dead code
[vg.git] / vg_m.h
1 /* Copyright (C) 2021-2022 Harry Godden (hgn) - All Rights Reserved */
2
3 #ifndef VG_M_H
4 #define VG_M_H
5
6 #include "vg_platform.h"
7 #include <math.h>
8 #include <stdlib.h>
9
10 #define VG_PIf 3.14159265358979323846264338327950288f
11 #define VG_TAUf 6.28318530717958647692528676655900576f
12
13 static u32 vg_ftu32( float a )
14 {
15 u32 *ptr = (u32 *)(&a);
16 return *ptr;
17 }
18
19 static int vg_isinff( float a )
20 {
21 return ((vg_ftu32(a)) & 0x7FFFFFFFU) == 0x7F800000U;
22 }
23
24 static int vg_isnanf( float a )
25 {
26 return !vg_isinff(a) && ((vg_ftu32(a)) & 0x7F800000U) == 0x7F800000U;
27 }
28
29 static int vg_validf( float a )
30 {
31 return ((vg_ftu32(a)) & 0x7F800000U) != 0x7F800000U;
32 }
33
34 static inline float vg_minf( float a, float b )
35 {
36 return a < b? a: b;
37 }
38
39 static inline float vg_maxf( float a, float b )
40 {
41 return a > b? a: b;
42 }
43
44 static inline float vg_clampf( float a, float min, float max )
45 {
46 return vg_minf( max, vg_maxf( a, min ) );
47 }
48
49 static inline float vg_signf( float a )
50 {
51 return a < 0.0f? -1.0f: 1.0f;
52 }
53
54 static inline float vg_fractf( float a )
55 {
56 return a - floorf( a );
57 }
58
59
60 __attribute__ ((deprecated))
61 static float stable_force( float current, float diff )
62 {
63 float fnew = current + diff;
64
65 if( fnew * current < 0.0f )
66 return 0.0f;
67
68 return fnew;
69 }
70
71 static float vg_cfrictf( float current, float F )
72 {
73 return -vg_signf(current) * vg_minf( F, fabsf(current) );
74 }
75
76 static inline int vg_min( int a, int b )
77 {
78 return a < b? a: b;
79 }
80
81 static inline int vg_max( int a, int b )
82 {
83 return a > b? a: b;
84 }
85
86 static inline float vg_rad( float deg )
87 {
88 return deg * VG_PIf / 180.0f;
89 }
90
91 /*
92 * Vector 3
93 */
94 static inline void v2_copy( v2f a, v2f b )
95 {
96 b[0] = a[0]; b[1] = a[1];
97 }
98
99 static inline void v2_zero( v2f a )
100 {
101 a[0] = 0.f; a[1] = 0.f;
102 }
103
104 static inline void v2i_copy( v2i a, v2i b )
105 {
106 b[0] = a[0]; b[1] = a[1];
107 }
108
109 static inline int v2i_eq( v2i a, v2i b )
110 {
111 return ((a[0] == b[0]) && (a[1] == b[1]));
112 }
113
114 static inline void v2i_add( v2i a, v2i b, v2i d )
115 {
116 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
117 }
118
119 static inline void v2i_sub( v2i a, v2i b, v2i d )
120 {
121 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
122 }
123
124 static inline void v2_minv( v2f a, v2f b, v2f dest )
125 {
126 dest[0] = vg_minf(a[0], b[0]);
127 dest[1] = vg_minf(a[1], b[1]);
128 }
129
130 static inline void v2_maxv( v2f a, v2f b, v2f dest )
131 {
132 dest[0] = vg_maxf(a[0], b[0]);
133 dest[1] = vg_maxf(a[1], b[1]);
134 }
135
136 static inline void v2_sub( v2f a, v2f b, v2f d )
137 {
138 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
139 }
140
141 static inline float v2_dot( v2f a, v2f b )
142 {
143 return a[0] * b[0] + a[1] * b[1];
144 }
145
146 static inline float v2_cross( v2f a, v2f b )
147 {
148 return a[0]*b[1] - a[1]*b[0];
149 }
150
151 static inline void v2_add( v2f a, v2f b, v2f d )
152 {
153 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
154 }
155
156 static inline void v2_abs( v2f a, v2f d )
157 {
158 d[0] = fabsf( a[0] );
159 d[1] = fabsf( a[1] );
160 }
161
162 static inline void v2_muls( v2f a, float s, v2f d )
163 {
164 d[0] = a[0]*s; d[1] = a[1]*s;
165 }
166
167 static inline void v2_divs( v2f a, float s, v2f d )
168 {
169 d[0] = a[0]/s; d[1] = a[1]/s;
170 }
171
172 static inline void v2_mul( v2f a, v2f b, v2f d )
173 {
174 d[0] = a[0]*b[0];
175 d[1] = a[1]*b[1];
176 }
177
178 static inline void v2_div( v2f a, v2f b, v2f d )
179 {
180 d[0] = a[0]/b[0]; d[1] = a[1]/b[1];
181 }
182
183 static inline void v2_muladd( v2f a, v2f b, v2f s, v2f d )
184 {
185 d[0] = a[0]+b[0]*s[0];
186 d[1] = a[1]+b[1]*s[1];
187 }
188
189 static inline void v2_muladds( v2f a, v2f b, float s, v2f d )
190 {
191 d[0] = a[0]+b[0]*s;
192 d[1] = a[1]+b[1]*s;
193 }
194
195 static inline float v2_length2( v2f a )
196 {
197 return a[0]*a[0] + a[1]*a[1];
198 }
199
200 static inline float v2_length( v2f a )
201 {
202 return sqrtf( v2_length2( a ) );
203 }
204
205 static inline float v2_dist2( v2f a, v2f b )
206 {
207 v2f delta;
208 v2_sub( a, b, delta );
209 return v2_length2( delta );
210 }
211
212 static inline float v2_dist( v2f a, v2f b )
213 {
214 return sqrtf( v2_dist2( a, b ) );
215 }
216
217 static inline void v2_lerp( v2f a, v2f b, float t, v2f d )
218 {
219 d[0] = a[0] + t*(b[0]-a[0]);
220 d[1] = a[1] + t*(b[1]-a[1]);
221 }
222
223 static inline void v2_normalize( v2f a )
224 {
225 v2_muls( a, 1.0f / v2_length( a ), a );
226 }
227
228 static void v2_normalize_clamp( v2f a )
229 {
230 float l2 = v2_length2( a );
231 if( l2 > 1.0f )
232 v2_muls( a, 1.0f/sqrtf(l2), a );
233 }
234
235 static inline void v2_floor( v2f a, v2f b )
236 {
237 b[0] = floorf( a[0] );
238 b[1] = floorf( a[1] );
239 }
240
241 static inline void v2_fill( v2f a, float v )
242 {
243 a[0] = v;
244 a[1] = v;
245 }
246
247 /* copysign of b to a */
248 static inline void v2_copysign( v2f a, v2f b )
249 {
250 a[0] = copysignf( a[0], b[0] );
251 a[1] = copysignf( a[1], b[1] );
252 }
253
254 /*
255 * Vector 3
256 */
257 static inline void v3_zero( v3f a )
258 {
259 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f;
260 }
261
262 static inline void v3_copy( v3f a, v3f b )
263 {
264 b[0] = a[0]; b[1] = a[1]; b[2] = a[2];
265 }
266
267 static inline void v3_add( v3f a, v3f b, v3f d )
268 {
269 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
270 }
271
272 static inline void v3i_add( v3i a, v3i b, v3i d )
273 {
274 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
275 }
276
277 static inline void v4_add( v4f a, v4f b, v4f d )
278 {
279 d[0] = a[0]+b[0];
280 d[1] = a[1]+b[1];
281 d[2] = a[2]+b[2];
282 d[3] = a[3]+b[3];
283 }
284
285 static inline void v3_sub( v3f a, v3f b, v3f d )
286 {
287 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
288 }
289
290 static inline void v3i_sub( v3i a, v3i b, v3i d )
291 {
292 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
293 }
294
295 static inline void v3_mul( v3f a, v3f b, v3f d )
296 {
297 d[0] = a[0]*b[0]; d[1] = a[1]*b[1]; d[2] = a[2]*b[2];
298 }
299
