentric coordinates uvw */
1859 f32 d = 1.0f/(va+vb+vc),
1860 v = vb*d,
1861 w = vc*d;
1862
1863 v3_muladds( tri[0], ab, v, dest );
1864 v3_muladds( dest, ac, w, dest );
1865
1866 return k_contact_type_default;
1867 }
1868
1869 static void closest_point_elipse( v2f p, v2f e, v2f o )
1870 {
1871 v2f pabs, ei, e2, ve, t;
1872
1873 v2_abs( p, pabs );
1874 v2_div( (v2f){ 1.0f, 1.0f }, e, ei );
1875 v2_mul( e, e, e2 );
1876 v2_mul( ei, (v2f){ e2[0]-e2[1], e2[1]-e2[0] }, ve );
1877
1878 v2_fill( t, 0.70710678118654752f );
1879
1880 for( int i=0; i<3; i++ ){
1881 v2f v, u, ud, w;
1882
1883 v2_mul( ve, t, v ); /* ve*t*t*t */
1884 v2_mul( v, t, v );
1885 v2_mul( v, t, v );
1886
1887 v2_sub( pabs, v, u );
1888 v2_normalize( u );
1889
1890 v2_mul( t, e, ud );
1891 v2_sub( ud, v, ud );
1892
1893 v2_muls( u, v2_length( ud ), u );
1894
1895 v2_add( v, u, w );
1896 v2_mul( w, ei, w );
1897
1898 v2_maxv( (v2f){0.0f,0.0f}, w, t );
1899 v2_normalize( t );
1900 }
1901
1902 v2_mul( t, e, o );
1903 v2_copysign( o, p );
1904 }
1905
1906 /*
1907 * -----------------------------------------------------------------------------
1908 * Section 5.d Raycasts & Spherecasts
1909 * -----------------------------------------------------------------------------
1910 */
1911
1912 int ray_aabb1( boxf box, v3f co, v3f dir_inv, f32 dist )
1913 {
1914 v3f v0, v1;
1915 f32 tmin, tmax;
1916
1917 v3_sub( box[0], co, v0 );
1918 v3_sub( box[1], co, v1 );
1919
1920 v3_mul( v0, dir_inv, v0 );
1921 v3_mul( v1, dir_inv, v1 );
1922
1923 tmin = vg_minf( v0[0], v1[0] );
1924 tmax = vg_maxf( v0[0], v1[0] );
1925 tmin = vg_maxf( tmin, vg_minf( v0[1], v1[1] ));
1926 tmax = vg_minf( tmax, vg_maxf( v0[1], v1[1] ));
1927 tmin = vg_maxf( tmin, vg_minf( v0[2], v1[2] ));
1928 tmax = vg_minf( tmax, vg_maxf( v0[2], v1[2] ));
1929
1930 return (tmax >= tmin) && (tmin <= dist) && (tmax >= 0.0f);
1931 }
1932
1933 /* Time of intersection with ray vs triangle */
1934 static int ray_tri( v3f tri[3], v3f co,
1935 v3f dir, f32 *dist )
1936 {
1937 f32 const kEpsilon = 0.00001f;
1938
1939 v3f v0, v1, h, s, q, n;
1940 f32 a,f,u,v,t;
1941
1942 f32 *pa = tri[0],
1943 *pb = tri[1],
1944 *pc = tri[2];
1945
1946 v3_sub( pb, pa, v0 );
1947 v3_sub( pc, pa, v1 );
1948 v3_cross( dir, v1, h );
1949 v3_cross( v0, v1, n );
1950
1951 if( v3_dot( n, dir ) > 0.0f ) /* Backface culling */
1952 return 0;
1953
1954 /* Parralel */
1955 a = v3_dot( v0, h );
1956
1957 if( a > -kEpsilon && a < kEpsilon )
1958 return 0;
1959
1960 f = 1.0f/a;
1961 v3_sub( co, pa, s );
1962
1963 u = f * v3_dot(s, h);
1964 if( u < 0.0f || u > 1.0f )
1965 return 0;
1966
1967 v3_cross( s, v0, q );
1968 v = f * v3_dot( dir, q );
1969 if( v < 0.0f || u+v > 1.0f )
1970 return 0;
1971
1972 t = f * v3_dot(v1, q);
1973 if( t > kEpsilon )
1974 {
1975 *dist = t;
1976 return 1;
1977 }
1978 else return 0;
1979 }
1980
