maths api changes and random
[vg.git] / vg_m.h
1 /* Copyright (C) 2021-2023 Harry Godden (hgn) - All Rights Reserved
2 *
3 * 0. Misc
4 * 1. Scalar operations
5 * 2. Vectors
6 * 2.a 2D Vectors
7 * 2.b 3D Vectors
8 * 2.c 4D Vectors
9 * 3. Quaternions
10 * 4. Matrices
11 * 4.a 2x2 matrices
12 * 4.b 3x3 matrices
13 * 4.c 4x3 matrices
14 * 4.d 4x4 matrices
15 * 5. Geometry
16 * 5.a Boxes
17 * 5.b Planes
18 * 5.c Closest points
19 * 5.d Raycast & Spherecasts
20 * 5.e Curves
21 * 6. Statistics
22 * 6.a Random numbers
23 **/
24
25 #ifndef VG_M_H
26 #define VG_M_H
27
28 #include "vg_platform.h"
29 #include <math.h>
30 #include <stdlib.h>
31
32 #define VG_PIf 3.14159265358979323846264338327950288f
33 #define VG_TAUf 6.28318530717958647692528676655900576f
34 /*
35 * -----------------------------------------------------------------------------
36 * Section 0. Misc Operations
37 * -----------------------------------------------------------------------------
38 */
39
40 /* get the f32 as the raw bits in a u32 without converting */
41 static u32 vg_ftu32( f32 a )
42 {
43 u32 *ptr = (u32 *)(&a);
44 return *ptr;
45 }
46
47 /* check if f32 is infinite */
48 static int vg_isinff( f32 a )
49 {
50 return ((vg_ftu32(a)) & 0x7FFFFFFFU) == 0x7F800000U;
51 }
52
53 /* check if f32 is not a number */
54 static int vg_isnanf( f32 a )
55 {
56 return !vg_isinff(a) && ((vg_ftu32(a)) & 0x7F800000U) == 0x7F800000U;
57 }
58
59 /* check if f32 is a number and is not infinite */
60 static int vg_validf( f32 a )
61 {
62 return ((vg_ftu32(a)) & 0x7F800000U) != 0x7F800000U;
63 }
64
65 /*
66 * -----------------------------------------------------------------------------
67 * Section 1. Scalar Operations
68 * -----------------------------------------------------------------------------
69 */
70
71 static inline f32 vg_minf( f32 a, f32 b ){ return a < b? a: b; }
72 static inline f32 vg_maxf( f32 a, f32 b ){ return a > b? a: b; }
73
74 static inline int vg_min( int a, int b ){ return a < b? a: b; }
75 static inline int vg_max( int a, int b ){ return a > b? a: b; }
76
77 static inline f32 vg_clampf( f32 a, f32 min, f32 max )
78 {
79 return vg_minf( max, vg_maxf( a, min ) );
80 }
81
82 static inline f32 vg_signf( f32 a )
83 {
84 return a < 0.0f? -1.0f: 1.0f;
85 }
86
87 static inline f32 vg_fractf( f32 a )
88 {
89 return a - floorf( a );
90 }
91
92 static f32 vg_cfrictf( f32 velocity, f32 F )
93 {
94 return -vg_signf(velocity) * vg_minf( F, fabsf(velocity) );
95 }
96
97 static inline f32 vg_rad( f32 deg )
98 {
99 return deg * VG_PIf / 180.0f;
100 }
101
102 /*
103 * -----------------------------------------------------------------------------
104 * Section 2.a 2D Vectors
105 * -----------------------------------------------------------------------------
106 */
107
108 static inline void v2_copy( v2f a, v2f d )
109 {
110 d[0] = a[0]; d[1] = a[1];
111 }
112
113 static inline void v2_zero( v2f a )
114 {
115 a[0] = 0.f; a[1] = 0.f;
116 }
117
118 static inline void v2_add( v2f a, v2f b, v2f d )
119 {
120 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
121 }
122
123 static inline void v2_sub( v2f a, v2f b, v2f d )
124 {
125 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
126 }
127
128 static inline void v2_minv( v2f a, v2f b, v2f dest )
129 {
130 dest[0] = vg_minf(a[0], b[0]);
131 dest[1] = vg_minf(a[1], b[1]);
132 }
133
134 static inline void v2_maxv( v2f a, v2f b, v2f dest )
135 {
136 dest[0] = vg_maxf(a[0], b[0]);
137 dest[1] = vg_maxf(a[1], b[1]);
138 }
139
140 static inline f32 v2_dot( v2f a, v2f b )
141 {
142 return a[0] * b[0] + a[1] * b[1];
143 }
144
145 static inline f32 v2_cross( v2f a, v2f b )
146 {
147 return a[0]*b[1] - a[1]*b[0];
148 }
149
150 static inline void v2_abs( v2f a, v2f d )
151 {
152 d[0] = fabsf( a[0] );
153 d[1] = fabsf( a[1] );
154 }
155
156 static inline void v2_muls( v2f a, f32 s, v2f d )
157 {
158 d[0] = a[0]*s; d[1] = a[1]*s;
159 }
160
161 static inline void v2_divs( v2f a, f32 s, v2f d )
162 {
163 d[0] = a[0]/s; d[1] = a[1]/s;
164 }
165
166 static inline void v2_mul( v2f a, v2f b, v2f d )
167 {
168 d[0] = a[0]*b[0];
169 d[1] = a[1]*b[1];
170 }
171
172 static inline void v2_div( v2f a, v2f b, v2f d )
173 {
174 d[0] = a[0]/b[0]; d[1] = a[1]/b[1];
175 }
176
177 static inline void v2_muladd( v2f a, v2f b, v2f s, v2f d )
178 {
179 d[0] = a[0]+b[0]*s[0];
180 d[1] = a[1]+b[1]*s[1];
181 }
182
183 static inline void v2_muladds( v2f a, v2f b, f32 s, v2f d )
184 {
185 d[0] = a[0]+b[0]*s;
186 d[1] = a[1]+b[1]*s;
187 }
188
189 static inline f32 v2_length2( v2f a )
190 {
191 return a[0]*a[0] + a[1]*a[1];
192 }
193
194 static inline f32 v2_length( v2f a )
195 {
196 return sqrtf( v2_length2( a ) );
197 }
198
199 static inline f32 v2_dist2( v2f a, v2f b )
200 {
201 v2f delta;
202 v2_sub( a, b, delta );
203 return v2_length2( delta );
204 }
205
206 static inline f32 v2_dist( v2f a, v2f b )
207 {
208 return sqrtf( v2_dist2( a, b ) );
209 }
210
211 static inline void v2_lerp( v2f a, v2f b, f32 t, v2f d )
212 {
213 d[0] = a[0] + t*(b[0]-a[0]);
214 d[1] = a[1] + t*(b[1]-a[1]);
215 }
216
217 static inline void v2_normalize( v2f a )
218 {
219 v2_muls( a, 1.0f / v2_length( a ), a );
220 }
221
222 static void v2_normalize_clamp( v2f a )
223 {
224 f32 l2 = v2_length2( a );
225 if( l2 > 1.0f )
226 v2_muls( a, 1.0f/sqrtf(l2), a );
227 }
228
229 static inline void v2_floor( v2f a, v2f b )
230 {
231 b[0] = floorf( a[0] );
232 b[1] = floorf( a[1] );
233 }
234
235 static inline void v2_fill( v2f a, f32 v )
236 {
237 a[0] = v;
238 a[1] = v;
239 }
240
241 static inline void v2_copysign( v2f a, v2f b )
242 {
243 a[0] = copysignf( a[0], b[0] );
244 a[1] = copysignf( a[1], b[1] );
245 }
246
247 /* integer variants
248 * ---------------- */
249
250 static inline void v2i_copy( v2i a, v2i b )
251 {
252 b[0] = a[0]; b[1] = a[1];
253 }
254
255 static inline int v2i_eq( v2i a, v2i b )
256 {
257 return ((a[0] == b[0]) && (a[1] == b[1]));
258 }
259
260 static inline void v2i_add( v2i a, v2i b, v2i d )
261 {
262 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
263 }
264
265 static inline void v2i_sub( v2i a, v2i b, v2i d )
266 {
267 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
268 }
269
270 /*
271 * -----------------------------------------------------------------------------
272 * Section 2.b 3D Vectors
273 * -----------------------------------------------------------------------------
274 */
275
276 static inline void v3_copy( v3f a, v3f b )
277 {
278 b[0] = a[0]; b[1] = a[1]; b[2] = a[2];
279 }
280
281 static inline void v3_zero( v3f a )
282 {
283 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f;
284 }
285
286 static inline void v3_add( v3f a, v3f b, v3f d )
287 {
288 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
289 }
290
291 static inline void v3i_add( v3i a, v3i b, v3i d )
292 {
293 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
294 }
295
296 static inline void v3_sub( v3f a, v3f b, v3f d )
297 {
298 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
299 }
300
301 static inline void v3i_sub( v3i a, v3i b, v3i d )
302 {
303 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
304 }
305
306 static inline void v3_mul( v3f a, v3f b, v3f d )
307 {
308 d[0] = a[0]*b[0]; d[1] = a[1]*b[1]; d[2] = a[2]*b[2];
309 }
