review: vg_lines.h, vg_m.h
[vg.git] / vg_m.h
1 /* Copyright (C) 2021-2023 Harry Godden (hgn) - All Rights Reserved
2 *
3 * 0. Misc
4 * 1. Scalar operations
5 * 2. Vectors
6 * 2.a 2D Vectors
7 * 2.b 3D Vectors
8 * 2.c 4D Vectors
9 * 3. Quaternions
10 * 4. Matrices
11 * 4.a 2x2 matrices
12 * 4.b 3x3 matrices
13 * 4.c 4x3 matrices
14 * 4.d 4x4 matrices
15 * 5. Geometry
16 * 5.a Boxes
17 * 5.b Planes
18 * 5.c Closest points
19 * 5.d Raycast & Spherecasts
20 * 5.e Curves
21 * 5.f Volumes
22 * 6. Statistics
23 * 6.a Random numbers
24 **/
25
26 #ifndef VG_M_H
27 #define VG_M_H
28
29 #include "vg_platform.h"
30 #include <math.h>
31 #include <stdlib.h>
32
33 #define VG_PIf 3.14159265358979323846264338327950288f
34 #define VG_TAUf 6.28318530717958647692528676655900576f
35 /*
36 * -----------------------------------------------------------------------------
37 * Section 0. Misc Operations
38 * -----------------------------------------------------------------------------
39 */
40
41 /* get the f32 as the raw bits in a u32 without converting */
42 static u32 vg_ftu32( f32 a )
43 {
44 u32 *ptr = (u32 *)(&a);
45 return *ptr;
46 }
47
48 /* check if f32 is infinite */
49 static int vg_isinff( f32 a )
50 {
51 return ((vg_ftu32(a)) & 0x7FFFFFFFU) == 0x7F800000U;
52 }
53
54 /* check if f32 is not a number */
55 static int vg_isnanf( f32 a )
56 {
57 return !vg_isinff(a) && ((vg_ftu32(a)) & 0x7F800000U) == 0x7F800000U;
58 }
59
60 /* check if f32 is a number and is not infinite */
61 static int vg_validf( f32 a )
62 {
63 return ((vg_ftu32(a)) & 0x7F800000U) != 0x7F800000U;
64 }
65
66 static int v3_valid( v3f a ){
67 for( u32 i=0; i<3; i++ )
68 if( !vg_validf(a[i]) ) return 0;
69 return 1;
70 }
71
72 /*
73 * -----------------------------------------------------------------------------
74 * Section 1. Scalar Operations
75 * -----------------------------------------------------------------------------
76 */
77
78 static inline f32 vg_minf( f32 a, f32 b ){ return a < b? a: b; }
79 static inline f32 vg_maxf( f32 a, f32 b ){ return a > b? a: b; }
80
81 static inline int vg_min( int a, int b ){ return a < b? a: b; }
82 static inline int vg_max( int a, int b ){ return a > b? a: b; }
83
84 static inline f32 vg_clampf( f32 a, f32 min, f32 max )
85 {
86 return vg_minf( max, vg_maxf( a, min ) );
87 }
88
89 static inline f32 vg_signf( f32 a )
90 {
91 return a < 0.0f? -1.0f: 1.0f;
92 }
93
94 static inline f32 vg_fractf( f32 a )
95 {
96 return a - floorf( a );
97 }
98
99 static f32 vg_cfrictf( f32 velocity, f32 F )
100 {
101 return -vg_signf(velocity) * vg_minf( F, fabsf(velocity) );
102 }
103
104 static inline f32 vg_rad( f32 deg )
105 {
106 return deg * VG_PIf / 180.0f;
107 }
108
109 /*
110 * -----------------------------------------------------------------------------
111 * Section 2.a 2D Vectors
112 * -----------------------------------------------------------------------------
113 */
114
115 static inline void v2_copy( v2f a, v2f d )
116 {
117 d[0] = a[0]; d[1] = a[1];
118 }
119
120 static inline void v2_zero( v2f a )
121 {
122 a[0] = 0.f; a[1] = 0.f;
123 }
124
125 static inline void v2_add( v2f a, v2f b, v2f d )
126 {
127 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
128 }
129
130 static inline void v2_sub( v2f a, v2f b, v2f d )
131 {
132 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
133 }
134
135 static inline void v2_minv( v2f a, v2f b, v2f dest )
136 {
137 dest[0] = vg_minf(a[0], b[0]);
138 dest[1] = vg_minf(a[1], b[1]);
139 }
140
141 static inline void v2_maxv( v2f a, v2f b, v2f dest )
142 {
143 dest[0] = vg_maxf(a[0], b[0]);
144 dest[1] = vg_maxf(a[1], b[1]);
145 }
146
147 static inline f32 v2_dot( v2f a, v2f b )
148 {
149 return a[0] * b[0] + a[1] * b[1];
150 }
151
152 static inline f32 v2_cross( v2f a, v2f b )
153 {
154 return a[0]*b[1] - a[1]*b[0];
155 }
156
157 static inline void v2_abs( v2f a, v2f d )
158 {
159 d[0] = fabsf( a[0] );
160 d[1] = fabsf( a[1] );
161 }
162
163 static inline void v2_muls( v2f a, f32 s, v2f d )
164 {
165 d[0] = a[0]*s; d[1] = a[1]*s;
166 }
167
168 static inline void v2_divs( v2f a, f32 s, v2f d )
169 {
170 d[0] = a[0]/s; d[1] = a[1]/s;
171 }
172
173 static inline void v2_mul( v2f a, v2f b, v2f d )
174 {
175 d[0] = a[0]*b[0];
176 d[1] = a[1]*b[1];
177 }
178
179 static inline void v2_div( v2f a, v2f b, v2f d )
180 {
181 d[0] = a[0]/b[0]; d[1] = a[1]/b[1];
182 }
183
184 static inline void v2_muladd( v2f a, v2f b, v2f s, v2f d )
185 {
186 d[0] = a[0]+b[0]*s[0];
187 d[1] = a[1]+b[1]*s[1];
188 }
189
190 static inline void v2_muladds( v2f a, v2f b, f32 s, v2f d )
191 {
192 d[0] = a[0]+b[0]*s;
193 d[1] = a[1]+b[1]*s;
194 }
195
196 static inline f32 v2_length2( v2f a )
197 {
198 return a[0]*a[0] + a[1]*a[1];
199 }
200
201 static inline f32 v2_length( v2f a )
202 {
203 return sqrtf( v2_length2( a ) );
204 }
205
206 static inline f32 v2_dist2( v2f a, v2f b )
207 {
208 v2f delta;
209 v2_sub( a, b, delta );
210 return v2_length2( delta );
211 }
212
213 static inline f32 v2_dist( v2f a, v2f b )
214 {
215 return sqrtf( v2_dist2( a, b ) );
216 }
217
218 static inline void v2_lerp( v2f a, v2f b, f32 t, v2f d )
219 {
220 d[0] = a[0] + t*(b[0]-a[0]);
221 d[1] = a[1] + t*(b[1]-a[1]);
222 }
223
224 static inline void v2_normalize( v2f a )
225 {
226 v2_muls( a, 1.0f / v2_length( a ), a );
227 }
228
229 static void v2_normalize_clamp( v2f a )
230 {
231 f32 l2 = v2_length2( a );
232 if( l2 > 1.0f )
233 v2_muls( a, 1.0f/sqrtf(l2), a );
234 }
235
236 static inline void v2_floor( v2f a, v2f b )
237 {
238 b[0] = floorf( a[0] );
239 b[1] = floorf( a[1] );
240 }
241
242 static inline void v2_fill( v2f a, f32 v )
243 {
244 a[0] = v;
245 a[1] = v;
246 }
247
248 static inline void v2_copysign( v2f a, v2f b )
249 {
250 a[0] = copysignf( a[0], b[0] );
251 a[1] = copysignf( a[1], b[1] );
252 }
253
254 /* integer variants
255 * ---------------- */
256
257 static inline void v2i_copy( v2i a, v2i b )
258 {
259 b[0] = a[0]; b[1] = a[1];
260 }
261
262 static inline int v2i_eq( v2i a, v2i b )
263 {
264 return ((a[0] == b[0]) && (a[1] == b[1]));
265 }
266
267 static inline void v2i_add( v2i a, v2i b, v2i d )
268 {
269 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
270 }
271
272 static inline void v2i_sub( v2i a, v2i b, v2i d )
273 {
274 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
275 }
276
277 /*
278 * -----------------------------------------------------------------------------
279 * Section 2.b 3D Vectors
280 * -----------------------------------------------------------------------------
281 */
282
283 static inline void v3_copy( v3f a, v3f b )
284 {
285 b[0] = a[0]; b[1] = a[1]; b[2] = a[2];
286 }
287
288 static inline void v3_zero( v3f a )
289 {
290 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f;
291 }
292
293 static inline void v3_add( v3f a, v3f b, v3f d )
294 {
295 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
296 }
297
298 static inline void v3i_add( v3i a, v3i b, v3i d )
299 {
300 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
301 }
302
303 static inline void v3_sub( v3f a, v3f b, v3f d )
304 {
305 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
306 }
307
308 static inline void v3i_sub( v3i a, v3i b, v3i d )
309 {
310 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
311 }
312
313 static inline void v3_mul( v3f a, v3f b, v3f d )
314 {
