i32r, q_dist fix
[vg.git] / vg_m.h
1 /* Copyright (C) 2021-2023 Harry Godden (hgn) - All Rights Reserved
2 *
3 * 0. Misc
4 * 1. Scalar operations
5 * 2. Vectors
6 * 2.a 2D Vectors
7 * 2.b 3D Vectors
8 * 2.c 4D Vectors
9 * 3. Quaternions
10 * 4. Matrices
11 * 4.a 2x2 matrices
12 * 4.b 3x3 matrices
13 * 4.c 4x3 matrices
14 * 4.d 4x4 matrices
15 * 5. Geometry
16 * 5.a Boxes
17 * 5.b Planes
18 * 5.c Closest points
19 * 5.d Raycast & Spherecasts
20 * 5.e Curves
21 * 5.f Volumes
22 * 6. Statistics
23 * 6.a Random numbers
24 **/
25
26 #ifndef VG_M_H
27 #define VG_M_H
28
29 #include "vg_platform.h"
30 #include <math.h>
31 #include <stdlib.h>
32
33 #define VG_PIf 3.14159265358979323846264338327950288f
34 #define VG_TAUf 6.28318530717958647692528676655900576f
35
36 /*
37 * -----------------------------------------------------------------------------
38 * Section 0. Misc Operations
39 * -----------------------------------------------------------------------------
40 */
41
42 /* get the f32 as the raw bits in a u32 without converting */
43 static u32 vg_ftu32( f32 a )
44 {
45 u32 *ptr = (u32 *)(&a);
46 return *ptr;
47 }
48
49 /* check if f32 is infinite */
50 static int vg_isinff( f32 a )
51 {
52 return ((vg_ftu32(a)) & 0x7FFFFFFFU) == 0x7F800000U;
53 }
54
55 /* check if f32 is not a number */
56 static int vg_isnanf( f32 a )
57 {
58 return !vg_isinff(a) && ((vg_ftu32(a)) & 0x7F800000U) == 0x7F800000U;
59 }
60
61 /* check if f32 is a number and is not infinite */
62 static int vg_validf( f32 a )
63 {
64 return ((vg_ftu32(a)) & 0x7F800000U) != 0x7F800000U;
65 }
66
67 static int v3_valid( v3f a ){
68 for( u32 i=0; i<3; i++ )
69 if( !vg_validf(a[i]) ) return 0;
70 return 1;
71 }
72
73 /*
74 * -----------------------------------------------------------------------------
75 * Section 1. Scalar Operations
76 * -----------------------------------------------------------------------------
77 */
78
79 static inline f32 vg_minf( f32 a, f32 b ){ return a < b? a: b; }
80 static inline f32 vg_maxf( f32 a, f32 b ){ return a > b? a: b; }
81
82 static inline int vg_min( int a, int b ){ return a < b? a: b; }
83 static inline int vg_max( int a, int b ){ return a > b? a: b; }
84
85 static inline f32 vg_clampf( f32 a, f32 min, f32 max )
86 {
87 return vg_minf( max, vg_maxf( a, min ) );
88 }
89
90 static inline f32 vg_signf( f32 a )
91 {
92 return a < 0.0f? -1.0f: 1.0f;
93 }
94
95 static inline f32 vg_fractf( f32 a )
96 {
97 return a - floorf( a );
98 }
99
100 static f32 vg_cfrictf( f32 velocity, f32 F )
101 {
102 return -vg_signf(velocity) * vg_minf( F, fabsf(velocity) );
103 }
104
105 static inline f32 vg_rad( f32 deg )
106 {
107 return deg * VG_PIf / 180.0f;
108 }
109
110 /* angle to reach b from a */
111 static f32 vg_angle_diff( f32 a, f32 b ){
112 f32 d = fmod(b,VG_TAUf)-fmodf(a,VG_TAUf);
113 if( fabsf(d) > VG_PIf )
114 d = -vg_signf(d) * (VG_TAUf - fabsf(d));
115
116 return d;
117 }
118
119 /*
120 * quantize float to bit count
121 */
122 static u32 vg_quantf( f32 a, u32 bits, f32 min, f32 max ){
123 u32 mask = (0x1 << bits) - 1;
124 return vg_clampf((a - min) * ((f32)mask/(max-min)), 0.0f, mask );
125 }
126
127 /*
128 * un-quantize discreet to float
129 */
130 static f32 vg_dequantf( u32 q, u32 bits, f32 min, f32 max ){
131 u32 mask = (0x1 << bits) - 1;
132 return min + (f32)q * ((max-min) / (f32)mask);
133 }
134
135 /*
136 * -----------------------------------------------------------------------------
137 * Section 2.a 2D Vectors
138 * -----------------------------------------------------------------------------
139 */
140
141 static inline void v2_copy( v2f a, v2f d )
142 {
143 d[0] = a[0]; d[1] = a[1];
144 }
145
146 static inline void v2_zero( v2f a )
147 {
148 a[0] = 0.f; a[1] = 0.f;
149 }
150
151 static inline void v2_add( v2f a, v2f b, v2f d )
152 {
153 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
154 }
155
156 static inline void v2_sub( v2f a, v2f b, v2f d )
157 {
158 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
159 }
160
161 static inline void v2_minv( v2f a, v2f b, v2f dest )
162 {
163 dest[0] = vg_minf(a[0], b[0]);
164 dest[1] = vg_minf(a[1], b[1]);
165 }
166
167 static inline void v2_maxv( v2f a, v2f b, v2f dest )
168 {
169 dest[0] = vg_maxf(a[0], b[0]);
170 dest[1] = vg_maxf(a[1], b[1]);
171 }
172
173 static inline f32 v2_dot( v2f a, v2f b )
174 {
175 return a[0] * b[0] + a[1] * b[1];
176 }
177
178 static inline f32 v2_cross( v2f a, v2f b )
179 {
180 return a[0]*b[1] - a[1]*b[0];
181 }
182
183 static inline void v2_abs( v2f a, v2f d )
184 {
185 d[0] = fabsf( a[0] );
186 d[1] = fabsf( a[1] );
187 }
188
189 static inline void v2_muls( v2f a, f32 s, v2f d )
190 {
191 d[0] = a[0]*s; d[1] = a[1]*s;
192 }
193
194 static inline void v2_divs( v2f a, f32 s, v2f d )
195 {
196 d[0] = a[0]/s; d[1] = a[1]/s;
197 }
198
199 static inline void v2_mul( v2f a, v2f b, v2f d )
200 {
201 d[0] = a[0]*b[0];
202 d[1] = a[1]*b[1];
203 }
204
205 static inline void v2_div( v2f a, v2f b, v2f d )
206 {
207 d[0] = a[0]/b[0]; d[1] = a[1]/b[1];
208 }
209
210 static inline void v2_muladd( v2f a, v2f b, v2f s, v2f d )
211 {
212 d[0] = a[0]+b[0]*s[0];
213 d[1] = a[1]+b[1]*s[1];
214 }
215
216 static inline void v2_muladds( v2f a, v2f b, f32 s, v2f d )
217 {
218 d[0] = a[0]+b[0]*s;
219 d[1] = a[1]+b[1]*s;
220 }
221
222 static inline f32 v2_length2( v2f a )
223 {
224 return a[0]*a[0] + a[1]*a[1];
225 }
226
227 static inline f32 v2_length( v2f a )
228 {
229 return sqrtf( v2_length2( a ) );
230 }
231
232 static inline f32 v2_dist2( v2f a, v2f b )
233 {
234 v2f delta;
235 v2_sub( a, b, delta );
236 return v2_length2( delta );
237 }
238
239 static inline f32 v2_dist( v2f a, v2f b )
240 {
241 return sqrtf( v2_dist2( a, b ) );
242 }
243
244 static inline void v2_lerp( v2f a, v2f b, f32 t, v2f d )
245 {
246 d[0] = a[0] + t*(b[0]-a[0]);
247 d[1] = a[1] + t*(b[1]-a[1]);
248 }
249
250 static inline void v2_normalize( v2f a )
251 {
252 v2_muls( a, 1.0f / v2_length( a ), a );
253 }
254
255 static void v2_normalize_clamp( v2f a )
256 {
257 f32 l2 = v2_length2( a );
258 if( l2 > 1.0f )
259 v2_muls( a, 1.0f/sqrtf(l2), a );
260 }
261
262 static inline void v2_floor( v2f a, v2f b )
263 {
264 b[0] = floorf( a[0] );
265 b[1] = floorf( a[1] );
266 }
267
268 static inline void v2_fill( v2f a, f32 v )
269 {
270 a[0] = v;
271 a[1] = v;
272 }
273
274 static inline void v2_copysign( v2f a, v2f b )
275 {
276 a[0] = copysignf( a[0], b[0] );
277 a[1] = copysignf( a[1], b[1] );
278 }
279
280 /* integer variants
281 * ---------------- */
282
283 static inline void v2i_copy( v2i a, v2i b )
284 {
285 b[0] = a[0]; b[1] = a[1];
286 }
287
288 static inline int v2i_eq( v2i a, v2i b )
289 {
290 return ((a[0] == b[0]) && (a[1] == b[1]));
291 }
292
293 static inline void v2i_add( v2i a, v2i b, v2i d )
294 {
295 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
296 }
297
298 static inline void v2i_sub( v2i a, v2i b, v2i d )
299 {
300 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
301 }
302
303 /*
304 * -----------------------------------------------------------------------------
305 * Section 2.b 3D Vectors
306 * -----------------------------------------------------------------------------
307 */
308
309 static inline void v3_copy( v3f a, v3f b )
310 {
311 b[0] = a[0]; b[1] = a[1]; b[2] = a[2];
312 }
313
314 static inline void v3_zero( v3f a )
315 {
316 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f;
317 }
318
319 static inline void v3_add( v3f a, v3f b, v3f d )
320 {
321 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