310
311 static inline void v3_div( v3f a, v3f b, v3f d )
312 {
313 d[0] = b[0]!=0.0f? a[0]/b[0]: INFINITY;
314 d[1] = b[1]!=0.0f? a[1]/b[1]: INFINITY;
315 d[2] = b[2]!=0.0f? a[2]/b[2]: INFINITY;
316 }
317
318 static inline void v3_muls( v3f a, f32 s, v3f d )
319 {
320 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s;
321 }
322
323 static inline void v3_fill( v3f a, f32 v )
324 {
325 a[0] = v;
326 a[1] = v;
327 a[2] = v;
328 }
329
330 static inline void v3_divs( v3f a, f32 s, v3f d )
331 {
332 if( s == 0.0f )
333 v3_fill( d, INFINITY );
334 else
335 {
336 d[0] = a[0]/s;
337 d[1] = a[1]/s;
338 d[2] = a[2]/s;
339 }
340 }
341
342 static inline void v3_muladds( v3f a, v3f b, f32 s, v3f d )
343 {
344 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s; d[2] = a[2]+b[2]*s;
345 }
346
347 static inline void v3_muladd( v2f a, v2f b, v2f s, v2f d )
348 {
349 d[0] = a[0]+b[0]*s[0];
350 d[1] = a[1]+b[1]*s[1];
351 d[2] = a[2]+b[2]*s[2];
352 }
353
354 static inline f32 v3_dot( v3f a, v3f b )
355 {
356 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
357 }
358
359 static inline void v3_cross( v3f a, v3f b, v3f dest )
360 {
361 v3f d;
362 d[0] = a[1]*b[2] - a[2]*b[1];
363 d[1] = a[2]*b[0] - a[0]*b[2];
364 d[2] = a[0]*b[1] - a[1]*b[0];
365 v3_copy( d, dest );
366 }
367
368 static inline f32 v3_length2( v3f a )
369 {
370 return v3_dot( a, a );
371 }
372
373 static inline f32 v3_length( v3f a )
374 {
375 return sqrtf( v3_length2( a ) );
376 }
377
378 static inline f32 v3_dist2( v3f a, v3f b )
379 {
380 v3f delta;
381 v3_sub( a, b, delta );
382 return v3_length2( delta );
383 }
384
385 static inline f32 v3_dist( v3f a, v3f b )
386 {
387 return sqrtf( v3_dist2( a, b ) );
388 }
389
390 static inline void v3_normalize( v3f a )
391 {
392 v3_muls( a, 1.f / v3_length( a ), a );
393 }
394
395 static inline f32 vg_lerpf( f32 a, f32 b, f32 t )
396 {
397 return a + t*(b-a);
398 }
399
400 static inline f64 vg_lerp( f64 a, f64 b, f64 t )
401 {
402 return a + t*(b-a);
403 }
404
405 /* correctly lerp around circular period -pi -> pi */
406 static f32 vg_alerpf( f32 a, f32 b, f32 t )
407 {
408 f32 d = fmodf( b-a, VG_TAUf ),
409 s = fmodf( 2.0f*d, VG_TAUf ) - d;
410 return a + s*t;
411 }
412
413 static inline void v3_lerp( v3f a, v3f b, f32 t, v3f d )
414 {
415 d[0] = a[0] + t*(b[0]-a[0]);
416 d[1] = a[1] + t*(b[1]-a[1]);
417 d[2] = a[2] + t*(b[2]-a[2]);
418 }
419
420 static inline void v3_minv( v3f a, v3f b, v3f dest )
421 {
422 dest[0] = vg_minf(a[0], b[0]);
423 dest[1] = vg_minf(a[1], b[1]);
424 dest[2] = vg_minf(a[2], b[2]);
425 }
426
427 static inline void v3_maxv( v3f a, v3f b, v3f dest )
428 {
429 dest[0] = vg_maxf(a[0], b[0]);
430 dest[1] = vg_maxf(a[1], b[1]);
431 dest[2] = vg_maxf(a[2], b[2]);
432 }
433
434 static inline f32 v3_minf( v3f a )
435 {
436 return vg_minf( vg_minf( a[0], a[1] ), a[2] );
437 }
438
439 static inline f32 v3_maxf( v3f a )
440 {
441 return vg_maxf( vg_maxf( a[0], a[1] ), a[2] );
442 }
443
444 static inline void v3_floor( v3f a, v3f b )
445 {
446 b[0] = floorf( a[0] );
447 b[1] = floorf( a[1] );
448 b[2] = floorf( a[2] );
449 }
450
451 static inline void v3_ceil( v3f a, v3f b )
452 {
453 b[0] = ceilf( a[0] );
454 b[1] = ceilf( a[1] );
455 b[2] = ceilf( a[2] );
456 }
457
458 static inline void v3_negate( v3f a, v3f b )
459 {
460 b[0] = -a[0];
461 b[1] = -a[1];
462 b[2] = -a[2];
463 }
464
465 static inline void v3_rotate( v3f v, f32 angle, v3f axis, v3f d )
466 {
467 v3f v1, v2, k;
468 f32 c, s;
469
470 c = cosf( angle );
471 s = sinf( angle );
472
473 v3_copy( axis, k );
474 v3_normalize( k );
475 v3_muls( v, c, v1 );
476 v3_cross( k, v, v2 );
477 v3_muls( v2, s, v2 );
478 v3_add( v1, v2, v1 );
479 v3_muls( k, v3_dot(k, v) * (1.0f - c), v2);
480 v3_add( v1, v2, d );
481 }
482
483 /*
484 * -----------------------------------------------------------------------------
485 * Section 2.c 4D Vectors
486 * -----------------------------------------------------------------------------
487 */
488
489 static inline void v4_copy( v4f a, v4f b )
490 {
491 b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];
492 }
493
494 static inline void v4_add( v4f a, v4f b, v4f d )
495 {
496 d[0] = a[0]+b[0];
497 d[1] = a[1]+b[1];
498 d[2] = a[2]+b[2];
499 d[3] = a[3]+b[3];
500 }
501
502 static inline void v4_zero( v4f a )
503 {
504 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f; a[3] = 0.f;
505 }
506
507 static inline void v4_muls( v4f a, f32 s, v4f d )
508 {
509 d[0] = a[0]*s;
510 d[1] = a[1]*s;
511 d[2] = a[2]*s;
512 d[3] = a[3]*s;
513 }
514
515 static inline void v4_muladds( v4f a, v4f b, f32 s, v4f d )
516 {
517 d[0] = a[0]+b[0]*s;
518 d[1] = a[1]+b[1]*s;
519 d[2] = a[2]+b[2]*s;
520 d[3] = a[3]+b[3]*s;
521 }
522
523 static inline void v4_lerp( v4f a, v4f b, f32 t, v4f d )
524 {
525 d[0] = a[0] + t*(b[0]-a[0]);
526 d[1] = a[1] + t*(b[1]-a[1]);
527 d[2] = a[2] + t*(b[2]-a[2]);
528 d[3] = a[3] + t*(b[3]-a[3]);
529 }
530
531 static inline f32 v4_dot( v4f a, v4f b )
532 {
533 return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
534 }
535
536 static inline f32 v4_length( v4f a )
537 {
538 return sqrtf( v4_dot(a,a) );
539 }
540
541 /*
542 * -----------------------------------------------------------------------------
543 * Section 3 Quaternions
544 * -----------------------------------------------------------------------------
545 */
546
547 static inline void q_identity( v4f q )
548 {
549 q[0] = 0.0f; q[1] = 0.0f; q[2] = 0.0f; q[3] = 1.0f;
550 }
551
552 static inline void q_axis_angle( v4f q, v3f axis, f32 angle )
553 {
554 f32 a = angle*0.5f,
555 c = cosf(a),
556 s = sinf(a);
557
558 q[0] = s*axis[0];
559 q[1] = s*axis[1];
560 q[2] = s*axis[2];
561 q[3] = c;
562 }
563
564 static inline void q_mul( v4f q, v4f q1, v4f d )
565 {
566 v4f t;
567 t[0] = q[3]*q1[0] + q[0]*q1[3] + q[1]*q1[2] - q[2]*q1[1];
568 t[1] = q[3]*q1[1] - q[0]*q1[2] + q[1]*q1[3] + q[2]*q1[0];
569 t[2] = q[3]*q1[2] + q[0]*q1[1] - q[1]*q1[0] + q[2]*q1[3];
570 t[3] = q[3]*q1[3] - q[0]*q1[0] - q[1]*q1[1] - q[2]*q1[2];
571 v4_copy( t, d );
572 }
573
574 static inline void q_normalize( v4f q )
575 {
576 f32 s = 1.0f/ sqrtf(v4_dot(q,q));
577 q[0] *= s;
578 q[1] *= s;
579 q[2] *= s;
580 q[3] *= s;
581 }
582
583 static inline void q_inv( v4f q, v4f d )
584 {
585 f32 s = 1.0f / v4_dot(q,q);
586 d[0] = -q[0]*s;
587 d[1] = -q[1]*s;
588 d[2] = -q[2]*s;
589 d[3] = q[3]*s;
590 }
591
592 static inline void q_nlerp( v4f a, v4f b, f32 t, v4f d )
593 {
594 if( v4_dot(a,b) < 0.0f ){
595 v4_muls( b, -1.0f, d );
596 v4_lerp( a, d, t, d );
597 }
598 else
599 v4_lerp( a, b, t, d );
600
601 q_normalize( d );
602 }
603
604 static inline void q_m3x3( v4f q, m3x3f d )
605 {
606 f32
607 l = v4_length(q),
608 s = l > 0.0f? 2.0f/l: 0.0f,
609
610 xx = s*q[0]*q[0], xy = s*q[0]*q[1], wx = s*q[3]*q[0],
611 yy = s*q[1]*q[1], yz = s*q[1]*q[2], wy = s*q[3]*q[1],
612 zz = s*q[2]*q[2], xz = s*q[0]*q[2], wz = s*q[3]*q[2];
613
614 d[0][0] = 1.0f - yy - zz;
615 d[1][1] = 1.0f - xx - zz;
616 d[2][2] = 1.0f - xx - yy;
617 d[0][1] = xy + wz;
618 d[1][2] = yz + wx;
619 d[2][0] = xz + wy;
620 d[1][0] = xy - wz;
621 d[2][1] = yz - wx;
622 d[0][2] = xz - wy;
623 }
624
625 static void q_mulv( v4f q, v3f v, v3f d )
626 {
627 v3f v1, v2;
628
629 v3_muls( q, 2.0f*v3_dot(q,v), v1 );
