mingw bug
[vg.git] / vg_m.h
1 /* Copyright (C) 2021-2022 Harry Godden (hgn) - All Rights Reserved */
2
3 #ifndef VG_M_H
4 #define VG_M_H
5
6 #include "vg_platform.h"
7 #include <math.h>
8 #include <stdlib.h>
9
10 #define VG_PIf 3.14159265358979323846264338327950288f
11 #define VG_TAUf 6.28318530717958647692528676655900576f
12
13 static u32 vg_ftu32( float a )
14 {
15 u32 *ptr = (u32 *)(&a);
16 return *ptr;
17 }
18
19 static int vg_isinff( float a )
20 {
21 return ((vg_ftu32(a)) & 0x7FFFFFFFU) == 0x7F800000U;
22 }
23
24 static int vg_isnanf( float a )
25 {
26 return !vg_isinff(a) && ((vg_ftu32(a)) & 0x7F800000U) == 0x7F800000U;
27 }
28
29 static int vg_validf( float a )
30 {
31 return ((vg_ftu32(a)) & 0x7F800000U) != 0x7F800000U;
32 }
33
34 static inline float vg_minf( float a, float b )
35 {
36 return a < b? a: b;
37 }
38
39 static inline float vg_maxf( float a, float b )
40 {
41 return a > b? a: b;
42 }
43
44 static inline float vg_clampf( float a, float min, float max )
45 {
46 return vg_minf( max, vg_maxf( a, min ) );
47 }
48
49 static inline float vg_signf( float a )
50 {
51 return a < 0.0f? -1.0f: 1.0f;
52 }
53
54 static inline float vg_fractf( float a )
55 {
56 return a - floorf( a );
57 }
58
59
60 __attribute__ ((deprecated))
61 static float stable_force( float current, float diff )
62 {
63 float fnew = current + diff;
64
65 if( fnew * current < 0.0f )
66 return 0.0f;
67
68 return fnew;
69 }
70
71 static float vg_cfrictf( float current, float F )
72 {
73 return -vg_signf(current) * vg_minf( F, fabsf(current) );
74 }
75
76 static inline int vg_min( int a, int b )
77 {
78 return a < b? a: b;
79 }
80
81 static inline int vg_max( int a, int b )
82 {
83 return a > b? a: b;
84 }
85
86 static inline float vg_rad( float deg )
87 {
88 return deg * VG_PIf / 180.0f;
89 }
90
91 /*
92 * Vector 3
93 */
94 static inline void v2_copy( v2f a, v2f b )
95 {
96 b[0] = a[0]; b[1] = a[1];
97 }
98
99 static inline void v2_zero( v2f a )
100 {
101 a[0] = 0.f; a[1] = 0.f;
102 }
103
104 static inline void v2i_copy( v2i a, v2i b )
105 {
106 b[0] = a[0]; b[1] = a[1];
107 }
108
109 static inline int v2i_eq( v2i a, v2i b )
110 {
111 return ((a[0] == b[0]) && (a[1] == b[1]));
112 }
113
114 static inline void v2i_add( v2i a, v2i b, v2i d )
115 {
116 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
117 }
118
119 static inline void v2i_sub( v2i a, v2i b, v2i d )
120 {
121 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
122 }
123
124 static inline void v2_minv( v2f a, v2f b, v2f dest )
125 {
126 dest[0] = vg_minf(a[0], b[0]);
127 dest[1] = vg_minf(a[1], b[1]);
128 }
129
130 static inline void v2_maxv( v2f a, v2f b, v2f dest )
131 {
132 dest[0] = vg_maxf(a[0], b[0]);
133 dest[1] = vg_maxf(a[1], b[1]);
134 }
135
136 static inline void v2_sub( v2f a, v2f b, v2f d )
137 {
138 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
139 }
140
141 static inline float v2_dot( v2f a, v2f b )
142 {
143 return a[0] * b[0] + a[1] * b[1];
144 }
145
146 static inline float v2_cross( v2f a, v2f b )
147 {
148 return a[0]*b[1] - a[1]*b[0];
149 }
150
151 static inline void v2_add( v2f a, v2f b, v2f d )
152 {
153 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
154 }
155
156 static inline void v2_abs( v2f a, v2f d )
157 {
158 d[0] = fabsf( a[0] );
159 d[1] = fabsf( a[1] );
160 }
161
162 static inline void v2_muls( v2f a, float s, v2f d )
163 {
164 d[0] = a[0]*s; d[1] = a[1]*s;
165 }
166
167 static inline void v2_divs( v2f a, float s, v2f d )
168 {
169 d[0] = a[0]/s; d[1] = a[1]/s;
170 }
171
172 static inline void v2_mul( v2f a, v2f b, v2f d )
173 {
174 d[0] = a[0]*b[0];
175 d[1] = a[1]*b[1];
176 }
177
178 static inline void v2_div( v2f a, v2f b, v2f d )
179 {
180 d[0] = a[0]/b[0]; d[1] = a[1]/b[1];
181 }
182
183 static inline void v2_muladd( v2f a, v2f b, v2f s, v2f d )
184 {
185 d[0] = a[0]+b[0]*s[0];
186 d[1] = a[1]+b[1]*s[1];
187 }
188
189 static inline void v2_muladds( v2f a, v2f b, float s, v2f d )
190 {
191 d[0] = a[0]+b[0]*s;
192 d[1] = a[1]+b[1]*s;
193 }
194
195 static inline float v2_length2( v2f a )
196 {
197 return a[0]*a[0] + a[1]*a[1];
198 }
199
200 static inline float v2_length( v2f a )
201 {
202 return sqrtf( v2_length2( a ) );
203 }
204
205 static inline float v2_dist2( v2f a, v2f b )
206 {
207 v2f delta;
208 v2_sub( a, b, delta );
209 return v2_length2( delta );
210 }
211
212 static inline float v2_dist( v2f a, v2f b )
213 {
214 return sqrtf( v2_dist2( a, b ) );
215 }
216
217 static inline void v2_lerp( v2f a, v2f b, float t, v2f d )
218 {
219 d[0] = a[0] + t*(b[0]-a[0]);
220 d[1] = a[1] + t*(b[1]-a[1]);
221 }
222
223 static inline void v2_normalize( v2f a )
224 {
225 v2_muls( a, 1.0f / v2_length( a ), a );
226 }
227
228 static void v2_normalize_clamp( v2f a )
229 {
230 float l2 = v2_length2( a );
231 if( l2 > 1.0f )
232 v2_muls( a, 1.0f/sqrtf(l2), a );
233 }
234
235 static inline void v2_floor( v2f a, v2f b )
236 {
237 b[0] = floorf( a[0] );
238 b[1] = floorf( a[1] );
239 }
240
241 static inline void v2_fill( v2f a, float v )
242 {
243 a[0] = v;
244 a[1] = v;
245 }
246
247 /* copysign of b to a */
248 static inline void v2_copysign( v2f a, v2f b )
249 {
250 a[0] = copysignf( a[0], b[0] );
251 a[1] = copysignf( a[1], b[1] );
252 }
253
254 /*
255 * Vector 3
256 */
257 static inline void v3_zero( v3f a )
258 {
259 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f;
260 }
261
262 static inline void v3_copy( v3f a, v3f b )
263 {
264 b[0] = a[0]; b[1] = a[1]; b[2] = a[2];
265 }
266
267 static inline void v3_add( v3f a, v3f b, v3f d )
268 {
269 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
270 }
271
272 static inline void v3i_add( v3i a, v3i b, v3i d )
273 {
274 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
275 }
276
277 static inline void v4_add( v4f a, v4f b, v4f d )
278 {
279 d[0] = a[0]+b[0];
280 d[1] = a[1]+b[1];
281 d[2] = a[2]+b[2];
282 d[3] = a[3]+b[3];
283 }
284
285 static inline void v3_sub( v3f a, v3f b, v3f d )
286 {
287 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
288 }
289
290 static inline void v3i_sub( v3i a, v3i b, v3i d )
291 {
292 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
293 }
294
295 static inline void v3_mul( v3f a, v3f b, v3f d )
296 {
297 d[0] = a[0]*b[0]; d[1] = a[1]*b[1]; d[2] = a[2]*b[2];
298 }
299
300 static inline void v3_div( v3f a, v3f b, v3f d )