300 static inline void v3_div( v3f a, v3f b, v3f d )
301 {
302 d[0] = b[0]!=0.0f? a[0]/b[0]: INFINITY;
303 d[1] = b[1]!=0.0f? a[1]/b[1]: INFINITY;
304 d[2] = b[2]!=0.0f? a[2]/b[2]: INFINITY;
305 }
306
307 static inline void v3_muls( v3f a, float s, v3f d )
308 {
309 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s;
310 }
311
312 static inline void v3_fill( v3f a, float v )
313 {
314 a[0] = v;
315 a[1] = v;
316 a[2] = v;
317 }
318
319 static inline void v3_divs( v3f a, float s, v3f d )
320 {
321 if( s == 0.0f )
322 v3_fill( d, INFINITY );
323 else
324 {
325 d[0] = a[0]/s;
326 d[1] = a[1]/s;
327 d[2] = a[2]/s;
328 }
329 }
330
331 static inline void v3_muladds( v3f a, v3f b, float s, v3f d )
332 {
333 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s; d[2] = a[2]+b[2]*s;
334 }
335
336 static inline void v3_muladd( v2f a, v2f b, v2f s, v2f d )
337 {
338 d[0] = a[0]+b[0]*s[0];
339 d[1] = a[1]+b[1]*s[1];
340 d[2] = a[2]+b[2]*s[2];
341 }
342
343 static inline float v3_dot( v3f a, v3f b )
344 {
345 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
346 }
347
348 static inline void v3_cross( v3f a, v3f b, v3f dest )
349 {
350 v3f d;
351 d[0] = a[1]*b[2] - a[2]*b[1];
352 d[1] = a[2]*b[0] - a[0]*b[2];
353 d[2] = a[0]*b[1] - a[1]*b[0];
354 v3_copy( d, dest );
355 }
356
357 static inline float v3_length2( v3f a )
358 {
359 return v3_dot( a, a );
360 }
361
362 static inline float v3_length( v3f a )
363 {
364 return sqrtf( v3_length2( a ) );
365 }
366
367 static inline float v3_dist2( v3f a, v3f b )
368 {
369 v3f delta;
370 v3_sub( a, b, delta );
371 return v3_length2( delta );
372 }
373
374 static inline float v3_dist( v3f a, v3f b )
375 {
376 return sqrtf( v3_dist2( a, b ) );
377 }
378
379 static inline void v3_normalize( v3f a )
380 {
381 v3_muls( a, 1.f / v3_length( a ), a );
382 }
383
384 static inline float vg_lerpf( float a, float b, float t )
385 {
386 return a + t*(b-a);
387 }
388
389 static inline double vg_lerp( double a, double b, double t )
390 {
391 return a + t*(b-a);
392 }
393
394 /* correctly lerp around circular period -pi -> pi */
395 static float vg_alerpf( float a, float b, float t )
396 {
397 float d = fmodf( b-a, VG_TAUf ),
398 s = fmodf( 2.0f*d, VG_TAUf ) - d;
399 return a + s*t;
400 }
401
402 static inline void v3_lerp( v3f a, v3f b, float t, v3f d )
403 {
404 d[0] = a[0] + t*(b[0]-a[0]);
405 d[1] = a[1] + t*(b[1]-a[1]);
406 d[2] = a[2] + t*(b[2]-a[2]);
407 }
408
409 static inline void v3_minv( v3f a, v3f b, v3f dest )
410 {
411 dest[0] = vg_minf(a[0], b[0]);
412 dest[1] = vg_minf(a[1], b[1]);
413 dest[2] = vg_minf(a[2], b[2]);
414 }
415
416 static inline void v3_maxv( v3f a, v3f b, v3f dest )
417 {
418 dest[0] = vg_maxf(a[0], b[0]);
419 dest[1] = vg_maxf(a[1], b[1]);
420 dest[2] = vg_maxf(a[2], b[2]);
421 }
422
423 static inline float v3_minf( v3f a )
424 {
425 return vg_minf( vg_minf( a[0], a[1] ), a[2] );
426 }
427
428 static inline float v3_maxf( v3f a )
429 {
430 return vg_maxf( vg_maxf( a[0], a[1] ), a[2] );
431 }
432
433 static inline void v3_floor( v3f a, v3f b )
434 {
435 b[0] = floorf( a[0] );
436 b[1] = floorf( a[1] );
437 b[2] = floorf( a[2] );
438 }
439
440 static inline void v3_ceil( v3f a, v3f b )
441 {
442 b[0] = ceilf( a[0] );
443 b[1] = ceilf( a[1] );
444 b[2] = ceilf( a[2] );
445 }
446
447 static inline void v3_negate( v3f a, v3f b )
448 {
449 b[0] = -a[0];
450 b[1] = -a[1];
451 b[2] = -a[2];
452 }
453
454 static inline void v3_rotate( v3f v, float angle, v3f axis, v3f d )
455 {
456 v3f v1, v2, k;
457 float c, s;
458
459 c = cosf( angle );
460 s = sinf( angle );
461
462 v3_copy( axis, k );
463 v3_normalize( k );
464 v3_muls( v, c, v1 );
465 v3_cross( k, v, v2 );
466 v3_muls( v2, s, v2 );
467 v3_add( v1, v2, v1 );
468 v3_muls( k, v3_dot(k, v) * (1.0f - c), v2);
469 v3_add( v1, v2, d );
470 }
471
472 /*
473 * Vector 4
474 */
475 static inline void v4_copy( v4f a, v4f b )
476 {
477 b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];
478 }
479
480 static inline void v4_zero( v4f a )
481 {
482 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f; a[3] = 0.f;
483 }
484
485 static inline void v4_muls( v4f a, float s, v4f d )
486 {
487 d[0] = a[0]*s;
488 d[1] = a[1]*s;
489 d[2] = a[2]*s;
490 d[3] = a[3]*s;
491 }
492
493 static inline void v4_muladds( v4f a, v4f b, float s, v4f d )
494 {
495 d[0] = a[0]+b[0]*s;
496 d[1] = a[1]+b[1]*s;
497 d[2] = a[2]+b[2]*s;
498 d[3] = a[3]+b[3]*s;
499 }
500
501 static inline void v4_lerp( v4f a, v4f b, float t, v4f d )
502 {
503 d[0] = a[0] + t*(b[0]-a[0]);
504 d[1] = a[1] + t*(b[1]-a[1]);
505 d[2] = a[2] + t*(b[2]-a[2]);
506 d[3] = a[3] + t*(b[3]-a[3]);
507 }
508
509 static inline float v4_dot( v4f a, v4f b )
510 {
511 return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
512 }
513
514 static inline float v4_length( v4f a )
515 {
516 return sqrtf( v4_dot(a,a) );
517 }
518
519 /*
520 * Matrix 2x2
521 */
522
523 #define M2X2_INDENTIY {{1.0f, 0.0f, }, \
524 { 0.0f, 1.0f, }}
525
526 #define M2X2_ZERO {{0.0f, 0.0f, }, \
527 { 0.0f, 0.0f, }}
528
529 static inline void m2x2_copy( m2x2f a, m2x2f b )
530 {
531 v2_copy( a[0], b[0] );
532 v2_copy( a[1], b[1] );
533 }
534
535 static inline void m2x2_identity( m2x2f a )
536 {
537 m2x2f id = M2X2_INDENTIY;
538 m2x2_copy( id, a );
539 }
540
541 static inline void m2x2_create_rotation( m2x2f a, float theta )
542 {
543 float s, c;
544
545 s = sinf( theta );
546 c = cosf( theta );
547
548 a[0][0] = c;
549 a[0][1] = -s;
550 a[1][0] = s;
551 a[1][1] = c;
552 }
553
554 /*
555 * Matrix 3x3
556 */
557
558 #define M3X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
559 { 0.0f, 1.0f, 0.0f, },\
560 { 0.0f, 0.0f, 1.0f, }}
561
562 #define M3X3_ZERO {{0.0f, 0.0f, 0.0f, },\
563 { 0.0f, 0.0f, 0.0f, },\
564 { 0.0f, 0.0f, 0.0f, }}
565
566
567 /* a X b == [b]T a == ...*/
568 static void m3x3_skew_symetric( m3x3f a, v3f v )
569 {
570 a[0][0] = 0.0f;
571 a[0][1] = v[2];
572 a[0][2] = -v[1];
573 a[1][0] = -v[2];
574 a[1][1] = 0.0f;
575 a[1][2] = v[0];
576 a[2][0] = v[1];
577 a[2][1] = -v[0];
578 a[2][2] = 0.0f;
579 }
580
581 static void m3x3_add( m3x3f a, m3x3f b, m3x3f d )
582 {
583 v3_add( a[0], b[0], d[0] );
584 v3_add( a[1], b[1], d[1] );
585 v3_add( a[2], b[2], d[2] );
586 }
587
588 static inline void m3x3_copy( m3x3f a, m3x3f b )
589 {