322 }
323
324 static inline void v3i_add( v3i a, v3i b, v3i d )
325 {
326 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
327 }
328
329 static inline void v3_sub( v3f a, v3f b, v3f d )
330 {
331 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
332 }
333
334 static inline void v3i_sub( v3i a, v3i b, v3i d )
335 {
336 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
337 }
338
339 static inline void v3_mul( v3f a, v3f b, v3f d )
340 {
341 d[0] = a[0]*b[0]; d[1] = a[1]*b[1]; d[2] = a[2]*b[2];
342 }
343
344 static inline void v3_div( v3f a, v3f b, v3f d )
345 {
346 d[0] = b[0]!=0.0f? a[0]/b[0]: INFINITY;
347 d[1] = b[1]!=0.0f? a[1]/b[1]: INFINITY;
348 d[2] = b[2]!=0.0f? a[2]/b[2]: INFINITY;
349 }
350
351 static inline void v3_muls( v3f a, f32 s, v3f d )
352 {
353 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s;
354 }
355
356 static inline void v3_fill( v3f a, f32 v )
357 {
358 a[0] = v;
359 a[1] = v;
360 a[2] = v;
361 }
362
363 static inline void v3_divs( v3f a, f32 s, v3f d )
364 {
365 if( s == 0.0f )
366 v3_fill( d, INFINITY );
367 else
368 {
369 d[0] = a[0]/s;
370 d[1] = a[1]/s;
371 d[2] = a[2]/s;
372 }
373 }
374
375 static inline void v3_muladds( v3f a, v3f b, f32 s, v3f d )
376 {
377 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s; d[2] = a[2]+b[2]*s;
378 }
379
380 static inline void v3_muladd( v2f a, v2f b, v2f s, v2f d )
381 {
382 d[0] = a[0]+b[0]*s[0];
383 d[1] = a[1]+b[1]*s[1];
384 d[2] = a[2]+b[2]*s[2];
385 }
386
387 static inline f32 v3_dot( v3f a, v3f b )
388 {
389 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
390 }
391
392 static inline void v3_cross( v3f a, v3f b, v3f dest )
393 {
394 v3f d;
395 d[0] = a[1]*b[2] - a[2]*b[1];
396 d[1] = a[2]*b[0] - a[0]*b[2];
397 d[2] = a[0]*b[1] - a[1]*b[0];
398 v3_copy( d, dest );
399 }
400
401 static inline f32 v3_length2( v3f a )
402 {
403 return v3_dot( a, a );
404 }
405
406 static inline f32 v3_length( v3f a )
407 {
408 return sqrtf( v3_length2( a ) );
409 }
410
411 static inline f32 v3_dist2( v3f a, v3f b )
412 {
413 v3f delta;
414 v3_sub( a, b, delta );
415 return v3_length2( delta );
416 }
417
418 static inline f32 v3_dist( v3f a, v3f b )
419 {
420 return sqrtf( v3_dist2( a, b ) );
421 }
422
423 static inline void v3_normalize( v3f a )
424 {
425 v3_muls( a, 1.f / v3_length( a ), a );
426 }
427
428 static inline f32 vg_lerpf( f32 a, f32 b, f32 t ){
429 return a + t*(b-a);
430 }
431
432 static inline f64 vg_lerp( f64 a, f64 b, f64 t )
433 {
434 return a + t*(b-a);
435 }
436
437 static inline void vg_slewf( f32 *a, f32 b, f32 speed ){
438 f32 d = vg_signf( b-*a ),
439 c = *a + d*speed;
440 *a = vg_minf( b*d, c*d ) * d;
441 }
442
443 static inline f32 vg_smoothstepf( f32 x ){
444 return x*x*(3.0f - 2.0f*x);
445 }
446
447
448 /* correctly lerp around circular period -pi -> pi */
449 static f32 vg_alerpf( f32 a, f32 b, f32 t )
450 {
451 f32 d = fmodf( b-a, VG_TAUf ),
452 s = fmodf( 2.0f*d, VG_TAUf ) - d;
453 return a + s*t;
454 }
455
456 static inline void v3_lerp( v3f a, v3f b, f32 t, v3f d )
457 {
458 d[0] = a[0] + t*(b[0]-a[0]);
459 d[1] = a[1] + t*(b[1]-a[1]);
460 d[2] = a[2] + t*(b[2]-a[2]);
461 }
462
463 static inline void v3_minv( v3f a, v3f b, v3f dest )
464 {
465 dest[0] = vg_minf(a[0], b[0]);
466 dest[1] = vg_minf(a[1], b[1]);
467 dest[2] = vg_minf(a[2], b[2]);
468 }
469
470 static inline void v3_maxv( v3f a, v3f b, v3f dest )
471 {
472 dest[0] = vg_maxf(a[0], b[0]);
473 dest[1] = vg_maxf(a[1], b[1]);
474 dest[2] = vg_maxf(a[2], b[2]);
475 }
476
477 static inline f32 v3_minf( v3f a )
478 {
479 return vg_minf( vg_minf( a[0], a[1] ), a[2] );
480 }
481
482 static inline f32 v3_maxf( v3f a )
483 {
484 return vg_maxf( vg_maxf( a[0], a[1] ), a[2] );
485 }
486
487 static inline void v3_floor( v3f a, v3f b )
488 {
489 b[0] = floorf( a[0] );
490 b[1] = floorf( a[1] );
491 b[2] = floorf( a[2] );
492 }
493
494 static inline void v3_ceil( v3f a, v3f b )
495 {
496 b[0] = ceilf( a[0] );
497 b[1] = ceilf( a[1] );
498 b[2] = ceilf( a[2] );
499 }
500
501 static inline void v3_negate( v3f a, v3f b )
502 {
503 b[0] = -a[0];
504 b[1] = -a[1];
505 b[2] = -a[2];
506 }
507
508 static inline void v3_rotate( v3f v, f32 angle, v3f axis, v3f d )
509 {
510 v3f v1, v2, k;
511 f32 c, s;
512
513 c = cosf( angle );
514 s = sinf( angle );
515
516 v3_copy( axis, k );
517 v3_normalize( k );
518 v3_muls( v, c, v1 );
519 v3_cross( k, v, v2 );
520 v3_muls( v2, s, v2 );
521 v3_add( v1, v2, v1 );
522 v3_muls( k, v3_dot(k, v) * (1.0f - c), v2);
523 v3_add( v1, v2, d );
524 }
525
526 static void v3_tangent_basis( v3f n, v3f tx, v3f ty ){
527 /* Compute tangent basis (box2d) */
528 if( fabsf( n[0] ) >= 0.57735027f ){
529 tx[0] = n[1];
530 tx[1] = -n[0];
531 tx[2] = 0.0f;
532 }
533 else{
534 tx[0] = 0.0f;
535 tx[1] = n[2];
536 tx[2] = -n[1];
537 }
538
539 v3_normalize( tx );
540 v3_cross( n, tx, ty );
541 }
542
543
544 /*
545 * -----------------------------------------------------------------------------
546 * Section 2.c 4D Vectors
547 * -----------------------------------------------------------------------------
548 */
549
550 static inline void v4_copy( v4f a, v4f b )
551 {
552 b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];
553 }
554
555 static inline void v4_add( v4f a, v4f b, v4f d )
556 {
557 d[0] = a[0]+b[0];
558 d[1] = a[1]+b[1];
559 d[2] = a[2]+b[2];
560 d[3] = a[3]+b[3];
561 }
562
563 static inline void v4_zero( v4f a )
564 {
565 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f; a[3] = 0.f;
566 }
567
568 static inline void v4_muls( v4f a, f32 s, v4f d )
569 {
570 d[0] = a[0]*s;
571 d[1] = a[1]*s;
572 d[2] = a[2]*s;
573 d[3] = a[3]*s;
574 }
575
576 static inline void v4_muladds( v4f a, v4f b, f32 s, v4f d )
577 {
578 d[0] = a[0]+b[0]*s;
579 d[1] = a[1]+b[1]*s;
580 d[2] = a[2]+b[2]*s;
581 d[3] = a[3]+b[3]*s;
582 }
583
584 static inline void v4_lerp( v4f a, v4f b, f32 t, v4f d )
585 {
586 d[0] = a[0] + t*(b[0]-a[0]);
587 d[1] = a[1] + t*(b[1]-a[1]);
588 d[2] = a[2] + t*(b[2]-a[2]);
589 d[3] = a[3] + t*(b[3]-a[3]);
590 }
591
592 static inline f32 v4_dot( v4f a, v4f b )
593 {
594 return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
595 }
596
597 static inline f32 v4_length( v4f a )
598 {
599 return sqrtf( v4_dot(a,a) );
600 }
601
602 /*
603 * -----------------------------------------------------------------------------
604 * Section 3 Quaternions
605 * -----------------------------------------------------------------------------
606 */
607
608 static inline void q_identity( v4f q )
609 {
610 q[0] = 0.0f; q[1] = 0.0f; q[2] = 0.0f; q[3] = 1.0f;
611 }
612
613 static inline void q_axis_angle( v4f q, v3f axis, f32 angle )
614 {
615 f32 a = angle*0.5f,
616 c = cosf(a),
617 s = sinf(a);
618
619 q[0] = s*axis[0];
620 q[1] = s*axis[1];
621 q[2] = s*axis[2];
622 q[3] = c;
623 }
624
625 static inline void q_mul( v4f q, v4f q1, v4f d )
626 {
627 v4f t;
628 t[0] = q[3]*q1[0] + q[0]*q1[3] + q[1]*q1[2] - q[2]*q1[1];
629 t[1] = q[3]*q1[1] - q[0]*q1[2] + q[1]*q1[3] + q[2]*q1[0];
630 t[2] = q[3]*q1[2] + q[0]*q1[1] - q[1]*q1[0] + q[2]*q1[3];
631 t[3] = q[3]*q1[3] - q[0]*q1[0] - q[1]*q1[1] - q[2]*q1[2];
632 v4_copy( t, d );
633 }
634
635 static inline void q_normalize( v4f q )
636 {
637 f32 l2 = v4_dot(q,q);
638 if( l2 < 0.00001f ) q_identity( q );
639 else {
640 f32 s = 1.0f/sqrtf(l2);
641 q[0] *= s;
642 q[1] *= s;
643 q[2] *= s;
644 q[3] *= s;
645 }
646 }
647
648 static inline void q_inv( v4f q, v4f d )
649 {
650 f32 s = 1.0f / v4_dot(q,q);
651 d[0] = -q[0]*s;
652 d[1] = -q[1]*s;
653 d[2] = -q[2]*s;
654 d[3] = q[3]*s;