315 d[0] = a[0]*b[0]; d[1] = a[1]*b[1]; d[2] = a[2]*b[2];
316 }
317
318 static inline void v3_div( v3f a, v3f b, v3f d )
319 {
320 d[0] = b[0]!=0.0f? a[0]/b[0]: INFINITY;
321 d[1] = b[1]!=0.0f? a[1]/b[1]: INFINITY;
322 d[2] = b[2]!=0.0f? a[2]/b[2]: INFINITY;
323 }
324
325 static inline void v3_muls( v3f a, f32 s, v3f d )
326 {
327 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s;
328 }
329
330 static inline void v3_fill( v3f a, f32 v )
331 {
332 a[0] = v;
333 a[1] = v;
334 a[2] = v;
335 }
336
337 static inline void v3_divs( v3f a, f32 s, v3f d )
338 {
339 if( s == 0.0f )
340 v3_fill( d, INFINITY );
341 else
342 {
343 d[0] = a[0]/s;
344 d[1] = a[1]/s;
345 d[2] = a[2]/s;
346 }
347 }
348
349 static inline void v3_muladds( v3f a, v3f b, f32 s, v3f d )
350 {
351 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s; d[2] = a[2]+b[2]*s;
352 }
353
354 static inline void v3_muladd( v2f a, v2f b, v2f s, v2f d )
355 {
356 d[0] = a[0]+b[0]*s[0];
357 d[1] = a[1]+b[1]*s[1];
358 d[2] = a[2]+b[2]*s[2];
359 }
360
361 static inline f32 v3_dot( v3f a, v3f b )
362 {
363 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
364 }
365
366 static inline void v3_cross( v3f a, v3f b, v3f dest )
367 {
368 v3f d;
369 d[0] = a[1]*b[2] - a[2]*b[1];
370 d[1] = a[2]*b[0] - a[0]*b[2];
371 d[2] = a[0]*b[1] - a[1]*b[0];
372 v3_copy( d, dest );
373 }
374
375 static inline f32 v3_length2( v3f a )
376 {
377 return v3_dot( a, a );
378 }
379
380 static inline f32 v3_length( v3f a )
381 {
382 return sqrtf( v3_length2( a ) );
383 }
384
385 static inline f32 v3_dist2( v3f a, v3f b )
386 {
387 v3f delta;
388 v3_sub( a, b, delta );
389 return v3_length2( delta );
390 }
391
392 static inline f32 v3_dist( v3f a, v3f b )
393 {
394 return sqrtf( v3_dist2( a, b ) );
395 }
396
397 static inline void v3_normalize( v3f a )
398 {
399 v3_muls( a, 1.f / v3_length( a ), a );
400 }
401
402 static inline f32 vg_lerpf( f32 a, f32 b, f32 t )
403 {
404 return a + t*(b-a);
405 }
406
407 static inline f64 vg_lerp( f64 a, f64 b, f64 t )
408 {
409 return a + t*(b-a);
410 }
411
412 /* correctly lerp around circular period -pi -> pi */
413 static f32 vg_alerpf( f32 a, f32 b, f32 t )
414 {
415 f32 d = fmodf( b-a, VG_TAUf ),
416 s = fmodf( 2.0f*d, VG_TAUf ) - d;
417 return a + s*t;
418 }
419
420 static inline void v3_lerp( v3f a, v3f b, f32 t, v3f d )
421 {
422 d[0] = a[0] + t*(b[0]-a[0]);
423 d[1] = a[1] + t*(b[1]-a[1]);
424 d[2] = a[2] + t*(b[2]-a[2]);
425 }
426
427 static inline void v3_minv( v3f a, v3f b, v3f dest )
428 {
429 dest[0] = vg_minf(a[0], b[0]);
430 dest[1] = vg_minf(a[1], b[1]);
431 dest[2] = vg_minf(a[2], b[2]);
432 }
433
434 static inline void v3_maxv( v3f a, v3f b, v3f dest )
435 {
436 dest[0] = vg_maxf(a[0], b[0]);
437 dest[1] = vg_maxf(a[1], b[1]);
438 dest[2] = vg_maxf(a[2], b[2]);
439 }
440
441 static inline f32 v3_minf( v3f a )
442 {
443 return vg_minf( vg_minf( a[0], a[1] ), a[2] );
444 }
445
446 static inline f32 v3_maxf( v3f a )
447 {
448 return vg_maxf( vg_maxf( a[0], a[1] ), a[2] );
449 }
450
451 static inline void v3_floor( v3f a, v3f b )
452 {
453 b[0] = floorf( a[0] );
454 b[1] = floorf( a[1] );
455 b[2] = floorf( a[2] );
456 }
457
458 static inline void v3_ceil( v3f a, v3f b )
459 {
460 b[0] = ceilf( a[0] );
461 b[1] = ceilf( a[1] );
462 b[2] = ceilf( a[2] );
463 }
464
465 static inline void v3_negate( v3f a, v3f b )
466 {
467 b[0] = -a[0];
468 b[1] = -a[1];
469 b[2] = -a[2];
470 }
471
472 static inline void v3_rotate( v3f v, f32 angle, v3f axis, v3f d )
473 {
474 v3f v1, v2, k;
475 f32 c, s;
476
477 c = cosf( angle );
478 s = sinf( angle );
479
480 v3_copy( axis, k );
481 v3_normalize( k );
482 v3_muls( v, c, v1 );
483 v3_cross( k, v, v2 );
484 v3_muls( v2, s, v2 );
485 v3_add( v1, v2, v1 );
486 v3_muls( k, v3_dot(k, v) * (1.0f - c), v2);
487 v3_add( v1, v2, d );
488 }
489
490 static void v3_tangent_basis( v3f n, v3f tx, v3f ty ){
491 /* Compute tangent basis (box2d) */
492 if( fabsf( n[0] ) >= 0.57735027f ){
493 tx[0] = n[1];
494 tx[1] = -n[0];
495 tx[2] = 0.0f;
496 }
497 else{
498 tx[0] = 0.0f;
499 tx[1] = n[2];
500 tx[2] = -n[1];
501 }
502
503 v3_normalize( tx );
504 v3_cross( n, tx, ty );
505 }
506
507
508 /*
509 * -----------------------------------------------------------------------------
510 * Section 2.c 4D Vectors
511 * -----------------------------------------------------------------------------
512 */
513
514 static inline void v4_copy( v4f a, v4f b )
515 {
516 b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];
517 }
518
519 static inline void v4_add( v4f a, v4f b, v4f d )
520 {
521 d[0] = a[0]+b[0];
522 d[1] = a[1]+b[1];
523 d[2] = a[2]+b[2];
524 d[3] = a[3]+b[3];
525 }
526
527 static inline void v4_zero( v4f a )
528 {
529 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f; a[3] = 0.f;
530 }
531
532 static inline void v4_muls( v4f a, f32 s, v4f d )
533 {
534 d[0] = a[0]*s;
535 d[1] = a[1]*s;
536 d[2] = a[2]*s;
537 d[3] = a[3]*s;
538 }
539
540 static inline void v4_muladds( v4f a, v4f b, f32 s, v4f d )
541 {
542 d[0] = a[0]+b[0]*s;
543 d[1] = a[1]+b[1]*s;
544 d[2] = a[2]+b[2]*s;
545 d[3] = a[3]+b[3]*s;
546 }
547
548 static inline void v4_lerp( v4f a, v4f b, f32 t, v4f d )
549 {
550 d[0] = a[0] + t*(b[0]-a[0]);
551 d[1] = a[1] + t*(b[1]-a[1]);
552 d[2] = a[2] + t*(b[2]-a[2]);
553 d[3] = a[3] + t*(b[3]-a[3]);
554 }
555
556 static inline f32 v4_dot( v4f a, v4f b )
557 {
558 return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
559 }
560
561 static inline f32 v4_length( v4f a )
562 {
563 return sqrtf( v4_dot(a,a) );
564 }
565
566 /*
567 * -----------------------------------------------------------------------------
568 * Section 3 Quaternions
569 * -----------------------------------------------------------------------------
570 */
571
572 static inline void q_identity( v4f q )
573 {
574 q[0] = 0.0f; q[1] = 0.0f; q[2] = 0.0f; q[3] = 1.0f;
575 }
576
577 static inline void q_axis_angle( v4f q, v3f axis, f32 angle )
578 {
579 f32 a = angle*0.5f,
580 c = cosf(a),
581 s = sinf(a);
582
583 q[0] = s*axis[0];
584 q[1] = s*axis[1];
585 q[2] = s*axis[2];
586 q[3] = c;
587 }
588
589 static inline void q_mul( v4f q, v4f q1, v4f d )
590 {
591 v4f t;
592 t[0] = q[3]*q1[0] + q[0]*q1[3] + q[1]*q1[2] - q[2]*q1[1];
593 t[1] = q[3]*q1[1] - q[0]*q1[2] + q[1]*q1[3] + q[2]*q1[0];
594 t[2] = q[3]*q1[2] + q[0]*q1[1] - q[1]*q1[0] + q[2]*q1[3];
595 t[3] = q[3]*q1[3] - q[0]*q1[0] - q[1]*q1[1] - q[2]*q1[2];
596 v4_copy( t, d );
597 }
598
599 static inline void q_normalize( v4f q )
600 {
601 f32 l2 = v4_dot(q,q);
602 if( l2 < 0.00001f ) q_identity( q );
603 else {
604 f32 s = 1.0f/sqrtf(l2);
605 q[0] *= s;
606 q[1] *= s;
607 q[2] *= s;
608 q[3] *= s;
609 }
610 }
611
612 static inline void q_inv( v4f q, v4f d )
613 {
614 f32 s = 1.0f / v4_dot(q,q);
615 d[0] = -q[0]*s;
616 d[1] = -q[1]*s;
617 d[2] = -q[2]*s;
618 d[3] = q[3]*s;
619 }
620
621 static inline void q_nlerp( v4f a, v4f b, f32 t, v4f d )
622 {
623 if( v4_dot(a,b) < 0.0f ){
624 v4_muls( b, -1.0f, d );
625 v4_lerp( a, d, t, d );
626 }
627 else
628 v4_lerp( a, b, t, d );
629
630 q_normalize( d );
631 }
632
633 static inline void q_m3x3( v4f q, m3x3f d )
634 {
635 f32
636 l = v4_length(q),
637 s = l > 0.0f? 2.0f/l: 0.0f,
638
639 xx = s*q[0]*q[0], xy = s*q[0]*q[1], wx = s*q[3]*q[0],
640 yy = s*q[1]*q[1], yz = s*q[1]*q[2], wy = s*q[3]*q[1],