590 v3_copy( a[0], b[0] );
591 v3_copy( a[1], b[1] );
592 v3_copy( a[2], b[2] );
593 }
594
595 static inline void m3x3_identity( m3x3f a )
596 {
597 m3x3f id = M3X3_IDENTITY;
598 m3x3_copy( id, a );
599 }
600
601 static void m3x3_diagonal( m3x3f a, float v )
602 {
603 m3x3_identity( a );
604 a[0][0] = v;
605 a[1][1] = v;
606 a[2][2] = v;
607 }
608
609 static inline void m3x3_zero( m3x3f a )
610 {
611 m3x3f z = M3X3_ZERO;
612 m3x3_copy( z, a );
613 }
614
615 static inline void m3x3_inv( m3x3f src, m3x3f dest )
616 {
617 float a = src[0][0], b = src[0][1], c = src[0][2],
618 d = src[1][0], e = src[1][1], f = src[1][2],
619 g = src[2][0], h = src[2][1], i = src[2][2];
620
621 float det = 1.f /
622 (+a*(e*i-h*f)
623 -b*(d*i-f*g)
624 +c*(d*h-e*g));
625
626 dest[0][0] = (e*i-h*f)*det;
627 dest[0][1] = -(b*i-c*h)*det;
628 dest[0][2] = (b*f-c*e)*det;
629 dest[1][0] = -(d*i-f*g)*det;
630 dest[1][1] = (a*i-c*g)*det;
631 dest[1][2] = -(a*f-d*c)*det;
632 dest[2][0] = (d*h-g*e)*det;
633 dest[2][1] = -(a*h-g*b)*det;
634 dest[2][2] = (a*e-d*b)*det;
635 }
636
637 static float m3x3_det( m3x3f m )
638 {
639 return m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])
640 - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
641 + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
642 }
643
644 static inline void m3x3_transpose( m3x3f src, m3x3f dest )
645 {
646 float a = src[0][0], b = src[0][1], c = src[0][2],
647 d = src[1][0], e = src[1][1], f = src[1][2],
648 g = src[2][0], h = src[2][1], i = src[2][2];
649
650 dest[0][0] = a;
651 dest[0][1] = d;
652 dest[0][2] = g;
653 dest[1][0] = b;
654 dest[1][1] = e;
655 dest[1][2] = h;
656 dest[2][0] = c;
657 dest[2][1] = f;
658 dest[2][2] = i;
659 }
660
661 static inline void m3x3_mul( m3x3f a, m3x3f b, m3x3f d )
662 {
663 float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
664 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
665 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
666
667 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
668 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
669 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2];
670
671 d[0][0] = a00*b00 + a10*b01 + a20*b02;
672 d[0][1] = a01*b00 + a11*b01 + a21*b02;
673 d[0][2] = a02*b00 + a12*b01 + a22*b02;
674 d[1][0] = a00*b10 + a10*b11 + a20*b12;
675 d[1][1] = a01*b10 + a11*b11 + a21*b12;
676 d[1][2] = a02*b10 + a12*b11 + a22*b12;
677 d[2][0] = a00*b20 + a10*b21 + a20*b22;
678 d[2][1] = a01*b20 + a11*b21 + a21*b22;
679 d[2][2] = a02*b20 + a12*b21 + a22*b22;
680 }
681
682 static inline void m3x3_mulv( m3x3f m, v3f v, v3f d )
683 {
684 v3f res;
685
686 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
687 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
688 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
689
690 v3_copy( res, d );
691 }
692
693 static inline void m3x3_projection( m3x3f dst,
694 float const left, float const right, float const bottom, float const top )
695 {
696 float rl, tb;
697
698 m3x3_zero( dst );
699
700 rl = 1.0f / (right - left);
701 tb = 1.0f / (top - bottom);
702
703 dst[0][0] = 2.0f * rl;
704 dst[1][1] = 2.0f * tb;
705 dst[2][2] = 1.0f;
706 }
707
708 static inline void m3x3_translate( m3x3f m, v3f v )
709 {
710 m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0];
711 m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1];
712 m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2];
713 }
714
715 static inline void m3x3_scale( m3x3f m, v3f v )
716 {
717 v3_muls( m[0], v[0], m[0] );
718 v3_muls( m[1], v[1], m[1] );
719 v3_muls( m[2], v[2], m[2] );
720 }
721
722 static inline void m3x3_scalef( m3x3f m, float f )
723 {
724 v3f v;
725 v3_fill( v, f );
726 m3x3_scale( m, v );
727 }
728
729 static inline void m3x3_rotate( m3x3f m, float angle )
730 {
731 float m00 = m[0][0], m10 = m[1][0],
732 m01 = m[0][1], m11 = m[1][1],
733 m02 = m[0][2], m12 = m[1][2];
734 float c, s;
735
736 s = sinf( angle );
737 c = cosf( angle );
738
739 m[0][0] = m00 * c + m10 * s;
740 m[0][1] = m01 * c + m11 * s;
741 m[0][2] = m02 * c + m12 * s;
742
743 m[1][0] = m00 * -s + m10 * c;
744 m[1][1] = m01 * -s + m11 * c;
745 m[1][2] = m02 * -s + m12 * c;
746 }
747
748 /*
749 * Matrix 4x3
750 */
751
752 #define M4X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
753 { 0.0f, 1.0f, 0.0f, },\
754 { 0.0f, 0.0f, 1.0f, },\
755 { 0.0f, 0.0f, 0.0f }}
756
757 static inline void m4x3_to_3x3( m4x3f a, m3x3f b )
758 {
759 v3_copy( a[0], b[0] );
760 v3_copy( a[1], b[1] );
761 v3_copy( a[2], b[2] );
762 }
763
764 static inline void m4x3_invert_affine( m4x3f a, m4x3f b )
765 {
766 m3x3_transpose( a, b );
767 m3x3_mulv( b, a[3], b[3] );
768 v3_negate( b[3], b[3] );
769 }
770
771 static void m4x3_invert_full( m4x3f src, m4x3f dst )
772 {
773 float t2, t4, t5,
774 det,
775 a = src[0][0], b = src[0][1], c = src[0][2],
776 e = src[1][0], f = src[1][1], g = src[1][2],
777 i = src[2][0], j = src[2][1], k = src[2][2],
778 m = src[3][0], n = src[3][1], o = src[3][2];
779
780 t2 = j*o - n*k;
781 t4 = i*o - m*k;
782 t5 = i*n - m*j;
783
784 dst[0][0] = f*k - g*j;
785 dst[1][0] =-(e*k - g*i);
786 dst[2][0] = e*j - f*i;
787 dst[3][0] =-(e*t2 - f*t4 + g*t5);
788
789 dst[0][1] =-(b*k - c*j);
790 dst[1][1] = a*k - c*i;
791 dst[2][1] =-(a*j - b*i);
792 dst[3][1] = a*t2 - b*t4 + c*t5;
793
794 t2 = f*o - n*g;
795 t4 = e*o - m*g;
796 t5 = e*n - m*f;
797
798 dst[0][2] = b*g - c*f ;
799 dst[1][2] =-(a*g - c*e );
800 dst[2][2] = a*f - b*e ;
801 dst[3][2] =-(a*t2 - b*t4 + c * t5);
802
803 det = 1.0f / (a * dst[0][0] + b * dst[1][0] + c * dst[2][0]);
804 v3_muls( dst[0], det, dst[0] );
805 v3_muls( dst[1], det, dst[1] );
806 v3_muls( dst[2], det, dst[2] );
807 v3_muls( dst[3], det, dst[3] );
808 }
809
810 static inline void m4x3_copy( m4x3f a, m4x3f b )
811 {
812 v3_copy( a[0], b[0] );
813 v3_copy( a[1], b[1] );
814 v3_copy( a[2], b[2] );
815 v3_copy( a[3], b[3] );
816 }
817
818 static inline void m4x3_identity( m4x3f a )
819 {
820 m4x3f id = M4X3_IDENTITY;
821 m4x3_copy( id, a );
822 }
823
824 static inline void m4x3_mul( m4x3f a, m4x3f b, m4x3f d )
825 {
826 float
827 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
828 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
829 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