655 }
656
657 static inline void q_nlerp( v4f a, v4f b, f32 t, v4f d ){
658 if( v4_dot(a,b) < 0.0f ){
659 v4f c;
660 v4_muls( b, -1.0f, c );
661 v4_lerp( a, c, t, d );
662 }
663 else
664 v4_lerp( a, b, t, d );
665
666 q_normalize( d );
667 }
668
669 static inline void q_m3x3( v4f q, m3x3f d )
670 {
671 f32
672 l = v4_length(q),
673 s = l > 0.0f? 2.0f/l: 0.0f,
674
675 xx = s*q[0]*q[0], xy = s*q[0]*q[1], wx = s*q[3]*q[0],
676 yy = s*q[1]*q[1], yz = s*q[1]*q[2], wy = s*q[3]*q[1],
677 zz = s*q[2]*q[2], xz = s*q[0]*q[2], wz = s*q[3]*q[2];
678
679 d[0][0] = 1.0f - yy - zz;
680 d[1][1] = 1.0f - xx - zz;
681 d[2][2] = 1.0f - xx - yy;
682 d[0][1] = xy + wz;
683 d[1][2] = yz + wx;
684 d[2][0] = xz + wy;
685 d[1][0] = xy - wz;
686 d[2][1] = yz - wx;
687 d[0][2] = xz - wy;
688 }
689
690 static void q_mulv( v4f q, v3f v, v3f d )
691 {
692 v3f v1, v2;
693
694 v3_muls( q, 2.0f*v3_dot(q,v), v1 );
695 v3_muls( v, q[3]*q[3] - v3_dot(q,q), v2 );
696 v3_add( v1, v2, v1 );
697 v3_cross( q, v, v2 );
698 v3_muls( v2, 2.0f*q[3], v2 );
699 v3_add( v1, v2, d );
700 }
701
702 static f32 q_dist( v4f q0, v4f q1 ){
703 return acosf( 2.0f * v4_dot(q0,q1) -1.0f );
704 }
705
706 /*
707 * -----------------------------------------------------------------------------
708 * Section 4.a 2x2 matrices
709 * -----------------------------------------------------------------------------
710 */
711
712 #define M2X2_INDENTIY {{1.0f, 0.0f, }, \
713 {0.0f, 1.0f, }}
714
715 #define M2X2_ZERO {{0.0f, 0.0f, }, \
716 {0.0f, 0.0f, }}
717
718 static inline void m2x2_copy( m2x2f a, m2x2f b )
719 {
720 v2_copy( a[0], b[0] );
721 v2_copy( a[1], b[1] );
722 }
723
724 static inline void m2x2_identity( m2x2f a )
725 {
726 m2x2f id = M2X2_INDENTIY;
727 m2x2_copy( id, a );
728 }
729
730 static inline void m2x2_create_rotation( m2x2f a, f32 theta )
731 {
732 f32 s, c;
733
734 s = sinf( theta );
735 c = cosf( theta );
736
737 a[0][0] = c;
738 a[0][1] = -s;
739 a[1][0] = s;
740 a[1][1] = c;
741 }
742
743 static inline void m2x2_mulv( m2x2f m, v2f v, v2f d )
744 {
745 v2f res;
746
747 res[0] = m[0][0]*v[0] + m[1][0]*v[1];
748 res[1] = m[0][1]*v[0] + m[1][1]*v[1];
749
750 v2_copy( res, d );
751 }
752
753 /*
754 * -----------------------------------------------------------------------------
755 * Section 4.b 3x3 matrices
756 * -----------------------------------------------------------------------------
757 */
758
759 #define M3X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
760 { 0.0f, 1.0f, 0.0f, },\
761 { 0.0f, 0.0f, 1.0f, }}
762
763 #define M3X3_ZERO {{0.0f, 0.0f, 0.0f, },\
764 { 0.0f, 0.0f, 0.0f, },\
765 { 0.0f, 0.0f, 0.0f, }}
766
767
768 static void euler_m3x3( v3f angles, m3x3f d )
769 {
770 f32 cosY = cosf( angles[0] ),
771 sinY = sinf( angles[0] ),
772 cosP = cosf( angles[1] ),
773 sinP = sinf( angles[1] ),
774 cosR = cosf( angles[2] ),
775 sinR = sinf( angles[2] );
776
777 d[2][0] = -sinY * cosP;
778 d[2][1] = sinP;
779 d[2][2] = cosY * cosP;
780
781 d[0][0] = cosY * cosR;
782 d[0][1] = sinR;
783 d[0][2] = sinY * cosR;
784
785 v3_cross( d[0], d[2], d[1] );
786 }
787
788 static void m3x3_q( m3x3f m, v4f q )
789 {
790 f32 diag, r, rinv;
791
792 diag = m[0][0] + m[1][1] + m[2][2];
793 if( diag >= 0.0f )
794 {
795 r = sqrtf( 1.0f + diag );
796 rinv = 0.5f / r;
797 q[0] = rinv * (m[1][2] - m[2][1]);
798 q[1] = rinv * (m[2][0] - m[0][2]);
799 q[2] = rinv * (m[0][1] - m[1][0]);
800 q[3] = r * 0.5f;
801 }
802 else if( m[0][0] >= m[1][1] && m[0][0] >= m[2][2] )
803 {
804 r = sqrtf( 1.0f - m[1][1] - m[2][2] + m[0][0] );
805 rinv = 0.5f / r;
806 q[0] = r * 0.5f;
807 q[1] = rinv * (m[0][1] + m[1][0]);
808 q[2] = rinv * (m[0][2] + m[2][0]);
809 q[3] = rinv * (m[1][2] - m[2][1]);
810 }
811 else if( m[1][1] >= m[2][2] )
812 {
813 r = sqrtf( 1.0f - m[0][0] - m[2][2] + m[1][1] );
814 rinv = 0.5f / r;
815 q[0] = rinv * (m[0][1] + m[1][0]);
816 q[1] = r * 0.5f;
817 q[2] = rinv * (m[1][2] + m[2][1]);
818 q[3] = rinv * (m[2][0] - m[0][2]);
819 }
820 else
821 {
822 r = sqrtf( 1.0f - m[0][0] - m[1][1] + m[2][2] );
823 rinv = 0.5f / r;
824 q[0] = rinv * (m[0][2] + m[2][0]);
825 q[1] = rinv * (m[1][2] + m[2][1]);
826 q[2] = r * 0.5f;
827 q[3] = rinv * (m[0][1] - m[1][0]);
828 }
829 }
830
831 /* a X b == [b]T a == ...*/
832 static void m3x3_skew_symetric( m3x3f a, v3f v )
833 {
834 a[0][0] = 0.0f;
835 a[0][1] = v[2];
836 a[0][2] = -v[1];
837 a[1][0] = -v[2];
838 a[1][1] = 0.0f;
839 a[1][2] = v[0];
840 a[2][0] = v[1];
841 a[2][1] = -v[0];
842 a[2][2] = 0.0f;
843 }
844
845 static void m3x3_add( m3x3f a, m3x3f b, m3x3f d )
846 {
847 v3_add( a[0], b[0], d[0] );
848 v3_add( a[1], b[1], d[1] );
849 v3_add( a[2], b[2], d[2] );
850 }
851
852 static inline void m3x3_copy( m3x3f a, m3x3f b )
853 {
854 v3_copy( a[0], b[0] );
855 v3_copy( a[1], b[1] );
856 v3_copy( a[2], b[2] );
857 }
858
859 static inline void m3x3_identity( m3x3f a )
860 {
861 m3x3f id = M3X3_IDENTITY;
862 m3x3_copy( id, a );
863 }
864
865 static void m3x3_diagonal( m3x3f a, f32 v )
866 {
867 m3x3_identity( a );
868 a[0][0] = v;
869 a[1][1] = v;
870 a[2][2] = v;
871 }
872
873 static void m3x3_setdiagonalv3( m3x3f a, v3f v )
874 {
875 a[0][0] = v[0];
876 a[1][1] = v[1];
877 a[2][2] = v[2];
878 }
879
880 static inline void m3x3_zero( m3x3f a )
881 {
882 m3x3f z = M3X3_ZERO;
883 m3x3_copy( z, a );
884 }
885
886 static inline void m3x3_inv( m3x3f src, m3x3f dest )
887 {
888 f32 a = src[0][0], b = src[0][1], c = src[0][2],
889 d = src[1][0], e = src[1][1], f = src[1][2],
890 g = src[2][0], h = src[2][1], i = src[2][2];
891
892 f32 det = 1.f /
893 (+a*(e*i-h*f)
894 -b*(d*i-f*g)
895 +c*(d*h-e*g));
896
897 dest[0][0] = (e*i-h*f)*det;
898 dest[0][1] = -(b*i-c*h)*det;
899 dest[0][2] = (b*f-c*e)*det;
900 dest[1][0] = -(d*i-f*g)*det;
901 dest[1][1] = (a*i-c*g)*det;
902 dest[1][2] = -(a*f-d*c)*det;
903 dest[2][0] = (d*h-g*e)*det;
904 dest[2][1] = -(a*h-g*b)*det;
905 dest[2][2] = (a*e-d*b)*det;
906 }
907
908 static f32 m3x3_det( m3x3f m )
909 {
910 return m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])
911 - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
912 + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
913 }
914
915 static inline void m3x3_transpose( m3x3f src, m3x3f dest )
916 {
917 f32 a = src[0][0], b = src[0][1], c = src[0][2],
918 d = src[1][0], e = src[1][1], f = src[1][2],
919 g = src[2][0], h = src[2][1], i = src[2][2];
920
921 dest[0][0] = a;
922 dest[0][1] = d;
923 dest[0][2] = g;
924 dest[1][0] = b;
925 dest[1][1] = e;
926 dest[1][2] = h;
927 dest[2][0] = c;
928 dest[2][1] = f;
929 dest[2][2] = i;
930 }
931
932 static inline void m3x3_mul( m3x3f a, m3x3f b, m3x3f d )
933 {
934 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
935 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
936 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
937
938 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
939 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
940 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2];
941
942 d[0][0] = a00*b00 + a10*b01 + a20*b02;
943 d[0][1] = a01*b00 + a11*b01 + a21*b02;
944 d[0][2] = a02*b00 + a12*b01 + a22*b02;
945 d[1][0] = a00*b10 + a10*b11 + a20*b12;
946 d[1][1] = a01*b10 + a11*b11 + a21*b12;
947 d[1][2] = a02*b10 + a12*b11 + a22*b12;
948 d[2][0] = a00*b20 + a10*b21 + a20*b22;
949 d[2][1] = a01*b20 + a11*b21 + a21*b22;
950 d[2][2] = a02*b20 + a12*b21 + a22*b22;
951 }
952
953 static inline void m3x3_mulv( m3x3f m, v3f v, v3f d )
954 {
955 v3f res;
956
957 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