1981 /* time of intersection with ray vs sphere */
1982 static int ray_sphere( v3f c, f32 r,
1983 v3f co, v3f dir, f32 *t )
1984 {
1985 v3f m;
1986 v3_sub( co, c, m );
1987
1988 f32 b = v3_dot( m, dir ),
1989 c1 = v3_dot( m, m ) - r*r;
1990
1991 /* Exit if r’s origin outside s (c > 0) and r pointing away from s (b > 0) */
1992 if( c1 > 0.0f && b > 0.0f )
1993 return 0;
1994
1995 f32 discr = b*b - c1;
1996
1997 /* A negative discriminant corresponds to ray missing sphere */
1998 if( discr < 0.0f )
1999 return 0;
2000
2001 /*
2002 * Ray now found to intersect sphere, compute smallest t value of
2003 * intersection
2004 */
2005 *t = -b - sqrtf( discr );
2006
2007 /* If t is negative, ray started inside sphere so clamp t to zero */
2008 if( *t < 0.0f )
2009 *t = 0.0f;
2010
2011 return 1;
2012 }
2013
2014 /*
2015 * time of intersection of ray vs cylinder
2016 * The cylinder does not have caps but is finite
2017 *
2018 * Heavily adapted from regular segment vs cylinder from:
2019 * Real-Time Collision Detection
2020 */
2021 static int ray_uncapped_finite_cylinder( v3f q, v3f p, f32 r,
2022 v3f co, v3f dir, f32 *t )
2023 {
2024 v3f d, m, n, sb;
2025 v3_muladds( co, dir, 1.0f, sb );
2026
2027 v3_sub( q, p, d );
2028 v3_sub( co, p, m );
2029 v3_sub( sb, co, n );
2030
2031 f32 md = v3_dot( m, d ),
2032 nd = v3_dot( n, d ),
2033 dd = v3_dot( d, d ),
2034 nn = v3_dot( n, n ),
2035 mn = v3_dot( m, n ),
2036 a = dd*nn - nd*nd,
2037 k = v3_dot( m, m ) - r*r,
2038 c = dd*k - md*md;
2039
2040 if( fabsf(a) < 0.00001f )
2041 {
2042 /* Segment runs parallel to cylinder axis */
2043 return 0;
2044 }
2045
2046 f32 b = dd*mn - nd*md,
2047 discr = b*b - a*c;
2048
2049 if( discr < 0.0f )
2050 return 0; /* No real roots; no intersection */
2051
2052 *t = (-b - sqrtf(discr)) / a;
2053 if( *t < 0.0f )
2054 return 0; /* Intersection behind ray */
2055
2056 /* Check within cylinder segment */
2057 if( md + (*t)*nd < 0.0f )
2058 return 0;
2059
2060 if( md + (*t)*nd > dd )
2061 return 0;
2062
2063 /* Segment intersects cylinder between the endcaps; t is correct */
2064 return 1;
2065 }
2066
2067 /*
2068 * Time of intersection of sphere and triangle. Origin must be outside the
2069 * colliding area. This is a fairly long procedure.
2070 */
2071 static int spherecast_triangle( v3f tri[3],
2072 v3f co, v3f dir, f32 r, f32 *t, v3f n )
2073 {
2074 v3f sum[3];
2075 v3f v0, v1;
2076
2077 v3_sub( tri[1], tri[0], v0 );
2078 v3_sub( tri[2], tri[0], v1 );
2079 v3_cross( v0, v1, n );
2080 v3_normalize( n );
2081 v3_muladds( tri[0], n, r, sum[0] );
2082 v3_muladds( tri[1], n, r, sum[1] );
2083 v3_muladds( tri[2], n, r, sum[2] );
2084
2085 int hit = 0;
2086 f32 t_min = INFINITY,
2087 t1;
2088
2089 if( ray_tri( sum, co, dir, &t1 ) ){
2090 t_min = vg_minf( t_min, t1 );
2091 hit = 1;
2092 }
2093
2094 /*
2095 * Currently disabled; ray_sphere requires |d| = 1. it is not very important.