641 zz = s*q[2]*q[2], xz = s*q[0]*q[2], wz = s*q[3]*q[2];
642
643 d[0][0] = 1.0f - yy - zz;
644 d[1][1] = 1.0f - xx - zz;
645 d[2][2] = 1.0f - xx - yy;
646 d[0][1] = xy + wz;
647 d[1][2] = yz + wx;
648 d[2][0] = xz + wy;
649 d[1][0] = xy - wz;
650 d[2][1] = yz - wx;
651 d[0][2] = xz - wy;
652 }
653
654 static void q_mulv( v4f q, v3f v, v3f d )
655 {
656 v3f v1, v2;
657
658 v3_muls( q, 2.0f*v3_dot(q,v), v1 );
659 v3_muls( v, q[3]*q[3] - v3_dot(q,q), v2 );
660 v3_add( v1, v2, v1 );
661 v3_cross( q, v, v2 );
662 v3_muls( v2, 2.0f*q[3], v2 );
663 v3_add( v1, v2, d );
664 }
665
666 /*
667 * -----------------------------------------------------------------------------
668 * Section 4.a 2x2 matrices
669 * -----------------------------------------------------------------------------
670 */
671
672 #define M2X2_INDENTIY {{1.0f, 0.0f, }, \
673 {0.0f, 1.0f, }}
674
675 #define M2X2_ZERO {{0.0f, 0.0f, }, \
676 {0.0f, 0.0f, }}
677
678 static inline void m2x2_copy( m2x2f a, m2x2f b )
679 {
680 v2_copy( a[0], b[0] );
681 v2_copy( a[1], b[1] );
682 }
683
684 static inline void m2x2_identity( m2x2f a )
685 {
686 m2x2f id = M2X2_INDENTIY;
687 m2x2_copy( id, a );
688 }
689
690 static inline void m2x2_create_rotation( m2x2f a, f32 theta )
691 {
692 f32 s, c;
693
694 s = sinf( theta );
695 c = cosf( theta );
696
697 a[0][0] = c;
698 a[0][1] = -s;
699 a[1][0] = s;
700 a[1][1] = c;
701 }
702
703 /*
704 * -----------------------------------------------------------------------------
705 * Section 4.b 3x3 matrices
706 * -----------------------------------------------------------------------------
707 */
708
709 #define M3X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
710 { 0.0f, 1.0f, 0.0f, },\
711 { 0.0f, 0.0f, 1.0f, }}
712
713 #define M3X3_ZERO {{0.0f, 0.0f, 0.0f, },\
714 { 0.0f, 0.0f, 0.0f, },\
715 { 0.0f, 0.0f, 0.0f, }}
716
717
718 static void euler_m3x3( v3f angles, m3x3f d )
719 {
720 f32 cosY = cosf( angles[0] ),
721 sinY = sinf( angles[0] ),
722 cosP = cosf( angles[1] ),
723 sinP = sinf( angles[1] ),
724 cosR = cosf( angles[2] ),
725 sinR = sinf( angles[2] );
726
727 d[2][0] = -sinY * cosP;
728 d[2][1] = sinP;
729 d[2][2] = cosY * cosP;
730
731 d[0][0] = cosY * cosR;
732 d[0][1] = sinR;
733 d[0][2] = sinY * cosR;
734
735 v3_cross( d[0], d[2], d[1] );
736 }
737
738 static void m3x3_q( m3x3f m, v4f q )
739 {
740 f32 diag, r, rinv;
741
742 diag = m[0][0] + m[1][1] + m[2][2];
743 if( diag >= 0.0f )
744 {
745 r = sqrtf( 1.0f + diag );
746 rinv = 0.5f / r;
747 q[0] = rinv * (m[1][2] - m[2][1]);
748 q[1] = rinv * (m[2][0] - m[0][2]);
749 q[2] = rinv * (m[0][1] - m[1][0]);
750 q[3] = r * 0.5f;
751 }
752 else if( m[0][0] >= m[1][1] && m[0][0] >= m[2][2] )
753 {
754 r = sqrtf( 1.0f - m[1][1] - m[2][2] + m[0][0] );
755 rinv = 0.5f / r;
756 q[0] = r * 0.5f;
757 q[1] = rinv * (m[0][1] + m[1][0]);
758 q[2] = rinv * (m[0][2] + m[2][0]);
759 q[3] = rinv * (m[1][2] - m[2][1]);
760 }
761 else if( m[1][1] >= m[2][2] )
762 {
763 r = sqrtf( 1.0f - m[0][0] - m[2][2] + m[1][1] );
764 rinv = 0.5f / r;
765 q[0] = rinv * (m[0][1] + m[1][0]);
766 q[1] = r * 0.5f;
767 q[2] = rinv * (m[1][2] + m[2][1]);
768 q[3] = rinv * (m[2][0] - m[0][2]);
769 }
770 else
771 {
772 r = sqrtf( 1.0f - m[0][0] - m[1][1] + m[2][2] );
773 rinv = 0.5f / r;
774 q[0] = rinv * (m[0][2] + m[2][0]);
775 q[1] = rinv * (m[1][2] + m[2][1]);
776 q[2] = r * 0.5f;
777 q[3] = rinv * (m[0][1] - m[1][0]);
778 }
779 }
780
781 /* a X b == [b]T a == ...*/
782 static void m3x3_skew_symetric( m3x3f a, v3f v )
783 {
784 a[0][0] = 0.0f;
785 a[0][1] = v[2];
786 a[0][2] = -v[1];
787 a[1][0] = -v[2];
788 a[1][1] = 0.0f;
789 a[1][2] = v[0];
790 a[2][0] = v[1];
791 a[2][1] = -v[0];
792 a[2][2] = 0.0f;
793 }
794
795 static void m3x3_add( m3x3f a, m3x3f b, m3x3f d )
796 {
797 v3_add( a[0], b[0], d[0] );
798 v3_add( a[1], b[1], d[1] );
799 v3_add( a[2], b[2], d[2] );
800 }
801
802 static inline void m3x3_copy( m3x3f a, m3x3f b )
803 {
804 v3_copy( a[0], b[0] );
805 v3_copy( a[1], b[1] );
806 v3_copy( a[2], b[2] );
807 }
808
809 static inline void m3x3_identity( m3x3f a )
810 {
811 m3x3f id = M3X3_IDENTITY;
812 m3x3_copy( id, a );
813 }
814
815 static void m3x3_diagonal( m3x3f a, f32 v )
816 {
817 m3x3_identity( a );
818 a[0][0] = v;
819 a[1][1] = v;
820 a[2][2] = v;
821 }
822
823 static void m3x3_setdiagonalv3( m3x3f a, v3f v )
824 {
825 a[0][0] = v[0];
826 a[1][1] = v[1];
827 a[2][2] = v[2];
828 }
829
830 static inline void m3x3_zero( m3x3f a )
831 {
832 m3x3f z = M3X3_ZERO;
833 m3x3_copy( z, a );
834 }
835
836 static inline void m3x3_inv( m3x3f src, m3x3f dest )
837 {
838 f32 a = src[0][0], b = src[0][1], c = src[0][2],
839 d = src[1][0], e = src[1][1], f = src[1][2],
840 g = src[2][0], h = src[2][1], i = src[2][2];
841
842 f32 det = 1.f /
843 (+a*(e*i-h*f)
844 -b*(d*i-f*g)
845 +c*(d*h-e*g));
846
847 dest[0][0] = (e*i-h*f)*det;
848 dest[0][1] = -(b*i-c*h)*det;
849 dest[0][2] = (b*f-c*e)*det;
850 dest[1][0] = -(d*i-f*g)*det;
851 dest[1][1] = (a*i-c*g)*det;
852 dest[1][2] = -(a*f-d*c)*det;
853 dest[2][0] = (d*h-g*e)*det;
854 dest[2][1] = -(a*h-g*b)*det;
855 dest[2][2] = (a*e-d*b)*det;
856 }
857
858 static f32 m3x3_det( m3x3f m )
859 {
860 return m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])
861 - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
862 + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
863 }
864
865 static inline void m3x3_transpose( m3x3f src, m3x3f dest )
866 {
867 f32 a = src[0][0], b = src[0][1], c = src[0][2],
868 d = src[1][0], e = src[1][1], f = src[1][2],
869 g = src[2][0], h = src[2][1], i = src[2][2];
870
871 dest[0][0] = a;
872 dest[0][1] = d;
873 dest[0][2] = g;
874 dest[1][0] = b;
875 dest[1][1] = e;
876 dest[1][2] = h;
877 dest[2][0] = c;
878 dest[2][1] = f;
879 dest[2][2] = i;
880 }
881
882 static inline void m3x3_mul( m3x3f a, m3x3f b, m3x3f d )
883 {
884 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
885 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
886 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
887
888 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
889 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
890 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2];
891
892 d[0][0] = a00*b00 + a10*b01 + a20*b02;
893 d[0][1] = a01*b00 + a11*b01 + a21*b02;
894 d[0][2] = a02*b00 + a12*b01 + a22*b02;
895 d[1][0] = a00*b10 + a10*b11 + a20*b12;
896 d[1][1] = a01*b10 + a11*b11 + a21*b12;
897 d[1][2] = a02*b10 + a12*b11 + a22*b12;
898 d[2][0] = a00*b20 + a10*b21 + a20*b22;
899 d[2][1] = a01*b20 + a11*b21 + a21*b22;
900 d[2][2] = a02*b20 + a12*b21 + a22*b22;
901 }
902
903 static inline void m3x3_mulv( m3x3f m, v3f v, v3f d )
904 {
905 v3f res;
906
907 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
908 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
909 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
910
911 v3_copy( res, d );
912 }
913
914 static inline void m3x3_projection( m3x3f dst,
915 f32 const left, f32 const right, f32 const bottom, f32 const top )
916 {
917 f32 rl, tb;
918
919 m3x3_zero( dst );
920
921 rl = 1.0f / (right - left);
922 tb = 1.0f / (top - bottom);
923
924 dst[0][0] = 2.0f * rl;
925 dst[1][1] = 2.0f * tb;
926 dst[2][2] = 1.0f;
927 }
928
929 static inline void m3x3_translate( m3x3f m, v3f v )
930 {
931 m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0];