830 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2],
831 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
832 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
833 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2],
834 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2];
835
836 d[0][0] = a00*b00 + a10*b01 + a20*b02;
837 d[0][1] = a01*b00 + a11*b01 + a21*b02;
838 d[0][2] = a02*b00 + a12*b01 + a22*b02;
839 d[1][0] = a00*b10 + a10*b11 + a20*b12;
840 d[1][1] = a01*b10 + a11*b11 + a21*b12;
841 d[1][2] = a02*b10 + a12*b11 + a22*b12;
842 d[2][0] = a00*b20 + a10*b21 + a20*b22;
843 d[2][1] = a01*b20 + a11*b21 + a21*b22;
844 d[2][2] = a02*b20 + a12*b21 + a22*b22;
845 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30;
846 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31;
847 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32;
848 }
849
850 static inline void m4x3_mulv( m4x3f m, v3f v, v3f d )
851 {
852 v3f res;
853
854 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0];
855 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1];
856 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2];
857
858 v3_copy( res, d );
859 }
860
861 /*
862 * Transform plane ( xyz, distance )
863 */
864 static inline void m4x3_mulp( m4x3f m, v4f p, v4f d )
865 {
866 v3f o;
867
868 v3_muls( p, p[3], o );
869 m4x3_mulv( m, o, o );
870 m3x3_mulv( m, p, d );
871
872 d[3] = v3_dot( o, d );
873 }
874
875 /*
876 * Affine transforms
877 */
878
879 static inline void m4x3_translate( m4x3f m, v3f v )
880 {
881 v3_muladds( m[3], m[0], v[0], m[3] );
882 v3_muladds( m[3], m[1], v[1], m[3] );
883 v3_muladds( m[3], m[2], v[2], m[3] );
884 }
885
886 static inline void m4x3_rotate_x( m4x3f m, float angle )
887 {
888 m4x3f t = M4X3_IDENTITY;
889 float c, s;
890
891 c = cosf( angle );
892 s = sinf( angle );
893
894 t[1][1] = c;
895 t[1][2] = s;
896 t[2][1] = -s;
897 t[2][2] = c;
898
899 m4x3_mul( m, t, m );
900 }
901
902 static inline void m4x3_rotate_y( m4x3f m, float angle )
903 {
904 m4x3f t = M4X3_IDENTITY;
905 float c, s;
906
907 c = cosf( angle );
908 s = sinf( angle );
909
910 t[0][0] = c;
911 t[0][2] = -s;
912 t[2][0] = s;
913 t[2][2] = c;
914
915 m4x3_mul( m, t, m );
916 }
917
918 static inline void m4x3_rotate_z( m4x3f m, float angle )
919 {
920 m4x3f t = M4X3_IDENTITY;
921 float c, s;
922
923 c = cosf( angle );
924 s = sinf( angle );
925
926 t[0][0] = c;
927 t[0][1] = s;
928 t[1][0] = -s;
929 t[1][1] = c;
930
931 m4x3_mul( m, t, m );
932 }
933
934 static inline void m4x3_expand( m4x3f m, m4x4f d )
935 {
936 v3_copy( m[0], d[0] );
937 v3_copy( m[1], d[1] );
938 v3_copy( m[2], d[2] );
939 v3_copy( m[3], d[3] );
940 d[0][3] = 0.0f;
941 d[1][3] = 0.0f;
942 d[2][3] = 0.0f;
943 d[3][3] = 1.0f;
944 }
945
946 static inline void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point )
947 {
948 v3f v;
949 m4x3_mulv( m, point, v );
950
951 v3_minv( box[0], v, box[0] );
952 v3_maxv( box[1], v, box[1] );
953 }
954
955 static inline void box_addpt( boxf a, v3f pt )
956 {
957 v3_minv( a[0], pt, a[0] );
958 v3_maxv( a[1], pt, a[1] );
959 }
960
961 static inline void box_concat( boxf a, boxf b )
962 {
963 v3_minv( a[0], b[0], a[0] );
964 v3_maxv( a[1], b[1], a[1] );
965 }
966
967 static inline void box_copy( boxf a, boxf b )
968 {
969 v3_copy( a[0], b[0] );
970 v3_copy( a[1], b[1] );
971 }
972
973 static inline int box_overlap( boxf a, boxf b )
974 {
975 return
976 ( a[0][0] <= b[1][0] && a[1][0] >= b[0][0] ) &&
977 ( a[0][1] <= b[1][1] && a[1][1] >= b[0][1] ) &&
978 ( a[0][2] <= b[1][2] && a[1][2] >= b[0][2] )
979 ;
980 }
981
982 static int box_within( boxf greater, boxf lesser )
983 {
984 v3f a, b;
985 v3_sub( lesser[0], greater[0], a );
986 v3_sub( lesser[1], greater[1], b );
987
988 if( (a[0] >= 0.0f) && (a[1] >= 0.0f) && (a[2] >= 0.0f) &&
989 (b[0] <= 0.0f) && (b[1] <= 0.0f) && (b[2] <= 0.0f) )
990 {
991 return 1;
992 }
993
994 return 0;
995 }
996
997 static inline void box_init_inf( boxf box )
998 {
999 v3_fill( box[0], INFINITY );
1000 v3_fill( box[1], -INFINITY );
1001 }
1002
1003 static inline void m4x3_transform_aabb( m4x3f m, boxf box )
1004 {
1005 v3f a; v3f b;
1006
1007 v3_copy( box[0], a );
1008 v3_copy( box[1], b );
1009 v3_fill( box[0], INFINITY );
1010 v3_fill( box[1], -INFINITY );
1011
1012 m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], a[2] } );
1013 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], a[2] } );
1014 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], a[2] } );
1015 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], a[2] } );
1016
1017 m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], b[2] } );
1018 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], b[2] } );
1019 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], b[2] } );
1020 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], b[2] } );
1021 }
1022
1023 int ray_aabb1( boxf box, v3f co, v3f dir_inv, float dist )
1024 {
1025 v3f v0, v1;
1026 float tmin, tmax;
1027
1028 v3_sub( box[0], co, v0 );
1029 v3_sub( box[1], co, v1 );
1030
1031 v3_mul( v0, dir_inv, v0 );
1032 v3_mul( v1, dir_inv, v1 );
1033
1034 tmin = vg_minf( v0[0], v1[0] );
1035 tmax = vg_maxf( v0[0], v1[0] );
1036 tmin = vg_maxf( tmin, vg_minf( v0[1], v1[1] ));
1037 tmax = vg_minf( tmax, vg_maxf( v0[1], v1[1] ));
1038 tmin = vg_maxf( tmin, vg_minf( v0[2], v1[2] ));
1039 tmax = vg_minf( tmax, vg_maxf( v0[2], v1[2] ));
1040
1041 return (tmax >= tmin) && (tmin <= dist) && (tmax >= 0.0f);
1042 }
1043
1044 static inline void m4x3_lookat( m4x3f m, v3f pos, v3f target, v3f up )
1045 {
1046 v3f dir;
1047 v3_sub( target, pos, dir );
1048 v3_normalize( dir );
1049
1050 v3_copy( dir, m[2] );
1051
1052 v3_cross( up, m[2], m[0] );
1053 v3_normalize( m[0] );
1054
1055 v3_cross( m[2], m[0], m[1] );
1056 v3_copy( pos, m[3] );
1057 }
1058
1059 /*
1060 * Matrix 4x4
1061 */
1062
1063 #define M4X4_IDENTITY {{1.0f, 0.0f, 0.0f, 0.0f },\
1064 { 0.0f, 1.0f, 0.0f, 0.0f },\
1065 { 0.0f, 0.0f, 1.0f, 0.0f },\
1066 { 0.0f, 0.0f, 0.0f, 1.0f }}
1067 #define M4X4_ZERO {{0.0f, 0.0f, 0.0f, 0.0f },\
1068 { 0.0f, 0.0f, 0.0f, 0.0f },\
1069 { 0.0f, 0.0f, 0.0f, 0.0f },\
1070 { 0.0f, 0.0f, 0.0f, 0.0f }}
1071
1072 static void m4x4_projection( m4x4f m, float angle,
1073 float ratio, float fnear, float ffar )
1074 {