301 {
302 d[0] = b[0]!=0.0f? a[0]/b[0]: INFINITY;
303 d[1] = b[1]!=0.0f? a[1]/b[1]: INFINITY;
304 d[2] = b[2]!=0.0f? a[2]/b[2]: INFINITY;
305 }
306
307 static inline void v3_muls( v3f a, float s, v3f d )
308 {
309 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s;
310 }
311
312 static inline void v3_fill( v3f a, float v )
313 {
314 a[0] = v;
315 a[1] = v;
316 a[2] = v;
317 }
318
319 static inline void v3_divs( v3f a, float s, v3f d )
320 {
321 if( s == 0.0f )
322 v3_fill( d, INFINITY );
323 else
324 {
325 d[0] = a[0]/s;
326 d[1] = a[1]/s;
327 d[2] = a[2]/s;
328 }
329 }
330
331 static inline void v3_muladds( v3f a, v3f b, float s, v3f d )
332 {
333 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s; d[2] = a[2]+b[2]*s;
334 }
335
336 static inline void v3_muladd( v2f a, v2f b, v2f s, v2f d )
337 {
338 d[0] = a[0]+b[0]*s[0];
339 d[1] = a[1]+b[1]*s[1];
340 d[2] = a[2]+b[2]*s[2];
341 }
342
343 static inline float v3_dot( v3f a, v3f b )
344 {
345 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
346 }
347
348 static inline void v3_cross( v3f a, v3f b, v3f dest )
349 {
350 v3f d;
351 d[0] = a[1]*b[2] - a[2]*b[1];
352 d[1] = a[2]*b[0] - a[0]*b[2];
353 d[2] = a[0]*b[1] - a[1]*b[0];
354 v3_copy( d, dest );
355 }
356
357 static inline float v3_length2( v3f a )
358 {
359 return v3_dot( a, a );
360 }
361
362 static inline float v3_length( v3f a )
363 {
364 return sqrtf( v3_length2( a ) );
365 }
366
367 static inline float v3_dist2( v3f a, v3f b )
368 {
369 v3f delta;
370 v3_sub( a, b, delta );
371 return v3_length2( delta );
372 }
373
374 static inline float v3_dist( v3f a, v3f b )
375 {
376 return sqrtf( v3_dist2( a, b ) );
377 }
378
379 static inline void v3_normalize( v3f a )
380 {
381 v3_muls( a, 1.f / v3_length( a ), a );
382 }
383
384 static inline float vg_lerpf( float a, float b, float t )
385 {
386 return a + t*(b-a);
387 }
388
389 static inline double vg_lerp( double a, double b, double t )
390 {
391 return a + t*(b-a);
392 }
393
394 /* correctly lerp around circular period -pi -> pi */
395 static float vg_alerpf( float a, float b, float t )
396 {
397 float d = fmodf( b-a, VG_TAUf ),
398 s = fmodf( 2.0f*d, VG_TAUf ) - d;
399 return a + s*t;
400 }
401
402 static inline void v3_lerp( v3f a, v3f b, float t, v3f d )
403 {
404 d[0] = a[0] + t*(b[0]-a[0]);
405 d[1] = a[1] + t*(b[1]-a[1]);
406 d[2] = a[2] + t*(b[2]-a[2]);
407 }
408
409 static inline void v3_minv( v3f a, v3f b, v3f dest )
410 {
411 dest[0] = vg_minf(a[0], b[0]);
412 dest[1] = vg_minf(a[1], b[1]);
413 dest[2] = vg_minf(a[2], b[2]);
414 }
415
416 static inline void v3_maxv( v3f a, v3f b, v3f dest )
417 {
418 dest[0] = vg_maxf(a[0], b[0]);
419 dest[1] = vg_maxf(a[1], b[1]);
420 dest[2] = vg_maxf(a[2], b[2]);
421 }
422
423 static inline float v3_minf( v3f a )
424 {
425 return vg_minf( vg_minf( a[0], a[1] ), a[2] );
426 }
427
428 static inline float v3_maxf( v3f a )
429 {
430 return vg_maxf( vg_maxf( a[0], a[1] ), a[2] );
431 }
432
433 static inline void v3_floor( v3f a, v3f b )
434 {
435 b[0] = floorf( a[0] );
436 b[1] = floorf( a[1] );
437 b[2] = floorf( a[2] );
438 }
439
440 static inline void v3_ceil( v3f a, v3f b )
441 {
442 b[0] = ceilf( a[0] );
443 b[1] = ceilf( a[1] );
444 b[2] = ceilf( a[2] );
445 }
446
447 static inline void v3_negate( v3f a, v3f b )
448 {
449 b[0] = -a[0];
450 b[1] = -a[1];
451 b[2] = -a[2];
452 }
453
454 static inline void v3_rotate( v3f v, float angle, v3f axis, v3f d )
455 {
456 v3f v1, v2, k;
457 float c, s;
458
459 c = cosf( angle );
460 s = sinf( angle );
461
462 v3_copy( axis, k );
463 v3_normalize( k );
464 v3_muls( v, c, v1 );
465 v3_cross( k, v, v2 );
466 v3_muls( v2, s, v2 );
467 v3_add( v1, v2, v1 );
468 v3_muls( k, v3_dot(k, v) * (1.0f - c), v2);
469 v3_add( v1, v2, d );
470 }
471
472 /*
473 * Vector 4
474 */
475 static inline void v4_copy( v4f a, v4f b )
476 {
477 b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];
478 }
479
480 static inline void v4_zero( v4f a )
481 {
482 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f; a[3] = 0.f;
483 }
484
485 static inline void v4_muls( v4f a, float s, v4f d )
486 {
487 d[0] = a[0]*s;
488 d[1] = a[1]*s;
489 d[2] = a[2]*s;
490 d[3] = a[3]*s;
491 }
492
493 static inline void v4_muladds( v4f a, v4f b, float s, v4f d )
494 {
495 d[0] = a[0]+b[0]*s;
496 d[1] = a[1]+b[1]*s;
497 d[2] = a[2]+b[2]*s;
498 d[3] = a[3]+b[3]*s;
499 }
500
501 static inline void v4_lerp( v4f a, v4f b, float t, v4f d )
502 {
503 d[0] = a[0] + t*(b[0]-a[0]);
504 d[1] = a[1] + t*(b[1]-a[1]);
505 d[2] = a[2] + t*(b[2]-a[2]);
506 d[3] = a[3] + t*(b[3]-a[3]);
507 }
508
509 static inline float v4_dot( v4f a, v4f b )
510 {
511 return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
512 }
513
514 static inline float v4_length( v4f a )
515 {
516 return sqrtf( v4_dot(a,a) );
517 }
518
519 /*
520 * Matrix 2x2
521 */
522
523 #define M2X2_INDENTIY {{1.0f, 0.0f, }, \
524 { 0.0f, 1.0f, }}
525
526 #define M2X2_ZERO {{0.0f, 0.0f, }, \
527 { 0.0f, 0.0f, }}
528
529 static inline void m2x2_copy( m2x2f a, m2x2f b )
530 {
531 v2_copy( a[0], b[0] );
532 v2_copy( a[1], b[1] );
533 }
534
535 static inline void m2x2_identity( m2x2f a )
536 {
537 m2x2f id = M2X2_INDENTIY;
538 m2x2_copy( id, a );
539 }
540
541 static inline void m2x2_create_rotation( m2x2f a, float theta )
542 {
543 float s, c;
544
545 s = sinf( theta );
546 c = cosf( theta );
547
548 a[0][0] = c;
549 a[0][1] = -s;
550 a[1][0] = s;
551 a[1][1] = c;
552 }
553
554 /*
555 * Matrix 3x3
556 */
557
558 #define M3X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
559 { 0.0f, 1.0f, 0.0f, },\
560 { 0.0f, 0.0f, 1.0f, }}
561
562 #define M3X3_ZERO {{0.0f, 0.0f, 0.0f, },\
563 { 0.0f, 0.0f, 0.0f, },\
564 { 0.0f, 0.0f, 0.0f, }}
565
566
567 /* a X b == [b]T a == ...*/
568 static void m3x3_skew_symetric( m3x3f a, v3f v )
569 {
570 a[0][0] = 0.0f;
571 a[0][1] = v[2];
572 a[0][2] = -v[1];
573 a[1][0] = -v[2];
574 a[1][1] = 0.0f;
575 a[1][2] = v[0];
576 a[2][0] = v[1];
577 a[2][1] = -v[0];
578 a[2][2] = 0.0f;
579 }
580
581 static void m3x3_add( m3x3f a, m3x3f b, m3x3f d )
582 {
583 v3_add( a[0], b[0], d[0] );
584 v3_add( a[1], b[1], d[1] );
585 v3_add( a[2], b[2], d[2] );
586 }
587
588 static inline void m3x3_copy( m3x3f a, m3x3f b )
589 {
590 v3_copy( a[0], b[0] );
591 v3_copy( a[1], b[1] );
592 v3_copy( a[2], b[2] );
593 }