932 m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1];
933 m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2];
934 }
935
936 static inline void m3x3_scale( m3x3f m, v3f v )
937 {
938 v3_muls( m[0], v[0], m[0] );
939 v3_muls( m[1], v[1], m[1] );
940 v3_muls( m[2], v[2], m[2] );
941 }
942
943 static inline void m3x3_scalef( m3x3f m, f32 f )
944 {
945 v3f v;
946 v3_fill( v, f );
947 m3x3_scale( m, v );
948 }
949
950 static inline void m3x3_rotate( m3x3f m, f32 angle )
951 {
952 f32 m00 = m[0][0], m10 = m[1][0],
953 m01 = m[0][1], m11 = m[1][1],
954 m02 = m[0][2], m12 = m[1][2];
955 f32 c, s;
956
957 s = sinf( angle );
958 c = cosf( angle );
959
960 m[0][0] = m00 * c + m10 * s;
961 m[0][1] = m01 * c + m11 * s;
962 m[0][2] = m02 * c + m12 * s;
963
964 m[1][0] = m00 * -s + m10 * c;
965 m[1][1] = m01 * -s + m11 * c;
966 m[1][2] = m02 * -s + m12 * c;
967 }
968
969 /*
970 * -----------------------------------------------------------------------------
971 * Section 4.c 4x3 matrices
972 * -----------------------------------------------------------------------------
973 */
974
975 #define M4X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
976 { 0.0f, 1.0f, 0.0f, },\
977 { 0.0f, 0.0f, 1.0f, },\
978 { 0.0f, 0.0f, 0.0f }}
979
980 static inline void m4x3_to_3x3( m4x3f a, m3x3f b )
981 {
982 v3_copy( a[0], b[0] );
983 v3_copy( a[1], b[1] );
984 v3_copy( a[2], b[2] );
985 }
986
987 static inline void m4x3_invert_affine( m4x3f a, m4x3f b )
988 {
989 m3x3_transpose( a, b );
990 m3x3_mulv( b, a[3], b[3] );
991 v3_negate( b[3], b[3] );
992 }
993
994 static void m4x3_invert_full( m4x3f src, m4x3f dst )
995 {
996 f32 t2, t4, t5,
997 det,
998 a = src[0][0], b = src[0][1], c = src[0][2],
999 e = src[1][0], f = src[1][1], g = src[1][2],
1000 i = src[2][0], j = src[2][1], k = src[2][2],
1001 m = src[3][0], n = src[3][1], o = src[3][2];
1002
1003 t2 = j*o - n*k;
1004 t4 = i*o - m*k;
1005 t5 = i*n - m*j;
1006
1007 dst[0][0] = f*k - g*j;
1008 dst[1][0] =-(e*k - g*i);
1009 dst[2][0] = e*j - f*i;
1010 dst[3][0] =-(e*t2 - f*t4 + g*t5);
1011
1012 dst[0][1] =-(b*k - c*j);
1013 dst[1][1] = a*k - c*i;
1014 dst[2][1] =-(a*j - b*i);
1015 dst[3][1] = a*t2 - b*t4 + c*t5;
1016
1017 t2 = f*o - n*g;
1018 t4 = e*o - m*g;
1019 t5 = e*n - m*f;
1020
1021 dst[0][2] = b*g - c*f ;
1022 dst[1][2] =-(a*g - c*e );
1023 dst[2][2] = a*f - b*e ;
1024 dst[3][2] =-(a*t2 - b*t4 + c * t5);
1025
1026 det = 1.0f / (a * dst[0][0] + b * dst[1][0] + c * dst[2][0]);
1027 v3_muls( dst[0], det, dst[0] );
1028 v3_muls( dst[1], det, dst[1] );
1029 v3_muls( dst[2], det, dst[2] );
1030 v3_muls( dst[3], det, dst[3] );
1031 }
1032
1033 static inline void m4x3_copy( m4x3f a, m4x3f b )
1034 {
1035 v3_copy( a[0], b[0] );
1036 v3_copy( a[1], b[1] );
1037 v3_copy( a[2], b[2] );
1038 v3_copy( a[3], b[3] );
1039 }
1040
1041 static inline void m4x3_identity( m4x3f a )
1042 {
1043 m4x3f id = M4X3_IDENTITY;
1044 m4x3_copy( id, a );
1045 }
1046
1047 static void m4x3_mul( m4x3f a, m4x3f b, m4x3f d )
1048 {
1049 f32
1050 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
1051 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
1052 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
1053 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2],
1054 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
1055 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
1056 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2],
1057 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2];
1058
1059 d[0][0] = a00*b00 + a10*b01 + a20*b02;
1060 d[0][1] = a01*b00 + a11*b01 + a21*b02;
1061 d[0][2] = a02*b00 + a12*b01 + a22*b02;
1062 d[1][0] = a00*b10 + a10*b11 + a20*b12;
1063 d[1][1] = a01*b10 + a11*b11 + a21*b12;
1064 d[1][2] = a02*b10 + a12*b11 + a22*b12;
1065 d[2][0] = a00*b20 + a10*b21 + a20*b22;
1066 d[2][1] = a01*b20 + a11*b21 + a21*b22;
1067 d[2][2] = a02*b20 + a12*b21 + a22*b22;
1068 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30;
1069 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31;
1070 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32;
1071 }
1072
1073 #if 0 /* shat appf mingw wstringop-overflow */
1074 inline
1075 #endif
1076 static void m4x3_mulv( m4x3f m, v3f v, v3f d )
1077 {
1078 v3f res;
1079
1080 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0];
1081 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1];
1082 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2];
1083
1084 v3_copy( res, d );
1085 }
1086
1087 /*
1088 * Transform plane ( xyz, distance )
1089 */
1090 static void m4x3_mulp( m4x3f m, v4f p, v4f d )
1091 {
1092 v3f o;
1093
1094 v3_muls( p, p[3], o );
1095 m4x3_mulv( m, o, o );
1096 m3x3_mulv( m, p, d );
1097
1098 d[3] = v3_dot( o, d );
1099 }
1100
1101 /*
1102 * Affine transforms
1103 */
1104
1105 static void m4x3_translate( m4x3f m, v3f v )
1106 {
1107 v3_muladds( m[3], m[0], v[0], m[3] );
1108 v3_muladds( m[3], m[1], v[1], m[3] );
1109 v3_muladds( m[3], m[2], v[2], m[3] );
1110 }
1111
1112 static void m4x3_rotate_x( m4x3f m, f32 angle )
1113 {
1114 m4x3f t = M4X3_IDENTITY;
1115 f32 c, s;
1116
1117 c = cosf( angle );
1118 s = sinf( angle );
1119
1120 t[1][1] = c;
1121 t[1][2] = s;
1122 t[2][1] = -s;
1123 t[2][2] = c;
1124
1125 m4x3_mul( m, t, m );
1126 }
1127
1128 static void m4x3_rotate_y( m4x3f m, f32 angle )
1129 {
1130 m4x3f t = M4X3_IDENTITY;
1131 f32 c, s;
1132
1133 c = cosf( angle );
1134 s = sinf( angle );
1135
1136 t[0][0] = c;
1137 t[0][2] = -s;
1138 t[2][0] = s;
1139 t[2][2] = c;
1140
1141 m4x3_mul( m, t, m );
1142 }
1143
1144 static void m4x3_rotate_z( m4x3f m, f32 angle )
1145 {
1146 m4x3f t = M4X3_IDENTITY;
1147 f32 c, s;
1148
1149 c = cosf( angle );
1150 s = sinf( angle );
1151
1152 t[0][0] = c;
1153 t[0][1] = s;
1154 t[1][0] = -s;
1155 t[1][1] = c;
1156
1157 m4x3_mul( m, t, m );
1158 }
1159
1160 static void m4x3_expand( m4x3f m, m4x4f d )
1161 {
1162 v3_copy( m[0], d[0] );
1163 v3_copy( m[1], d[1] );
1164 v3_copy( m[2], d[2] );
1165 v3_copy( m[3], d[3] );
1166 d[0][3] = 0.0f;
1167 d[1][3] = 0.0f;
1168 d[2][3] = 0.0f;
1169 d[3][3] = 1.0f;
1170 }
1171
1172 static void m4x3_decompose( m4x3f m, v3f co, v4f q, v3f s )
1173 {
1174 v3_copy( m[3], co );
1175 s[0] = v3_length(m[0]);
1176 s[1] = v3_length(m[1]);
1177 s[2] = v3_length(m[2]);
1178
1179 m3x3f rot;
1180 v3_divs( m[0], s[0], rot[0] );
1181 v3_divs( m[1], s[1], rot[1] );
1182 v3_divs( m[2], s[2], rot[2] );
1183
1184 m3x3_q( rot, q );
1185 }
1186
1187 static void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point )
1188 {
1189 v3f v;
1190 m4x3_mulv( m, point, v );
1191
1192 v3_minv( box[0], v, box[0] );
1193 v3_maxv( box[1], v, box[1] );
1194 }
1195
1196 static void m4x3_transform_aabb( m4x3f m, boxf box )
1197 {
1198 v3f a; v3f b;
1199
1200 v3_copy( box[0], a );
1201 v3_copy( box[1], b );
1202 v3_fill( box[0], INFINITY );
1203 v3_fill( box[1], -INFINITY );
1204
1205 m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], a[2] } );
1206 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], a[2] } );
1207 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], a[2] } );
1208 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], a[2] } );
1209
1210 m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], b[2] } );
1211 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], b[2] } );
1212 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], b[2] } );