2096 */
2097 #if 0
2098 for( int i=0; i<3; i++ ){
2099 if( ray_sphere( tri[i], r, co, dir, &t1 ) ){
2100 t_min = vg_minf( t_min, t1 );
2101 hit = 1;
2102 }
2103 }
2104 #endif
2105
2106 for( int i=0; i<3; i++ ){
2107 int i0 = i,
2108 i1 = (i+1)%3;
2109
2110 if( ray_uncapped_finite_cylinder( tri[i0], tri[i1], r, co, dir, &t1 ) ){
2111 if( t1 < t_min ){
2112 t_min = t1;
2113
2114 v3f co1, ct, cx;
2115 v3_add( dir, co, co1 );
2116 v3_lerp( co, co1, t_min, ct );
2117
2118 closest_point_segment( tri[i0], tri[i1], ct, cx );
2119 v3_sub( ct, cx, n );
2120 v3_normalize( n );
2121 }
2122
2123 hit = 1;
2124 }
2125 }
2126
2127 *t = t_min;
2128 return hit;
2129 }
2130
2131 /*
2132 * -----------------------------------------------------------------------------
2133 * Section 5.e Curves
2134 * -----------------------------------------------------------------------------
2135 */
2136
2137 static void eval_bezier_time( v3f p0, v3f p1, v3f h0, v3f h1, f32 t, v3f p )
2138 {
2139 f32 tt = t*t,
2140 ttt = tt*t;
2141
2142 v3_muls( p1, ttt, p );
2143 v3_muladds( p, h1, 3.0f*tt -3.0f*ttt, p );
2144 v3_muladds( p, h0, 3.0f*ttt -6.0f*tt +3.0f*t, p );
2145 v3_muladds( p, p0, 3.0f*tt -ttt -3.0f*t +1.0f, p );
2146 }
2147
2148 static void eval_bezier3( v3f p0, v3f p1, v3f p2, f32 t, v3f p )
2149 {
2150 f32 u = 1.0f-t;
2151
2152 v3_muls( p0, u*u, p );
2153 v3_muladds( p, p1, 2.0f*u*t, p );
2154 v3_muladds( p, p2, t*t, p );
2155 }
2156
2157 /*
2158 * -----------------------------------------------------------------------------
2159 * Section 5.f Volumes
2160 * -----------------------------------------------------------------------------
2161 */
2162
2163 static float vg_sphere_volume( float radius ){
2164 float r3 = radius*radius*radius;
2165 return (4.0f/3.0f) * VG_PIf * r3;
2166 }
2167
2168 /*
2169 * -----------------------------------------------------------------------------
2170 * Section 6.a PSRNG and some distributions
2171 * -----------------------------------------------------------------------------
2172 */
2173
2174 /* An implementation of the MT19937 Algorithm for the Mersenne Twister
2175 * by Evan Sultanik. Based upon the pseudocode in: M. Matsumoto and
2176 * T. Nishimura, "Mersenne Twister: A 623-dimensionally
2177 * equidistributed uniform pseudorandom number generator," ACM
2178 * Transactions on Modeling and Computer Simulation Vol. 8, No. 1,
2179 * January pp.3-30 1998.
2180 *
2181 * http://www.sultanik.com/Mersenne_twister
2182 * https://github.com/ESultanik/mtwister/blob/master/mtwister.c
2183 */
2184
2185 #define MT_UPPER_MASK 0x80000000
2186 #define MT_LOWER_MASK 0x7fffffff
2187 #define MT_TEMPERING_MASK_B 0x9d2c5680
2188 #define MT_TEMPERING_MASK_C 0xefc60000
2189
2190 #define MT_STATE_VECTOR_LENGTH 624
2191
2192 /* changes to STATE_VECTOR_LENGTH also require changes to this */
2193 #define MT_STATE_VECTOR_M 397
2194
2195 struct {
2196 u32 mt[MT_STATE_VECTOR_LENGTH];
2197 i32 index;
2198 }
2199 static vg_rand;
2200
2201 static void vg_rand_seed( unsigned long seed )
2202 {
2203 /* set initial seeds to mt[STATE_VECTOR_LENGTH] using the generator
2204 * from Line 25 of Table 1 in: Donald Knuth, "The Art of Computer
2205 * Programming," Vol. 2 (2nd Ed.) pp.102.