594
595 static inline void m3x3_identity( m3x3f a )
596 {
597 m3x3f id = M3X3_IDENTITY;
598 m3x3_copy( id, a );
599 }
600
601 static void m3x3_diagonal( m3x3f a, float v )
602 {
603 m3x3_identity( a );
604 a[0][0] = v;
605 a[1][1] = v;
606 a[2][2] = v;
607 }
608
609 static inline void m3x3_zero( m3x3f a )
610 {
611 m3x3f z = M3X3_ZERO;
612 m3x3_copy( z, a );
613 }
614
615 static inline void m3x3_inv( m3x3f src, m3x3f dest )
616 {
617 float a = src[0][0], b = src[0][1], c = src[0][2],
618 d = src[1][0], e = src[1][1], f = src[1][2],
619 g = src[2][0], h = src[2][1], i = src[2][2];
620
621 float det = 1.f /
622 (+a*(e*i-h*f)
623 -b*(d*i-f*g)
624 +c*(d*h-e*g));
625
626 dest[0][0] = (e*i-h*f)*det;
627 dest[0][1] = -(b*i-c*h)*det;
628 dest[0][2] = (b*f-c*e)*det;
629 dest[1][0] = -(d*i-f*g)*det;
630 dest[1][1] = (a*i-c*g)*det;
631 dest[1][2] = -(a*f-d*c)*det;
632 dest[2][0] = (d*h-g*e)*det;
633 dest[2][1] = -(a*h-g*b)*det;
634 dest[2][2] = (a*e-d*b)*det;
635 }
636
637 static float m3x3_det( m3x3f m )
638 {
639 return m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])
640 - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
641 + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
642 }
643
644 static inline void m3x3_transpose( m3x3f src, m3x3f dest )
645 {
646 float a = src[0][0], b = src[0][1], c = src[0][2],
647 d = src[1][0], e = src[1][1], f = src[1][2],
648 g = src[2][0], h = src[2][1], i = src[2][2];
649
650 dest[0][0] = a;
651 dest[0][1] = d;
652 dest[0][2] = g;
653 dest[1][0] = b;
654 dest[1][1] = e;
655 dest[1][2] = h;
656 dest[2][0] = c;
657 dest[2][1] = f;
658 dest[2][2] = i;
659 }
660
661 static inline void m3x3_mul( m3x3f a, m3x3f b, m3x3f d )
662 {
663 float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
664 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
665 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
666
667 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
668 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
669 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2];
670
671 d[0][0] = a00*b00 + a10*b01 + a20*b02;
672 d[0][1] = a01*b00 + a11*b01 + a21*b02;
673 d[0][2] = a02*b00 + a12*b01 + a22*b02;
674 d[1][0] = a00*b10 + a10*b11 + a20*b12;
675 d[1][1] = a01*b10 + a11*b11 + a21*b12;
676 d[1][2] = a02*b10 + a12*b11 + a22*b12;
677 d[2][0] = a00*b20 + a10*b21 + a20*b22;
678 d[2][1] = a01*b20 + a11*b21 + a21*b22;
679 d[2][2] = a02*b20 + a12*b21 + a22*b22;
680 }
681
682 static inline void m3x3_mulv( m3x3f m, v3f v, v3f d )
683 {
684 v3f res;
685
686 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
687 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
688 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
689
690 v3_copy( res, d );
691 }
692
693 static inline void m3x3_projection( m3x3f dst,
694 float const left, float const right, float const bottom, float const top )
695 {
696 float rl, tb;
697
698 m3x3_zero( dst );
699
700 rl = 1.0f / (right - left);
701 tb = 1.0f / (top - bottom);
702
703 dst[0][0] = 2.0f * rl;
704 dst[1][1] = 2.0f * tb;
705 dst[2][2] = 1.0f;
706 }
707
708 static inline void m3x3_translate( m3x3f m, v3f v )
709 {
710 m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0];
711 m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1];
712 m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2];
713 }
714
715 static inline void m3x3_scale( m3x3f m, v3f v )
716 {
717 v3_muls( m[0], v[0], m[0] );
718 v3_muls( m[1], v[1], m[1] );
719 v3_muls( m[2], v[2], m[2] );
720 }
721
722 static inline void m3x3_scalef( m3x3f m, float f )
723 {
724 v3f v;
725 v3_fill( v, f );
726 m3x3_scale( m, v );
727 }
728
729 static inline void m3x3_rotate( m3x3f m, float angle )
730 {
731 float m00 = m[0][0], m10 = m[1][0],
732 m01 = m[0][1], m11 = m[1][1],
733 m02 = m[0][2], m12 = m[1][2];
734 float c, s;
735
736 s = sinf( angle );
737 c = cosf( angle );
738
739 m[0][0] = m00 * c + m10 * s;
740 m[0][1] = m01 * c + m11 * s;
741 m[0][2] = m02 * c + m12 * s;
742
743 m[1][0] = m00 * -s + m10 * c;
744 m[1][1] = m01 * -s + m11 * c;
745 m[1][2] = m02 * -s + m12 * c;
746 }
747
748 static inline void box_addpt( boxf a, v3f pt )
749 {
750 v3_minv( a[0], pt, a[0] );
751 v3_maxv( a[1], pt, a[1] );
752 }
753
754 static inline void box_concat( boxf a, boxf b )
755 {
756 v3_minv( a[0], b[0], a[0] );
757 v3_maxv( a[1], b[1], a[1] );
758 }
759
760 static inline void box_copy( boxf a, boxf b )
761 {
762 v3_copy( a[0], b[0] );
763 v3_copy( a[1], b[1] );
764 }
765
766 static inline int box_overlap( boxf a, boxf b )
767 {
768 return
769 ( a[0][0] <= b[1][0] && a[1][0] >= b[0][0] ) &&
770 ( a[0][1] <= b[1][1] && a[1][1] >= b[0][1] ) &&
771 ( a[0][2] <= b[1][2] && a[1][2] >= b[0][2] )
772 ;
773 }
774
775 static int box_within( boxf greater, boxf lesser )
776 {
777 v3f a, b;
778 v3_sub( lesser[0], greater[0], a );
779 v3_sub( lesser[1], greater[1], b );
780
781 if( (a[0] >= 0.0f) && (a[1] >= 0.0f) && (a[2] >= 0.0f) &&
782 (b[0] <= 0.0f) && (b[1] <= 0.0f) && (b[2] <= 0.0f) )
783 {
784 return 1;
785 }
786
787 return 0;
788 }
789
790 static inline void box_init_inf( boxf box )
791 {
792 v3_fill( box[0], INFINITY );
793 v3_fill( box[1], -INFINITY );
794 }
795
796 int ray_aabb1( boxf box, v3f co, v3f dir_inv, float dist )
797 {
798 v3f v0, v1;
799 float tmin, tmax;
800
801 v3_sub( box[0], co, v0 );
802 v3_sub( box[1], co, v1 );
803
804 v3_mul( v0, dir_inv, v0 );
805 v3_mul( v1, dir_inv, v1 );
806
807 tmin = vg_minf( v0[0], v1[0] );
808 tmax = vg_maxf( v0[0], v1[0] );
809 tmin = vg_maxf( tmin, vg_minf( v0[1], v1[1] ));
810 tmax = vg_minf( tmax, vg_maxf( v0[1], v1[1] ));
811 tmin = vg_maxf( tmin, vg_minf( v0[2], v1[2] ));
812 tmax = vg_minf( tmax, vg_maxf( v0[2], v1[2] ));
813
814 return (tmax >= tmin) && (tmin <= dist) && (tmax >= 0.0f);
815 }
816
817 static inline void m4x3_lookat( m4x3f m, v3f pos, v3f target, v3f up )
818 {
819 v3f dir;
820 v3_sub( target, pos, dir );
821 v3_normalize( dir );
822
823 v3_copy( dir, m[2] );
824
825 v3_cross( up, m[2], m[0] );
826 v3_normalize( m[0] );
827
828 v3_cross( m[2], m[0], m[1] );
829 v3_copy( pos, m[3] );
830 }
831
832 /*
833 * Matrix 4x4
834 */
835
836 #define M4X4_IDENTITY {{1.0f, 0.0f, 0.0f, 0.0f },\
837 { 0.0f, 1.0f, 0.0f, 0.0f },\
838 { 0.0f, 0.0f, 1.0f, 0.0f },\
839 { 0.0f, 0.0f, 0.0f, 1.0f }}