958 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
959 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
960
961 v3_copy( res, d );
962 }
963
964 static inline void m3x3_projection( m3x3f dst,
965 f32 const left, f32 const right, f32 const bottom, f32 const top )
966 {
967 f32 rl, tb;
968
969 m3x3_zero( dst );
970
971 rl = 1.0f / (right - left);
972 tb = 1.0f / (top - bottom);
973
974 dst[0][0] = 2.0f * rl;
975 dst[1][1] = 2.0f * tb;
976 dst[2][2] = 1.0f;
977 }
978
979 static inline void m3x3_translate( m3x3f m, v3f v )
980 {
981 m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0];
982 m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1];
983 m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2];
984 }
985
986 static inline void m3x3_scale( m3x3f m, v3f v )
987 {
988 v3_muls( m[0], v[0], m[0] );
989 v3_muls( m[1], v[1], m[1] );
990 v3_muls( m[2], v[2], m[2] );
991 }
992
993 static inline void m3x3_scalef( m3x3f m, f32 f )
994 {
995 v3f v;
996 v3_fill( v, f );
997 m3x3_scale( m, v );
998 }
999
1000 static inline void m3x3_rotate( m3x3f m, f32 angle )
1001 {
1002 f32 m00 = m[0][0], m10 = m[1][0],
1003 m01 = m[0][1], m11 = m[1][1],
1004 m02 = m[0][2], m12 = m[1][2];
1005 f32 c, s;
1006
1007 s = sinf( angle );
1008 c = cosf( angle );
1009
1010 m[0][0] = m00 * c + m10 * s;
1011 m[0][1] = m01 * c + m11 * s;
1012 m[0][2] = m02 * c + m12 * s;
1013
1014 m[1][0] = m00 * -s + m10 * c;
1015 m[1][1] = m01 * -s + m11 * c;
1016 m[1][2] = m02 * -s + m12 * c;
1017 }
1018
1019 /*
1020 * -----------------------------------------------------------------------------
1021 * Section 4.c 4x3 matrices
1022 * -----------------------------------------------------------------------------
1023 */
1024
1025 #define M4X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
1026 { 0.0f, 1.0f, 0.0f, },\
1027 { 0.0f, 0.0f, 1.0f, },\
1028 { 0.0f, 0.0f, 0.0f }}
1029
1030 static inline void m4x3_to_3x3( m4x3f a, m3x3f b )
1031 {
1032 v3_copy( a[0], b[0] );
1033 v3_copy( a[1], b[1] );
1034 v3_copy( a[2], b[2] );
1035 }
1036
1037 static inline void m4x3_invert_affine( m4x3f a, m4x3f b )
1038 {
1039 m3x3_transpose( a, b );
1040 m3x3_mulv( b, a[3], b[3] );
1041 v3_negate( b[3], b[3] );
1042 }
1043
1044 static void m4x3_invert_full( m4x3f src, m4x3f dst )
1045 {
1046 f32 t2, t4, t5,
1047 det,
1048 a = src[0][0], b = src[0][1], c = src[0][2],
1049 e = src[1][0], f = src[1][1], g = src[1][2],
1050 i = src[2][0], j = src[2][1], k = src[2][2],
1051 m = src[3][0], n = src[3][1], o = src[3][2];
1052
1053 t2 = j*o - n*k;
1054 t4 = i*o - m*k;
1055 t5 = i*n - m*j;
1056
1057 dst[0][0] = f*k - g*j;
1058 dst[1][0] =-(e*k - g*i);
1059 dst[2][0] = e*j - f*i;
1060 dst[3][0] =-(e*t2 - f*t4 + g*t5);
1061
1062 dst[0][1] =-(b*k - c*j);
1063 dst[1][1] = a*k - c*i;
1064 dst[2][1] =-(a*j - b*i);
1065 dst[3][1] = a*t2 - b*t4 + c*t5;
1066
1067 t2 = f*o - n*g;
1068 t4 = e*o - m*g;
1069 t5 = e*n - m*f;
1070
1071 dst[0][2] = b*g - c*f ;
1072 dst[1][2] =-(a*g - c*e );
1073 dst[2][2] = a*f - b*e ;
1074 dst[3][2] =-(a*t2 - b*t4 + c * t5);
1075
1076 det = 1.0f / (a * dst[0][0] + b * dst[1][0] + c * dst[2][0]);
1077 v3_muls( dst[0], det, dst[0] );
1078 v3_muls( dst[1], det, dst[1] );
1079 v3_muls( dst[2], det, dst[2] );
1080 v3_muls( dst[3], det, dst[3] );
1081 }
1082
1083 static inline void m4x3_copy( m4x3f a, m4x3f b )
1084 {
1085 v3_copy( a[0], b[0] );
1086 v3_copy( a[1], b[1] );
1087 v3_copy( a[2], b[2] );
1088 v3_copy( a[3], b[3] );
1089 }
1090
1091 static inline void m4x3_identity( m4x3f a )
1092 {
1093 m4x3f id = M4X3_IDENTITY;
1094 m4x3_copy( id, a );
1095 }
1096
1097 static void m4x3_mul( m4x3f a, m4x3f b, m4x3f d )
1098 {
1099 f32
1100 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
1101 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
1102 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
1103 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2],
1104 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
1105 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
1106 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2],
1107 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2];
1108
1109 d[0][0] = a00*b00 + a10*b01 + a20*b02;
1110 d[0][1] = a01*b00 + a11*b01 + a21*b02;
1111 d[0][2] = a02*b00 + a12*b01 + a22*b02;
1112 d[1][0] = a00*b10 + a10*b11 + a20*b12;
1113 d[1][1] = a01*b10 + a11*b11 + a21*b12;
1114 d[1][2] = a02*b10 + a12*b11 + a22*b12;
1115 d[2][0] = a00*b20 + a10*b21 + a20*b22;
1116 d[2][1] = a01*b20 + a11*b21 + a21*b22;
1117 d[2][2] = a02*b20 + a12*b21 + a22*b22;
1118 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30;
1119 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31;
1120 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32;
1121 }
1122
1123 #if 0 /* shat appf mingw wstringop-overflow */
1124 inline
1125 #endif
1126 static void m4x3_mulv( m4x3f m, v3f v, v3f d )
1127 {
1128 v3f res;
1129
1130 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0];
1131 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1];
1132 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2];
1133
1134 v3_copy( res, d );
1135 }
1136
1137 /*
1138 * Transform plane ( xyz, distance )
1139 */
1140 static void m4x3_mulp( m4x3f m, v4f p, v4f d )
1141 {
1142 v3f o;
1143
1144 v3_muls( p, p[3], o );
1145 m4x3_mulv( m, o, o );
1146 m3x3_mulv( m, p, d );
1147
1148 d[3] = v3_dot( o, d );
1149 }
1150
1151 /*
1152 * Affine transforms
1153 */
1154
1155 static void m4x3_translate( m4x3f m, v3f v )
1156 {
1157 v3_muladds( m[3], m[0], v[0], m[3] );
1158 v3_muladds( m[3], m[1], v[1], m[3] );
1159 v3_muladds( m[3], m[2], v[2], m[3] );
1160 }
1161
1162 static void m4x3_rotate_x( m4x3f m, f32 angle )
1163 {
1164 m4x3f t = M4X3_IDENTITY;
1165 f32 c, s;
1166
1167 c = cosf( angle );
1168 s = sinf( angle );
1169
1170 t[1][1] = c;
1171 t[1][2] = s;
1172 t[2][1] = -s;
1173 t[2][2] = c;
1174
1175 m4x3_mul( m, t, m );
1176 }
1177
1178 static void m4x3_rotate_y( m4x3f m, f32 angle )
1179 {
1180 m4x3f t = M4X3_IDENTITY;
1181 f32 c, s;
1182
1183 c = cosf( angle );
1184 s = sinf( angle );
1185
1186 t[0][0] = c;
1187 t[0][2] = -s;
1188 t[2][0] = s;
1189 t[2][2] = c;
1190
1191 m4x3_mul( m, t, m );
1192 }
1193
1194 static void m4x3_rotate_z( m4x3f m, f32 angle )
1195 {
1196 m4x3f t = M4X3_IDENTITY;
1197 f32 c, s;
1198
1199 c = cosf( angle );
1200 s = sinf( angle );
1201
1202 t[0][0] = c;
1203 t[0][1] = s;
1204 t[1][0] = -s;
1205 t[1][1] = c;
1206
1207 m4x3_mul( m, t, m );
1208 }
1209
1210 static void m4x3_expand( m4x3f m, m4x4f d )
1211 {
1212 v3_copy( m[0], d[0] );
1213 v3_copy( m[1], d[1] );
1214 v3_copy( m[2], d[2] );
1215 v3_copy( m[3], d[3] );
1216 d[0][3] = 0.0f;
1217 d[1][3] = 0.0f;
1218 d[2][3] = 0.0f;
1219 d[3][3] = 1.0f;
1220 }
1221
1222 static void m4x3_decompose( m4x3f m, v3f co, v4f q, v3f s )
1223 {
1224 v3_copy( m[3], co );
1225 s[0] = v3_length(m[0]);
1226 s[1] = v3_length(m[1]);
1227 s[2] = v3_length(m[2]);
1228
1229 m3x3f rot;
1230 v3_divs( m[0], s[0], rot[0] );
1231 v3_divs( m[1], s[1], rot[1] );
1232 v3_divs( m[2], s[2], rot[2] );
1233
1234 m3x3_q( rot, q );
1235 }
1236
1237 static void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point ){
1238 v3f v;
1239 m4x3_mulv( m, point, v );
1240
1241 v3_minv( box[0], v, box[0] );
1242 v3_maxv( box[1], v, box[1] );
1243 }
1244
1245 static void m4x3_expand_aabb_aabb( m4x3f m, boxf boxa, boxf boxb ){
1246 v3f a; v3f b;
1247 v3_copy( boxb[0], a );
1248 v3_copy( boxb[1], b );
1249 m4x3_expand_aabb_point( m, boxa, (v3f){ a[0], a[1], a[2] } );