630 v3_muls( v, q[3]*q[3] - v3_dot(q,q), v2 );
631 v3_add( v1, v2, v1 );
632 v3_cross( q, v, v2 );
633 v3_muls( v2, 2.0f*q[3], v2 );
634 v3_add( v1, v2, d );
635 }
636
637 /*
638 * -----------------------------------------------------------------------------
639 * Section 4.a 2x2 matrices
640 * -----------------------------------------------------------------------------
641 */
642
643 #define M2X2_INDENTIY {{1.0f, 0.0f, }, \
644 {0.0f, 1.0f, }}
645
646 #define M2X2_ZERO {{0.0f, 0.0f, }, \
647 {0.0f, 0.0f, }}
648
649 static inline void m2x2_copy( m2x2f a, m2x2f b )
650 {
651 v2_copy( a[0], b[0] );
652 v2_copy( a[1], b[1] );
653 }
654
655 static inline void m2x2_identity( m2x2f a )
656 {
657 m2x2f id = M2X2_INDENTIY;
658 m2x2_copy( id, a );
659 }
660
661 static inline void m2x2_create_rotation( m2x2f a, f32 theta )
662 {
663 f32 s, c;
664
665 s = sinf( theta );
666 c = cosf( theta );
667
668 a[0][0] = c;
669 a[0][1] = -s;
670 a[1][0] = s;
671 a[1][1] = c;
672 }
673
674 /*
675 * -----------------------------------------------------------------------------
676 * Section 4.b 3x3 matrices
677 * -----------------------------------------------------------------------------
678 */
679
680 #define M3X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
681 { 0.0f, 1.0f, 0.0f, },\
682 { 0.0f, 0.0f, 1.0f, }}
683
684 #define M3X3_ZERO {{0.0f, 0.0f, 0.0f, },\
685 { 0.0f, 0.0f, 0.0f, },\
686 { 0.0f, 0.0f, 0.0f, }}
687
688
689 static void euler_m3x3( v3f angles, m3x3f d )
690 {
691 f32 cosY = cosf( angles[0] ),
692 sinY = sinf( angles[0] ),
693 cosP = cosf( angles[1] ),
694 sinP = sinf( angles[1] ),
695 cosR = cosf( angles[2] ),
696 sinR = sinf( angles[2] );
697
698 d[2][0] = -sinY * cosP;
699 d[2][1] = sinP;
700 d[2][2] = cosY * cosP;
701
702 d[0][0] = cosY * cosR;
703 d[0][1] = sinR;
704 d[0][2] = sinY * cosR;
705
706 v3_cross( d[0], d[2], d[1] );
707 }
708
709 static void m3x3_q( m3x3f m, v4f q )
710 {
711 f32 diag, r, rinv;
712
713 diag = m[0][0] + m[1][1] + m[2][2];
714 if( diag >= 0.0f )
715 {
716 r = sqrtf( 1.0f + diag );
717 rinv = 0.5f / r;
718 q[0] = rinv * (m[1][2] - m[2][1]);
719 q[1] = rinv * (m[2][0] - m[0][2]);
720 q[2] = rinv * (m[0][1] - m[1][0]);
721 q[3] = r * 0.5f;
722 }
723 else if( m[0][0] >= m[1][1] && m[0][0] >= m[2][2] )
724 {
725 r = sqrtf( 1.0f - m[1][1] - m[2][2] + m[0][0] );
726 rinv = 0.5f / r;
727 q[0] = r * 0.5f;
728 q[1] = rinv * (m[0][1] + m[1][0]);
729 q[2] = rinv * (m[0][2] + m[2][0]);
730 q[3] = rinv * (m[1][2] - m[2][1]);
731 }
732 else if( m[1][1] >= m[2][2] )
733 {
734 r = sqrtf( 1.0f - m[0][0] - m[2][2] + m[1][1] );
735 rinv = 0.5f / r;
736 q[0] = rinv * (m[0][1] + m[1][0]);
737 q[1] = r * 0.5f;
738 q[2] = rinv * (m[1][2] + m[2][1]);
739 q[3] = rinv * (m[2][0] - m[0][2]);
740 }
741 else
742 {
743 r = sqrtf( 1.0f - m[0][0] - m[1][1] + m[2][2] );
744 rinv = 0.5f / r;
745 q[0] = rinv * (m[0][2] + m[2][0]);
746 q[1] = rinv * (m[1][2] + m[2][1]);
747 q[2] = r * 0.5f;
748 q[3] = rinv * (m[0][1] - m[1][0]);
749 }
750 }
751
752 /* a X b == [b]T a == ...*/
753 static void m3x3_skew_symetric( m3x3f a, v3f v )
754 {
755 a[0][0] = 0.0f;
756 a[0][1] = v[2];
757 a[0][2] = -v[1];
758 a[1][0] = -v[2];
759 a[1][1] = 0.0f;
760 a[1][2] = v[0];
761 a[2][0] = v[1];
762 a[2][1] = -v[0];
763 a[2][2] = 0.0f;
764 }
765
766 static void m3x3_add( m3x3f a, m3x3f b, m3x3f d )
767 {
768 v3_add( a[0], b[0], d[0] );
769 v3_add( a[1], b[1], d[1] );
770 v3_add( a[2], b[2], d[2] );
771 }
772
773 static inline void m3x3_copy( m3x3f a, m3x3f b )
774 {
775 v3_copy( a[0], b[0] );
776 v3_copy( a[1], b[1] );
777 v3_copy( a[2], b[2] );
778 }
779
780 static inline void m3x3_identity( m3x3f a )
781 {
782 m3x3f id = M3X3_IDENTITY;
783 m3x3_copy( id, a );
784 }
785
786 static void m3x3_diagonal( m3x3f a, f32 v )
787 {
788 m3x3_identity( a );
789 a[0][0] = v;
790 a[1][1] = v;
791 a[2][2] = v;
792 }
793
794 static void m3x3_setdiagonalv3( m3x3f a, v3f v )
795 {
796 a[0][0] = v[0];
797 a[1][1] = v[1];
798 a[2][2] = v[2];
799 }
800
801 static inline void m3x3_zero( m3x3f a )
802 {
803 m3x3f z = M3X3_ZERO;
804 m3x3_copy( z, a );
805 }
806
807 static inline void m3x3_inv( m3x3f src, m3x3f dest )
808 {
809 f32 a = src[0][0], b = src[0][1], c = src[0][2],
810 d = src[1][0], e = src[1][1], f = src[1][2],
811 g = src[2][0], h = src[2][1], i = src[2][2];
812
813 f32 det = 1.f /
814 (+a*(e*i-h*f)
815 -b*(d*i-f*g)
816 +c*(d*h-e*g));
817
818 dest[0][0] = (e*i-h*f)*det;
819 dest[0][1] = -(b*i-c*h)*det;
820 dest[0][2] = (b*f-c*e)*det;
821 dest[1][0] = -(d*i-f*g)*det;
822 dest[1][1] = (a*i-c*g)*det;
823 dest[1][2] = -(a*f-d*c)*det;
824 dest[2][0] = (d*h-g*e)*det;
825 dest[2][1] = -(a*h-g*b)*det;
826 dest[2][2] = (a*e-d*b)*det;
827 }
828
829 static f32 m3x3_det( m3x3f m )
830 {
831 return m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])
832 - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
833 + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
834 }
835
836 static inline void m3x3_transpose( m3x3f src, m3x3f dest )
837 {
838 f32 a = src[0][0], b = src[0][1], c = src[0][2],
839 d = src[1][0], e = src[1][1], f = src[1][2],
840 g = src[2][0], h = src[2][1], i = src[2][2];
841
842 dest[0][0] = a;
843 dest[0][1] = d;
844 dest[0][2] = g;
845 dest[1][0] = b;
846 dest[1][1] = e;
847 dest[1][2] = h;
848 dest[2][0] = c;
849 dest[2][1] = f;
850 dest[2][2] = i;
851 }
852
853 static inline void m3x3_mul( m3x3f a, m3x3f b, m3x3f d )
854 {
855 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
856 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
857 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
858
859 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
860 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
861 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2];
862
863 d[0][0] = a00*b00 + a10*b01 + a20*b02;
864 d[0][1] = a01*b00 + a11*b01 + a21*b02;
865 d[0][2] = a02*b00 + a12*b01 + a22*b02;
866 d[1][0] = a00*b10 + a10*b11 + a20*b12;
867 d[1][1] = a01*b10 + a11*b11 + a21*b12;
868 d[1][2] = a02*b10 + a12*b11 + a22*b12;
869 d[2][0] = a00*b20 + a10*b21 + a20*b22;
870 d[2][1] = a01*b20 + a11*b21 + a21*b22;
871 d[2][2] = a02*b20 + a12*b21 + a22*b22;
872 }
873
874 static inline void m3x3_mulv( m3x3f m, v3f v, v3f d )
875 {
876 v3f res;
877
878 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
879 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
880 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
881
882 v3_copy( res, d );
883 }
884
885 static inline void m3x3_projection( m3x3f dst,
886 f32 const left, f32 const right, f32 const bottom, f32 const top )
887 {
888 f32 rl, tb;
889
890 m3x3_zero( dst );
891
892 rl = 1.0f / (right - left);
893 tb = 1.0f / (top - bottom);
894
895 dst[0][0] = 2.0f * rl;
896 dst[1][1] = 2.0f * tb;
897 dst[2][2] = 1.0f;
898 }
899
900 static inline void m3x3_translate( m3x3f m, v3f v )
901 {
902 m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0];
903 m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1];
904 m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2];
905 }
906
907 static inline void m3x3_scale( m3x3f m, v3f v )
908 {
909 v3_muls( m[0], v[0], m[0] );
910 v3_muls( m[1], v[1], m[1] );
911 v3_muls( m[2], v[2], m[2] );
912 }
913