840 #define M4X4_ZERO {{0.0f, 0.0f, 0.0f, 0.0f },\
841 { 0.0f, 0.0f, 0.0f, 0.0f },\
842 { 0.0f, 0.0f, 0.0f, 0.0f },\
843 { 0.0f, 0.0f, 0.0f, 0.0f }}
844
845 static void m4x4_projection( m4x4f m, float angle,
846 float ratio, float fnear, float ffar )
847 {
848 float scale = tanf( angle * 0.5f * VG_PIf / 180.0f ) * fnear,
849 r = ratio * scale,
850 l = -r,
851 t = scale,
852 b = -t;
853
854 m[0][0] = 2.0f * fnear / (r - l);
855 m[0][1] = 0.0f;
856 m[0][2] = 0.0f;
857 m[0][3] = 0.0f;
858
859 m[1][0] = 0.0f;
860 m[1][1] = 2.0f * fnear / (t - b);
861 m[1][2] = 0.0f;
862 m[1][3] = 0.0f;
863
864 m[2][0] = (r + l) / (r - l);
865 m[2][1] = (t + b) / (t - b);
866 m[2][2] = -(ffar + fnear) / (ffar - fnear);
867 m[2][3] = -1.0f;
868
869 m[3][0] = 0.0f;
870 m[3][1] = 0.0f;
871 m[3][2] = -2.0f * ffar * fnear / (ffar - fnear);
872 m[3][3] = 0.0f;
873 }
874
875 static void m4x4_translate( m4x4f m, v3f v )
876 {
877 v4_muladds( m[3], m[0], v[0], m[3] );
878 v4_muladds( m[3], m[1], v[1], m[3] );
879 v4_muladds( m[3], m[2], v[2], m[3] );
880 }
881
882 static inline void m4x4_copy( m4x4f a, m4x4f b )
883 {
884 v4_copy( a[0], b[0] );
885 v4_copy( a[1], b[1] );
886 v4_copy( a[2], b[2] );
887 v4_copy( a[3], b[3] );
888 }
889
890 static inline void m4x4_identity( m4x4f a )
891 {
892 m4x4f id = M4X4_IDENTITY;
893 m4x4_copy( id, a );
894 }
895
896 static inline void m4x4_zero( m4x4f a )
897 {
898 m4x4f zero = M4X4_ZERO;
899 m4x4_copy( zero, a );
900 }
901
902 static inline void m4x4_mul( m4x4f a, m4x4f b, m4x4f d )
903 {
904 float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
905 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
906 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
907 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
908
909 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2], b03 = b[0][3],
910 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2], b13 = b[1][3],
911 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2], b23 = b[2][3],
912 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2], b33 = b[3][3];
913
914 d[0][0] = a00*b00 + a10*b01 + a20*b02 + a30*b03;
915 d[0][1] = a01*b00 + a11*b01 + a21*b02 + a31*b03;
916 d[0][2] = a02*b00 + a12*b01 + a22*b02 + a32*b03;
917 d[0][3] = a03*b00 + a13*b01 + a23*b02 + a33*b03;
918 d[1][0] = a00*b10 + a10*b11 + a20*b12 + a30*b13;
919 d[1][1] = a01*b10 + a11*b11 + a21*b12 + a31*b13;
920 d[1][2] = a02*b10 + a12*b11 + a22*b12 + a32*b13;
921 d[1][3] = a03*b10 + a13*b11 + a23*b12 + a33*b13;
922 d[2][0] = a00*b20 + a10*b21 + a20*b22 + a30*b23;
923 d[2][1] = a01*b20 + a11*b21 + a21*b22 + a31*b23;
924 d[2][2] = a02*b20 + a12*b21 + a22*b22 + a32*b23;
925 d[2][3] = a03*b20 + a13*b21 + a23*b22 + a33*b23;
926 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30*b33;
927 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31*b33;
928 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32*b33;
929 d[3][3] = a03*b30 + a13*b31 + a23*b32 + a33*b33;
930 }
931
932 static inline void m4x4_mulv( m4x4f m, v4f v, v4f d )
933 {
934 v4f res;
935
936 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3];
937 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3];
938 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3];
939 res[3] = m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3];
940
941 v4_copy( res, d );
942 }
943
944 static inline void m4x4_inv( m4x4f a, m4x4f d )
945 {
946 float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
947 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
948 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
949 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
950 det,
951 t[6];
952
953 t[0] = a22*a33 - a32*a23;
954 t[1] = a21*a33 - a31*a23;
955 t[2] = a21*a32 - a31*a22;
956 t[3] = a20*a33 - a30*a23;
957 t[4] = a20*a32 - a30*a22;
958 t[5] = a20*a31 - a30*a21;
959
960 d[0][0] = a11*t[0] - a12*t[1] + a13*t[2];
961 d[1][0] =-(a10*t[0] - a12*t[3] + a13*t[4]);
962 d[2][0] = a10*t[1] - a11*t[3] + a13*t[5];
963 d[3][0] =-(a10*t[2] - a11*t[4] + a12*t[5]);
964
965 d[0][1] =-(a01*t[0] - a02*t[1] + a03*t[2]);
966 d[1][1] = a00*t[0] - a02*t[3] + a03*t[4];
967 d[2][1] =-(a00*t[1] - a01*t[3] + a03*t[5]);
968 d[3][1] = a00*t[2] - a01*t[4] + a02*t[5];
969
970 t[0] = a12*a33 - a32*a13;
971 t[1] = a11*a33 - a31*a13;
972 t[2] = a11*a32 - a31*a12;
973 t[3] = a10*a33 - a30*a13;
974 t[4] = a10*a32 - a30*a12;
975 t[5] = a10*a31 - a30*a11;
976
977 d[0][2] = a01*t[0] - a02*t[1] + a03*t[2];
978 d[1][2] =-(a00*t[0] - a02*t[3] + a03*t[4]);
979 d[2][2] = a00*t[1] - a01*t[3] + a03*t[5];
980 d[3][2] =-(a00*t[2] - a01*t[4] + a02*t[5]);
981
982 t[0] = a12*a23 - a22*a13;
983 t[1] = a11*a23 - a21*a13;
984 t[2] = a11*a22 - a21*a12;
985 t[3] = a10*a23 - a20*a13;
986 t[4] = a10*a22 - a20*a12;
987 t[5] = a10*a21 - a20*a11;
988
989 d[0][3] =-(a01*t[0] - a02*t[1] + a03*t[2]);
990 d[1][3] = a00*t[0] - a02*t[3] + a03*t[4];
991 d[2][3] =-(a00*t[1] - a01*t[3] + a03*t[5]);
992 d[3][3] = a00*t[2] - a01*t[4] + a02*t[5];
993
994 det = 1.0f / (a00*d[0][0] + a01*d[1][0] + a02*d[2][0] + a03*d[3][0]);
995 v4_muls( d[0], det, d[0] );
996 v4_muls( d[1], det, d[1] );
997 v4_muls( d[2], det, d[2] );
998 v4_muls( d[3], det, d[3] );
999 }
1000
1001 /*
1002 * Planes (double precision)
1003 */
1004 static inline void tri_to_plane( double a[3], double b[3],
1005 double c[3], double p[4] )
1006 {
1007 double edge0[3];
1008 double edge1[3];
1009 double l;
1010
1011 edge0[0] = b[0] - a[0];
1012 edge0[1] = b[1] - a[1];
1013 edge0[2] = b[2] - a[2];
1014
1015 edge1[0] = c[0] - a[0];
1016 edge1[1] = c[1] - a[1];
1017 edge1[2] = c[2] - a[2];
1018
1019 p[0] = edge0[1] * edge1[2] - edge0[2] * edge1[1];
1020 p[1] = edge0[2] * edge1[0] - edge0[0] * edge1[2];
1021 p[2] = edge0[0] * edge1[1] - edge0[1] * edge1[0];
1022
1023 l = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
1024 p[3] = (p[0] * a[0] + p[1] * a[1] + p[2] * a[2]) / l;
1025
1026 p[0] = p[0] / l;
1027 p[1] = p[1] / l;
1028 p[2] = p[2] / l;
1029 }
1030
1031 static int plane_intersect3( v4f a, v4f b, v4f c, v3f p )
1032 {
1033 float const epsilon = 1e-6f;
1034
1035 v3f x;
1036 v3_cross( a, b, x );
1037 float d = v3_dot( x, c );
1038
1039 if( (d < epsilon) && (d > -epsilon) ) return 0;
1040
1041 v3f v0, v1, v2;
1042 v3_cross( b, c, v0 );
1043 v3_cross( c, a, v1 );
1044 v3_cross( a, b, v2 );
1045