2206 */
2207 vg_rand.mt[0] = seed & 0xffffffff;
2208 for( vg_rand.index=1; vg_rand.index<MT_STATE_VECTOR_LENGTH; vg_rand.index++){
2209 vg_rand.mt[vg_rand.index] =
2210 (6069 * vg_rand.mt[vg_rand.index-1]) & 0xffffffff;
2211 }
2212 }
2213
2214 /*
2215 * Generates a pseudo-randomly generated long.
2216 */
2217 static u32 vg_randu32(void)
2218 {
2219 u32 y;
2220 /* mag[x] = x * 0x9908b0df for x = 0,1 */
2221 static u32 mag[2] = {0x0, 0x9908b0df};
2222 if( vg_rand.index >= MT_STATE_VECTOR_LENGTH || vg_rand.index < 0 ){
2223 /* generate STATE_VECTOR_LENGTH words at a time */
2224 int kk;
2225 if( vg_rand.index >= MT_STATE_VECTOR_LENGTH+1 || vg_rand.index < 0 ){
2226 vg_rand_seed( 4357 );
2227 }
2228 for( kk=0; kk<MT_STATE_VECTOR_LENGTH-MT_STATE_VECTOR_M; kk++ ){
2229 y = (vg_rand.mt[kk] & MT_UPPER_MASK) |
2230 (vg_rand.mt[kk+1] & MT_LOWER_MASK);
2231 vg_rand.mt[kk] = vg_rand.mt[kk+MT_STATE_VECTOR_M] ^
2232 (y >> 1) ^ mag[y & 0x1];
2233 }
2234 for( ; kk<MT_STATE_VECTOR_LENGTH-1; kk++ ){
2235 y = (vg_rand.mt[kk] & MT_UPPER_MASK) |
2236 (vg_rand.mt[kk+1] & MT_LOWER_MASK);
2237 vg_rand.mt[kk] =
2238 vg_rand.mt[ kk+(MT_STATE_VECTOR_M-MT_STATE_VECTOR_LENGTH)] ^
2239 (y >> 1) ^ mag[y & 0x1];
2240 }
2241 y = (vg_rand.mt[MT_STATE_VECTOR_LENGTH-1] & MT_UPPER_MASK) |
2242 (vg_rand.mt[0] & MT_LOWER_MASK);
2243 vg_rand.mt[MT_STATE_VECTOR_LENGTH-1] =
2244 vg_rand.mt[MT_STATE_VECTOR_M-1] ^ (y >> 1) ^ mag[y & 0x1];
2245 vg_rand.index = 0;
2246 }
2247 y = vg_rand.mt[vg_rand.index++];
2248 y ^= (y >> 11);
2249 y ^= (y << 7) & MT_TEMPERING_MASK_B;
2250 y ^= (y << 15) & MT_TEMPERING_MASK_C;
2251 y ^= (y >> 18);
2252 return y;
2253 }
2254
2255 /*
2256 * Generates a pseudo-randomly generated f64 in the range [0..1].
2257 */
2258 static inline f64 vg_randf64(void)
2259 {
2260 return (f64)vg_randu32()/(f64)0xffffffff;
2261 }
2262
2263 static inline f64 vg_randf64_range( f64 min, f64 max )
2264 {
2265 return vg_lerp( min, max, (f64)vg_randf64() );
2266 }
2267
2268 static inline void vg_rand_dir( v3f dir )
2269 {
2270 dir[0] = vg_randf64();
2271 dir[1] = vg_randf64();
2272 dir[2] = vg_randf64();
2273
2274 v3_muls( dir, 2.0f, dir );
2275 v3_sub( dir, (v3f){1.0f,1.0f,1.0f}, dir );
2276
2277 v3_normalize( dir );
2278 }
2279
2280 static inline void vg_rand_sphere( v3f co )
2281 {
2282 vg_rand_dir(co);
2283 v3_muls( co, cbrtf( vg_randf64() ), co );
2284 }
2285
2286 #endif /* VG_M_H */