1075 float scale = tanf( angle * 0.5f * VG_PIf / 180.0f ) * fnear,
1076 r = ratio * scale,
1077 l = -r,
1078 t = scale,
1079 b = -t;
1080
1081 m[0][0] = 2.0f * fnear / (r - l);
1082 m[0][1] = 0.0f;
1083 m[0][2] = 0.0f;
1084 m[0][3] = 0.0f;
1085
1086 m[1][0] = 0.0f;
1087 m[1][1] = 2.0f * fnear / (t - b);
1088 m[1][2] = 0.0f;
1089 m[1][3] = 0.0f;
1090
1091 m[2][0] = (r + l) / (r - l);
1092 m[2][1] = (t + b) / (t - b);
1093 m[2][2] = -(ffar + fnear) / (ffar - fnear);
1094 m[2][3] = -1.0f;
1095
1096 m[3][0] = 0.0f;
1097 m[3][1] = 0.0f;
1098 m[3][2] = -2.0f * ffar * fnear / (ffar - fnear);
1099 m[3][3] = 0.0f;
1100 }
1101
1102 static void m4x4_translate( m4x4f m, v3f v )
1103 {
1104 v4_muladds( m[3], m[0], v[0], m[3] );
1105 v4_muladds( m[3], m[1], v[1], m[3] );
1106 v4_muladds( m[3], m[2], v[2], m[3] );
1107 }
1108
1109 static inline void m4x4_copy( m4x4f a, m4x4f b )
1110 {
1111 v4_copy( a[0], b[0] );
1112 v4_copy( a[1], b[1] );
1113 v4_copy( a[2], b[2] );
1114 v4_copy( a[3], b[3] );
1115 }
1116
1117 static inline void m4x4_identity( m4x4f a )
1118 {
1119 m4x4f id = M4X4_IDENTITY;
1120 m4x4_copy( id, a );
1121 }
1122
1123 static inline void m4x4_zero( m4x4f a )
1124 {
1125 m4x4f zero = M4X4_ZERO;
1126 m4x4_copy( zero, a );
1127 }
1128
1129 static inline void m4x4_mul( m4x4f a, m4x4f b, m4x4f d )
1130 {
1131 float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1132 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1133 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1134 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1135
1136 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2], b03 = b[0][3],
1137 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2], b13 = b[1][3],
1138 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2], b23 = b[2][3],
1139 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2], b33 = b[3][3];
1140
1141 d[0][0] = a00*b00 + a10*b01 + a20*b02 + a30*b03;
1142 d[0][1] = a01*b00 + a11*b01 + a21*b02 + a31*b03;
1143 d[0][2] = a02*b00 + a12*b01 + a22*b02 + a32*b03;
1144 d[0][3] = a03*b00 + a13*b01 + a23*b02 + a33*b03;
1145 d[1][0] = a00*b10 + a10*b11 + a20*b12 + a30*b13;
1146 d[1][1] = a01*b10 + a11*b11 + a21*b12 + a31*b13;
1147 d[1][2] = a02*b10 + a12*b11 + a22*b12 + a32*b13;
1148 d[1][3] = a03*b10 + a13*b11 + a23*b12 + a33*b13;
1149 d[2][0] = a00*b20 + a10*b21 + a20*b22 + a30*b23;
1150 d[2][1] = a01*b20 + a11*b21 + a21*b22 + a31*b23;
1151 d[2][2] = a02*b20 + a12*b21 + a22*b22 + a32*b23;
1152 d[2][3] = a03*b20 + a13*b21 + a23*b22 + a33*b23;
1153 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30*b33;
1154 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31*b33;
1155 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32*b33;
1156 d[3][3] = a03*b30 + a13*b31 + a23*b32 + a33*b33;
1157 }
1158
1159 static inline void m4x4_mulv( m4x4f m, v4f v, v4f d )
1160 {
1161 v4f res;
1162
1163 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3];
1164 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3];
1165 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3];
1166 res[3] = m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3];
1167
1168 v4_copy( res, d );
1169 }
1170
1171 static inline void m4x4_inv( m4x4f a, m4x4f d )
1172 {
1173 float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1174 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1175 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1176 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1177 det,
1178 t[6];
1179
1180 t[0] = a22*a33 - a32*a23;
1181 t[1] = a21*a33 - a31*a23;
1182 t[2] = a21*a32 - a31*a22;
1183 t[3] = a20*a33 - a30*a23;
1184 t[4] = a20*a32 - a30*a22;
1185 t[5] = a20*a31 - a30*a21;
1186
1187 d[0][0] = a11*t[0] - a12*t[1] + a13*t[2];
1188 d[1][0] =-(a10*t[0] - a12*t[3] + a13*t[4]);
1189 d[2][0] = a10*t[1] - a11*t[3] + a13*t[5];
1190 d[3][0] =-(a10*t[2] - a11*t[4] + a12*t[5]);
1191
1192 d[0][1] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1193 d[1][1] = a00*t[0] - a02*t[3] + a03*t[4];
1194 d[2][1] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1195 d[3][1] = a00*t[2] - a01*t[4] + a02*t[5];
1196
1197 t[0] = a12*a33 - a32*a13;
1198 t[1] = a11*a33 - a31*a13;
1199 t[2] = a11*a32 - a31*a12;
1200 t[3] = a10*a33 - a30*a13;
1201 t[4] = a10*a32 - a30*a12;
1202 t[5] = a10*a31 - a30*a11;
1203
1204 d[0][2] = a01*t[0] - a02*t[1] + a03*t[2];
1205 d[1][2] =-(a00*t[0] - a02*t[3] + a03*t[4]);
1206 d[2][2] = a00*t[1] - a01*t[3] + a03*t[5];
1207 d[3][2] =-(a00*t[2] - a01*t[4] + a02*t[5]);
1208
1209 t[0] = a12*a23 - a22*a13;
1210 t[1] = a11*a23 - a21*a13;
1211 t[2] = a11*a22 - a21*a12;
1212 t[3] = a10*a23 - a20*a13;
1213 t[4] = a10*a22 - a20*a12;
1214 t[5] = a10*a21 - a20*a11;
1215
1216 d[0][3] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1217 d[1][3] = a00*t[0] - a02*t[3] + a03*t[4];
1218 d[2][3] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1219 d[3][3] = a00*t[2] - a01*t[4] + a02*t[5];
1220
1221 det = 1.0f / (a00*d[0][0] + a01*d[1][0] + a02*d[2][0] + a03*d[3][0]);
1222 v4_muls( d[0], det, d[0] );
1223 v4_muls( d[1], det, d[1] );
1224 v4_muls( d[2], det, d[2] );
1225 v4_muls( d[3], det, d[3] );
1226 }
1227
1228 /*
1229 * Planes (double precision)
1230 */
1231 static inline void tri_to_plane( double a[3], double b[3],
1232 double c[3], double p[4] )
1233 {
1234 double edge0[3];
1235 double edge1[3];
1236 double l;
1237
1238 edge0[0] = b[0] - a[0];
1239 edge0[1] = b[1] - a[1];
1240 edge0[2] = b[2] - a[2];
1241
1242 edge1[0] = c[0] - a[0];
1243 edge1[1] = c[1] - a[1];
1244 edge1[2] = c[2] - a[2];
1245
1246 p[0] = edge0[1] * edge1[2] - edge0[2] * edge1[1];
1247 p[1] = edge0[2] * edge1[0] - edge0[0] * edge1[2];
1248 p[2] = edge0[0] * edge1[1] - edge0[1] * edge1[0];
1249
1250 l = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
1251 p[3] = (p[0] * a[0] + p[1] * a[1] + p[2] * a[2]) / l;
1252
1253 p[0] = p[0] / l;
1254 p[1] = p[1] / l;
1255 p[2] = p[2] / l;
1256 }
1257
1258 static int plane_intersect3( v4f a, v4f b, v4f c, v3f p )
1259 {
1260 float const epsilon = 1e-6f;
1261
1262 v3f x;
1263 v3_cross( a, b, x );
1264 float d = v3_dot( x, c );
1265
1266 if( (d < epsilon) && (d > -epsilon) ) return 0;
1267
1268 v3f v0, v1, v2;
1269 v3_cross( b, c, v0 );
1270 v3_cross( c, a, v1 );
1271 v3_cross( a, b, v2 );
1272