1213 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], b[2] } );
1214 }
1215
1216 static inline void m4x3_lookat( m4x3f m, v3f pos, v3f target, v3f up )
1217 {
1218 v3f dir;
1219 v3_sub( target, pos, dir );
1220 v3_normalize( dir );
1221
1222 v3_copy( dir, m[2] );
1223
1224 v3_cross( up, m[2], m[0] );
1225 v3_normalize( m[0] );
1226
1227 v3_cross( m[2], m[0], m[1] );
1228 v3_copy( pos, m[3] );
1229 }
1230
1231 /*
1232 * -----------------------------------------------------------------------------
1233 * Section 4.d 4x4 matrices
1234 * -----------------------------------------------------------------------------
1235 */
1236
1237 #define M4X4_IDENTITY {{1.0f, 0.0f, 0.0f, 0.0f },\
1238 { 0.0f, 1.0f, 0.0f, 0.0f },\
1239 { 0.0f, 0.0f, 1.0f, 0.0f },\
1240 { 0.0f, 0.0f, 0.0f, 1.0f }}
1241 #define M4X4_ZERO {{0.0f, 0.0f, 0.0f, 0.0f },\
1242 { 0.0f, 0.0f, 0.0f, 0.0f },\
1243 { 0.0f, 0.0f, 0.0f, 0.0f },\
1244 { 0.0f, 0.0f, 0.0f, 0.0f }}
1245
1246 static void m4x4_projection( m4x4f m, f32 angle,
1247 f32 ratio, f32 fnear, f32 ffar )
1248 {
1249 f32 scale = tanf( angle * 0.5f * VG_PIf / 180.0f ) * fnear,
1250 r = ratio * scale,
1251 l = -r,
1252 t = scale,
1253 b = -t;
1254
1255 m[0][0] = 2.0f * fnear / (r - l);
1256 m[0][1] = 0.0f;
1257 m[0][2] = 0.0f;
1258 m[0][3] = 0.0f;
1259
1260 m[1][0] = 0.0f;
1261 m[1][1] = 2.0f * fnear / (t - b);
1262 m[1][2] = 0.0f;
1263 m[1][3] = 0.0f;
1264
1265 m[2][0] = (r + l) / (r - l);
1266 m[2][1] = (t + b) / (t - b);
1267 m[2][2] = -(ffar + fnear) / (ffar - fnear);
1268 m[2][3] = -1.0f;
1269
1270 m[3][0] = 0.0f;
1271 m[3][1] = 0.0f;
1272 m[3][2] = -2.0f * ffar * fnear / (ffar - fnear);
1273 m[3][3] = 0.0f;
1274 }
1275
1276 static void m4x4_translate( m4x4f m, v3f v )
1277 {
1278 v4_muladds( m[3], m[0], v[0], m[3] );
1279 v4_muladds( m[3], m[1], v[1], m[3] );
1280 v4_muladds( m[3], m[2], v[2], m[3] );
1281 }
1282
1283 static inline void m4x4_copy( m4x4f a, m4x4f b )
1284 {
1285 v4_copy( a[0], b[0] );
1286 v4_copy( a[1], b[1] );
1287 v4_copy( a[2], b[2] );
1288 v4_copy( a[3], b[3] );
1289 }
1290
1291 static inline void m4x4_identity( m4x4f a )
1292 {
1293 m4x4f id = M4X4_IDENTITY;
1294 m4x4_copy( id, a );
1295 }
1296
1297 static inline void m4x4_zero( m4x4f a )
1298 {
1299 m4x4f zero = M4X4_ZERO;
1300 m4x4_copy( zero, a );
1301 }
1302
1303 static inline void m4x4_mul( m4x4f a, m4x4f b, m4x4f d )
1304 {
1305 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1306 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1307 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1308 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1309
1310 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2], b03 = b[0][3],
1311 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2], b13 = b[1][3],
1312 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2], b23 = b[2][3],
1313 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2], b33 = b[3][3];
1314
1315 d[0][0] = a00*b00 + a10*b01 + a20*b02 + a30*b03;
1316 d[0][1] = a01*b00 + a11*b01 + a21*b02 + a31*b03;
1317 d[0][2] = a02*b00 + a12*b01 + a22*b02 + a32*b03;
1318 d[0][3] = a03*b00 + a13*b01 + a23*b02 + a33*b03;
1319 d[1][0] = a00*b10 + a10*b11 + a20*b12 + a30*b13;
1320 d[1][1] = a01*b10 + a11*b11 + a21*b12 + a31*b13;
1321 d[1][2] = a02*b10 + a12*b11 + a22*b12 + a32*b13;
1322 d[1][3] = a03*b10 + a13*b11 + a23*b12 + a33*b13;
1323 d[2][0] = a00*b20 + a10*b21 + a20*b22 + a30*b23;
1324 d[2][1] = a01*b20 + a11*b21 + a21*b22 + a31*b23;
1325 d[2][2] = a02*b20 + a12*b21 + a22*b22 + a32*b23;
1326 d[2][3] = a03*b20 + a13*b21 + a23*b22 + a33*b23;
1327 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30*b33;
1328 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31*b33;
1329 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32*b33;
1330 d[3][3] = a03*b30 + a13*b31 + a23*b32 + a33*b33;
1331 }
1332
1333 static inline void m4x4_mulv( m4x4f m, v4f v, v4f d )
1334 {
1335 v4f res;
1336
1337 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3];
1338 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3];
1339 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3];
1340 res[3] = m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3];
1341
1342 v4_copy( res, d );
1343 }
1344
1345 static inline void m4x4_inv( m4x4f a, m4x4f d )
1346 {
1347 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1348 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1349 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1350 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1351 det,
1352 t[6];
1353
1354 t[0] = a22*a33 - a32*a23;
1355 t[1] = a21*a33 - a31*a23;
1356 t[2] = a21*a32 - a31*a22;
1357 t[3] = a20*a33 - a30*a23;
1358 t[4] = a20*a32 - a30*a22;
1359 t[5] = a20*a31 - a30*a21;
1360
1361 d[0][0] = a11*t[0] - a12*t[1] + a13*t[2];
1362 d[1][0] =-(a10*t[0] - a12*t[3] + a13*t[4]);
1363 d[2][0] = a10*t[1] - a11*t[3] + a13*t[5];
1364 d[3][0] =-(a10*t[2] - a11*t[4] + a12*t[5]);
1365
1366 d[0][1] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1367 d[1][1] = a00*t[0] - a02*t[3] + a03*t[4];
1368 d[2][1] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1369 d[3][1] = a00*t[2] - a01*t[4] + a02*t[5];
1370
1371 t[0] = a12*a33 - a32*a13;
1372 t[1] = a11*a33 - a31*a13;
1373 t[2] = a11*a32 - a31*a12;
1374 t[3] = a10*a33 - a30*a13;
1375 t[4] = a10*a32 - a30*a12;
1376 t[5] = a10*a31 - a30*a11;
1377
1378 d[0][2] = a01*t[0] - a02*t[1] + a03*t[2];
1379 d[1][2] =-(a00*t[0] - a02*t[3] + a03*t[4]);
1380 d[2][2] = a00*t[1] - a01*t[3] + a03*t[5];
1381 d[3][2] =-(a00*t[2] - a01*t[4] + a02*t[5]);
1382
1383 t[0] = a12*a23 - a22*a13;
1384 t[1] = a11*a23 - a21*a13;
1385 t[2] = a11*a22 - a21*a12;
1386 t[3] = a10*a23 - a20*a13;
1387 t[4] = a10*a22 - a20*a12;
1388 t[5] = a10*a21 - a20*a11;
1389
1390 d[0][3] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1391 d[1][3] = a00*t[0] - a02*t[3] + a03*t[4];
1392 d[2][3] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1393 d[3][3] = a00*t[2] - a01*t[4] + a02*t[5];
1394
1395 det = 1.0f / (a00*d[0][0] + a01*d[1][0] + a02*d[2][0] + a03*d[3][0]);
1396 v4_muls( d[0], det, d[0] );
1397 v4_muls( d[1], det, d[1] );
1398 v4_muls( d[2], det, d[2] );
1399 v4_muls( d[3], det, d[3] );
1400 }
1401
1402 /*
1403 * -----------------------------------------------------------------------------
1404 * Section 5.a Boxes
1405 * -----------------------------------------------------------------------------
1406 */
1407
1408 static inline void box_addpt( boxf a, v3f pt )
1409 {
1410 v3_minv( a[0], pt, a[0] );
1411 v3_maxv( a[1], pt, a[1] );
1412 }
1413
1414 static inline void box_concat( boxf a, boxf b )
1415 {
1416 v3_minv( a[0], b[0], a[0] );
1417 v3_maxv( a[1], b[1], a[1] );
1418 }
1419
1420 static inline void box_copy( boxf a, boxf b )
1421 {
1422 v3_copy( a[0], b[0] );
1423 v3_copy( a[1], b[1] );
1424 }
1425
1426 static inline int box_overlap( boxf a, boxf b )
1427 {
1428 return
1429 ( a[0][0] <= b[1][0] && a[1][0] >= b[0][0] ) &&
1430 ( a[0][1] <= b[1][1] && a[1][1] >= b[0][1] ) &&
1431 ( a[0][2] <= b[1][2] && a[1][2] >= b[0][2] )
1432 ;
1433 }
1434
1435 static int box_within( boxf greater, boxf lesser )
1436 {
1437 v3f a, b;
1438 v3_sub( lesser[0], greater[0], a );
1439 v3_sub( lesser[1], greater[1], b );
1440
1441 if( (a[0] >= 0.0f) && (a[1] >= 0.0f) && (a[2] >= 0.0f) &&