914 static inline void m3x3_scalef( m3x3f m, f32 f )
915 {
916 v3f v;
917 v3_fill( v, f );
918 m3x3_scale( m, v );
919 }
920
921 static inline void m3x3_rotate( m3x3f m, f32 angle )
922 {
923 f32 m00 = m[0][0], m10 = m[1][0],
924 m01 = m[0][1], m11 = m[1][1],
925 m02 = m[0][2], m12 = m[1][2];
926 f32 c, s;
927
928 s = sinf( angle );
929 c = cosf( angle );
930
931 m[0][0] = m00 * c + m10 * s;
932 m[0][1] = m01 * c + m11 * s;
933 m[0][2] = m02 * c + m12 * s;
934
935 m[1][0] = m00 * -s + m10 * c;
936 m[1][1] = m01 * -s + m11 * c;
937 m[1][2] = m02 * -s + m12 * c;
938 }
939
940 /*
941 * -----------------------------------------------------------------------------
942 * Section 4.c 4x3 matrices
943 * -----------------------------------------------------------------------------
944 */
945
946 #define M4X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
947 { 0.0f, 1.0f, 0.0f, },\
948 { 0.0f, 0.0f, 1.0f, },\
949 { 0.0f, 0.0f, 0.0f }}
950
951 static inline void m4x3_to_3x3( m4x3f a, m3x3f b )
952 {
953 v3_copy( a[0], b[0] );
954 v3_copy( a[1], b[1] );
955 v3_copy( a[2], b[2] );
956 }
957
958 static inline void m4x3_invert_affine( m4x3f a, m4x3f b )
959 {
960 m3x3_transpose( a, b );
961 m3x3_mulv( b, a[3], b[3] );
962 v3_negate( b[3], b[3] );
963 }
964
965 static void m4x3_invert_full( m4x3f src, m4x3f dst )
966 {
967 f32 t2, t4, t5,
968 det,
969 a = src[0][0], b = src[0][1], c = src[0][2],
970 e = src[1][0], f = src[1][1], g = src[1][2],
971 i = src[2][0], j = src[2][1], k = src[2][2],
972 m = src[3][0], n = src[3][1], o = src[3][2];
973
974 t2 = j*o - n*k;
975 t4 = i*o - m*k;
976 t5 = i*n - m*j;
977
978 dst[0][0] = f*k - g*j;
979 dst[1][0] =-(e*k - g*i);
980 dst[2][0] = e*j - f*i;
981 dst[3][0] =-(e*t2 - f*t4 + g*t5);
982
983 dst[0][1] =-(b*k - c*j);
984 dst[1][1] = a*k - c*i;
985 dst[2][1] =-(a*j - b*i);
986 dst[3][1] = a*t2 - b*t4 + c*t5;
987
988 t2 = f*o - n*g;
989 t4 = e*o - m*g;
990 t5 = e*n - m*f;
991
992 dst[0][2] = b*g - c*f ;
993 dst[1][2] =-(a*g - c*e );
994 dst[2][2] = a*f - b*e ;
995 dst[3][2] =-(a*t2 - b*t4 + c * t5);
996
997 det = 1.0f / (a * dst[0][0] + b * dst[1][0] + c * dst[2][0]);
998 v3_muls( dst[0], det, dst[0] );
999 v3_muls( dst[1], det, dst[1] );
1000 v3_muls( dst[2], det, dst[2] );
1001 v3_muls( dst[3], det, dst[3] );
1002 }
1003
1004 static inline void m4x3_copy( m4x3f a, m4x3f b )
1005 {
1006 v3_copy( a[0], b[0] );
1007 v3_copy( a[1], b[1] );
1008 v3_copy( a[2], b[2] );
1009 v3_copy( a[3], b[3] );
1010 }
1011
1012 static inline void m4x3_identity( m4x3f a )
1013 {
1014 m4x3f id = M4X3_IDENTITY;
1015 m4x3_copy( id, a );
1016 }
1017
1018 static void m4x3_mul( m4x3f a, m4x3f b, m4x3f d )
1019 {
1020 f32
1021 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
1022 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
1023 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
1024 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2],
1025 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
1026 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
1027 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2],
1028 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2];
1029
1030 d[0][0] = a00*b00 + a10*b01 + a20*b02;
1031 d[0][1] = a01*b00 + a11*b01 + a21*b02;
1032 d[0][2] = a02*b00 + a12*b01 + a22*b02;
1033 d[1][0] = a00*b10 + a10*b11 + a20*b12;
1034 d[1][1] = a01*b10 + a11*b11 + a21*b12;
1035 d[1][2] = a02*b10 + a12*b11 + a22*b12;
1036 d[2][0] = a00*b20 + a10*b21 + a20*b22;
1037 d[2][1] = a01*b20 + a11*b21 + a21*b22;
1038 d[2][2] = a02*b20 + a12*b21 + a22*b22;
1039 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30;
1040 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31;
1041 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32;
1042 }
1043
1044 #if 0 /* shat appf mingw wstringop-overflow */
1045 inline
1046 #endif
1047 static void m4x3_mulv( m4x3f m, v3f v, v3f d )
1048 {
1049 v3f res;
1050
1051 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0];
1052 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1];
1053 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2];
1054
1055 v3_copy( res, d );
1056 }
1057
1058 /*
1059 * Transform plane ( xyz, distance )
1060 */
1061 static void m4x3_mulp( m4x3f m, v4f p, v4f d )
1062 {
1063 v3f o;
1064
1065 v3_muls( p, p[3], o );
1066 m4x3_mulv( m, o, o );
1067 m3x3_mulv( m, p, d );
1068
1069 d[3] = v3_dot( o, d );
1070 }
1071
1072 /*
1073 * Affine transforms
1074 */
1075
1076 static void m4x3_translate( m4x3f m, v3f v )
1077 {
1078 v3_muladds( m[3], m[0], v[0], m[3] );
1079 v3_muladds( m[3], m[1], v[1], m[3] );
1080 v3_muladds( m[3], m[2], v[2], m[3] );
1081 }
1082
1083 static void m4x3_rotate_x( m4x3f m, f32 angle )
1084 {
1085 m4x3f t = M4X3_IDENTITY;
1086 f32 c, s;
1087
1088 c = cosf( angle );
1089 s = sinf( angle );
1090
1091 t[1][1] = c;
1092 t[1][2] = s;
1093 t[2][1] = -s;
1094 t[2][2] = c;
1095
1096 m4x3_mul( m, t, m );
1097 }
1098
1099 static void m4x3_rotate_y( m4x3f m, f32 angle )
1100 {
1101 m4x3f t = M4X3_IDENTITY;
1102 f32 c, s;
1103
1104 c = cosf( angle );
1105 s = sinf( angle );
1106
1107 t[0][0] = c;
1108 t[0][2] = -s;
1109 t[2][0] = s;
1110 t[2][2] = c;
1111
1112 m4x3_mul( m, t, m );
1113 }
1114
1115 static void m4x3_rotate_z( m4x3f m, f32 angle )
1116 {
1117 m4x3f t = M4X3_IDENTITY;
1118 f32 c, s;
1119
1120 c = cosf( angle );
1121 s = sinf( angle );
1122
1123 t[0][0] = c;
1124 t[0][1] = s;
1125 t[1][0] = -s;
1126 t[1][1] = c;
1127
1128 m4x3_mul( m, t, m );
1129 }
1130
1131 static void m4x3_expand( m4x3f m, m4x4f d )
1132 {
1133 v3_copy( m[0], d[0] );
1134 v3_copy( m[1], d[1] );
1135 v3_copy( m[2], d[2] );
1136 v3_copy( m[3], d[3] );
1137 d[0][3] = 0.0f;
1138 d[1][3] = 0.0f;
1139 d[2][3] = 0.0f;
1140 d[3][3] = 1.0f;
1141 }
1142
1143 static void m4x3_decompose( m4x3f m, v3f co, v4f q, v3f s )
1144 {
1145 v3_copy( m[3], co );
1146 s[0] = v3_length(m[0]);
1147 s[1] = v3_length(m[1]);
1148 s[2] = v3_length(m[2]);
1149
1150 m3x3f rot;
1151 v3_divs( m[0], s[0], rot[0] );
1152 v3_divs( m[1], s[1], rot[1] );
1153 v3_divs( m[2], s[2], rot[2] );
1154
1155 m3x3_q( rot, q );
1156 }
1157
1158 static void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point )
1159 {
1160 v3f v;
1161 m4x3_mulv( m, point, v );
1162
1163 v3_minv( box[0], v, box[0] );
1164 v3_maxv( box[1], v, box[1] );
1165 }
1166
1167 static void m4x3_transform_aabb( m4x3f m, boxf box )
1168 {
1169 v3f a; v3f b;
1170
1171 v3_copy( box[0], a );
1172 v3_copy( box[1], b );
1173 v3_fill( box[0], INFINITY );
1174 v3_fill( box[1], -INFINITY );
1175
1176 m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], a[2] } );
1177 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], a[2] } );
1178 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], a[2] } );
1179 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], a[2] } );
1180
1181 m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], b[2] } );
1182 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], b[2] } );
1183 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], b[2] } );
1184 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], b[2] } );
1185 }
1186
1187 static inline void m4x3_lookat( m4x3f m, v3f pos, v3f target, v3f up )
1188 {
1189 v3f dir;
1190 v3_sub( target, pos, dir );
1191 v3_normalize( dir );