1250 m4x3_expand_aabb_point( m, boxa, (v3f){ a[0], b[1], a[2] } );
1251 m4x3_expand_aabb_point( m, boxa, (v3f){ b[0], b[1], a[2] } );
1252 m4x3_expand_aabb_point( m, boxa, (v3f){ b[0], a[1], a[2] } );
1253 m4x3_expand_aabb_point( m, boxa, (v3f){ a[0], a[1], b[2] } );
1254 m4x3_expand_aabb_point( m, boxa, (v3f){ a[0], b[1], b[2] } );
1255 m4x3_expand_aabb_point( m, boxa, (v3f){ b[0], b[1], b[2] } );
1256 m4x3_expand_aabb_point( m, boxa, (v3f){ b[0], a[1], b[2] } );
1257 }
1258 static inline void m4x3_lookat( m4x3f m, v3f pos, v3f target, v3f up )
1259 {
1260 v3f dir;
1261 v3_sub( target, pos, dir );
1262 v3_normalize( dir );
1263
1264 v3_copy( dir, m[2] );
1265
1266 v3_cross( up, m[2], m[0] );
1267 v3_normalize( m[0] );
1268
1269 v3_cross( m[2], m[0], m[1] );
1270 v3_copy( pos, m[3] );
1271 }
1272
1273 /*
1274 * -----------------------------------------------------------------------------
1275 * Section 4.d 4x4 matrices
1276 * -----------------------------------------------------------------------------
1277 */
1278
1279 #define M4X4_IDENTITY {{1.0f, 0.0f, 0.0f, 0.0f },\
1280 { 0.0f, 1.0f, 0.0f, 0.0f },\
1281 { 0.0f, 0.0f, 1.0f, 0.0f },\
1282 { 0.0f, 0.0f, 0.0f, 1.0f }}
1283 #define M4X4_ZERO {{0.0f, 0.0f, 0.0f, 0.0f },\
1284 { 0.0f, 0.0f, 0.0f, 0.0f },\
1285 { 0.0f, 0.0f, 0.0f, 0.0f },\
1286 { 0.0f, 0.0f, 0.0f, 0.0f }}
1287
1288 static void m4x4_projection( m4x4f m, f32 angle,
1289 f32 ratio, f32 fnear, f32 ffar )
1290 {
1291 f32 scale = tanf( angle * 0.5f * VG_PIf / 180.0f ) * fnear,
1292 r = ratio * scale,
1293 l = -r,
1294 t = scale,
1295 b = -t;
1296
1297 m[0][0] = 2.0f * fnear / (r - l);
1298 m[0][1] = 0.0f;
1299 m[0][2] = 0.0f;
1300 m[0][3] = 0.0f;
1301
1302 m[1][0] = 0.0f;
1303 m[1][1] = 2.0f * fnear / (t - b);
1304 m[1][2] = 0.0f;
1305 m[1][3] = 0.0f;
1306
1307 m[2][0] = (r + l) / (r - l);
1308 m[2][1] = (t + b) / (t - b);
1309 m[2][2] = -(ffar + fnear) / (ffar - fnear);
1310 m[2][3] = -1.0f;
1311
1312 m[3][0] = 0.0f;
1313 m[3][1] = 0.0f;
1314 m[3][2] = -2.0f * ffar * fnear / (ffar - fnear);
1315 m[3][3] = 0.0f;
1316 }
1317
1318 static void m4x4_translate( m4x4f m, v3f v )
1319 {
1320 v4_muladds( m[3], m[0], v[0], m[3] );
1321 v4_muladds( m[3], m[1], v[1], m[3] );
1322 v4_muladds( m[3], m[2], v[2], m[3] );
1323 }
1324
1325 static inline void m4x4_copy( m4x4f a, m4x4f b )
1326 {
1327 v4_copy( a[0], b[0] );
1328 v4_copy( a[1], b[1] );
1329 v4_copy( a[2], b[2] );
1330 v4_copy( a[3], b[3] );
1331 }
1332
1333 static inline void m4x4_identity( m4x4f a )
1334 {
1335 m4x4f id = M4X4_IDENTITY;
1336 m4x4_copy( id, a );
1337 }
1338
1339 static inline void m4x4_zero( m4x4f a )
1340 {
1341 m4x4f zero = M4X4_ZERO;
1342 m4x4_copy( zero, a );
1343 }
1344
1345 static inline void m4x4_mul( m4x4f a, m4x4f b, m4x4f d )
1346 {
1347 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1348 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1349 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1350 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1351
1352 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2], b03 = b[0][3],
1353 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2], b13 = b[1][3],
1354 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2], b23 = b[2][3],
1355 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2], b33 = b[3][3];
1356
1357 d[0][0] = a00*b00 + a10*b01 + a20*b02 + a30*b03;
1358 d[0][1] = a01*b00 + a11*b01 + a21*b02 + a31*b03;
1359 d[0][2] = a02*b00 + a12*b01 + a22*b02 + a32*b03;
1360 d[0][3] = a03*b00 + a13*b01 + a23*b02 + a33*b03;
1361 d[1][0] = a00*b10 + a10*b11 + a20*b12 + a30*b13;
1362 d[1][1] = a01*b10 + a11*b11 + a21*b12 + a31*b13;
1363 d[1][2] = a02*b10 + a12*b11 + a22*b12 + a32*b13;
1364 d[1][3] = a03*b10 + a13*b11 + a23*b12 + a33*b13;
1365 d[2][0] = a00*b20 + a10*b21 + a20*b22 + a30*b23;
1366 d[2][1] = a01*b20 + a11*b21 + a21*b22 + a31*b23;
1367 d[2][2] = a02*b20 + a12*b21 + a22*b22 + a32*b23;
1368 d[2][3] = a03*b20 + a13*b21 + a23*b22 + a33*b23;
1369 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30*b33;
1370 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31*b33;
1371 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32*b33;
1372 d[3][3] = a03*b30 + a13*b31 + a23*b32 + a33*b33;
1373 }
1374
1375 static inline void m4x4_mulv( m4x4f m, v4f v, v4f d )
1376 {
1377 v4f res;
1378
1379 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3];
1380 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3];
1381 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3];
1382 res[3] = m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3];
1383
1384 v4_copy( res, d );
1385 }
1386
1387 static inline void m4x4_inv( m4x4f a, m4x4f d )
1388 {
1389 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1390 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1391 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1392 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1393 det,
1394 t[6];
1395
1396 t[0] = a22*a33 - a32*a23;
1397 t[1] = a21*a33 - a31*a23;
1398 t[2] = a21*a32 - a31*a22;
1399 t[3] = a20*a33 - a30*a23;
1400 t[4] = a20*a32 - a30*a22;
1401 t[5] = a20*a31 - a30*a21;
1402
1403 d[0][0] = a11*t[0] - a12*t[1] + a13*t[2];
1404 d[1][0] =-(a10*t[0] - a12*t[3] + a13*t[4]);
1405 d[2][0] = a10*t[1] - a11*t[3] + a13*t[5];
1406 d[3][0] =-(a10*t[2] - a11*t[4] + a12*t[5]);
1407
1408 d[0][1] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1409 d[1][1] = a00*t[0] - a02*t[3] + a03*t[4];
1410 d[2][1] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1411 d[3][1] = a00*t[2] - a01*t[4] + a02*t[5];
1412
1413 t[0] = a12*a33 - a32*a13;
1414 t[1] = a11*a33 - a31*a13;
1415 t[2] = a11*a32 - a31*a12;
1416 t[3] = a10*a33 - a30*a13;
1417 t[4] = a10*a32 - a30*a12;
1418 t[5] = a10*a31 - a30*a11;
1419
1420 d[0][2] = a01*t[0] - a02*t[1] + a03*t[2];
1421 d[1][2] =-(a00*t[0] - a02*t[3] + a03*t[4]);
1422 d[2][2] = a00*t[1] - a01*t[3] + a03*t[5];
1423 d[3][2] =-(a00*t[2] - a01*t[4] + a02*t[5]);
1424
1425 t[0] = a12*a23 - a22*a13;
1426 t[1] = a11*a23 - a21*a13;
1427 t[2] = a11*a22 - a21*a12;
1428 t[3] = a10*a23 - a20*a13;
1429 t[4] = a10*a22 - a20*a12;
1430 t[5] = a10*a21 - a20*a11;
1431
1432 d[0][3] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1433 d[1][3] = a00*t[0] - a02*t[3] + a03*t[4];
1434 d[2][3] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1435 d[3][3] = a00*t[2] - a01*t[4] + a02*t[5];
1436
1437 det = 1.0f / (a00*d[0][0] + a01*d[1][0] + a02*d[2][0] + a03*d[3][0]);
1438 v4_muls( d[0], det, d[0] );
1439 v4_muls( d[1], det, d[1] );
1440 v4_muls( d[2], det, d[2] );
1441 v4_muls( d[3], det, d[3] );
1442 }
1443
1444 /*
1445 * -----------------------------------------------------------------------------
1446 * Section 5.a Boxes
1447 * -----------------------------------------------------------------------------
1448 */
1449
1450 static inline void box_addpt( boxf a, v3f pt )
1451 {
1452 v3_minv( a[0], pt, a[0] );
1453 v3_maxv( a[1], pt, a[1] );
1454 }
1455
1456 static inline void box_concat( boxf a, boxf b )
1457 {
1458 v3_minv( a[0], b[0], a[0] );
1459 v3_maxv( a[1], b[1], a[1] );
1460 }
1461
1462 static inline void box_copy( boxf a, boxf b )
1463 {
1464 v3_copy( a[0], b[0] );
1465 v3_copy( a[1], b[1] );
1466 }
1467
1468 static inline int box_overlap( boxf a, boxf b )
1469 {
1470 return
1471 ( a[0][0] <= b[1][0] && a[1][0] >= b[0][0] ) &&
1472 ( a[0][1] <= b[1][1] && a[1][1] >= b[0][1] ) &&
1473 ( a[0][2] <= b[1][2] && a[1][2] >= b[0][2] )
1474 ;
1475 }
1476
1477 static int box_within( boxf greater, boxf lesser )
1478 {
1479 v3f a, b;
1480 v3_sub( lesser[0], greater[0], a );