1273 v3_muls( v0, a[3], p );
1274 v3_muladds( p, v1, b[3], p );
1275 v3_muladds( p, v2, c[3], p );
1276 v3_divs( p, d, p );
1277
1278 return 1;
1279 }
1280
1281 int plane_intersect2( v4f a, v4f b, v3f p, v3f n )
1282 {
1283 float const epsilon = 1e-6f;
1284
1285 v4f c;
1286 v3_cross( a, b, c );
1287 float d = v3_length2( c );
1288
1289 if( (d < epsilon) && (d > -epsilon) )
1290 return 0;
1291
1292 v3f v0, v1, vx;
1293 v3_cross( c, b, v0 );
1294 v3_cross( a, c, v1 );
1295
1296 v3_muls( v0, a[3], vx );
1297 v3_muladds( vx, v1, b[3], vx );
1298 v3_divs( vx, d, p );
1299 v3_copy( c, n );
1300
1301 return 1;
1302 }
1303
1304 static int plane_segment( v4f plane, v3f a, v3f b, v3f co )
1305 {
1306 float d0 = v3_dot( a, plane ) - plane[3],
1307 d1 = v3_dot( b, plane ) - plane[3];
1308
1309 if( d0*d1 < 0.0f )
1310 {
1311 float tot = 1.0f/( fabsf(d0)+fabsf(d1) );
1312
1313 v3_muls( a, fabsf(d1) * tot, co );
1314 v3_muladds( co, b, fabsf(d0) * tot, co );
1315 return 1;
1316 }
1317
1318 return 0;
1319 }
1320
1321 static inline double plane_polarity( double p[4], double a[3] )
1322 {
1323 return
1324 (a[0] * p[0] + a[1] * p[1] + a[2] * p[2])
1325 -(p[0]*p[3] * p[0] + p[1]*p[3] * p[1] + p[2]*p[3] * p[2])
1326 ;
1327 }
1328
1329 /* Quaternions */
1330
1331 static inline void q_identity( v4f q )
1332 {
1333 q[0] = 0.0f; q[1] = 0.0f; q[2] = 0.0f; q[3] = 1.0f;
1334 }
1335
1336 static inline void q_axis_angle( v4f q, v3f axis, float angle )
1337 {
1338 float a = angle*0.5f,
1339 c = cosf(a),
1340 s = sinf(a);
1341
1342 q[0] = s*axis[0];
1343 q[1] = s*axis[1];
1344 q[2] = s*axis[2];
1345 q[3] = c;
1346 }
1347
1348 static inline void q_mul( v4f q, v4f q1, v4f d )
1349 {
1350 v4f t;
1351 t[0] = q[3]*q1[0] + q[0]*q1[3] + q[1]*q1[2] - q[2]*q1[1];
1352 t[1] = q[3]*q1[1] - q[0]*q1[2] + q[1]*q1[3] + q[2]*q1[0];
1353 t[2] = q[3]*q1[2] + q[0]*q1[1] - q[1]*q1[0] + q[2]*q1[3];
1354 t[3] = q[3]*q1[3] - q[0]*q1[0] - q[1]*q1[1] - q[2]*q1[2];
1355 v4_copy( t, d );
1356 }
1357
1358 static inline void q_normalize( v4f q )
1359 {
1360 float s = 1.0f/ sqrtf(v4_dot(q,q));
1361 q[0] *= s;
1362 q[1] *= s;
1363 q[2] *= s;
1364 q[3] *= s;
1365 }
1366
1367 static inline void q_inv( v4f q, v4f d )
1368 {
1369 float s = 1.0f / v4_dot(q,q);
1370 d[0] = -q[0]*s;
1371 d[1] = -q[1]*s;
1372 d[2] = -q[2]*s;
1373 d[3] = q[3]*s;
1374 }
1375
1376 static inline void q_nlerp( v4f a, v4f b, float t, v4f d )
1377 {
1378 if( v4_dot(a,b) < 0.0f ){
1379 v4_muls( b, -1.0f, d );
1380 v4_lerp( a, d, t, d );
1381 }
1382 else
1383 v4_lerp( a, b, t, d );
1384
1385 q_normalize( d );
1386 }
1387
1388 static void euler_m3x3( v3f angles, m3x3f d )
1389 {
1390 float cosY = cosf( angles[0] ),
1391 sinY = sinf( angles[0] ),
1392 cosP = cosf( angles[1] ),
1393 sinP = sinf( angles[1] ),
1394 cosR = cosf( angles[2] ),
1395 sinR = sinf( angles[2] );
1396
1397 d[2][0] = -sinY * cosP;
1398 d[2][1] = sinP;
1399 d[2][2] = cosY * cosP;
1400
1401 d[0][0] = cosY * cosR;
1402 d[0][1] = sinR;
1403 d[0][2] = sinY * cosR;
1404
1405 v3_cross( d[0], d[2], d[1] );
1406 }
1407
1408 static inline void q_m3x3( v4f q, m3x3f d )
1409 {
1410 float
1411 l = v4_length(q),
1412 s = l > 0.0f? 2.0f/l: 0.0f,
1413
1414 xx = s*q[0]*q[0], xy = s*q[0]*q[1], wx = s*q[3]*q[0],
1415 yy = s*q[1]*q[1], yz = s*q[1]*q[2], wy = s*q[3]*q[1],
1416 zz = s*q[2]*q[2], xz = s*q[0]*q[2], wz = s*q[3]*q[2];
1417
1418 d[0][0] = 1.0f - yy - zz;
1419 d[1][1] = 1.0f - xx - zz;
1420 d[2][2] = 1.0f - xx - yy;
1421 d[0][1] = xy + wz;
1422 d[1][2] = yz + wx;
1423 d[2][0] = xz + wy;
1424 d[1][0] = xy - wz;
1425 d[2][1] = yz - wx;
1426 d[0][2] = xz - wy;
1427 }
1428
1429 static void m3x3_q( m3x3f m, v4f q )
1430 {
1431 float diag, r, rinv;
1432
1433 diag = m[0][0] + m[1][1] + m[2][2];
1434 if( diag >= 0.0f )
1435 {
1436 r = sqrtf( 1.0f + diag );
1437 rinv = 0.5f / r;
1438 q[0] = rinv * (m[1][2] - m[2][1]);
1439 q[1] = rinv * (m[2][0] - m[0][2]);
1440 q[2] = rinv * (m[0][1] - m[1][0]);
1441 q[3] = r * 0.5f;
1442 }
1443 else if( m[0][0] >= m[1][1] && m[0][0] >= m[2][2] )
1444 {
1445 r = sqrtf( 1.0f - m[1][1] - m[2][2] + m[0][0] );
1446 rinv = 0.5f / r;
1447 q[0] = r * 0.5f;
1448 q[1] = rinv * (m[0][1] + m[1][0]);
1449 q[2] = rinv * (m[0][2] + m[2][0]);
1450 q[3] = rinv * (m[1][2] - m[2][1]);
1451 }
1452 else if( m[1][1] >= m[2][2] )
1453 {
1454 r = sqrtf( 1.0f - m[0][0] - m[2][2] + m[1][1] );
1455 rinv = 0.5f / r;
1456 q[0] = rinv * (m[0][1] + m[1][0]);
1457 q[1] = r * 0.5f;
1458 q[2] = rinv * (m[1][2] + m[2][1]);
1459 q[3] = rinv * (m[2][0] - m[0][2]);
1460 }
1461 else
1462 {
1463 r = sqrtf( 1.0f - m[0][0] - m[1][1] + m[2][2] );
1464 rinv = 0.5f / r;
1465 q[0] = rinv * (m[0][2] + m[2][0]);
1466 q[1] = rinv * (m[1][2] + m[2][1]);
1467 q[2] = r * 0.5f;
1468 q[3] = rinv * (m[0][1] - m[1][0]);
1469 }
1470 }
1471
1472 static void q_mulv( v4f q, v3f v, v3f d )
1473 {
1474 v3f v1, v2;
1475
1476 v3_muls( q, 2.0f*v3_dot(q,v), v1 );
1477 v3_muls( v, q[3]*q[3] - v3_dot(q,q), v2 );
1478 v3_add( v1, v2, v1 );
1479 v3_cross( q, v, v2 );
1480 v3_muls( v2, 2.0f*q[3], v2 );
1481 v3_add( v1, v2, d );
1482 }
1483
1484 enum contact_type
1485 {
1486 k_contact_type_default,
1487 k_contact_type_disabled,
1488 k_contact_type_edge
1489 };
1490
1491 /*
1492 * -----------------------------------------------------------------------------
1493 * Closest point functions
1494 * -----------------------------------------------------------------------------
1495 */
1496
1497 /*
1498 * These closest point tests were learned from Real-Time Collision Detection by
1499 * Christer Ericson
1500 */
1501 VG_STATIC float closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2,
1502 float *s, float *t, v3f c1, v3f c2)
1503 {
1504 v3f d1,d2,r;
1505 v3_sub( q1, p1, d1 );
1506 v3_sub( q2, p2, d2 );
1507 v3_sub( p1, p2, r );
1508
1509 float a = v3_length2( d1 ),
1510 e = v3_length2( d2 ),
1511 f = v3_dot( d2, r );
1512
1513 const float kEpsilon = 0.0001f;
1514
1515 if( a <= kEpsilon && e <= kEpsilon )
1516 {
1517 *s = 0.0f;
1518 *t = 0.0f;
1519 v3_copy( p1, c1 );
1520 v3_copy( p2, c2 );
1521
1522 v3f v0;
1523 v3_sub( c1, c2, v0 );
1524
1525 return v3_length2( v0 );
1526 }
1527
1528 if( a<= kEpsilon )
1529 {
1530 *s = 0.0f;
1531 *t = vg_clampf( f / e, 0.0f, 1.0f );
1532 }
1533 else
1534 {
1535 float c = v3_dot( d1, r );
1536 if( e <= kEpsilon )