1192
1193 v3_copy( dir, m[2] );
1194
1195 v3_cross( up, m[2], m[0] );
1196 v3_normalize( m[0] );
1197
1198 v3_cross( m[2], m[0], m[1] );
1199 v3_copy( pos, m[3] );
1200 }
1201
1202 /*
1203 * -----------------------------------------------------------------------------
1204 * Section 4.d 4x4 matrices
1205 * -----------------------------------------------------------------------------
1206 */
1207
1208 #define M4X4_IDENTITY {{1.0f, 0.0f, 0.0f, 0.0f },\
1209 { 0.0f, 1.0f, 0.0f, 0.0f },\
1210 { 0.0f, 0.0f, 1.0f, 0.0f },\
1211 { 0.0f, 0.0f, 0.0f, 1.0f }}
1212 #define M4X4_ZERO {{0.0f, 0.0f, 0.0f, 0.0f },\
1213 { 0.0f, 0.0f, 0.0f, 0.0f },\
1214 { 0.0f, 0.0f, 0.0f, 0.0f },\
1215 { 0.0f, 0.0f, 0.0f, 0.0f }}
1216
1217 static void m4x4_projection( m4x4f m, f32 angle,
1218 f32 ratio, f32 fnear, f32 ffar )
1219 {
1220 f32 scale = tanf( angle * 0.5f * VG_PIf / 180.0f ) * fnear,
1221 r = ratio * scale,
1222 l = -r,
1223 t = scale,
1224 b = -t;
1225
1226 m[0][0] = 2.0f * fnear / (r - l);
1227 m[0][1] = 0.0f;
1228 m[0][2] = 0.0f;
1229 m[0][3] = 0.0f;
1230
1231 m[1][0] = 0.0f;
1232 m[1][1] = 2.0f * fnear / (t - b);
1233 m[1][2] = 0.0f;
1234 m[1][3] = 0.0f;
1235
1236 m[2][0] = (r + l) / (r - l);
1237 m[2][1] = (t + b) / (t - b);
1238 m[2][2] = -(ffar + fnear) / (ffar - fnear);
1239 m[2][3] = -1.0f;
1240
1241 m[3][0] = 0.0f;
1242 m[3][1] = 0.0f;
1243 m[3][2] = -2.0f * ffar * fnear / (ffar - fnear);
1244 m[3][3] = 0.0f;
1245 }
1246
1247 static void m4x4_translate( m4x4f m, v3f v )
1248 {
1249 v4_muladds( m[3], m[0], v[0], m[3] );
1250 v4_muladds( m[3], m[1], v[1], m[3] );
1251 v4_muladds( m[3], m[2], v[2], m[3] );
1252 }
1253
1254 static inline void m4x4_copy( m4x4f a, m4x4f b )
1255 {
1256 v4_copy( a[0], b[0] );
1257 v4_copy( a[1], b[1] );
1258 v4_copy( a[2], b[2] );
1259 v4_copy( a[3], b[3] );
1260 }
1261
1262 static inline void m4x4_identity( m4x4f a )
1263 {
1264 m4x4f id = M4X4_IDENTITY;
1265 m4x4_copy( id, a );
1266 }
1267
1268 static inline void m4x4_zero( m4x4f a )
1269 {
1270 m4x4f zero = M4X4_ZERO;
1271 m4x4_copy( zero, a );
1272 }
1273
1274 static inline void m4x4_mul( m4x4f a, m4x4f b, m4x4f d )
1275 {
1276 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1277 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1278 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1279 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1280
1281 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2], b03 = b[0][3],
1282 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2], b13 = b[1][3],
1283 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2], b23 = b[2][3],
1284 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2], b33 = b[3][3];
1285
1286 d[0][0] = a00*b00 + a10*b01 + a20*b02 + a30*b03;
1287 d[0][1] = a01*b00 + a11*b01 + a21*b02 + a31*b03;
1288 d[0][2] = a02*b00 + a12*b01 + a22*b02 + a32*b03;
1289 d[0][3] = a03*b00 + a13*b01 + a23*b02 + a33*b03;
1290 d[1][0] = a00*b10 + a10*b11 + a20*b12 + a30*b13;
1291 d[1][1] = a01*b10 + a11*b11 + a21*b12 + a31*b13;
1292 d[1][2] = a02*b10 + a12*b11 + a22*b12 + a32*b13;
1293 d[1][3] = a03*b10 + a13*b11 + a23*b12 + a33*b13;
1294 d[2][0] = a00*b20 + a10*b21 + a20*b22 + a30*b23;
1295 d[2][1] = a01*b20 + a11*b21 + a21*b22 + a31*b23;
1296 d[2][2] = a02*b20 + a12*b21 + a22*b22 + a32*b23;
1297 d[2][3] = a03*b20 + a13*b21 + a23*b22 + a33*b23;
1298 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30*b33;
1299 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31*b33;
1300 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32*b33;
1301 d[3][3] = a03*b30 + a13*b31 + a23*b32 + a33*b33;
1302 }
1303
1304 static inline void m4x4_mulv( m4x4f m, v4f v, v4f d )
1305 {
1306 v4f res;
1307
1308 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3];
1309 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3];
1310 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3];
1311 res[3] = m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3];
1312
1313 v4_copy( res, d );
1314 }
1315
1316 static inline void m4x4_inv( m4x4f a, m4x4f d )
1317 {
1318 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1319 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1320 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1321 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1322 det,
1323 t[6];
1324
1325 t[0] = a22*a33 - a32*a23;
1326 t[1] = a21*a33 - a31*a23;
1327 t[2] = a21*a32 - a31*a22;
1328 t[3] = a20*a33 - a30*a23;
1329 t[4] = a20*a32 - a30*a22;
1330 t[5] = a20*a31 - a30*a21;
1331
1332 d[0][0] = a11*t[0] - a12*t[1] + a13*t[2];
1333 d[1][0] =-(a10*t[0] - a12*t[3] + a13*t[4]);
1334 d[2][0] = a10*t[1] - a11*t[3] + a13*t[5];
1335 d[3][0] =-(a10*t[2] - a11*t[4] + a12*t[5]);
1336
1337 d[0][1] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1338 d[1][1] = a00*t[0] - a02*t[3] + a03*t[4];
1339 d[2][1] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1340 d[3][1] = a00*t[2] - a01*t[4] + a02*t[5];
1341
1342 t[0] = a12*a33 - a32*a13;
1343 t[1] = a11*a33 - a31*a13;
1344 t[2] = a11*a32 - a31*a12;
1345 t[3] = a10*a33 - a30*a13;
1346 t[4] = a10*a32 - a30*a12;
1347 t[5] = a10*a31 - a30*a11;
1348
1349 d[0][2] = a01*t[0] - a02*t[1] + a03*t[2];
1350 d[1][2] =-(a00*t[0] - a02*t[3] + a03*t[4]);
1351 d[2][2] = a00*t[1] - a01*t[3] + a03*t[5];
1352 d[3][2] =-(a00*t[2] - a01*t[4] + a02*t[5]);
1353
1354 t[0] = a12*a23 - a22*a13;
1355 t[1] = a11*a23 - a21*a13;
1356 t[2] = a11*a22 - a21*a12;
1357 t[3] = a10*a23 - a20*a13;
1358 t[4] = a10*a22 - a20*a12;
1359 t[5] = a10*a21 - a20*a11;
1360
1361 d[0][3] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1362 d[1][3] = a00*t[0] - a02*t[3] + a03*t[4];
1363 d[2][3] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1364 d[3][3] = a00*t[2] - a01*t[4] + a02*t[5];
1365
1366 det = 1.0f / (a00*d[0][0] + a01*d[1][0] + a02*d[2][0] + a03*d[3][0]);
1367 v4_muls( d[0], det, d[0] );
1368 v4_muls( d[1], det, d[1] );
1369 v4_muls( d[2], det, d[2] );
1370 v4_muls( d[3], det, d[3] );
1371 }
1372
1373 /*
1374 * -----------------------------------------------------------------------------
1375 * Section 5.a Boxes
1376 * -----------------------------------------------------------------------------
1377 */
1378
1379 static inline void box_addpt( boxf a, v3f pt )
1380 {
1381 v3_minv( a[0], pt, a[0] );
1382 v3_maxv( a[1], pt, a[1] );
1383 }
1384
1385 static inline void box_concat( boxf a, boxf b )
1386 {
1387 v3_minv( a[0], b[0], a[0] );
1388 v3_maxv( a[1], b[1], a[1] );
1389 }
1390
1391 static inline void box_copy( boxf a, boxf b )
1392 {
1393 v3_copy( a[0], b[0] );
1394 v3_copy( a[1], b[1] );
1395 }
1396
1397 static inline int box_overlap( boxf a, boxf b )
1398 {
1399 return
1400 ( a[0][0] <= b[1][0] && a[1][0] >= b[0][0] ) &&
1401 ( a[0][1] <= b[1][1] && a[1][1] >= b[0][1] ) &&
1402 ( a[0][2] <= b[1][2] && a[1][2] >= b[0][2] )
1403 ;
1404 }
1405
1406 static int box_within( boxf greater, boxf lesser )
1407 {
1408 v3f a, b;
1409 v3_sub( lesser[0], greater[0], a );
1410 v3_sub( lesser[1], greater[1], b );
1411
1412 if( (a[0] >= 0.0f) && (a[1] >= 0.0f) && (a[2] >= 0.0f) &&
1413 (b[0] <= 0.0f) && (b[1] <= 0.0f) && (b[2] <= 0.0f) )
1414 {
1415 return 1;
1416 }
1417
1418 return 0;
1419 }
1420
1421 static inline void box_init_inf( boxf box )
1422 {