1481 v3_sub( lesser[1], greater[1], b );
1482
1483 if( (a[0] >= 0.0f) && (a[1] >= 0.0f) && (a[2] >= 0.0f) &&
1484 (b[0] <= 0.0f) && (b[1] <= 0.0f) && (b[2] <= 0.0f) )
1485 {
1486 return 1;
1487 }
1488
1489 return 0;
1490 }
1491
1492 static inline void box_init_inf( boxf box ){
1493 v3_fill( box[0], INFINITY );
1494 v3_fill( box[1], -INFINITY );
1495 }
1496
1497 /*
1498 * -----------------------------------------------------------------------------
1499 * Section 5.b Planes
1500 * -----------------------------------------------------------------------------
1501 */
1502
1503 static inline void tri_to_plane( f64 a[3], f64 b[3],
1504 f64 c[3], f64 p[4] )
1505 {
1506 f64 edge0[3];
1507 f64 edge1[3];
1508 f64 l;
1509
1510 edge0[0] = b[0] - a[0];
1511 edge0[1] = b[1] - a[1];
1512 edge0[2] = b[2] - a[2];
1513
1514 edge1[0] = c[0] - a[0];
1515 edge1[1] = c[1] - a[1];
1516 edge1[2] = c[2] - a[2];
1517
1518 p[0] = edge0[1] * edge1[2] - edge0[2] * edge1[1];
1519 p[1] = edge0[2] * edge1[0] - edge0[0] * edge1[2];
1520 p[2] = edge0[0] * edge1[1] - edge0[1] * edge1[0];
1521
1522 l = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
1523 p[3] = (p[0] * a[0] + p[1] * a[1] + p[2] * a[2]) / l;
1524
1525 p[0] = p[0] / l;
1526 p[1] = p[1] / l;
1527 p[2] = p[2] / l;
1528 }
1529
1530 static int plane_intersect3( v4f a, v4f b, v4f c, v3f p )
1531 {
1532 f32 const epsilon = 1e-6f;
1533
1534 v3f x;
1535 v3_cross( a, b, x );
1536 f32 d = v3_dot( x, c );
1537
1538 if( (d < epsilon) && (d > -epsilon) ) return 0;
1539
1540 v3f v0, v1, v2;
1541 v3_cross( b, c, v0 );
1542 v3_cross( c, a, v1 );
1543 v3_cross( a, b, v2 );
1544
1545 v3_muls( v0, a[3], p );
1546 v3_muladds( p, v1, b[3], p );
1547 v3_muladds( p, v2, c[3], p );
1548 v3_divs( p, d, p );
1549
1550 return 1;
1551 }
1552
1553 int plane_intersect2( v4f a, v4f b, v3f p, v3f n )
1554 {
1555 f32 const epsilon = 1e-6f;
1556
1557 v4f c;
1558 v3_cross( a, b, c );
1559 f32 d = v3_length2( c );
1560
1561 if( (d < epsilon) && (d > -epsilon) )
1562 return 0;
1563
1564 v3f v0, v1, vx;
1565 v3_cross( c, b, v0 );
1566 v3_cross( a, c, v1 );
1567
1568 v3_muls( v0, a[3], vx );
1569 v3_muladds( vx, v1, b[3], vx );
1570 v3_divs( vx, d, p );
1571 v3_copy( c, n );
1572
1573 return 1;
1574 }
1575
1576 static int plane_segment( v4f plane, v3f a, v3f b, v3f co )
1577 {
1578 f32 d0 = v3_dot( a, plane ) - plane[3],
1579 d1 = v3_dot( b, plane ) - plane[3];
1580
1581 if( d0*d1 < 0.0f )
1582 {
1583 f32 tot = 1.0f/( fabsf(d0)+fabsf(d1) );
1584
1585 v3_muls( a, fabsf(d1) * tot, co );
1586 v3_muladds( co, b, fabsf(d0) * tot, co );
1587 return 1;
1588 }
1589
1590 return 0;
1591 }
1592
1593 static inline f64 plane_polarity( f64 p[4], f64 a[3] )
1594 {
1595 return
1596 (a[0] * p[0] + a[1] * p[1] + a[2] * p[2])
1597 -(p[0]*p[3] * p[0] + p[1]*p[3] * p[1] + p[2]*p[3] * p[2])
1598 ;
1599 }
1600
1601 static f32 ray_plane( v4f plane, v3f co, v3f dir ){
1602 f32 d = v3_dot( plane, dir );
1603 if( fabsf(d) > 1e-6f ){
1604 v3f v0;
1605 v3_muls( plane, plane[3], v0 );
1606 v3_sub( v0, co, v0 );
1607 return v3_dot( v0, plane ) / d;
1608 }
1609 else return INFINITY;
1610 }
1611
1612 /*
1613 * -----------------------------------------------------------------------------
1614 * Section 5.c Closest point functions
1615 * -----------------------------------------------------------------------------
1616 */
1617
1618 /*
1619 * These closest point tests were learned from Real-Time Collision Detection by
1620 * Christer Ericson
1621 */
1622 static f32 closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2,
1623 f32 *s, f32 *t, v3f c1, v3f c2)
1624 {
1625 v3f d1,d2,r;
1626 v3_sub( q1, p1, d1 );
1627 v3_sub( q2, p2, d2 );
1628 v3_sub( p1, p2, r );
1629
1630 f32 a = v3_length2( d1 ),
1631 e = v3_length2( d2 ),
1632 f = v3_dot( d2, r );
1633
1634 const f32 kEpsilon = 0.0001f;
1635
1636 if( a <= kEpsilon && e <= kEpsilon )
1637 {
1638 *s = 0.0f;
1639 *t = 0.0f;
1640 v3_copy( p1, c1 );
1641 v3_copy( p2, c2 );
1642
1643 v3f v0;
1644 v3_sub( c1, c2, v0 );
1645
1646 return v3_length2( v0 );
1647 }
1648
1649 if( a<= kEpsilon )
1650 {
1651 *s = 0.0f;
1652 *t = vg_clampf( f / e, 0.0f, 1.0f );
1653 }
1654 else
1655 {
1656 f32 c = v3_dot( d1, r );
1657 if( e <= kEpsilon )
1658 {
1659 *t = 0.0f;
1660 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1661 }
1662 else
1663 {
1664 f32 b = v3_dot(d1,d2),
1665 d = a*e-b*b;
1666
1667 if( d != 0.0f )
1668 {
1669 *s = vg_clampf((b*f - c*e)/d, 0.0f, 1.0f);
1670 }
1671 else
1672 {
1673 *s = 0.0f;
1674 }
1675
1676 *t = (b*(*s)+f) / e;
1677
1678 if( *t < 0.0f )
1679 {
1680 *t = 0.0f;
1681 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1682 }
1683 else if( *t > 1.0f )
1684 {
1685 *t = 1.0f;
1686 *s = vg_clampf((b-c)/a,0.0f,1.0f);
1687 }
1688 }
1689 }
1690
1691 v3_muladds( p1, d1, *s, c1 );
1692 v3_muladds( p2, d2, *t, c2 );
1693
1694 v3f v0;
1695 v3_sub( c1, c2, v0 );
1696 return v3_length2( v0 );
1697 }
1698
1699 static int point_inside_aabb( boxf box, v3f point )
1700 {
1701 if((point[0]<=box[1][0]) && (point[1]<=box[1][1]) && (point[2]<=box[1][2]) &&
1702 (point[0]>=box[0][0]) && (point[1]>=box[0][1]) && (point[2]>=box[0][2]) )
1703 return 1;
1704 else
1705 return 0;
1706 }
1707
1708 static void closest_point_aabb( v3f p, boxf box, v3f dest )
1709 {
1710 v3_maxv( p, box[0], dest );
1711 v3_minv( dest, box[1], dest );
1712 }
1713
1714 static void closest_point_obb( v3f p, boxf box,
1715 m4x3f mtx, m4x3f inv_mtx, v3f dest )
1716 {
1717 v3f local;
1718 m4x3_mulv( inv_mtx, p, local );
1719 closest_point_aabb( local, box, local );
1720 m4x3_mulv( mtx, local, dest );
1721 }
1722
1723 static f32 closest_point_segment( v3f a, v3f b, v3f point, v3f dest )
1724 {
1725 v3f v0, v1;
1726 v3_sub( b, a, v0 );
1727 v3_sub( point, a, v1 );
1728
1729 f32 t = v3_dot( v1, v0 ) / v3_length2(v0);
1730 t = vg_clampf(t,0.0f,1.0f);
1731 v3_muladds( a, v0, t, dest );
1732 return t;
1733 }
1734
1735 static void closest_on_triangle( v3f p, v3f tri[3], v3f dest )
1736 {
1737 v3f ab, ac, ap;
1738 f32 d1, d2;
1739
1740 /* Region outside A */
1741 v3_sub( tri[1], tri[0], ab );
1742 v3_sub( tri[2], tri[0], ac );
1743 v3_sub( p, tri[0], ap );
1744
1745 d1 = v3_dot(ab,ap);
1746 d2 = v3_dot(ac,ap);
1747 if( d1 <= 0.0f && d2 <= 0.0f )
1748 {
1749 v3_copy( tri[0], dest );
1750 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1751 return;
1752 }
1753
1754 /* Region outside B */
1755 v3f bp;
1756 f32 d3, d4;
1757
1758 v3_sub( p, tri[1], bp );
1759 d3 = v3_dot( ab, bp );
1760 d4 = v3_dot( ac, bp );
1761
1762 if( d3 >= 0.0f && d4 <= d3 )
1763 {
1764 v3_copy( tri[1], dest );
1765 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1766 return;
1767 }
1768
1769 /* Edge region of AB */
1770 f32 vc = d1*d4 - d3*d2;
1771 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1772 {
1773 f32 v = d1 / (d1-d3);
1774 v3_muladds( tri[0], ab, v, dest );
1775 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1776 return;
1777 }
1778
1779 /* Region outside C */
1780 v3f cp;
1781 f32 d5, d6;
1782 v3_sub( p, tri[2], cp );
1783 d5 = v3_dot(ab, cp);
1784 d6 = v3_dot(ac, cp);
1785
1786 if( d6 >= 0.0f && d5 <= d6 )
1787 {
1788 v3_copy( tri[2], dest );
1789 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1790 return;
1791 }
1792
1793 /* Region of AC */
1794 f32 vb = d5*d2 - d1*d6;
1795 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1796 {
1797 f32 w = d2 / (d2-d6);
1798 v3_muladds( tri[0], ac, w, dest );
1799 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1800 return;
1801 }
1802