1046 v3_muls( v0, a[3], p );
1047 v3_muladds( p, v1, b[3], p );
1048 v3_muladds( p, v2, c[3], p );
1049 v3_divs( p, d, p );
1050
1051 return 1;
1052 }
1053
1054 int plane_intersect2( v4f a, v4f b, v3f p, v3f n )
1055 {
1056 float const epsilon = 1e-6f;
1057
1058 v4f c;
1059 v3_cross( a, b, c );
1060 float d = v3_length2( c );
1061
1062 if( (d < epsilon) && (d > -epsilon) )
1063 return 0;
1064
1065 v3f v0, v1, vx;
1066 v3_cross( c, b, v0 );
1067 v3_cross( a, c, v1 );
1068
1069 v3_muls( v0, a[3], vx );
1070 v3_muladds( vx, v1, b[3], vx );
1071 v3_divs( vx, d, p );
1072 v3_copy( c, n );
1073
1074 return 1;
1075 }
1076
1077 static int plane_segment( v4f plane, v3f a, v3f b, v3f co )
1078 {
1079 float d0 = v3_dot( a, plane ) - plane[3],
1080 d1 = v3_dot( b, plane ) - plane[3];
1081
1082 if( d0*d1 < 0.0f )
1083 {
1084 float tot = 1.0f/( fabsf(d0)+fabsf(d1) );
1085
1086 v3_muls( a, fabsf(d1) * tot, co );
1087 v3_muladds( co, b, fabsf(d0) * tot, co );
1088 return 1;
1089 }
1090
1091 return 0;
1092 }
1093
1094 static inline double plane_polarity( double p[4], double a[3] )
1095 {
1096 return
1097 (a[0] * p[0] + a[1] * p[1] + a[2] * p[2])
1098 -(p[0]*p[3] * p[0] + p[1]*p[3] * p[1] + p[2]*p[3] * p[2])
1099 ;
1100 }
1101
1102 /* Quaternions */
1103
1104 static inline void q_identity( v4f q )
1105 {
1106 q[0] = 0.0f; q[1] = 0.0f; q[2] = 0.0f; q[3] = 1.0f;
1107 }
1108
1109 static inline void q_axis_angle( v4f q, v3f axis, float angle )
1110 {
1111 float a = angle*0.5f,
1112 c = cosf(a),
1113 s = sinf(a);
1114
1115 q[0] = s*axis[0];
1116 q[1] = s*axis[1];
1117 q[2] = s*axis[2];
1118 q[3] = c;
1119 }
1120
1121 static inline void q_mul( v4f q, v4f q1, v4f d )
1122 {
1123 v4f t;
1124 t[0] = q[3]*q1[0] + q[0]*q1[3] + q[1]*q1[2] - q[2]*q1[1];
1125 t[1] = q[3]*q1[1] - q[0]*q1[2] + q[1]*q1[3] + q[2]*q1[0];
1126 t[2] = q[3]*q1[2] + q[0]*q1[1] - q[1]*q1[0] + q[2]*q1[3];
1127 t[3] = q[3]*q1[3] - q[0]*q1[0] - q[1]*q1[1] - q[2]*q1[2];
1128 v4_copy( t, d );
1129 }
1130
1131 static inline void q_normalize( v4f q )
1132 {
1133 float s = 1.0f/ sqrtf(v4_dot(q,q));
1134 q[0] *= s;
1135 q[1] *= s;
1136 q[2] *= s;
1137 q[3] *= s;
1138 }
1139
1140 static inline void q_inv( v4f q, v4f d )
1141 {
1142 float s = 1.0f / v4_dot(q,q);
1143 d[0] = -q[0]*s;
1144 d[1] = -q[1]*s;
1145 d[2] = -q[2]*s;
1146 d[3] = q[3]*s;
1147 }
1148
1149 static inline void q_nlerp( v4f a, v4f b, float t, v4f d )
1150 {
1151 if( v4_dot(a,b) < 0.0f ){
1152 v4_muls( b, -1.0f, d );
1153 v4_lerp( a, d, t, d );
1154 }
1155 else
1156 v4_lerp( a, b, t, d );
1157
1158 q_normalize( d );
1159 }
1160
1161 static void euler_m3x3( v3f angles, m3x3f d )
1162 {
1163 float cosY = cosf( angles[0] ),
1164 sinY = sinf( angles[0] ),
1165 cosP = cosf( angles[1] ),
1166 sinP = sinf( angles[1] ),
1167 cosR = cosf( angles[2] ),
1168 sinR = sinf( angles[2] );
1169
1170 d[2][0] = -sinY * cosP;
1171 d[2][1] = sinP;
1172 d[2][2] = cosY * cosP;
1173
1174 d[0][0] = cosY * cosR;
1175 d[0][1] = sinR;
1176 d[0][2] = sinY * cosR;
1177
1178 v3_cross( d[0], d[2], d[1] );
1179 }
1180
1181 static inline void q_m3x3( v4f q, m3x3f d )
1182 {
1183 float
1184 l = v4_length(q),
1185 s = l > 0.0f? 2.0f/l: 0.0f,
1186
1187 xx = s*q[0]*q[0], xy = s*q[0]*q[1], wx = s*q[3]*q[0],
1188 yy = s*q[1]*q[1], yz = s*q[1]*q[2], wy = s*q[3]*q[1],
1189 zz = s*q[2]*q[2], xz = s*q[0]*q[2], wz = s*q[3]*q[2];
1190
1191 d[0][0] = 1.0f - yy - zz;
1192 d[1][1] = 1.0f - xx - zz;
1193 d[2][2] = 1.0f - xx - yy;
1194 d[0][1] = xy + wz;
1195 d[1][2] = yz + wx;
1196 d[2][0] = xz + wy;
1197 d[1][0] = xy - wz;
1198 d[2][1] = yz - wx;
1199 d[0][2] = xz - wy;
1200 }
1201
1202 static void m3x3_q( m3x3f m, v4f q )
1203 {
1204 float diag, r, rinv;
1205
1206 diag = m[0][0] + m[1][1] + m[2][2];
1207 if( diag >= 0.0f )
1208 {
1209 r = sqrtf( 1.0f + diag );
1210 rinv = 0.5f / r;
1211 q[0] = rinv * (m[1][2] - m[2][1]);
1212 q[1] = rinv * (m[2][0] - m[0][2]);
1213 q[2] = rinv * (m[0][1] - m[1][0]);
1214 q[3] = r * 0.5f;
1215 }
1216 else if( m[0][0] >= m[1][1] && m[0][0] >= m[2][2] )
1217 {
1218 r = sqrtf( 1.0f - m[1][1] - m[2][2] + m[0][0] );
1219 rinv = 0.5f / r;
1220 q[0] = r * 0.5f;
1221 q[1] = rinv * (m[0][1] + m[1][0]);
1222 q[2] = rinv * (m[0][2] + m[2][0]);
1223 q[3] = rinv * (m[1][2] - m[2][1]);
1224 }
1225 else if( m[1][1] >= m[2][2] )
1226 {
1227 r = sqrtf( 1.0f - m[0][0] - m[2][2] + m[1][1] );
1228 rinv = 0.5f / r;
1229 q[0] = rinv * (m[0][1] + m[1][0]);
1230 q[1] = r * 0.5f;
1231 q[2] = rinv * (m[1][2] + m[2][1]);
1232 q[3] = rinv * (m[2][0] - m[0][2]);
1233 }
1234 else
1235 {
1236 r = sqrtf( 1.0f - m[0][0] - m[1][1] + m[2][2] );
1237 rinv = 0.5f / r;
1238 q[0] = rinv * (m[0][2] + m[2][0]);
1239 q[1] = rinv * (m[1][2] + m[2][1]);
1240 q[2] = r * 0.5f;
1241 q[3] = rinv * (m[0][1] - m[1][0]);
1242 }
1243 }
1244
1245 static void q_mulv( v4f q, v3f v, v3f d )
1246 {
1247 v3f v1, v2;
1248
1249 v3_muls( q, 2.0f*v3_dot(q,v), v1 );
1250 v3_muls( v, q[3]*q[3] - v3_dot(q,q), v2 );
1251 v3_add( v1, v2, v1 );
1252 v3_cross( q, v, v2 );
1253 v3_muls( v2, 2.0f*q[3], v2 );
1254 v3_add( v1, v2, d );
1255 }
1256
1257 enum contact_type
1258 {
1259 k_contact_type_default,
1260 k_contact_type_disabled,
1261 k_contact_type_edge
1262 };
1263
1264 /*
1265 * Matrix 4x3
1266 */
1267
1268 #define M4X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
1269 { 0.0f, 1.0f, 0.0f, },\
1270 { 0.0f, 0.0f, 1.0f, },\
1271 { 0.0f, 0.0f, 0.0f }}
1272
1273 static inline void m4x3_to_3x3( m4x3f a, m3x3f b )
1274 {
1275 v3_copy( a[0], b[0] );
1276 v3_copy( a[1], b[1] );
1277 v3_copy( a[2], b[2] );
1278 }
1279
1280 static inline void m4x3_invert_affine( m4x3f a, m4x3f b )
1281 {
1282 m3x3_transpose( a, b );
1283 m3x3_mulv( b, a[3], b[3] );
1284 v3_negate( b[3], b[3] );
1285 }
1286
1287 static void m4x3_invert_full( m4x3f src, m4x3f dst )
1288 {
1289 float t2, t4, t5,
1290 det,
1291 a = src[0][0], b = src[0][1], c = src[0][2],
1292 e = src[1][0], f = src[1][1], g = src[1][2],
1293 i = src[2][0], j = src[2][1], k = src[2][2],
1294 m = src[3][0], n = src[3][1], o = src[3][2];
1295
1296 t2 = j*o - n*k;
1297 t4 = i*o - m*k;
1298 t5 = i*n - m*j;
1299
1300 dst[0][0] = f*k - g*j;
1301 dst[1][0] =-(e*k - g*i);
1302 dst[2][0] = e*j - f*i;
1303 dst[3][0] =-(e*t2 - f*t4 + g*t5);
1304
1305 dst[0][1] =-(b*k - c*j);
1306 dst[1][1] = a*k - c*i;
1307 dst[2][1] =-(a*j - b*i);