1423 v3_fill( box[0], INFINITY );
1424 v3_fill( box[1], -INFINITY );
1425 }
1426
1427 /*
1428 * -----------------------------------------------------------------------------
1429 * Section 5.b Planes
1430 * -----------------------------------------------------------------------------
1431 */
1432
1433 static inline void tri_to_plane( f64 a[3], f64 b[3],
1434 f64 c[3], f64 p[4] )
1435 {
1436 f64 edge0[3];
1437 f64 edge1[3];
1438 f64 l;
1439
1440 edge0[0] = b[0] - a[0];
1441 edge0[1] = b[1] - a[1];
1442 edge0[2] = b[2] - a[2];
1443
1444 edge1[0] = c[0] - a[0];
1445 edge1[1] = c[1] - a[1];
1446 edge1[2] = c[2] - a[2];
1447
1448 p[0] = edge0[1] * edge1[2] - edge0[2] * edge1[1];
1449 p[1] = edge0[2] * edge1[0] - edge0[0] * edge1[2];
1450 p[2] = edge0[0] * edge1[1] - edge0[1] * edge1[0];
1451
1452 l = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
1453 p[3] = (p[0] * a[0] + p[1] * a[1] + p[2] * a[2]) / l;
1454
1455 p[0] = p[0] / l;
1456 p[1] = p[1] / l;
1457 p[2] = p[2] / l;
1458 }
1459
1460 static int plane_intersect3( v4f a, v4f b, v4f c, v3f p )
1461 {
1462 f32 const epsilon = 1e-6f;
1463
1464 v3f x;
1465 v3_cross( a, b, x );
1466 f32 d = v3_dot( x, c );
1467
1468 if( (d < epsilon) && (d > -epsilon) ) return 0;
1469
1470 v3f v0, v1, v2;
1471 v3_cross( b, c, v0 );
1472 v3_cross( c, a, v1 );
1473 v3_cross( a, b, v2 );
1474
1475 v3_muls( v0, a[3], p );
1476 v3_muladds( p, v1, b[3], p );
1477 v3_muladds( p, v2, c[3], p );
1478 v3_divs( p, d, p );
1479
1480 return 1;
1481 }
1482
1483 int plane_intersect2( v4f a, v4f b, v3f p, v3f n )
1484 {
1485 f32 const epsilon = 1e-6f;
1486
1487 v4f c;
1488 v3_cross( a, b, c );
1489 f32 d = v3_length2( c );
1490
1491 if( (d < epsilon) && (d > -epsilon) )
1492 return 0;
1493
1494 v3f v0, v1, vx;
1495 v3_cross( c, b, v0 );
1496 v3_cross( a, c, v1 );
1497
1498 v3_muls( v0, a[3], vx );
1499 v3_muladds( vx, v1, b[3], vx );
1500 v3_divs( vx, d, p );
1501 v3_copy( c, n );
1502
1503 return 1;
1504 }
1505
1506 static int plane_segment( v4f plane, v3f a, v3f b, v3f co )
1507 {
1508 f32 d0 = v3_dot( a, plane ) - plane[3],
1509 d1 = v3_dot( b, plane ) - plane[3];
1510
1511 if( d0*d1 < 0.0f )
1512 {
1513 f32 tot = 1.0f/( fabsf(d0)+fabsf(d1) );
1514
1515 v3_muls( a, fabsf(d1) * tot, co );
1516 v3_muladds( co, b, fabsf(d0) * tot, co );
1517 return 1;
1518 }
1519
1520 return 0;
1521 }
1522
1523 static inline f64 plane_polarity( f64 p[4], f64 a[3] )
1524 {
1525 return
1526 (a[0] * p[0] + a[1] * p[1] + a[2] * p[2])
1527 -(p[0]*p[3] * p[0] + p[1]*p[3] * p[1] + p[2]*p[3] * p[2])
1528 ;
1529 }
1530
1531 /*
1532 * -----------------------------------------------------------------------------
1533 * Section 5.c Closest point functions
1534 * -----------------------------------------------------------------------------
1535 */
1536
1537 /*
1538 * These closest point tests were learned from Real-Time Collision Detection by
1539 * Christer Ericson
1540 */
1541 VG_STATIC f32 closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2,
1542 f32 *s, f32 *t, v3f c1, v3f c2)
1543 {
1544 v3f d1,d2,r;
1545 v3_sub( q1, p1, d1 );
1546 v3_sub( q2, p2, d2 );
1547 v3_sub( p1, p2, r );
1548
1549 f32 a = v3_length2( d1 ),
1550 e = v3_length2( d2 ),
1551 f = v3_dot( d2, r );
1552
1553 const f32 kEpsilon = 0.0001f;
1554
1555 if( a <= kEpsilon && e <= kEpsilon )
1556 {
1557 *s = 0.0f;
1558 *t = 0.0f;
1559 v3_copy( p1, c1 );
1560 v3_copy( p2, c2 );
1561
1562 v3f v0;
1563 v3_sub( c1, c2, v0 );
1564
1565 return v3_length2( v0 );
1566 }
1567
1568 if( a<= kEpsilon )
1569 {
1570 *s = 0.0f;
1571 *t = vg_clampf( f / e, 0.0f, 1.0f );
1572 }
1573 else
1574 {
1575 f32 c = v3_dot( d1, r );
1576 if( e <= kEpsilon )
1577 {
1578 *t = 0.0f;
1579 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1580 }
1581 else
1582 {
1583 f32 b = v3_dot(d1,d2),
1584 d = a*e-b*b;
1585
1586 if( d != 0.0f )
1587 {
1588 *s = vg_clampf((b*f - c*e)/d, 0.0f, 1.0f);
1589 }
1590 else
1591 {
1592 *s = 0.0f;
1593 }
1594
1595 *t = (b*(*s)+f) / e;
1596
1597 if( *t < 0.0f )
1598 {
1599 *t = 0.0f;
1600 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1601 }
1602 else if( *t > 1.0f )
1603 {
1604 *t = 1.0f;
1605 *s = vg_clampf((b-c)/a,0.0f,1.0f);
1606 }
1607 }
1608 }
1609
1610 v3_muladds( p1, d1, *s, c1 );
1611 v3_muladds( p2, d2, *t, c2 );
1612
1613 v3f v0;
1614 v3_sub( c1, c2, v0 );
1615 return v3_length2( v0 );
1616 }
1617
1618 VG_STATIC int point_inside_aabb( boxf box, v3f point )
1619 {
1620 if((point[0]<=box[1][0]) && (point[1]<=box[1][1]) && (point[2]<=box[1][2]) &&
1621 (point[0]>=box[0][0]) && (point[1]>=box[0][1]) && (point[2]>=box[0][2]) )
1622 return 1;
1623 else
1624 return 0;
1625 }
1626
1627 VG_STATIC void closest_point_aabb( v3f p, boxf box, v3f dest )
1628 {
1629 v3_maxv( p, box[0], dest );
1630 v3_minv( dest, box[1], dest );
1631 }
1632
1633 VG_STATIC void closest_point_obb( v3f p, boxf box,
1634 m4x3f mtx, m4x3f inv_mtx, v3f dest )
1635 {
1636 v3f local;
1637 m4x3_mulv( inv_mtx, p, local );
1638 closest_point_aabb( local, box, local );
1639 m4x3_mulv( mtx, local, dest );
1640 }
1641
1642 VG_STATIC f32 closest_point_segment( v3f a, v3f b, v3f point, v3f dest )
1643 {
1644 v3f v0, v1;
1645 v3_sub( b, a, v0 );
1646 v3_sub( point, a, v1 );
1647
1648 f32 t = v3_dot( v1, v0 ) / v3_length2(v0);
1649 t = vg_clampf(t,0.0f,1.0f);
1650 v3_muladds( a, v0, t, dest );
1651 return t;
1652 }
1653
1654 VG_STATIC void closest_on_triangle( v3f p, v3f tri[3], v3f dest )
1655 {
1656 v3f ab, ac, ap;
1657 f32 d1, d2;
1658
1659 /* Region outside A */
1660 v3_sub( tri[1], tri[0], ab );
1661 v3_sub( tri[2], tri[0], ac );
1662 v3_sub( p, tri[0], ap );
1663
1664 d1 = v3_dot(ab,ap);
1665 d2 = v3_dot(ac,ap);
1666 if( d1 <= 0.0f && d2 <= 0.0f )
1667 {
1668 v3_copy( tri[0], dest );
1669 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1670 return;
1671 }
1672
1673 /* Region outside B */
1674 v3f bp;
1675 f32 d3, d4;
1676
1677 v3_sub( p, tri[1], bp );
1678 d3 = v3_dot( ab, bp );
1679 d4 = v3_dot( ac, bp );
1680
1681 if( d3 >= 0.0f && d4 <= d3 )
1682 {
1683 v3_copy( tri[1], dest );
1684 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1685 return;
1686 }
1687
1688 /* Edge region of AB */
1689 f32 vc = d1*d4 - d3*d2;
1690 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1691 {
1692 f32 v = d1 / (d1-d3);
1693 v3_muladds( tri[0], ab, v, dest );
1694 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1695 return;
1696 }
1697
1698 /* Region outside C */
1699 v3f cp;
1700 f32 d5, d6;
1701 v3_sub( p, tri[2], cp );
1702 d5 = v3_dot(ab, cp);
1703 d6 = v3_dot(ac, cp);
1704
1705 if( d6 >= 0.0f && d5 <= d6 )
1706 {
1707 v3_copy( tri[2], dest );
1708 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1709 return;
1710 }
1711
1712 /* Region of AC */
1713 f32 vb = d5*d2 - d1*d6;
1714 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1715 {
1716 f32 w = d2 / (d2-d6);
1717 v3_muladds( tri[0], ac, w, dest );
1718 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1719 return;
1720 }
1721
1722 /* Region of BC */
1723 f32 va = d3*d6 - d5*d4;
1724 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1725 {
1726 f32 w = (d4-d3) / ((d4-d3) + (d5-d6));
1727 v3f bc;
1728 v3_sub( tri[2], tri[1], bc );
1729 v3_muladds( tri[1], bc, w, dest );
1730 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1731 return;