1803 /* Region of BC */
1804 f32 va = d3*d6 - d5*d4;
1805 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1806 {
1807 f32 w = (d4-d3) / ((d4-d3) + (d5-d6));
1808 v3f bc;
1809 v3_sub( tri[2], tri[1], bc );
1810 v3_muladds( tri[1], bc, w, dest );
1811 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1812 return;
1813 }
1814
1815 /* P inside region, Q via barycentric coordinates uvw */
1816 f32 d = 1.0f/(va+vb+vc),
1817 v = vb*d,
1818 w = vc*d;
1819
1820 v3_muladds( tri[0], ab, v, dest );
1821 v3_muladds( dest, ac, w, dest );
1822 }
1823
1824 enum contact_type
1825 {
1826 k_contact_type_default,
1827 k_contact_type_disabled,
1828 k_contact_type_edge
1829 };
1830
1831 static enum contact_type closest_on_triangle_1( v3f p, v3f tri[3], v3f dest )
1832 {
1833 v3f ab, ac, ap;
1834 f32 d1, d2;
1835
1836 /* Region outside A */
1837 v3_sub( tri[1], tri[0], ab );
1838 v3_sub( tri[2], tri[0], ac );
1839 v3_sub( p, tri[0], ap );
1840
1841 d1 = v3_dot(ab,ap);
1842 d2 = v3_dot(ac,ap);
1843 if( d1 <= 0.0f && d2 <= 0.0f )
1844 {
1845 v3_copy( tri[0], dest );
1846 return k_contact_type_default;
1847 }
1848
1849 /* Region outside B */
1850 v3f bp;
1851 f32 d3, d4;
1852
1853 v3_sub( p, tri[1], bp );
1854 d3 = v3_dot( ab, bp );
1855 d4 = v3_dot( ac, bp );
1856
1857 if( d3 >= 0.0f && d4 <= d3 )
1858 {
1859 v3_copy( tri[1], dest );
1860 return k_contact_type_edge;
1861 }
1862
1863 /* Edge region of AB */
1864 f32 vc = d1*d4 - d3*d2;
1865 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1866 {
1867 f32 v = d1 / (d1-d3);
1868 v3_muladds( tri[0], ab, v, dest );
1869 return k_contact_type_edge;
1870 }
1871
1872 /* Region outside C */
1873 v3f cp;
1874 f32 d5, d6;
1875 v3_sub( p, tri[2], cp );
1876 d5 = v3_dot(ab, cp);
1877 d6 = v3_dot(ac, cp);
1878
1879 if( d6 >= 0.0f && d5 <= d6 )
1880 {
1881 v3_copy( tri[2], dest );
1882 return k_contact_type_edge;
1883 }
1884
1885 /* Region of AC */
1886 f32 vb = d5*d2 - d1*d6;
1887 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1888 {
1889 f32 w = d2 / (d2-d6);
1890 v3_muladds( tri[0], ac, w, dest );
1891 return k_contact_type_edge;
1892 }
1893
1894 /* Region of BC */
1895 f32 va = d3*d6 - d5*d4;
1896 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1897 {
1898 f32 w = (d4-d3) / ((d4-d3) + (d5-d6));
1899 v3f bc;
1900 v3_sub( tri[2], tri[1], bc );
1901 v3_muladds( tri[1], bc, w, dest );
1902 return k_contact_type_edge;
1903 }
1904
1905 /* P inside region, Q via barycentric coordinates uvw */
1906 f32 d = 1.0f/(va+vb+vc),
1907 v = vb*d,
1908 w = vc*d;
1909
1910 v3_muladds( tri[0], ab, v, dest );
1911 v3_muladds( dest, ac, w, dest );
1912
1913 return k_contact_type_default;
1914 }
1915
1916 static void closest_point_elipse( v2f p, v2f e, v2f o )
1917 {
1918 v2f pabs, ei, e2, ve, t;
1919
1920 v2_abs( p, pabs );
1921 v2_div( (v2f){ 1.0f, 1.0f }, e, ei );
1922 v2_mul( e, e, e2 );
1923 v2_mul( ei, (v2f){ e2[0]-e2[1], e2[1]-e2[0] }, ve );
1924
1925 v2_fill( t, 0.70710678118654752f );
1926
1927 for( int i=0; i<3; i++ ){
1928 v2f v, u, ud, w;
1929
1930 v2_mul( ve, t, v ); /* ve*t*t*t */
1931 v2_mul( v, t, v );
1932 v2_mul( v, t, v );
1933
1934 v2_sub( pabs, v, u );
1935 v2_normalize( u );
1936
1937 v2_mul( t, e, ud );
1938 v2_sub( ud, v, ud );
1939
1940 v2_muls( u, v2_length( ud ), u );
1941
1942 v2_add( v, u, w );
1943 v2_mul( w, ei, w );
1944
1945 v2_maxv( (v2f){0.0f,0.0f}, w, t );
1946 v2_normalize( t );
1947 }
1948
1949 v2_mul( t, e, o );
1950 v2_copysign( o, p );
1951 }
1952
1953 /*
1954 * -----------------------------------------------------------------------------
1955 * Section 5.d Raycasts & Spherecasts
1956 * -----------------------------------------------------------------------------
1957 */
1958
1959 int ray_aabb1( boxf box, v3f co, v3f dir_inv, f32 dist )
1960 {
1961 v3f v0, v1;
1962 f32 tmin, tmax;
1963
1964 v3_sub( box[0], co, v0 );
1965 v3_sub( box[1], co, v1 );
1966
1967 v3_mul( v0, dir_inv, v0 );
1968 v3_mul( v1, dir_inv, v1 );
1969
1970 tmin = vg_minf( v0[0], v1[0] );
1971 tmax = vg_maxf( v0[0], v1[0] );
1972 tmin = vg_maxf( tmin, vg_minf( v0[1], v1[1] ));
1973 tmax = vg_minf( tmax, vg_maxf( v0[1], v1[1] ));
1974 tmin = vg_maxf( tmin, vg_minf( v0[2], v1[2] ));
1975 tmax = vg_minf( tmax, vg_maxf( v0[2], v1[2] ));
1976
1977 return (tmax >= tmin) && (tmin <= dist) && (tmax >= 0.0f);
1978 }
1979
1980 /* Time of intersection with ray vs triangle */
1981 static int ray_tri( v3f tri[3], v3f co,
1982 v3f dir, f32 *dist )
1983 {
1984 f32 const kEpsilon = 0.00001f;
1985
1986 v3f v0, v1, h, s, q, n;
1987 f32 a,f,u,v,t;
1988
1989 f32 *pa = tri[0],
1990 *pb = tri[1],
1991 *pc = tri[2];
1992
1993 v3_sub( pb, pa, v0 );
1994 v3_sub( pc, pa, v1 );
1995 v3_cross( dir, v1, h );
1996 v3_cross( v0, v1, n );
1997
1998 if( v3_dot( n, dir ) > 0.0f ) /* Backface culling */
1999 return 0;
2000
2001 /* Parralel */
2002 a = v3_dot( v0, h );
2003
2004 if( a > -kEpsilon && a < kEpsilon )
2005 return 0;
2006
2007 f = 1.0f/a;
2008 v3_sub( co, pa, s );
2009
2010 u = f * v3_dot(s, h);
2011 if( u < 0.0f || u > 1.0f )
2012 return 0;
2013
2014 v3_cross( s, v0, q );
2015 v = f * v3_dot( dir, q );
2016 if( v < 0.0f || u+v > 1.0f )
2017 return 0;
2018
2019 t = f * v3_dot(v1, q);
2020 if( t > kEpsilon )
2021 {
2022 *dist = t;
2023 return 1;
2024 }
2025 else return 0;
2026 }
2027
2028 /* time of intersection with ray vs sphere */
2029 static int ray_sphere( v3f c, f32 r,
2030 v3f co, v3f dir, f32 *t )
2031 {
2032 v3f m;
2033 v3_sub( co, c, m );
2034
2035 f32 b = v3_dot( m, dir ),
2036 c1 = v3_dot( m, m ) - r*r;
2037
2038 /* Exit if r’s origin outside s (c > 0) and r pointing away from s (b > 0) */
2039 if( c1 > 0.0f && b > 0.0f )
2040 return 0;
2041
2042 f32 discr = b*b - c1;
2043
2044 /* A negative discriminant corresponds to ray missing sphere */
2045 if( discr < 0.0f )
2046 return 0;
2047
2048 /*
2049 * Ray now found to intersect sphere, compute smallest t value of
2050 * intersection
2051 */
2052 *t = -b - sqrtf( discr );
2053
2054 /* If t is negative, ray started inside sphere so clamp t to zero */
2055 if( *t < 0.0f )
2056 *t = 0.0f;
2057
2058 return 1;
2059 }
2060
2061 /*
2062 * time of intersection of ray vs cylinder
2063 * The cylinder does not have caps but is finite
2064 *
2065 * Heavily adapted from regular segment vs cylinder from:
2066 * Real-Time Collision Detection
2067 */
2068 static int ray_uncapped_finite_cylinder( v3f q, v3f p, f32 r,
2069 v3f co, v3f dir, f32 *t )
2070 {
2071 v3f d, m, n, sb;
2072 v3_muladds( co, dir, 1.0f, sb );
2073
2074 v3_sub( q, p, d );
2075 v3_sub( co, p, m );
2076 v3_sub( sb, co, n );
2077
2078 f32 md = v3_dot( m, d ),
2079 nd = v3_dot( n, d ),
2080 dd = v3_dot( d, d ),
2081 nn = v3_dot( n, n ),
2082 mn = v3_dot( m, n ),
2083 a = dd*nn - nd*nd,
2084 k = v3_dot( m, m ) - r*r,
2085 c = dd*k - md*md;
2086
2087 if( fabsf(a) < 0.00001f )
2088 {
2089 /* Segment runs parallel to cylinder axis */
2090 return 0;
2091 }
2092
2093 f32 b = dd*mn - nd*md,
2094 discr = b*b - a*c;
2095
2096 if( discr < 0.0f )
2097 return 0; /* No real roots; no intersection */
2098
2099 *t = (-b - sqrtf(discr)) / a;
2100 if( *t < 0.0f )
2101 return 0; /* Intersection behind ray */
2102
2103 /* Check within cylinder segment */
2104 if( md + (*t)*nd < 0.0f )
2105 return 0;
2106
2107 if( md + (*t)*nd > dd )
2108 return 0;
2109
2110 /* Segment intersects cylinder between the endcaps; t is correct */
2111 return 1;
2112 }
2113
2114 /*
2115 * Time of intersection of sphere and triangle. Origin must be outside the
2116 * colliding area. This is a fairly long procedure.