1442 (b[0] <= 0.0f) && (b[1] <= 0.0f) && (b[2] <= 0.0f) )
1443 {
1444 return 1;
1445 }
1446
1447 return 0;
1448 }
1449
1450 static inline void box_init_inf( boxf box )
1451 {
1452 v3_fill( box[0], INFINITY );
1453 v3_fill( box[1], -INFINITY );
1454 }
1455
1456 /*
1457 * -----------------------------------------------------------------------------
1458 * Section 5.b Planes
1459 * -----------------------------------------------------------------------------
1460 */
1461
1462 static inline void tri_to_plane( f64 a[3], f64 b[3],
1463 f64 c[3], f64 p[4] )
1464 {
1465 f64 edge0[3];
1466 f64 edge1[3];
1467 f64 l;
1468
1469 edge0[0] = b[0] - a[0];
1470 edge0[1] = b[1] - a[1];
1471 edge0[2] = b[2] - a[2];
1472
1473 edge1[0] = c[0] - a[0];
1474 edge1[1] = c[1] - a[1];
1475 edge1[2] = c[2] - a[2];
1476
1477 p[0] = edge0[1] * edge1[2] - edge0[2] * edge1[1];
1478 p[1] = edge0[2] * edge1[0] - edge0[0] * edge1[2];
1479 p[2] = edge0[0] * edge1[1] - edge0[1] * edge1[0];
1480
1481 l = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
1482 p[3] = (p[0] * a[0] + p[1] * a[1] + p[2] * a[2]) / l;
1483
1484 p[0] = p[0] / l;
1485 p[1] = p[1] / l;
1486 p[2] = p[2] / l;
1487 }
1488
1489 static int plane_intersect3( v4f a, v4f b, v4f c, v3f p )
1490 {
1491 f32 const epsilon = 1e-6f;
1492
1493 v3f x;
1494 v3_cross( a, b, x );
1495 f32 d = v3_dot( x, c );
1496
1497 if( (d < epsilon) && (d > -epsilon) ) return 0;
1498
1499 v3f v0, v1, v2;
1500 v3_cross( b, c, v0 );
1501 v3_cross( c, a, v1 );
1502 v3_cross( a, b, v2 );
1503
1504 v3_muls( v0, a[3], p );
1505 v3_muladds( p, v1, b[3], p );
1506 v3_muladds( p, v2, c[3], p );
1507 v3_divs( p, d, p );
1508
1509 return 1;
1510 }
1511
1512 int plane_intersect2( v4f a, v4f b, v3f p, v3f n )
1513 {
1514 f32 const epsilon = 1e-6f;
1515
1516 v4f c;
1517 v3_cross( a, b, c );
1518 f32 d = v3_length2( c );
1519
1520 if( (d < epsilon) && (d > -epsilon) )
1521 return 0;
1522
1523 v3f v0, v1, vx;
1524 v3_cross( c, b, v0 );
1525 v3_cross( a, c, v1 );
1526
1527 v3_muls( v0, a[3], vx );
1528 v3_muladds( vx, v1, b[3], vx );
1529 v3_divs( vx, d, p );
1530 v3_copy( c, n );
1531
1532 return 1;
1533 }
1534
1535 static int plane_segment( v4f plane, v3f a, v3f b, v3f co )
1536 {
1537 f32 d0 = v3_dot( a, plane ) - plane[3],
1538 d1 = v3_dot( b, plane ) - plane[3];
1539
1540 if( d0*d1 < 0.0f )
1541 {
1542 f32 tot = 1.0f/( fabsf(d0)+fabsf(d1) );
1543
1544 v3_muls( a, fabsf(d1) * tot, co );
1545 v3_muladds( co, b, fabsf(d0) * tot, co );
1546 return 1;
1547 }
1548
1549 return 0;
1550 }
1551
1552 static inline f64 plane_polarity( f64 p[4], f64 a[3] )
1553 {
1554 return
1555 (a[0] * p[0] + a[1] * p[1] + a[2] * p[2])
1556 -(p[0]*p[3] * p[0] + p[1]*p[3] * p[1] + p[2]*p[3] * p[2])
1557 ;
1558 }
1559
1560 /*
1561 * -----------------------------------------------------------------------------
1562 * Section 5.c Closest point functions
1563 * -----------------------------------------------------------------------------
1564 */
1565
1566 /*
1567 * These closest point tests were learned from Real-Time Collision Detection by
1568 * Christer Ericson
1569 */
1570 VG_STATIC f32 closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2,
1571 f32 *s, f32 *t, v3f c1, v3f c2)
1572 {
1573 v3f d1,d2,r;
1574 v3_sub( q1, p1, d1 );
1575 v3_sub( q2, p2, d2 );
1576 v3_sub( p1, p2, r );
1577
1578 f32 a = v3_length2( d1 ),
1579 e = v3_length2( d2 ),
1580 f = v3_dot( d2, r );
1581
1582 const f32 kEpsilon = 0.0001f;
1583
1584 if( a <= kEpsilon && e <= kEpsilon )
1585 {
1586 *s = 0.0f;
1587 *t = 0.0f;
1588 v3_copy( p1, c1 );
1589 v3_copy( p2, c2 );
1590
1591 v3f v0;
1592 v3_sub( c1, c2, v0 );
1593
1594 return v3_length2( v0 );
1595 }
1596
1597 if( a<= kEpsilon )
1598 {
1599 *s = 0.0f;
1600 *t = vg_clampf( f / e, 0.0f, 1.0f );
1601 }
1602 else
1603 {
1604 f32 c = v3_dot( d1, r );
1605 if( e <= kEpsilon )
1606 {
1607 *t = 0.0f;
1608 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1609 }
1610 else
1611 {
1612 f32 b = v3_dot(d1,d2),
1613 d = a*e-b*b;
1614
1615 if( d != 0.0f )
1616 {
1617 *s = vg_clampf((b*f - c*e)/d, 0.0f, 1.0f);
1618 }
1619 else
1620 {
1621 *s = 0.0f;
1622 }
1623
1624 *t = (b*(*s)+f) / e;
1625
1626 if( *t < 0.0f )
1627 {
1628 *t = 0.0f;
1629 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1630 }
1631 else if( *t > 1.0f )
1632 {
1633 *t = 1.0f;
1634 *s = vg_clampf((b-c)/a,0.0f,1.0f);
1635 }
1636 }
1637 }
1638
1639 v3_muladds( p1, d1, *s, c1 );
1640 v3_muladds( p2, d2, *t, c2 );
1641
1642 v3f v0;
1643 v3_sub( c1, c2, v0 );
1644 return v3_length2( v0 );
1645 }
1646
1647 VG_STATIC int point_inside_aabb( boxf box, v3f point )
1648 {
1649 if((point[0]<=box[1][0]) && (point[1]<=box[1][1]) && (point[2]<=box[1][2]) &&
1650 (point[0]>=box[0][0]) && (point[1]>=box[0][1]) && (point[2]>=box[0][2]) )
1651 return 1;
1652 else
1653 return 0;
1654 }
1655
1656 VG_STATIC void closest_point_aabb( v3f p, boxf box, v3f dest )
1657 {
1658 v3_maxv( p, box[0], dest );
1659 v3_minv( dest, box[1], dest );
1660 }
1661
1662 VG_STATIC void closest_point_obb( v3f p, boxf box,
1663 m4x3f mtx, m4x3f inv_mtx, v3f dest )
1664 {
1665 v3f local;
1666 m4x3_mulv( inv_mtx, p, local );
1667 closest_point_aabb( local, box, local );
1668 m4x3_mulv( mtx, local, dest );
1669 }
1670
1671 VG_STATIC f32 closest_point_segment( v3f a, v3f b, v3f point, v3f dest )
1672 {
1673 v3f v0, v1;
1674 v3_sub( b, a, v0 );
1675 v3_sub( point, a, v1 );
1676
1677 f32 t = v3_dot( v1, v0 ) / v3_length2(v0);
1678 t = vg_clampf(t,0.0f,1.0f);
1679 v3_muladds( a, v0, t, dest );
1680 return t;
1681 }
1682
1683 VG_STATIC void closest_on_triangle( v3f p, v3f tri[3], v3f dest )
1684 {
1685 v3f ab, ac, ap;
1686 f32 d1, d2;
1687
1688 /* Region outside A */
1689 v3_sub( tri[1], tri[0], ab );
1690 v3_sub( tri[2], tri[0], ac );
1691 v3_sub( p, tri[0], ap );
1692
1693 d1 = v3_dot(ab,ap);
1694 d2 = v3_dot(ac,ap);
1695 if( d1 <= 0.0f && d2 <= 0.0f )
1696 {
1697 v3_copy( tri[0], dest );
1698 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1699 return;
1700 }
1701
1702 /* Region outside B */
1703 v3f bp;
1704 f32 d3, d4;
1705
1706 v3_sub( p, tri[1], bp );
1707 d3 = v3_dot( ab, bp );
1708 d4 = v3_dot( ac, bp );
1709
1710 if( d3 >= 0.0f && d4 <= d3 )
1711 {
1712 v3_copy( tri[1], dest );
1713 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1714 return;
1715 }
1716
1717 /* Edge region of AB */
1718 f32 vc = d1*d4 - d3*d2;
1719 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1720 {
1721 f32 v = d1 / (d1-d3);
1722 v3_muladds( tri[0], ab, v, dest );
1723 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1724 return;
1725 }
1726
1727 /* Region outside C */
1728 v3f cp;
1729 f32 d5, d6;
1730 v3_sub( p, tri[2], cp );
1731 d5 = v3_dot(ab, cp);
1732 d6 = v3_dot(ac, cp);
1733
1734 if( d6 >= 0.0f && d5 <= d6 )
1735 {
1736 v3_copy( tri[2], dest );
1737 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1738 return;
1739 }
1740
1741 /* Region of AC */
1742 f32 vb = d5*d2 - d1*d6;
1743 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1744 {
1745 f32 w = d2 / (d2-d6);
1746 v3_muladds( tri[0], ac, w, dest );
1747 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1748 return;
1749 }
1750
1751 /* Region of BC */
1752 f32 va = d3*d6 - d5*d4;
1753 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1754 {
1755 f32 w = (d4-d3) / ((d4-d3) + (d5-d6));
1756 v3f bc;
1757 v3_sub( tri[2], tri[1], bc );