1308 dst[3][1] = a*t2 - b*t4 + c*t5;
1309
1310 t2 = f*o - n*g;
1311 t4 = e*o - m*g;
1312 t5 = e*n - m*f;
1313
1314 dst[0][2] = b*g - c*f ;
1315 dst[1][2] =-(a*g - c*e );
1316 dst[2][2] = a*f - b*e ;
1317 dst[3][2] =-(a*t2 - b*t4 + c * t5);
1318
1319 det = 1.0f / (a * dst[0][0] + b * dst[1][0] + c * dst[2][0]);
1320 v3_muls( dst[0], det, dst[0] );
1321 v3_muls( dst[1], det, dst[1] );
1322 v3_muls( dst[2], det, dst[2] );
1323 v3_muls( dst[3], det, dst[3] );
1324 }
1325
1326 static inline void m4x3_copy( m4x3f a, m4x3f b )
1327 {
1328 v3_copy( a[0], b[0] );
1329 v3_copy( a[1], b[1] );
1330 v3_copy( a[2], b[2] );
1331 v3_copy( a[3], b[3] );
1332 }
1333
1334 static inline void m4x3_identity( m4x3f a )
1335 {
1336 m4x3f id = M4X3_IDENTITY;
1337 m4x3_copy( id, a );
1338 }
1339
1340 static void m4x3_mul( m4x3f a, m4x3f b, m4x3f d )
1341 {
1342 float
1343 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
1344 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
1345 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
1346 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2],
1347 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
1348 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
1349 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2],
1350 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2];
1351
1352 d[0][0] = a00*b00 + a10*b01 + a20*b02;
1353 d[0][1] = a01*b00 + a11*b01 + a21*b02;
1354 d[0][2] = a02*b00 + a12*b01 + a22*b02;
1355 d[1][0] = a00*b10 + a10*b11 + a20*b12;
1356 d[1][1] = a01*b10 + a11*b11 + a21*b12;
1357 d[1][2] = a02*b10 + a12*b11 + a22*b12;
1358 d[2][0] = a00*b20 + a10*b21 + a20*b22;
1359 d[2][1] = a01*b20 + a11*b21 + a21*b22;
1360 d[2][2] = a02*b20 + a12*b21 + a22*b22;
1361 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30;
1362 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31;
1363 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32;
1364 }
1365
1366 #if 0 /* shat appf mingw wstringop-overflow */
1367 inline
1368 #endif
1369 static void m4x3_mulv( m4x3f m, v3f v, v3f d )
1370 {
1371 v3f res;
1372
1373 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0];
1374 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1];
1375 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2];
1376
1377 v3_copy( res, d );
1378 }
1379
1380 /*
1381 * Transform plane ( xyz, distance )
1382 */
1383 static void m4x3_mulp( m4x3f m, v4f p, v4f d )
1384 {
1385 v3f o;
1386
1387 v3_muls( p, p[3], o );
1388 m4x3_mulv( m, o, o );
1389 m3x3_mulv( m, p, d );
1390
1391 d[3] = v3_dot( o, d );
1392 }
1393
1394 /*
1395 * Affine transforms
1396 */
1397
1398 static void m4x3_translate( m4x3f m, v3f v )
1399 {
1400 v3_muladds( m[3], m[0], v[0], m[3] );
1401 v3_muladds( m[3], m[1], v[1], m[3] );
1402 v3_muladds( m[3], m[2], v[2], m[3] );
1403 }
1404
1405 static void m4x3_rotate_x( m4x3f m, float angle )
1406 {
1407 m4x3f t = M4X3_IDENTITY;
1408 float c, s;
1409
1410 c = cosf( angle );
1411 s = sinf( angle );
1412
1413 t[1][1] = c;
1414 t[1][2] = s;
1415 t[2][1] = -s;
1416 t[2][2] = c;
1417
1418 m4x3_mul( m, t, m );
1419 }
1420
1421 static void m4x3_rotate_y( m4x3f m, float angle )
1422 {
1423 m4x3f t = M4X3_IDENTITY;
1424 float c, s;
1425
1426 c = cosf( angle );
1427 s = sinf( angle );
1428
1429 t[0][0] = c;
1430 t[0][2] = -s;
1431 t[2][0] = s;
1432 t[2][2] = c;
1433
1434 m4x3_mul( m, t, m );
1435 }
1436
1437 static void m4x3_rotate_z( m4x3f m, float angle )
1438 {
1439 m4x3f t = M4X3_IDENTITY;
1440 float c, s;
1441
1442 c = cosf( angle );
1443 s = sinf( angle );
1444
1445 t[0][0] = c;
1446 t[0][1] = s;
1447 t[1][0] = -s;
1448 t[1][1] = c;
1449
1450 m4x3_mul( m, t, m );
1451 }
1452
1453 static void m4x3_expand( m4x3f m, m4x4f d )
1454 {
1455 v3_copy( m[0], d[0] );
1456 v3_copy( m[1], d[1] );
1457 v3_copy( m[2], d[2] );
1458 v3_copy( m[3], d[3] );
1459 d[0][3] = 0.0f;
1460 d[1][3] = 0.0f;
1461 d[2][3] = 0.0f;
1462 d[3][3] = 1.0f;
1463 }
1464
1465 static void m4x3_decompose( m4x3f m, v3f co, v4f q, v3f s )
1466 {
1467 v3_copy( m[3], co );
1468 s[0] = v3_length(m[0]);
1469 s[1] = v3_length(m[1]);
1470 s[2] = v3_length(m[2]);
1471
1472 m3x3f rot;
1473 v3_divs( m[0], s[0], rot[0] );
1474 v3_divs( m[1], s[1], rot[1] );
1475 v3_divs( m[2], s[2], rot[2] );
1476
1477 m3x3_q( rot, q );
1478 }
1479
1480 static void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point )
1481 {
1482 v3f v;
1483 m4x3_mulv( m, point, v );
1484
1485 v3_minv( box[0], v, box[0] );
1486 v3_maxv( box[1], v, box[1] );
1487 }
1488
1489 static void m4x3_transform_aabb( m4x3f m, boxf box )
1490 {
1491 v3f a; v3f b;
1492
1493 v3_copy( box[0], a );
1494 v3_copy( box[1], b );
1495 v3_fill( box[0], INFINITY );
1496 v3_fill( box[1], -INFINITY );
1497
1498 m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], a[2] } );
1499 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], a[2] } );
1500 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], a[2] } );
1501 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], a[2] } );
1502
1503 m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], b[2] } );
1504 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], b[2] } );
1505 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], b[2] } );
1506 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], b[2] } );
1507 }
1508
1509 /*
1510 * -----------------------------------------------------------------------------
1511 * Closest point functions
1512 * -----------------------------------------------------------------------------
1513 */
1514
1515 /*
1516 * These closest point tests were learned from Real-Time Collision Detection by
1517 * Christer Ericson
1518 */
1519 VG_STATIC float closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2,
1520 float *s, float *t, v3f c1, v3f c2)
1521 {
1522 v3f d1,d2,r;
1523 v3_sub( q1, p1, d1 );
1524 v3_sub( q2, p2, d2 );
1525 v3_sub( p1, p2, r );
1526
1527 float a = v3_length2( d1 ),
1528 e = v3_length2( d2 ),
1529 f = v3_dot( d2, r );
1530
1531 const float kEpsilon = 0.0001f;
1532
1533 if( a <= kEpsilon && e <= kEpsilon )
1534 {
1535 *s = 0.0f;
1536 *t = 0.0f;
1537 v3_copy( p1, c1 );
1538 v3_copy( p2, c2 );
1539
1540 v3f v0;
1541 v3_sub( c1, c2, v0 );
1542
1543 return v3_length2( v0 );
1544 }
1545
1546 if( a<= kEpsilon )
1547 {
1548 *s = 0.0f;
1549 *t = vg_clampf( f / e, 0.0f, 1.0f );