1537 {
1538 *t = 0.0f;
1539 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1540 }
1541 else
1542 {
1543 float b = v3_dot(d1,d2),
1544 d = a*e-b*b;
1545
1546 if( d != 0.0f )
1547 {
1548 *s = vg_clampf((b*f - c*e)/d, 0.0f, 1.0f);
1549 }
1550 else
1551 {
1552 *s = 0.0f;
1553 }
1554
1555 *t = (b*(*s)+f) / e;
1556
1557 if( *t < 0.0f )
1558 {
1559 *t = 0.0f;
1560 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1561 }
1562 else if( *t > 1.0f )
1563 {
1564 *t = 1.0f;
1565 *s = vg_clampf((b-c)/a,0.0f,1.0f);
1566 }
1567 }
1568 }
1569
1570 v3_muladds( p1, d1, *s, c1 );
1571 v3_muladds( p2, d2, *t, c2 );
1572
1573 v3f v0;
1574 v3_sub( c1, c2, v0 );
1575 return v3_length2( v0 );
1576 }
1577
1578 VG_STATIC int point_inside_aabb( boxf box, v3f point )
1579 {
1580 if((point[0]<=box[1][0]) && (point[1]<=box[1][1]) && (point[2]<=box[1][2]) &&
1581 (point[0]>=box[0][0]) && (point[1]>=box[0][1]) && (point[2]>=box[0][2]) )
1582 return 1;
1583 else
1584 return 0;
1585 }
1586
1587 VG_STATIC void closest_point_aabb( v3f p, boxf box, v3f dest )
1588 {
1589 v3_maxv( p, box[0], dest );
1590 v3_minv( dest, box[1], dest );
1591 }
1592
1593 VG_STATIC void closest_point_obb( v3f p, boxf box,
1594 m4x3f mtx, m4x3f inv_mtx, v3f dest )
1595 {
1596 v3f local;
1597 m4x3_mulv( inv_mtx, p, local );
1598 closest_point_aabb( local, box, local );
1599 m4x3_mulv( mtx, local, dest );
1600 }
1601
1602 VG_STATIC float closest_point_segment( v3f a, v3f b, v3f point, v3f dest )
1603 {
1604 v3f v0, v1;
1605 v3_sub( b, a, v0 );
1606 v3_sub( point, a, v1 );
1607
1608 float t = v3_dot( v1, v0 ) / v3_length2(v0);
1609 t = vg_clampf(t,0.0f,1.0f);
1610 v3_muladds( a, v0, t, dest );
1611 return t;
1612 }
1613
1614 VG_STATIC void closest_on_triangle( v3f p, v3f tri[3], v3f dest )
1615 {
1616 v3f ab, ac, ap;
1617 float d1, d2;
1618
1619 /* Region outside A */
1620 v3_sub( tri[1], tri[0], ab );
1621 v3_sub( tri[2], tri[0], ac );
1622 v3_sub( p, tri[0], ap );
1623
1624 d1 = v3_dot(ab,ap);
1625 d2 = v3_dot(ac,ap);
1626 if( d1 <= 0.0f && d2 <= 0.0f )
1627 {
1628 v3_copy( tri[0], dest );
1629 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1630 return;
1631 }
1632
1633 /* Region outside B */
1634 v3f bp;
1635 float d3, d4;
1636
1637 v3_sub( p, tri[1], bp );
1638 d3 = v3_dot( ab, bp );
1639 d4 = v3_dot( ac, bp );
1640
1641 if( d3 >= 0.0f && d4 <= d3 )
1642 {
1643 v3_copy( tri[1], dest );
1644 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1645 return;
1646 }
1647
1648 /* Edge region of AB */
1649 float vc = d1*d4 - d3*d2;
1650 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1651 {
1652 float v = d1 / (d1-d3);
1653 v3_muladds( tri[0], ab, v, dest );
1654 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1655 return;
1656 }
1657
1658 /* Region outside C */
1659 v3f cp;
1660 float d5, d6;
1661 v3_sub( p, tri[2], cp );
1662 d5 = v3_dot(ab, cp);
1663 d6 = v3_dot(ac, cp);
1664
1665 if( d6 >= 0.0f && d5 <= d6 )
1666 {
1667 v3_copy( tri[2], dest );
1668 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1669 return;
1670 }
1671
1672 /* Region of AC */
1673 float vb = d5*d2 - d1*d6;
1674 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1675 {
1676 float w = d2 / (d2-d6);
1677 v3_muladds( tri[0], ac, w, dest );
1678 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1679 return;
1680 }
1681
1682 /* Region of BC */
1683 float va = d3*d6 - d5*d4;
1684 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1685 {
1686 float w = (d4-d3) / ((d4-d3) + (d5-d6));
1687 v3f bc;
1688 v3_sub( tri[2], tri[1], bc );
1689 v3_muladds( tri[1], bc, w, dest );
1690 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1691 return;
1692 }
1693
1694 /* P inside region, Q via barycentric coordinates uvw */
1695 float d = 1.0f/(va+vb+vc),
1696 v = vb*d,
1697 w = vc*d;
1698
1699 v3_muladds( tri[0], ab, v, dest );
1700 v3_muladds( dest, ac, w, dest );
1701 }
1702
1703 VG_STATIC enum contact_type closest_on_triangle_1( v3f p, v3f tri[3], v3f dest )
1704 {
1705 v3f ab, ac, ap;
1706 float d1, d2;
1707
1708 /* Region outside A */
1709 v3_sub( tri[1], tri[0], ab );
1710 v3_sub( tri[2], tri[0], ac );
1711 v3_sub( p, tri[0], ap );
1712
1713 d1 = v3_dot(ab,ap);
1714 d2 = v3_dot(ac,ap);
1715 if( d1 <= 0.0f && d2 <= 0.0f )
1716 {
1717 v3_copy( tri[0], dest );
1718 return k_contact_type_default;
1719 }
1720
1721 /* Region outside B */
1722 v3f bp;
1723 float d3, d4;
1724
1725 v3_sub( p, tri[1], bp );
1726 d3 = v3_dot( ab, bp );
1727 d4 = v3_dot( ac, bp );
1728
1729 if( d3 >= 0.0f && d4 <= d3 )
1730 {
1731 v3_copy( tri[1], dest );
1732 return k_contact_type_edge;
1733 }
1734
1735 /* Edge region of AB */
1736 float vc = d1*d4 - d3*d2;
1737 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1738 {
1739 float v = d1 / (d1-d3);
1740 v3_muladds( tri[0], ab, v, dest );
1741 return k_contact_type_edge;
1742 }
1743
1744 /* Region outside C */
1745 v3f cp;
1746 float d5, d6;
1747 v3_sub( p, tri[2], cp );
1748 d5 = v3_dot(ab, cp);
1749 d6 = v3_dot(ac, cp);
1750
1751 if( d6 >= 0.0f && d5 <= d6 )
1752 {
1753 v3_copy( tri[2], dest );
1754 return k_contact_type_edge;
1755 }
1756
1757 /* Region of AC */
1758 float vb = d5*d2 - d1*d6;
1759 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1760 {
1761 float w = d2 / (d2-d6);
1762 v3_muladds( tri[0], ac, w, dest );
1763 return k_contact_type_edge;
1764 }
1765
1766 /* Region of BC */
1767 float va = d3*d6 - d5*d4;
1768 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1769 {
1770 float w = (d4-d3) / ((d4-d3) + (d5-d6));
1771 v3f bc;
1772 v3_sub( tri[2], tri[1], bc );
1773 v3_muladds( tri[1], bc, w, dest );
1774 return k_contact_type_edge;
1775 }
1776
1777 /* P inside region, Q via barycentric coordinates uvw */
1778 float d = 1.0f/(va+vb+vc),
1779 v = vb*d,
1780 w = vc*d;
1781
1782 v3_muladds( tri[0], ab, v, dest );
1783 v3_muladds( dest, ac, w, dest );
1784
1785 return k_contact_type_default;
1786 }
1787
1788
1789 static void closest_point_elipse( v2f p, v2f e, v2f o )
1790 {
1791 v2f pabs, ei, e2, ve, t;
1792
1793 v2_abs( p, pabs );
1794 v2_div( (v2f){ 1.0f, 1.0f }, e, ei );
1795 v2_mul( e, e, e2 );
1796 v2_mul( ei, (v2f){ e2[0]-e2[1], e2[1]-e2[0] }, ve );
1797
1798 v2_fill( t, 0.70710678118654752f );
1799
1800 for( int i=0; i<3; i++ )
1801 {
1802 v2f v, u, ud, w;
1803