1732 }
1733
1734 /* P inside region, Q via barycentric coordinates uvw */
1735 f32 d = 1.0f/(va+vb+vc),
1736 v = vb*d,
1737 w = vc*d;
1738
1739 v3_muladds( tri[0], ab, v, dest );
1740 v3_muladds( dest, ac, w, dest );
1741 }
1742
1743 enum contact_type
1744 {
1745 k_contact_type_default,
1746 k_contact_type_disabled,
1747 k_contact_type_edge
1748 };
1749
1750 VG_STATIC enum contact_type closest_on_triangle_1( v3f p, v3f tri[3], v3f dest )
1751 {
1752 v3f ab, ac, ap;
1753 f32 d1, d2;
1754
1755 /* Region outside A */
1756 v3_sub( tri[1], tri[0], ab );
1757 v3_sub( tri[2], tri[0], ac );
1758 v3_sub( p, tri[0], ap );
1759
1760 d1 = v3_dot(ab,ap);
1761 d2 = v3_dot(ac,ap);
1762 if( d1 <= 0.0f && d2 <= 0.0f )
1763 {
1764 v3_copy( tri[0], dest );
1765 return k_contact_type_default;
1766 }
1767
1768 /* Region outside B */
1769 v3f bp;
1770 f32 d3, d4;
1771
1772 v3_sub( p, tri[1], bp );
1773 d3 = v3_dot( ab, bp );
1774 d4 = v3_dot( ac, bp );
1775
1776 if( d3 >= 0.0f && d4 <= d3 )
1777 {
1778 v3_copy( tri[1], dest );
1779 return k_contact_type_edge;
1780 }
1781
1782 /* Edge region of AB */
1783 f32 vc = d1*d4 - d3*d2;
1784 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1785 {
1786 f32 v = d1 / (d1-d3);
1787 v3_muladds( tri[0], ab, v, dest );
1788 return k_contact_type_edge;
1789 }
1790
1791 /* Region outside C */
1792 v3f cp;
1793 f32 d5, d6;
1794 v3_sub( p, tri[2], cp );
1795 d5 = v3_dot(ab, cp);
1796 d6 = v3_dot(ac, cp);
1797
1798 if( d6 >= 0.0f && d5 <= d6 )
1799 {
1800 v3_copy( tri[2], dest );
1801 return k_contact_type_edge;
1802 }
1803
1804 /* Region of AC */
1805 f32 vb = d5*d2 - d1*d6;
1806 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1807 {
1808 f32 w = d2 / (d2-d6);
1809 v3_muladds( tri[0], ac, w, dest );
1810 return k_contact_type_edge;
1811 }
1812
1813 /* Region of BC */
1814 f32 va = d3*d6 - d5*d4;
1815 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1816 {
1817 f32 w = (d4-d3) / ((d4-d3) + (d5-d6));
1818 v3f bc;
1819 v3_sub( tri[2], tri[1], bc );
1820 v3_muladds( tri[1], bc, w, dest );
1821 return k_contact_type_edge;
1822 }
1823
1824 /* P inside region, Q via barycentric coordinates uvw */
1825 f32 d = 1.0f/(va+vb+vc),
1826 v = vb*d,
1827 w = vc*d;
1828
1829 v3_muladds( tri[0], ab, v, dest );
1830 v3_muladds( dest, ac, w, dest );
1831
1832 return k_contact_type_default;
1833 }
1834
1835 static void closest_point_elipse( v2f p, v2f e, v2f o )
1836 {
1837 v2f pabs, ei, e2, ve, t;
1838
1839 v2_abs( p, pabs );
1840 v2_div( (v2f){ 1.0f, 1.0f }, e, ei );
1841 v2_mul( e, e, e2 );
1842 v2_mul( ei, (v2f){ e2[0]-e2[1], e2[1]-e2[0] }, ve );
1843
1844 v2_fill( t, 0.70710678118654752f );
1845
1846 for( int i=0; i<3; i++ ){
1847 v2f v, u, ud, w;
1848
1849 v2_mul( ve, t, v ); /* ve*t*t*t */
1850 v2_mul( v, t, v );
1851 v2_mul( v, t, v );
1852
1853 v2_sub( pabs, v, u );
1854 v2_normalize( u );
1855
1856 v2_mul( t, e, ud );
1857 v2_sub( ud, v, ud );
1858
1859 v2_muls( u, v2_length( ud ), u );
1860
1861 v2_add( v, u, w );
1862 v2_mul( w, ei, w );
1863
1864 v2_maxv( (v2f){0.0f,0.0f}, w, t );
1865 v2_normalize( t );
1866 }
1867
1868 v2_mul( t, e, o );
1869 v2_copysign( o, p );
1870 }
1871
1872 /*
1873 * -----------------------------------------------------------------------------
1874 * Section 5.d Raycasts & Spherecasts
1875 * -----------------------------------------------------------------------------
1876 */
1877
1878 int ray_aabb1( boxf box, v3f co, v3f dir_inv, f32 dist )
1879 {
1880 v3f v0, v1;
1881 f32 tmin, tmax;
1882
1883 v3_sub( box[0], co, v0 );
1884 v3_sub( box[1], co, v1 );
1885
1886 v3_mul( v0, dir_inv, v0 );
1887 v3_mul( v1, dir_inv, v1 );
1888
1889 tmin = vg_minf( v0[0], v1[0] );
1890 tmax = vg_maxf( v0[0], v1[0] );
1891 tmin = vg_maxf( tmin, vg_minf( v0[1], v1[1] ));
1892 tmax = vg_minf( tmax, vg_maxf( v0[1], v1[1] ));
1893 tmin = vg_maxf( tmin, vg_minf( v0[2], v1[2] ));
1894 tmax = vg_minf( tmax, vg_maxf( v0[2], v1[2] ));
1895
1896 return (tmax >= tmin) && (tmin <= dist) && (tmax >= 0.0f);
1897 }
1898
1899 /* Time of intersection with ray vs triangle */
1900 static int ray_tri( v3f tri[3], v3f co,
1901 v3f dir, f32 *dist )
1902 {
1903 f32 const kEpsilon = 0.00001f;
1904
1905 v3f v0, v1, h, s, q, n;
1906 f32 a,f,u,v,t;
1907
1908 f32 *pa = tri[0],
1909 *pb = tri[1],
1910 *pc = tri[2];
1911
1912 v3_sub( pb, pa, v0 );
1913 v3_sub( pc, pa, v1 );
1914 v3_cross( dir, v1, h );
1915 v3_cross( v0, v1, n );
1916
1917 if( v3_dot( n, dir ) > 0.0f ) /* Backface culling */
1918 return 0;
1919
1920 /* Parralel */
1921 a = v3_dot( v0, h );
1922
1923 if( a > -kEpsilon && a < kEpsilon )
1924 return 0;
1925
1926 f = 1.0f/a;
1927 v3_sub( co, pa, s );
1928
1929 u = f * v3_dot(s, h);
1930 if( u < 0.0f || u > 1.0f )
1931 return 0;
1932
1933 v3_cross( s, v0, q );
1934 v = f * v3_dot( dir, q );
1935 if( v < 0.0f || u+v > 1.0f )
1936 return 0;
1937
1938 t = f * v3_dot(v1, q);
1939 if( t > kEpsilon )
1940 {
1941 *dist = t;
1942 return 1;
1943 }
1944 else return 0;
1945 }
1946
1947 /* time of intersection with ray vs sphere */
1948 static int ray_sphere( v3f c, f32 r,
1949 v3f co, v3f dir, f32 *t )
1950 {
1951 v3f m;
1952 v3_sub( co, c, m );
1953
1954 f32 b = v3_dot( m, dir ),
1955 c1 = v3_dot( m, m ) - r*r;
1956
1957 /* Exit if r’s origin outside s (c > 0) and r pointing away from s (b > 0) */
1958 if( c1 > 0.0f && b > 0.0f )
1959 return 0;
1960
1961 f32 discr = b*b - c1;
1962
1963 /* A negative discriminant corresponds to ray missing sphere */
1964 if( discr < 0.0f )
1965 return 0;
1966
1967 /*
1968 * Ray now found to intersect sphere, compute smallest t value of
1969 * intersection
1970 */
1971 *t = -b - sqrtf( discr );
1972
1973 /* If t is negative, ray started inside sphere so clamp t to zero */
1974 if( *t < 0.0f )
1975 *t = 0.0f;
1976
1977 return 1;
1978 }
1979
1980 /*
1981 * time of intersection of ray vs cylinder
1982 * The cylinder does not have caps but is finite
1983 *
1984 * Heavily adapted from regular segment vs cylinder from:
1985 * Real-Time Collision Detection
1986 */
1987 static int ray_uncapped_finite_cylinder( v3f q, v3f p, f32 r,
1988 v3f co, v3f dir, f32 *t )
1989 {
1990 v3f d, m, n, sb;
1991 v3_muladds( co, dir, 1.0f, sb );
1992
1993 v3_sub( q, p, d );
1994 v3_sub( co, p, m );
1995 v3_sub( sb, co, n );
1996
1997 f32 md = v3_dot( m, d ),
1998 nd = v3_dot( n, d ),
1999 dd = v3_dot( d, d ),
2000 nn = v3_dot( n, n ),
2001 mn = v3_dot( m, n ),
2002 a = dd*nn - nd*nd,
2003 k = v3_dot( m, m ) - r*r,
2004 c = dd*k - md*md;
2005
2006 if( fabsf(a) < 0.00001f )
2007 {
2008 /* Segment runs parallel to cylinder axis */
2009 return 0;
2010 }
2011
2012 f32 b = dd*mn - nd*md,
2013 discr = b*b - a*c;
2014
2015 if( discr < 0.0f )
2016 return 0; /* No real roots; no intersection */
2017
2018 *t = (-b - sqrtf(discr)) / a;
2019 if( *t < 0.0f )
2020 return 0; /* Intersection behind ray */
2021
2022 /* Check within cylinder segment */
2023 if( md + (*t)*nd < 0.0f )
2024 return 0;
2025
2026 if( md + (*t)*nd > dd )
2027 return 0;
2028
2029 /* Segment intersects cylinder between the endcaps; t is correct */
2030 return 1;
2031 }
2032
2033 /*
2034 * Time of intersection of sphere and triangle. Origin must be outside the
2035 * colliding area. This is a fairly long procedure.