1550 }
1551 else
1552 {
1553 float c = v3_dot( d1, r );
1554 if( e <= kEpsilon )
1555 {
1556 *t = 0.0f;
1557 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1558 }
1559 else
1560 {
1561 float b = v3_dot(d1,d2),
1562 d = a*e-b*b;
1563
1564 if( d != 0.0f )
1565 {
1566 *s = vg_clampf((b*f - c*e)/d, 0.0f, 1.0f);
1567 }
1568 else
1569 {
1570 *s = 0.0f;
1571 }
1572
1573 *t = (b*(*s)+f) / e;
1574
1575 if( *t < 0.0f )
1576 {
1577 *t = 0.0f;
1578 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1579 }
1580 else if( *t > 1.0f )
1581 {
1582 *t = 1.0f;
1583 *s = vg_clampf((b-c)/a,0.0f,1.0f);
1584 }
1585 }
1586 }
1587
1588 v3_muladds( p1, d1, *s, c1 );
1589 v3_muladds( p2, d2, *t, c2 );
1590
1591 v3f v0;
1592 v3_sub( c1, c2, v0 );
1593 return v3_length2( v0 );
1594 }
1595
1596 VG_STATIC int point_inside_aabb( boxf box, v3f point )
1597 {
1598 if((point[0]<=box[1][0]) && (point[1]<=box[1][1]) && (point[2]<=box[1][2]) &&
1599 (point[0]>=box[0][0]) && (point[1]>=box[0][1]) && (point[2]>=box[0][2]) )
1600 return 1;
1601 else
1602 return 0;
1603 }
1604
1605 VG_STATIC void closest_point_aabb( v3f p, boxf box, v3f dest )
1606 {
1607 v3_maxv( p, box[0], dest );
1608 v3_minv( dest, box[1], dest );
1609 }
1610
1611 VG_STATIC void closest_point_obb( v3f p, boxf box,
1612 m4x3f mtx, m4x3f inv_mtx, v3f dest )
1613 {
1614 v3f local;
1615 m4x3_mulv( inv_mtx, p, local );
1616 closest_point_aabb( local, box, local );
1617 m4x3_mulv( mtx, local, dest );
1618 }
1619
1620 VG_STATIC float closest_point_segment( v3f a, v3f b, v3f point, v3f dest )
1621 {
1622 v3f v0, v1;
1623 v3_sub( b, a, v0 );
1624 v3_sub( point, a, v1 );
1625
1626 float t = v3_dot( v1, v0 ) / v3_length2(v0);
1627 t = vg_clampf(t,0.0f,1.0f);
1628 v3_muladds( a, v0, t, dest );
1629 return t;
1630 }
1631
1632 VG_STATIC void closest_on_triangle( v3f p, v3f tri[3], v3f dest )
1633 {
1634 v3f ab, ac, ap;
1635 float d1, d2;
1636
1637 /* Region outside A */
1638 v3_sub( tri[1], tri[0], ab );
1639 v3_sub( tri[2], tri[0], ac );
1640 v3_sub( p, tri[0], ap );
1641
1642 d1 = v3_dot(ab,ap);
1643 d2 = v3_dot(ac,ap);
1644 if( d1 <= 0.0f && d2 <= 0.0f )
1645 {
1646 v3_copy( tri[0], dest );
1647 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1648 return;
1649 }
1650
1651 /* Region outside B */
1652 v3f bp;
1653 float d3, d4;
1654
1655 v3_sub( p, tri[1], bp );
1656 d3 = v3_dot( ab, bp );
1657 d4 = v3_dot( ac, bp );
1658
1659 if( d3 >= 0.0f && d4 <= d3 )
1660 {
1661 v3_copy( tri[1], dest );
1662 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1663 return;
1664 }
1665
1666 /* Edge region of AB */
1667 float vc = d1*d4 - d3*d2;
1668 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1669 {
1670 float v = d1 / (d1-d3);
1671 v3_muladds( tri[0], ab, v, dest );
1672 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1673 return;
1674 }
1675
1676 /* Region outside C */
1677 v3f cp;
1678 float d5, d6;
1679 v3_sub( p, tri[2], cp );
1680 d5 = v3_dot(ab, cp);
1681 d6 = v3_dot(ac, cp);
1682
1683 if( d6 >= 0.0f && d5 <= d6 )
1684 {
1685 v3_copy( tri[2], dest );
1686 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1687 return;
1688 }
1689
1690 /* Region of AC */
1691 float vb = d5*d2 - d1*d6;
1692 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1693 {
1694 float w = d2 / (d2-d6);
1695 v3_muladds( tri[0], ac, w, dest );
1696 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1697 return;
1698 }
1699
1700 /* Region of BC */
1701 float va = d3*d6 - d5*d4;
1702 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1703 {
1704 float w = (d4-d3) / ((d4-d3) + (d5-d6));
1705 v3f bc;
1706 v3_sub( tri[2], tri[1], bc );
1707 v3_muladds( tri[1], bc, w, dest );
1708 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1709 return;
1710 }
1711
1712 /* P inside region, Q via barycentric coordinates uvw */
1713 float d = 1.0f/(va+vb+vc),
1714 v = vb*d,
1715 w = vc*d;
1716
1717 v3_muladds( tri[0], ab, v, dest );
1718 v3_muladds( dest, ac, w, dest );
1719 }
1720
1721 VG_STATIC enum contact_type closest_on_triangle_1( v3f p, v3f tri[3], v3f dest )
1722 {
1723 v3f ab, ac, ap;
1724 float d1, d2;
1725
1726 /* Region outside A */
1727 v3_sub( tri[1], tri[0], ab );
1728 v3_sub( tri[2], tri[0], ac );
1729 v3_sub( p, tri[0], ap );
1730
1731 d1 = v3_dot(ab,ap);
1732 d2 = v3_dot(ac,ap);
1733 if( d1 <= 0.0f && d2 <= 0.0f )
1734 {
1735 v3_copy( tri[0], dest );
1736 return k_contact_type_default;
1737 }
1738
1739 /* Region outside B */
1740 v3f bp;
1741 float d3, d4;
1742
1743 v3_sub( p, tri[1], bp );
1744 d3 = v3_dot( ab, bp );
1745 d4 = v3_dot( ac, bp );
1746
1747 if( d3 >= 0.0f && d4 <= d3 )
1748 {
1749 v3_copy( tri[1], dest );
1750 return k_contact_type_edge;
1751 }
1752
1753 /* Edge region of AB */
1754 float vc = d1*d4 - d3*d2;
1755 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1756 {
1757 float v = d1 / (d1-d3);
1758 v3_muladds( tri[0], ab, v, dest );
1759 return k_contact_type_edge;
1760 }
1761
1762 /* Region outside C */
1763 v3f cp;
1764 float d5, d6;
1765 v3_sub( p, tri[2], cp );
1766 d5 = v3_dot(ab, cp);
1767 d6 = v3_dot(ac, cp);
1768
1769 if( d6 >= 0.0f && d5 <= d6 )
1770 {
1771 v3_copy( tri[2], dest );
1772 return k_contact_type_edge;
1773 }
1774
1775 /* Region of AC */
1776 float vb = d5*d2 - d1*d6;
1777 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1778 {
1779 float w = d2 / (d2-d6);
1780 v3_muladds( tri[0], ac, w, dest );
1781 return k_contact_type_edge;
1782 }
1783
1784 /* Region of BC */
1785 float va = d3*d6 - d5*d4;
1786 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1787 {
1788 float w = (d4-d3) / ((d4-d3) + (d5-d6));
1789 v3f bc;
1790 v3_sub( tri[2], tri[1], bc );
1791 v3_muladds( tri[1], bc, w, dest );
1792 return k_contact_type_edge;
1793 }
1794
1795 /* P inside region, Q via barycentric coordinates uvw */
1796 float d = 1.0f/(va+vb+vc),
1797 v = vb*d,
1798 w = vc*d;
1799
1800 v3_muladds( tri[0], ab, v, dest );
1801 v3_muladds( dest, ac, w, dest );
1802
1803 return k_contact_type_default;
1804 }
1805
1806
1807 static void closest_point_elipse( v2f p, v2f e, v2f o )
1808 {
1809 v2f pabs, ei, e2, ve, t;
1810
1811 v2_abs( p, pabs );
1812 v2_div( (v2f){ 1.0f, 1.0f }, e, ei );
1813 v2_mul( e, e, e2 );
1814 v2_mul( ei, (v2f){ e2[0]-e2[1], e2[1]-e2[0] }, ve );
1815
1816 v2_fill( t, 0.70710678118654752f );
1817
1818 for( int i=0; i<3; i++ )