2117 */
2118 static int spherecast_triangle( v3f tri[3],
2119 v3f co, v3f dir, f32 r, f32 *t, v3f n )
2120 {
2121 v3f sum[3];
2122 v3f v0, v1;
2123
2124 v3_sub( tri[1], tri[0], v0 );
2125 v3_sub( tri[2], tri[0], v1 );
2126 v3_cross( v0, v1, n );
2127 v3_normalize( n );
2128 v3_muladds( tri[0], n, r, sum[0] );
2129 v3_muladds( tri[1], n, r, sum[1] );
2130 v3_muladds( tri[2], n, r, sum[2] );
2131
2132 int hit = 0;
2133 f32 t_min = INFINITY,
2134 t1;
2135
2136 if( ray_tri( sum, co, dir, &t1 ) ){
2137 t_min = vg_minf( t_min, t1 );
2138 hit = 1;
2139 }
2140
2141 /*
2142 * Currently disabled; ray_sphere requires |d| = 1. it is not very important.
2143 */
2144 #if 0
2145 for( int i=0; i<3; i++ ){
2146 if( ray_sphere( tri[i], r, co, dir, &t1 ) ){
2147 t_min = vg_minf( t_min, t1 );
2148 hit = 1;
2149 }
2150 }
2151 #endif
2152
2153 for( int i=0; i<3; i++ ){
2154 int i0 = i,
2155 i1 = (i+1)%3;
2156
2157 if( ray_uncapped_finite_cylinder( tri[i0], tri[i1], r, co, dir, &t1 ) ){
2158 if( t1 < t_min ){
2159 t_min = t1;
2160
2161 v3f co1, ct, cx;
2162 v3_add( dir, co, co1 );
2163 v3_lerp( co, co1, t_min, ct );
2164
2165 closest_point_segment( tri[i0], tri[i1], ct, cx );
2166 v3_sub( ct, cx, n );
2167 v3_normalize( n );
2168 }
2169
2170 hit = 1;
2171 }
2172 }
2173
2174 *t = t_min;
2175 return hit;
2176 }
2177
2178 /*
2179 * -----------------------------------------------------------------------------
2180 * Section 5.e Curves
2181 * -----------------------------------------------------------------------------
2182 */
2183
2184 static void eval_bezier_time( v3f p0, v3f p1, v3f h0, v3f h1, f32 t, v3f p )
2185 {
2186 f32 tt = t*t,
2187 ttt = tt*t;
2188
2189 v3_muls( p1, ttt, p );
2190 v3_muladds( p, h1, 3.0f*tt -3.0f*ttt, p );
2191 v3_muladds( p, h0, 3.0f*ttt -6.0f*tt +3.0f*t, p );
2192 v3_muladds( p, p0, 3.0f*tt -ttt -3.0f*t +1.0f, p );
2193 }
2194
2195 static void eval_bezier3( v3f p0, v3f p1, v3f p2, f32 t, v3f p )
2196 {
2197 f32 u = 1.0f-t;
2198
2199 v3_muls( p0, u*u, p );
2200 v3_muladds( p, p1, 2.0f*u*t, p );
2201 v3_muladds( p, p2, t*t, p );
2202 }
2203
2204 /*
2205 * -----------------------------------------------------------------------------
2206 * Section 5.f Volumes
2207 * -----------------------------------------------------------------------------
2208 */
2209
2210 static float vg_sphere_volume( float radius ){
2211 float r3 = radius*radius*radius;
2212 return (4.0f/3.0f) * VG_PIf * r3;
2213 }
2214
2215 /*
2216 * -----------------------------------------------------------------------------
2217 * Section 6.a PSRNG and some distributions
2218 * -----------------------------------------------------------------------------
2219 */
2220
2221 /* An implementation of the MT19937 Algorithm for the Mersenne Twister
2222 * by Evan Sultanik. Based upon the pseudocode in: M. Matsumoto and
2223 * T. Nishimura, "Mersenne Twister: A 623-dimensionally
2224 * equidistributed uniform pseudorandom number generator," ACM
2225 * Transactions on Modeling and Computer Simulation Vol. 8, No. 1,
2226 * January pp.3-30 1998.
2227 *
2228 * http://www.sultanik.com/Mersenne_twister
2229 * https://github.com/ESultanik/mtwister/blob/master/mtwister.c
2230 */
2231
2232 #define MT_UPPER_MASK 0x80000000
2233 #define MT_LOWER_MASK 0x7fffffff
2234 #define MT_TEMPERING_MASK_B 0x9d2c5680
2235 #define MT_TEMPERING_MASK_C 0xefc60000
2236
2237 #define MT_STATE_VECTOR_LENGTH 624
2238
2239 /* changes to STATE_VECTOR_LENGTH also require changes to this */
2240 #define MT_STATE_VECTOR_M 397
2241
2242 struct {
2243 u32 mt[MT_STATE_VECTOR_LENGTH];
2244 i32 index;
2245 }
2246 static vg_rand;
2247
2248 static void vg_rand_seed( unsigned long seed )
2249 {
2250 /* set initial seeds to mt[STATE_VECTOR_LENGTH] using the generator
2251 * from Line 25 of Table 1 in: Donald Knuth, "The Art of Computer
2252 * Programming," Vol. 2 (2nd Ed.) pp.102.
2253 */
2254 vg_rand.mt[0] = seed & 0xffffffff;
2255 for( vg_rand.index=1; vg_rand.index<MT_STATE_VECTOR_LENGTH; vg_rand.index++){
2256 vg_rand.mt[vg_rand.index] =
2257 (6069 * vg_rand.mt[vg_rand.index-1]) & 0xffffffff;
2258 }
2259 }
2260
2261 /*
2262 * Generates a pseudo-randomly generated long.
2263 */
2264 static u32 vg_randu32(void)
2265 {
2266 u32 y;
2267 /* mag[x] = x * 0x9908b0df for x = 0,1 */
2268 static u32 mag[2] = {0x0, 0x9908b0df};
2269 if( vg_rand.index >= MT_STATE_VECTOR_LENGTH || vg_rand.index < 0 ){
2270 /* generate STATE_VECTOR_LENGTH words at a time */
2271 int kk;
2272 if( vg_rand.index >= MT_STATE_VECTOR_LENGTH+1 || vg_rand.index < 0 ){
2273 vg_rand_seed( 4357 );
2274 }
2275 for( kk=0; kk<MT_STATE_VECTOR_LENGTH-MT_STATE_VECTOR_M; kk++ ){
2276 y = (vg_rand.mt[kk] & MT_UPPER_MASK) |
2277 (vg_rand.mt[kk+1] & MT_LOWER_MASK);
2278 vg_rand.mt[kk] = vg_rand.mt[kk+MT_STATE_VECTOR_M] ^
2279 (y >> 1) ^ mag[y & 0x1];
2280 }
2281 for( ; kk<MT_STATE_VECTOR_LENGTH-1; kk++ ){
2282 y = (vg_rand.mt[kk] & MT_UPPER_MASK) |
2283 (vg_rand.mt[kk+1] & MT_LOWER_MASK);
2284 vg_rand.mt[kk] =
2285 vg_rand.mt[ kk+(MT_STATE_VECTOR_M-MT_STATE_VECTOR_LENGTH)] ^
2286 (y >> 1) ^ mag[y & 0x1];
2287 }
2288 y = (vg_rand.mt[MT_STATE_VECTOR_LENGTH-1] & MT_UPPER_MASK) |
2289 (vg_rand.mt[0] & MT_LOWER_MASK);
2290 vg_rand.mt[MT_STATE_VECTOR_LENGTH-1] =
2291 vg_rand.mt[MT_STATE_VECTOR_M-1] ^ (y >> 1) ^ mag[y & 0x1];
2292 vg_rand.index = 0;
2293 }
2294 y = vg_rand.mt[vg_rand.index++];
2295 y ^= (y >> 11);
2296 y ^= (y << 7) & MT_TEMPERING_MASK_B;
2297 y ^= (y << 15) & MT_TEMPERING_MASK_C;
2298 y ^= (y >> 18);
2299 return y;
2300 }
2301
2302 /*
2303 * Generates a pseudo-randomly generated f64 in the range [0..1].
2304 */
2305 static inline f64 vg_randf64(void)
2306 {
2307 return (f64)vg_randu32()/(f64)0xffffffff;
2308 }
2309
2310 static inline f64 vg_randf64_range( f64 min, f64 max )
2311 {
2312 return vg_lerp( min, max, (f64)vg_randf64() );
2313 }
2314
2315 static inline void vg_rand_dir( v3f dir )
2316 {
2317 dir[0] = vg_randf64();
2318 dir[1] = vg_randf64();
2319 dir[2] = vg_randf64();
2320
2321 v3_muls( dir, 2.0f, dir );
2322 v3_sub( dir, (v3f){1.0f,1.0f,1.0f}, dir );
2323
2324 v3_normalize( dir );
2325 }
2326
2327 static inline void vg_rand_sphere( v3f co )
2328 {
2329 vg_rand_dir(co);
2330 v3_muls( co, cbrtf( vg_randf64() ), co );
2331 }
2332
2333 #endif /* VG_M_H */