1758 v3_muladds( tri[1], bc, w, dest );
1759 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1760 return;
1761 }
1762
1763 /* P inside region, Q via barycentric coordinates uvw */
1764 f32 d = 1.0f/(va+vb+vc),
1765 v = vb*d,
1766 w = vc*d;
1767
1768 v3_muladds( tri[0], ab, v, dest );
1769 v3_muladds( dest, ac, w, dest );
1770 }
1771
1772 enum contact_type
1773 {
1774 k_contact_type_default,
1775 k_contact_type_disabled,
1776 k_contact_type_edge
1777 };
1778
1779 VG_STATIC enum contact_type closest_on_triangle_1( v3f p, v3f tri[3], v3f dest )
1780 {
1781 v3f ab, ac, ap;
1782 f32 d1, d2;
1783
1784 /* Region outside A */
1785 v3_sub( tri[1], tri[0], ab );
1786 v3_sub( tri[2], tri[0], ac );
1787 v3_sub( p, tri[0], ap );
1788
1789 d1 = v3_dot(ab,ap);
1790 d2 = v3_dot(ac,ap);
1791 if( d1 <= 0.0f && d2 <= 0.0f )
1792 {
1793 v3_copy( tri[0], dest );
1794 return k_contact_type_default;
1795 }
1796
1797 /* Region outside B */
1798 v3f bp;
1799 f32 d3, d4;
1800
1801 v3_sub( p, tri[1], bp );
1802 d3 = v3_dot( ab, bp );
1803 d4 = v3_dot( ac, bp );
1804
1805 if( d3 >= 0.0f && d4 <= d3 )
1806 {
1807 v3_copy( tri[1], dest );
1808 return k_contact_type_edge;
1809 }
1810
1811 /* Edge region of AB */
1812 f32 vc = d1*d4 - d3*d2;
1813 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1814 {
1815 f32 v = d1 / (d1-d3);
1816 v3_muladds( tri[0], ab, v, dest );
1817 return k_contact_type_edge;
1818 }
1819
1820 /* Region outside C */
1821 v3f cp;
1822 f32 d5, d6;
1823 v3_sub( p, tri[2], cp );
1824 d5 = v3_dot(ab, cp);
1825 d6 = v3_dot(ac, cp);
1826
1827 if( d6 >= 0.0f && d5 <= d6 )
1828 {
1829 v3_copy( tri[2], dest );
1830 return k_contact_type_edge;
1831 }
1832
1833 /* Region of AC */
1834 f32 vb = d5*d2 - d1*d6;
1835 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1836 {
1837 f32 w = d2 / (d2-d6);
1838 v3_muladds( tri[0], ac, w, dest );
1839 return k_contact_type_edge;
1840 }
1841
1842 /* Region of BC */
1843 f32 va = d3*d6 - d5*d4;
1844 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1845 {
1846 f32 w = (d4-d3) / ((d4-d3) + (d5-d6));
1847 v3f bc;
1848 v3_sub( tri[2], tri[1], bc );
1849 v3_muladds( tri[1], bc, w, dest );
1850 return k_contact_type_edge;
1851 }
1852
1853 /* P inside region, Q via barycentric coordinates uvw */
1854 f32 d = 1.0f/(va+vb+vc),
1855 v = vb*d,
1856 w = vc*d;
1857
1858 v3_muladds( tri[0], ab, v, dest );
1859 v3_muladds( dest, ac, w, dest );
1860
1861 return k_contact_type_default;
1862 }
1863
1864 static void closest_point_elipse( v2f p, v2f e, v2f o )
1865 {
1866 v2f pabs, ei, e2, ve, t;
1867
1868 v2_abs( p, pabs );
1869 v2_div( (v2f){ 1.0f, 1.0f }, e, ei );
1870 v2_mul( e, e, e2 );
1871 v2_mul( ei, (v2f){ e2[0]-e2[1], e2[1]-e2[0] }, ve );
1872
1873 v2_fill( t, 0.70710678118654752f );
1874
1875 for( int i=0; i<3; i++ ){
1876 v2f v, u, ud, w;
1877
1878 v2_mul( ve, t, v ); /* ve*t*t*t */
1879 v2_mul( v, t, v );
1880 v2_mul( v, t, v );
1881
1882 v2_sub( pabs, v, u );
1883 v2_normalize( u );
1884
1885 v2_mul( t, e, ud );
1886 v2_sub( ud, v, ud );
1887
1888 v2_muls( u, v2_length( ud ), u );
1889
1890 v2_add( v, u, w );
1891 v2_mul( w, ei, w );
1892
1893 v2_maxv( (v2f){0.0f,0.0f}, w, t );
1894 v2_normalize( t );
1895 }
1896
1897 v2_mul( t, e, o );
1898 v2_copysign( o, p );
1899 }
1900
1901 /*
1902 * -----------------------------------------------------------------------------
1903 * Section 5.d Raycasts & Spherecasts
1904 * -----------------------------------------------------------------------------
1905 */
1906
1907 int ray_aabb1( boxf box, v3f co, v3f dir_inv, f32 dist )
1908 {
1909 v3f v0, v1;
1910 f32 tmin, tmax;
1911
1912 v3_sub( box[0], co, v0 );
1913 v3_sub( box[1], co, v1 );
1914
1915 v3_mul( v0, dir_inv, v0 );
1916 v3_mul( v1, dir_inv, v1 );
1917
1918 tmin = vg_minf( v0[0], v1[0] );
1919 tmax = vg_maxf( v0[0], v1[0] );
1920 tmin = vg_maxf( tmin, vg_minf( v0[1], v1[1] ));
1921 tmax = vg_minf( tmax, vg_maxf( v0[1], v1[1] ));
1922 tmin = vg_maxf( tmin, vg_minf( v0[2], v1[2] ));
1923 tmax = vg_minf( tmax, vg_maxf( v0[2], v1[2] ));
1924
1925 return (tmax >= tmin) && (tmin <= dist) && (tmax >= 0.0f);
1926 }
1927
1928 /* Time of intersection with ray vs triangle */
1929 static int ray_tri( v3f tri[3], v3f co,
1930 v3f dir, f32 *dist )
1931 {
1932 f32 const kEpsilon = 0.00001f;
1933
1934 v3f v0, v1, h, s, q, n;
1935 f32 a,f,u,v,t;
1936
1937 f32 *pa = tri[0],
1938 *pb = tri[1],
1939 *pc = tri[2];
1940
1941 v3_sub( pb, pa, v0 );
1942 v3_sub( pc, pa, v1 );
1943 v3_cross( dir, v1, h );
1944 v3_cross( v0, v1, n );
1945
1946 if( v3_dot( n, dir ) > 0.0f ) /* Backface culling */
1947 return 0;
1948
1949 /* Parralel */
1950 a = v3_dot( v0, h );
1951
1952 if( a > -kEpsilon && a < kEpsilon )
1953 return 0;
1954
1955 f = 1.0f/a;
1956 v3_sub( co, pa, s );
1957
1958 u = f * v3_dot(s, h);
1959 if( u < 0.0f || u > 1.0f )
1960 return 0;
1961
1962 v3_cross( s, v0, q );
1963 v = f * v3_dot( dir, q );
1964 if( v < 0.0f || u+v > 1.0f )
1965 return 0;
1966
1967 t = f * v3_dot(v1, q);
1968 if( t > kEpsilon )
1969 {
1970 *dist = t;
1971 return 1;
1972 }
1973 else return 0;
1974 }
1975
1976 /* time of intersection with ray vs sphere */
1977 static int ray_sphere( v3f c, f32 r,
1978 v3f co, v3f dir, f32 *t )
1979 {
1980 v3f m;
1981 v3_sub( co, c, m );
1982
1983 f32 b = v3_dot( m, dir ),
1984 c1 = v3_dot( m, m ) - r*r;
1985
1986 /* Exit if r’s origin outside s (c > 0) and r pointing away from s (b > 0) */
1987 if( c1 > 0.0f && b > 0.0f )
1988 return 0;
1989
1990 f32 discr = b*b - c1;
1991
1992 /* A negative discriminant corresponds to ray missing sphere */
1993 if( discr < 0.0f )
1994 return 0;
1995
1996 /*
1997 * Ray now found to intersect sphere, compute smallest t value of
1998 * intersection
1999 */
2000 *t = -b - sqrtf( discr );
2001
2002 /* If t is negative, ray started inside sphere so clamp t to zero */
2003 if( *t < 0.0f )
2004 *t = 0.0f;
2005
2006 return 1;
2007 }
2008
2009 /*
2010 * time of intersection of ray vs cylinder
2011 * The cylinder does not have caps but is finite
2012 *
2013 * Heavily adapted from regular segment vs cylinder from:
2014 * Real-Time Collision Detection
2015 */
2016 static int ray_uncapped_finite_cylinder( v3f q, v3f p, f32 r,
2017 v3f co, v3f dir, f32 *t )
2018 {
2019 v3f d, m, n, sb;
2020 v3_muladds( co, dir, 1.0f, sb );
2021
2022 v3_sub( q, p, d );
2023 v3_sub( co, p, m );
2024 v3_sub( sb, co, n );
2025
2026 f32 md = v3_dot( m, d ),
2027 nd = v3_dot( n, d ),
2028 dd = v3_dot( d, d ),
2029 nn = v3_dot( n, n ),
2030 mn = v3_dot( m, n ),
2031 a = dd*nn - nd*nd,
2032 k = v3_dot( m, m ) - r*r,
2033 c = dd*k - md*md;
2034
2035 if( fabsf(a) < 0.00001f )
2036 {
2037 /* Segment runs parallel to cylinder axis */
2038 return 0;
2039 }
2040
2041 f32 b = dd*mn - nd*md,
2042 discr = b*b - a*c;
2043
2044 if( discr < 0.0f )
2045 return 0; /* No real roots; no intersection */
2046
2047 *t = (-b - sqrtf(discr)) / a;
2048 if( *t < 0.0f )
2049 return 0; /* Intersection behind ray */
2050
2051 /* Check within cylinder segment */
2052 if( md + (*t)*nd < 0.0f )
2053 return 0;
2054
2055 if( md + (*t)*nd > dd )
2056 return 0;
2057
2058 /* Segment intersects cylinder between the endcaps; t is correct */
2059 return 1;
2060 }
2061
2062 /*
2063 * Time of intersection of sphere and triangle. Origin must be outside the
2064 * colliding area. This is a fairly long procedure.