2036 */
2037 static int spherecast_triangle( v3f tri[3],
2038 v3f co, v3f dir, f32 r, f32 *t, v3f n )
2039 {
2040 v3f sum[3];
2041 v3f v0, v1;
2042
2043 v3_sub( tri[1], tri[0], v0 );
2044 v3_sub( tri[2], tri[0], v1 );
2045 v3_cross( v0, v1, n );
2046 v3_normalize( n );
2047 v3_muladds( tri[0], n, r, sum[0] );
2048 v3_muladds( tri[1], n, r, sum[1] );
2049 v3_muladds( tri[2], n, r, sum[2] );
2050
2051 int hit = 0;
2052 f32 t_min = INFINITY,
2053 t1;
2054
2055 if( ray_tri( sum, co, dir, &t1 ) ){
2056 t_min = vg_minf( t_min, t1 );
2057 hit = 1;
2058 }
2059
2060 /*
2061 * Currently disabled; ray_sphere requires |d| = 1. it is not very important.
2062 */
2063 #if 0
2064 for( int i=0; i<3; i++ ){
2065 if( ray_sphere( tri[i], r, co, dir, &t1 ) ){
2066 t_min = vg_minf( t_min, t1 );
2067 hit = 1;
2068 }
2069 }
2070 #endif
2071
2072 for( int i=0; i<3; i++ ){
2073 int i0 = i,
2074 i1 = (i+1)%3;
2075
2076 if( ray_uncapped_finite_cylinder( tri[i0], tri[i1], r, co, dir, &t1 ) ){
2077 if( t1 < t_min ){
2078 t_min = t1;
2079
2080 v3f co1, ct, cx;
2081 v3_add( dir, co, co1 );
2082 v3_lerp( co, co1, t_min, ct );
2083
2084 closest_point_segment( tri[i0], tri[i1], ct, cx );
2085 v3_sub( ct, cx, n );
2086 v3_normalize( n );
2087 }
2088
2089 hit = 1;
2090 }
2091 }
2092
2093 *t = t_min;
2094 return hit;
2095 }
2096
2097 /*
2098 * -----------------------------------------------------------------------------
2099 * Section 5.e Curves
2100 * -----------------------------------------------------------------------------
2101 */
2102
2103 static void eval_bezier_time( v3f p0, v3f p1, v3f h0, v3f h1, f32 t, v3f p )
2104 {
2105 f32 tt = t*t,
2106 ttt = tt*t;
2107
2108 v3_muls( p1, ttt, p );
2109 v3_muladds( p, h1, 3.0f*tt -3.0f*ttt, p );
2110 v3_muladds( p, h0, 3.0f*ttt -6.0f*tt +3.0f*t, p );
2111 v3_muladds( p, p0, 3.0f*tt -ttt -3.0f*t +1.0f, p );
2112 }
2113
2114 static void eval_bezier3( v3f p0, v3f p1, v3f p2, f32 t, v3f p )
2115 {
2116 f32 u = 1.0f-t;
2117
2118 v3_muls( p0, u*u, p );
2119 v3_muladds( p, p1, 2.0f*u*t, p );
2120 v3_muladds( p, p2, t*t, p );
2121 }
2122
2123 /*
2124 * -----------------------------------------------------------------------------
2125 * Section 6.a PSRNG and some distributions
2126 * -----------------------------------------------------------------------------
2127 */
2128
2129 /* An implementation of the MT19937 Algorithm for the Mersenne Twister
2130 * by Evan Sultanik. Based upon the pseudocode in: M. Matsumoto and
2131 * T. Nishimura, "Mersenne Twister: A 623-dimensionally
2132 * equidistributed uniform pseudorandom number generator," ACM
2133 * Transactions on Modeling and Computer Simulation Vol. 8, No. 1,
2134 * January pp.3-30 1998.
2135 *
2136 * http://www.sultanik.com/Mersenne_twister
2137 * https://github.com/ESultanik/mtwister/blob/master/mtwister.c
2138 */
2139
2140 #define MT_UPPER_MASK 0x80000000
2141 #define MT_LOWER_MASK 0x7fffffff
2142 #define MT_TEMPERING_MASK_B 0x9d2c5680
2143 #define MT_TEMPERING_MASK_C 0xefc60000
2144
2145 #define MT_STATE_VECTOR_LENGTH 624
2146
2147 /* changes to STATE_VECTOR_LENGTH also require changes to this */
2148 #define MT_STATE_VECTOR_M 397
2149
2150 struct {
2151 u32 mt[MT_STATE_VECTOR_LENGTH];
2152 i32 index;
2153 }
2154 static vg_rand;
2155
2156 static void vg_rand_seed( unsigned long seed )
2157 {
2158 /* set initial seeds to mt[STATE_VECTOR_LENGTH] using the generator
2159 * from Line 25 of Table 1 in: Donald Knuth, "The Art of Computer
2160 * Programming," Vol. 2 (2nd Ed.) pp.102.
2161 */
2162 vg_rand.mt[0] = seed & 0xffffffff;
2163 for( vg_rand.index=1; vg_rand.index<MT_STATE_VECTOR_LENGTH; vg_rand.index++ ){
2164 vg_rand.mt[vg_rand.index] =
2165 (6069 * vg_rand.mt[vg_rand.index-1]) & 0xffffffff;
2166 }
2167 }
2168
2169 /*
2170 * Generates a pseudo-randomly generated long.
2171 */
2172 static u32 vg_randu32(void)
2173 {
2174 u32 y;
2175 /* mag[x] = x * 0x9908b0df for x = 0,1 */
2176 static u32 mag[2] = {0x0, 0x9908b0df};
2177 if( vg_rand.index >= MT_STATE_VECTOR_LENGTH || vg_rand.index < 0 ){
2178 /* generate STATE_VECTOR_LENGTH words at a time */
2179 int kk;
2180 if( vg_rand.index >= MT_STATE_VECTOR_LENGTH+1 || vg_rand.index < 0 ){
2181 vg_rand_seed( 4357 );
2182 }
2183 for( kk=0; kk<MT_STATE_VECTOR_LENGTH-MT_STATE_VECTOR_M; kk++ ){
2184 y = (vg_rand.mt[kk] & MT_UPPER_MASK) |
2185 (vg_rand.mt[kk+1] & MT_LOWER_MASK);
2186 vg_rand.mt[kk] = vg_rand.mt[kk+MT_STATE_VECTOR_M] ^
2187 (y >> 1) ^ mag[y & 0x1];
2188 }
2189 for( ; kk<MT_STATE_VECTOR_LENGTH-1; kk++ ){
2190 y = (vg_rand.mt[kk] & MT_UPPER_MASK) |
2191 (vg_rand.mt[kk+1] & MT_LOWER_MASK);
2192 vg_rand.mt[kk] =
2193 vg_rand.mt[ kk+(MT_STATE_VECTOR_M-MT_STATE_VECTOR_LENGTH)] ^
2194 (y >> 1) ^ mag[y & 0x1];
2195 }
2196 y = (vg_rand.mt[MT_STATE_VECTOR_LENGTH-1] & MT_UPPER_MASK) |
2197 (vg_rand.mt[0] & MT_LOWER_MASK);
2198 vg_rand.mt[MT_STATE_VECTOR_LENGTH-1] =
2199 vg_rand.mt[MT_STATE_VECTOR_M-1] ^ (y >> 1) ^ mag[y & 0x1];
2200 vg_rand.index = 0;
2201 }
2202 y = vg_rand.mt[vg_rand.index++];
2203 y ^= (y >> 11);
2204 y ^= (y << 7) & MT_TEMPERING_MASK_B;
2205 y ^= (y << 15) & MT_TEMPERING_MASK_C;
2206 y ^= (y >> 18);
2207 return y;
2208 }
2209
2210 /*
2211 * Generates a pseudo-randomly generated f64 in the range [0..1].
2212 */
2213 static inline f64 vg_randf64(void)
2214 {
2215 return (f64)vg_randu32()/(f64)0xffffffff;
2216 }
2217
2218 static inline f64 vg_randf64_range( f64 min, f64 max )
2219 {
2220 return vg_lerp( min, max, (f64)vg_randf64() );
2221 }
2222
2223 static inline void vg_rand_dir( v3f dir )
2224 {
2225 dir[0] = vg_randf64();
2226 dir[1] = vg_randf64();
2227 dir[2] = vg_randf64();
2228
2229 v3_muls( dir, 2.0f, dir );
2230 v3_sub( dir, (v3f){1.0f,1.0f,1.0f}, dir );
2231
2232 v3_normalize( dir );
2233 }
2234
2235 static inline void vg_rand_sphere( v3f co )
2236 {
2237 vg_rand_dir(co);
2238 v3_muls( co, cbrtf( vg_randf64() ), co );
2239 }
2240
2241 #endif /* VG_M_H */