1804 v2_mul( ve, t, v ); /* ve*t*t*t */
1805 v2_mul( v, t, v );
1806 v2_mul( v, t, v );
1807
1808 v2_sub( pabs, v, u );
1809 v2_normalize( u );
1810
1811 v2_mul( t, e, ud );
1812 v2_sub( ud, v, ud );
1813
1814 v2_muls( u, v2_length( ud ), u );
1815
1816 v2_add( v, u, w );
1817 v2_mul( w, ei, w );
1818
1819 v2_maxv( (v2f){0.0f,0.0f}, w, t );
1820 v2_normalize( t );
1821 }
1822
1823 v2_mul( t, e, o );
1824 v2_copysign( o, p );
1825 }
1826
1827 /*
1828 * Raycasts
1829 */
1830
1831 /* Time of intersection with ray vs triangle */
1832 static int ray_tri( v3f tri[3], v3f co,
1833 v3f dir, float *dist )
1834 {
1835 float const kEpsilon = 0.00001f;
1836
1837 v3f v0, v1, h, s, q, n;
1838 float a,f,u,v,t;
1839
1840 float *pa = tri[0],
1841 *pb = tri[1],
1842 *pc = tri[2];
1843
1844 v3_sub( pb, pa, v0 );
1845 v3_sub( pc, pa, v1 );
1846 v3_cross( dir, v1, h );
1847 v3_cross( v0, v1, n );
1848
1849 if( v3_dot( n, dir ) > 0.0f ) /* Backface culling */
1850 return 0;
1851
1852 /* Parralel */
1853 a = v3_dot( v0, h );
1854
1855 if( a > -kEpsilon && a < kEpsilon )
1856 return 0;
1857
1858 f = 1.0f/a;
1859 v3_sub( co, pa, s );
1860
1861 u = f * v3_dot(s, h);
1862 if( u < 0.0f || u > 1.0f )
1863 return 0;
1864
1865 v3_cross( s, v0, q );
1866 v = f * v3_dot( dir, q );
1867 if( v < 0.0f || u+v > 1.0f )
1868 return 0;
1869
1870 t = f * v3_dot(v1, q);
1871 if( t > kEpsilon )
1872 {
1873 *dist = t;
1874 return 1;
1875 }
1876 else return 0;
1877 }
1878
1879 /* time of intersection with ray vs sphere */
1880 static int ray_sphere( v3f c, float r,
1881 v3f co, v3f dir, float *t )
1882 {
1883 v3f m;
1884 v3_sub( co, c, m );
1885
1886 float b = v3_dot( m, dir ),
1887 c1 = v3_dot( m, m ) - r*r;
1888
1889 /* Exit if r’s origin outside s (c > 0) and r pointing away from s (b > 0) */
1890 if( c1 > 0.0f && b > 0.0f )
1891 return 0;
1892
1893 float discr = b*b - c1;
1894
1895 /* A negative discriminant corresponds to ray missing sphere */
1896 if( discr < 0.0f )
1897 return 0;
1898
1899 /*
1900 * Ray now found to intersect sphere, compute smallest t value of
1901 * intersection
1902 */
1903 *t = -b - sqrtf( discr );
1904
1905 /* If t is negative, ray started inside sphere so clamp t to zero */
1906 if( *t < 0.0f )
1907 *t = 0.0f;
1908
1909 return 1;
1910 }
1911
1912 /*
1913 * time of intersection of ray vs cylinder
1914 * The cylinder does not have caps but is finite
1915 *
1916 * Heavily adapted from regular segment vs cylinder from:
1917 * Real-Time Collision Detection
1918 */
1919 static int ray_uncapped_finite_cylinder( v3f q, v3f p, float r,
1920 v3f co, v3f dir, float *t )
1921 {
1922 v3f d, m, n, sb;
1923 v3_muladds( co, dir, 1.0f, sb );
1924
1925 v3_sub( q, p, d );
1926 v3_sub( co, p, m );
1927 v3_sub( sb, co, n );
1928
1929 float md = v3_dot( m, d ),
1930 nd = v3_dot( n, d ),
1931 dd = v3_dot( d, d ),
1932 nn = v3_dot( n, n ),
1933 mn = v3_dot( m, n ),
1934 a = dd*nn - nd*nd,
1935 k = v3_dot( m, m ) - r*r,
1936 c = dd*k - md*md;
1937
1938 if( fabsf(a) < 0.00001f )
1939 {
1940 /* Segment runs parallel to cylinder axis */
1941 return 0;
1942 }
1943
1944 float b = dd*mn - nd*md,
1945 discr = b*b - a*c;
1946
1947 if( discr < 0.0f )
1948 return 0; /* No real roots; no intersection */
1949
1950 *t = (-b - sqrtf(discr)) / a;
1951 if( *t < 0.0f )
1952 return 0; /* Intersection behind ray */
1953
1954 /* Check within cylinder segment */
1955 if( md + (*t)*nd < 0.0f )
1956 return 0;
1957
1958 if( md + (*t)*nd > dd )
1959 return 0;
1960
1961 /* Segment intersects cylinder between the endcaps; t is correct */
1962 return 1;
1963 }
1964
1965 /*
1966 * Time of intersection of sphere and triangle. Origin must be outside the
1967 * colliding area. This is a fairly long procedure.
1968 */
1969 static int spherecast_triangle( v3f tri[3],
1970 v3f co, v3f dir, float r, float *t, v3f n )
1971 {
1972 v3f sum[3];
1973 v3f v0, v1;
1974
1975 v3_sub( tri[1], tri[0], v0 );
1976 v3_sub( tri[2], tri[0], v1 );
1977 v3_cross( v0, v1, n );
1978 v3_normalize( n );
1979 v3_muladds( tri[0], n, r, sum[0] );
1980 v3_muladds( tri[1], n, r, sum[1] );
1981 v3_muladds( tri[2], n, r, sum[2] );
1982
1983 int hit = 0;
1984 float t_min = INFINITY,
1985 t1;
1986
1987 if( ray_tri( sum, co, dir, &t1 ) )
1988 {
1989 t_min = vg_minf( t_min, t1 );
1990 hit = 1;
1991 }
1992
1993 /*
1994 * Currently disabled; ray_sphere requires |d| = 1. it is not very important.
1995 */
1996 #if 0
1997 for( int i=0; i<3; i++ )
1998 {
1999 if( ray_sphere( tri[i], r, co, dir, &t1 ) )
2000 {
2001 t_min = vg_minf( t_min, t1 );
2002 hit = 1;
2003 }
2004 }
2005 #endif
2006
2007 for( int i=0; i<3; i++ )
2008 {
2009 int i0 = i,
2010 i1 = (i+1)%3;
2011
2012 if( ray_uncapped_finite_cylinder( tri[i0], tri[i1], r, co, dir, &t1 ) )
2013 {
2014 if( t1 < t_min )
2015 {
2016 t_min = t1;
2017
2018 v3f co1, ct, cx;
2019 v3_add( dir, co, co1 );
2020 v3_lerp( co, co1, t_min, ct );
2021
2022 closest_point_segment( tri[i0], tri[i1], ct, cx );
2023 v3_sub( ct, cx, n );
2024 v3_normalize( n );
2025 }
2026
2027 hit = 1;
2028 }
2029 }
2030
2031 *t = t_min;
2032 return hit;
2033 }
2034
2035 static inline float vg_randf(void)
2036 {
2037 /* TODO: replace with our own rand */
2038 return (float)rand()/(float)(RAND_MAX);
2039 }
2040
2041 static inline void vg_rand_dir(v3f dir)
2042 {
2043 dir[0] = vg_randf();
2044 dir[1] = vg_randf();
2045 dir[2] = vg_randf();
2046
2047 v3_muls( dir, 2.0f, dir );
2048 v3_sub( dir, (v3f){1.0f,1.0f,1.0f}, dir );
2049
2050 v3_normalize( dir );
2051 }
2052
2053 static inline void vg_rand_sphere( v3f co )
2054 {
2055 vg_rand_dir(co);
2056 v3_muls( co, cbrtf( vg_randf() ), co );
2057 }
2058
2059 static inline int vg_randint(int max)
2060 {
2061 return rand()%max;
2062 }
2063
2064 static void eval_bezier_time( v3f p0, v3f p1, v3f h0, v3f h1, float t, v3f p )
2065 {
2066 float tt = t*t,
2067 ttt = tt*t;
2068
2069 v3_muls( p1, ttt, p );
2070 v3_muladds( p, h1, 3.0f*tt -3.0f*ttt, p );
2071 v3_muladds( p, h0, 3.0f*ttt -6.0f*tt +3.0f*t, p );
2072 v3_muladds( p, p0, 3.0f*tt -ttt -3.0f*t +1.0f, p );
2073 }
2074
2075 static void eval_bezier3( v3f p0, v3f p1, v3f p2, float t, v3f p )
2076 {
2077 float u = 1.0f-t;
2078
2079 v3_muls( p0, u*u, p );
2080 v3_muladds( p, p1, 2.0f*u*t, p );
2081 v3_muladds( p, p2, t*t, p );
2082 }
2083
2084 #endif /* VG_M_H */