2065 */
2066 static int spherecast_triangle( v3f tri[3],
2067 v3f co, v3f dir, f32 r, f32 *t, v3f n )
2068 {
2069 v3f sum[3];
2070 v3f v0, v1;
2071
2072 v3_sub( tri[1], tri[0], v0 );
2073 v3_sub( tri[2], tri[0], v1 );
2074 v3_cross( v0, v1, n );
2075 v3_normalize( n );
2076 v3_muladds( tri[0], n, r, sum[0] );
2077 v3_muladds( tri[1], n, r, sum[1] );
2078 v3_muladds( tri[2], n, r, sum[2] );
2079
2080 int hit = 0;
2081 f32 t_min = INFINITY,
2082 t1;
2083
2084 if( ray_tri( sum, co, dir, &t1 ) ){
2085 t_min = vg_minf( t_min, t1 );
2086 hit = 1;
2087 }
2088
2089 /*
2090 * Currently disabled; ray_sphere requires |d| = 1. it is not very important.
2091 */
2092 #if 0
2093 for( int i=0; i<3; i++ ){
2094 if( ray_sphere( tri[i], r, co, dir, &t1 ) ){
2095 t_min = vg_minf( t_min, t1 );
2096 hit = 1;
2097 }
2098 }
2099 #endif
2100
2101 for( int i=0; i<3; i++ ){
2102 int i0 = i,
2103 i1 = (i+1)%3;
2104
2105 if( ray_uncapped_finite_cylinder( tri[i0], tri[i1], r, co, dir, &t1 ) ){
2106 if( t1 < t_min ){
2107 t_min = t1;
2108
2109 v3f co1, ct, cx;
2110 v3_add( dir, co, co1 );
2111 v3_lerp( co, co1, t_min, ct );
2112
2113 closest_point_segment( tri[i0], tri[i1], ct, cx );
2114 v3_sub( ct, cx, n );
2115 v3_normalize( n );
2116 }
2117
2118 hit = 1;
2119 }
2120 }
2121
2122 *t = t_min;
2123 return hit;
2124 }
2125
2126 /*
2127 * -----------------------------------------------------------------------------
2128 * Section 5.e Curves
2129 * -----------------------------------------------------------------------------
2130 */
2131
2132 static void eval_bezier_time( v3f p0, v3f p1, v3f h0, v3f h1, f32 t, v3f p )
2133 {
2134 f32 tt = t*t,
2135 ttt = tt*t;
2136
2137 v3_muls( p1, ttt, p );
2138 v3_muladds( p, h1, 3.0f*tt -3.0f*ttt, p );
2139 v3_muladds( p, h0, 3.0f*ttt -6.0f*tt +3.0f*t, p );
2140 v3_muladds( p, p0, 3.0f*tt -ttt -3.0f*t +1.0f, p );
2141 }
2142
2143 static void eval_bezier3( v3f p0, v3f p1, v3f p2, f32 t, v3f p )
2144 {
2145 f32 u = 1.0f-t;
2146
2147 v3_muls( p0, u*u, p );
2148 v3_muladds( p, p1, 2.0f*u*t, p );
2149 v3_muladds( p, p2, t*t, p );
2150 }
2151
2152 /*
2153 * -----------------------------------------------------------------------------
2154 * Section 5.f Volumes
2155 * -----------------------------------------------------------------------------
2156 */
2157
2158 static float vg_sphere_volume( float radius ){
2159 float r3 = radius*radius*radius;
2160 return (4.0f/3.0f) * VG_PIf * r3;
2161 }
2162
2163 /*
2164 * -----------------------------------------------------------------------------
2165 * Section 6.a PSRNG and some distributions
2166 * -----------------------------------------------------------------------------
2167 */
2168
2169 /* An implementation of the MT19937 Algorithm for the Mersenne Twister
2170 * by Evan Sultanik. Based upon the pseudocode in: M. Matsumoto and
2171 * T. Nishimura, "Mersenne Twister: A 623-dimensionally
2172 * equidistributed uniform pseudorandom number generator," ACM
2173 * Transactions on Modeling and Computer Simulation Vol. 8, No. 1,
2174 * January pp.3-30 1998.
2175 *
2176 * http://www.sultanik.com/Mersenne_twister
2177 * https://github.com/ESultanik/mtwister/blob/master/mtwister.c
2178 */
2179
2180 #define MT_UPPER_MASK 0x80000000
2181 #define MT_LOWER_MASK 0x7fffffff
2182 #define MT_TEMPERING_MASK_B 0x9d2c5680
2183 #define MT_TEMPERING_MASK_C 0xefc60000
2184
2185 #define MT_STATE_VECTOR_LENGTH 624
2186
2187 /* changes to STATE_VECTOR_LENGTH also require changes to this */
2188 #define MT_STATE_VECTOR_M 397
2189
2190 struct {
2191 u32 mt[MT_STATE_VECTOR_LENGTH];
2192 i32 index;
2193 }
2194 static vg_rand;
2195
2196 static void vg_rand_seed( unsigned long seed )
2197 {
2198 /* set initial seeds to mt[STATE_VECTOR_LENGTH] using the generator
2199 * from Line 25 of Table 1 in: Donald Knuth, "The Art of Computer
2200 * Programming," Vol. 2 (2nd Ed.) pp.102.
2201 */
2202 vg_rand.mt[0] = seed & 0xffffffff;
2203 for( vg_rand.index=1; vg_rand.index<MT_STATE_VECTOR_LENGTH; vg_rand.index++){
2204 vg_rand.mt[vg_rand.index] =
2205 (6069 * vg_rand.mt[vg_rand.index-1]) & 0xffffffff;
2206 }
2207 }
2208
2209 /*
2210 * Generates a pseudo-randomly generated long.
2211 */
2212 static u32 vg_randu32(void)
2213 {
2214 u32 y;
2215 /* mag[x] = x * 0x9908b0df for x = 0,1 */
2216 static u32 mag[2] = {0x0, 0x9908b0df};
2217 if( vg_rand.index >= MT_STATE_VECTOR_LENGTH || vg_rand.index < 0 ){
2218 /* generate STATE_VECTOR_LENGTH words at a time */
2219 int kk;
2220 if( vg_rand.index >= MT_STATE_VECTOR_LENGTH+1 || vg_rand.index < 0 ){
2221 vg_rand_seed( 4357 );
2222 }
2223 for( kk=0; kk<MT_STATE_VECTOR_LENGTH-MT_STATE_VECTOR_M; kk++ ){
2224 y = (vg_rand.mt[kk] & MT_UPPER_MASK) |
2225 (vg_rand.mt[kk+1] & MT_LOWER_MASK);
2226 vg_rand.mt[kk] = vg_rand.mt[kk+MT_STATE_VECTOR_M] ^
2227 (y >> 1) ^ mag[y & 0x1];
2228 }
2229 for( ; kk<MT_STATE_VECTOR_LENGTH-1; kk++ ){
2230 y = (vg_rand.mt[kk] & MT_UPPER_MASK) |
2231 (vg_rand.mt[kk+1] & MT_LOWER_MASK);
2232 vg_rand.mt[kk] =
2233 vg_rand.mt[ kk+(MT_STATE_VECTOR_M-MT_STATE_VECTOR_LENGTH)] ^
2234 (y >> 1) ^ mag[y & 0x1];
2235 }
2236 y = (vg_rand.mt[MT_STATE_VECTOR_LENGTH-1] & MT_UPPER_MASK) |
2237 (vg_rand.mt[0] & MT_LOWER_MASK);
2238 vg_rand.mt[MT_STATE_VECTOR_LENGTH-1] =
2239 vg_rand.mt[MT_STATE_VECTOR_M-1] ^ (y >> 1) ^ mag[y & 0x1];
2240 vg_rand.index = 0;
2241 }
2242 y = vg_rand.mt[vg_rand.index++];
2243 y ^= (y >> 11);
2244 y ^= (y << 7) & MT_TEMPERING_MASK_B;
2245 y ^= (y << 15) & MT_TEMPERING_MASK_C;
2246 y ^= (y >> 18);
2247 return y;
2248 }
2249
2250 /*
2251 * Generates a pseudo-randomly generated f64 in the range [0..1].
2252 */
2253 static inline f64 vg_randf64(void)
2254 {
2255 return (f64)vg_randu32()/(f64)0xffffffff;
2256 }
2257
2258 static inline f64 vg_randf64_range( f64 min, f64 max )
2259 {
2260 return vg_lerp( min, max, (f64)vg_randf64() );
2261 }
2262
2263 static inline void vg_rand_dir( v3f dir )
2264 {
2265 dir[0] = vg_randf64();
2266 dir[1] = vg_randf64();
2267 dir[2] = vg_randf64();
2268
2269 v3_muls( dir, 2.0f, dir );
2270 v3_sub( dir, (v3f){1.0f,1.0f,1.0f}, dir );
2271
2272 v3_normalize( dir );
2273 }
2274
2275 static inline void vg_rand_sphere( v3f co )
2276 {
2277 vg_rand_dir(co);
2278 v3_muls( co, cbrtf( vg_randf64() ), co );
2279 }
2280
2281 #endif /* VG_M_H */