1819 {
1820 v2f v, u, ud, w;
1821
1822 v2_mul( ve, t, v ); /* ve*t*t*t */
1823 v2_mul( v, t, v );
1824 v2_mul( v, t, v );
1825
1826 v2_sub( pabs, v, u );
1827 v2_normalize( u );
1828
1829 v2_mul( t, e, ud );
1830 v2_sub( ud, v, ud );
1831
1832 v2_muls( u, v2_length( ud ), u );
1833
1834 v2_add( v, u, w );
1835 v2_mul( w, ei, w );
1836
1837 v2_maxv( (v2f){0.0f,0.0f}, w, t );
1838 v2_normalize( t );
1839 }
1840
1841 v2_mul( t, e, o );
1842 v2_copysign( o, p );
1843 }
1844
1845 /*
1846 * Raycasts
1847 */
1848
1849 /* Time of intersection with ray vs triangle */
1850 static int ray_tri( v3f tri[3], v3f co,
1851 v3f dir, float *dist )
1852 {
1853 float const kEpsilon = 0.00001f;
1854
1855 v3f v0, v1, h, s, q, n;
1856 float a,f,u,v,t;
1857
1858 float *pa = tri[0],
1859 *pb = tri[1],
1860 *pc = tri[2];
1861
1862 v3_sub( pb, pa, v0 );
1863 v3_sub( pc, pa, v1 );
1864 v3_cross( dir, v1, h );
1865 v3_cross( v0, v1, n );
1866
1867 if( v3_dot( n, dir ) > 0.0f ) /* Backface culling */
1868 return 0;
1869
1870 /* Parralel */
1871 a = v3_dot( v0, h );
1872
1873 if( a > -kEpsilon && a < kEpsilon )
1874 return 0;
1875
1876 f = 1.0f/a;
1877 v3_sub( co, pa, s );
1878
1879 u = f * v3_dot(s, h);
1880 if( u < 0.0f || u > 1.0f )
1881 return 0;
1882
1883 v3_cross( s, v0, q );
1884 v = f * v3_dot( dir, q );
1885 if( v < 0.0f || u+v > 1.0f )
1886 return 0;
1887
1888 t = f * v3_dot(v1, q);
1889 if( t > kEpsilon )
1890 {
1891 *dist = t;
1892 return 1;
1893 }
1894 else return 0;
1895 }
1896
1897 /* time of intersection with ray vs sphere */
1898 static int ray_sphere( v3f c, float r,
1899 v3f co, v3f dir, float *t )
1900 {
1901 v3f m;
1902 v3_sub( co, c, m );
1903
1904 float b = v3_dot( m, dir ),
1905 c1 = v3_dot( m, m ) - r*r;
1906
1907 /* Exit if r’s origin outside s (c > 0) and r pointing away from s (b > 0) */
1908 if( c1 > 0.0f && b > 0.0f )
1909 return 0;
1910
1911 float discr = b*b - c1;
1912
1913 /* A negative discriminant corresponds to ray missing sphere */
1914 if( discr < 0.0f )
1915 return 0;
1916
1917 /*
1918 * Ray now found to intersect sphere, compute smallest t value of
1919 * intersection
1920 */
1921 *t = -b - sqrtf( discr );
1922
1923 /* If t is negative, ray started inside sphere so clamp t to zero */
1924 if( *t < 0.0f )
1925 *t = 0.0f;
1926
1927 return 1;
1928 }
1929
1930 /*
1931 * time of intersection of ray vs cylinder
1932 * The cylinder does not have caps but is finite
1933 *
1934 * Heavily adapted from regular segment vs cylinder from:
1935 * Real-Time Collision Detection
1936 */
1937 static int ray_uncapped_finite_cylinder( v3f q, v3f p, float r,
1938 v3f co, v3f dir, float *t )
1939 {
1940 v3f d, m, n, sb;
1941 v3_muladds( co, dir, 1.0f, sb );
1942
1943 v3_sub( q, p, d );
1944 v3_sub( co, p, m );
1945 v3_sub( sb, co, n );
1946
1947 float md = v3_dot( m, d ),
1948 nd = v3_dot( n, d ),
1949 dd = v3_dot( d, d ),
1950 nn = v3_dot( n, n ),
1951 mn = v3_dot( m, n ),
1952 a = dd*nn - nd*nd,
1953 k = v3_dot( m, m ) - r*r,
1954 c = dd*k - md*md;
1955
1956 if( fabsf(a) < 0.00001f )
1957 {
1958 /* Segment runs parallel to cylinder axis */
1959 return 0;
1960 }
1961
1962 float b = dd*mn - nd*md,
1963 discr = b*b - a*c;
1964
1965 if( discr < 0.0f )
1966 return 0; /* No real roots; no intersection */
1967
1968 *t = (-b - sqrtf(discr)) / a;
1969 if( *t < 0.0f )
1970 return 0; /* Intersection behind ray */
1971
1972 /* Check within cylinder segment */
1973 if( md + (*t)*nd < 0.0f )
1974 return 0;
1975
1976 if( md + (*t)*nd > dd )
1977 return 0;
1978
1979 /* Segment intersects cylinder between the endcaps; t is correct */
1980 return 1;
1981 }
1982
1983 /*
1984 * Time of intersection of sphere and triangle. Origin must be outside the
1985 * colliding area. This is a fairly long procedure.
1986 */
1987 static int spherecast_triangle( v3f tri[3],
1988 v3f co, v3f dir, float r, float *t, v3f n )
1989 {
1990 v3f sum[3];
1991 v3f v0, v1;
1992
1993 v3_sub( tri[1], tri[0], v0 );
1994 v3_sub( tri[2], tri[0], v1 );
1995 v3_cross( v0, v1, n );
1996 v3_normalize( n );
1997 v3_muladds( tri[0], n, r, sum[0] );
1998 v3_muladds( tri[1], n, r, sum[1] );
1999 v3_muladds( tri[2], n, r, sum[2] );
2000
2001 int hit = 0;
2002 float t_min = INFINITY,
2003 t1;
2004
2005 if( ray_tri( sum, co, dir, &t1 ) )
2006 {
2007 t_min = vg_minf( t_min, t1 );
2008 hit = 1;
2009 }
2010
2011 /*
2012 * Currently disabled; ray_sphere requires |d| = 1. it is not very important.
2013 */
2014 #if 0
2015 for( int i=0; i<3; i++ )
2016 {
2017 if( ray_sphere( tri[i], r, co, dir, &t1 ) )
2018 {
2019 t_min = vg_minf( t_min, t1 );
2020 hit = 1;
2021 }
2022 }
2023 #endif
2024
2025 for( int i=0; i<3; i++ )
2026 {
2027 int i0 = i,
2028 i1 = (i+1)%3;
2029
2030 if( ray_uncapped_finite_cylinder( tri[i0], tri[i1], r, co, dir, &t1 ) )
2031 {
2032 if( t1 < t_min )
2033 {
2034 t_min = t1;
2035
2036 v3f co1, ct, cx;
2037 v3_add( dir, co, co1 );
2038 v3_lerp( co, co1, t_min, ct );
2039
2040 closest_point_segment( tri[i0], tri[i1], ct, cx );
2041 v3_sub( ct, cx, n );
2042 v3_normalize( n );
2043 }
2044
2045 hit = 1;
2046 }
2047 }
2048
2049 *t = t_min;
2050 return hit;
2051 }
2052
2053 static inline float vg_randf(void)
2054 {
2055 /* TODO: replace with our own rand */
2056 return (float)rand()/(float)(RAND_MAX);
2057 }
2058
2059 static inline void vg_rand_dir(v3f dir)
2060 {
2061 dir[0] = vg_randf();
2062 dir[1] = vg_randf();
2063 dir[2] = vg_randf();
2064
2065 v3_muls( dir, 2.0f, dir );
2066 v3_sub( dir, (v3f){1.0f,1.0f,1.0f}, dir );
2067
2068 v3_normalize( dir );
2069 }
2070
2071 static inline void vg_rand_sphere( v3f co )
2072 {
2073 vg_rand_dir(co);
2074 v3_muls( co, cbrtf( vg_randf() ), co );
2075 }
2076
2077 static inline int vg_randint(int max)
2078 {
2079 return rand()%max;
2080 }
2081
2082 static void eval_bezier_time( v3f p0, v3f p1, v3f h0, v3f h1, float t, v3f p )
2083 {
2084 float tt = t*t,
2085 ttt = tt*t;
2086
2087 v3_muls( p1, ttt, p );
2088 v3_muladds( p, h1, 3.0f*tt -3.0f*ttt, p );
2089 v3_muladds( p, h0, 3.0f*ttt -6.0f*tt +3.0f*t, p );
2090 v3_muladds( p, p0, 3.0f*tt -ttt -3.0f*t +1.0f, p );
2091 }
2092
2093 static void eval_bezier3( v3f p0, v3f p1, v3f p2, float t, v3f p )
2094 {
2095 float u = 1.0f-t;
2096
2097 v3_muls( p0, u*u, p );
2098 v3_muladds( p, p1, 2.0f*u*t, p );
2099 v3_muladds( p, p2, t*t, p );
2100 }
2101
2102 #endif /* VG_M_H */