64 bit fract function
[vg.git] / vg_m.h
1 /* Copyright (C) 2021-2023 Harry Godden (hgn) - All Rights Reserved
2 *
3 * 0. Misc
4 * 1. Scalar operations
5 * 2. Vectors
6 * 2.a 2D Vectors
7 * 2.b 3D Vectors
8 * 2.c 4D Vectors
9 * 3. Quaternions
10 * 4. Matrices
11 * 4.a 2x2 matrices
12 * 4.b 3x3 matrices
13 * 4.c 4x3 matrices
14 * 4.d 4x4 matrices
15 * 5. Geometry
16 * 5.a Boxes
17 * 5.b Planes
18 * 5.c Closest points
19 * 5.d Raycast & Spherecasts
20 * 5.e Curves
21 * 5.f Volumes
22 * 6. Statistics
23 * 6.a Random numbers
24 **/
25
26 #ifndef VG_M_H
27 #define VG_M_H
28
29 #include "vg_platform.h"
30 #include <math.h>
31 #include <stdlib.h>
32
33 #define VG_PIf 3.14159265358979323846264338327950288f
34 #define VG_TAUf 6.28318530717958647692528676655900576f
35
36 /*
37 * -----------------------------------------------------------------------------
38 * Section 0. Misc Operations
39 * -----------------------------------------------------------------------------
40 */
41
42 /* get the f32 as the raw bits in a u32 without converting */
43 static u32 vg_ftu32( f32 a )
44 {
45 u32 *ptr = (u32 *)(&a);
46 return *ptr;
47 }
48
49 /* check if f32 is infinite */
50 static int vg_isinff( f32 a )
51 {
52 return ((vg_ftu32(a)) & 0x7FFFFFFFU) == 0x7F800000U;
53 }
54
55 /* check if f32 is not a number */
56 static int vg_isnanf( f32 a )
57 {
58 return !vg_isinff(a) && ((vg_ftu32(a)) & 0x7F800000U) == 0x7F800000U;
59 }
60
61 /* check if f32 is a number and is not infinite */
62 static int vg_validf( f32 a )
63 {
64 return ((vg_ftu32(a)) & 0x7F800000U) != 0x7F800000U;
65 }
66
67 static int v3_valid( v3f a ){
68 for( u32 i=0; i<3; i++ )
69 if( !vg_validf(a[i]) ) return 0;
70 return 1;
71 }
72
73 /*
74 * -----------------------------------------------------------------------------
75 * Section 1. Scalar Operations
76 * -----------------------------------------------------------------------------
77 */
78
79 static inline f32 vg_minf( f32 a, f32 b ){ return a < b? a: b; }
80 static inline f32 vg_maxf( f32 a, f32 b ){ return a > b? a: b; }
81
82 static inline int vg_min( int a, int b ){ return a < b? a: b; }
83 static inline int vg_max( int a, int b ){ return a > b? a: b; }
84
85 static inline f32 vg_clampf( f32 a, f32 min, f32 max )
86 {
87 return vg_minf( max, vg_maxf( a, min ) );
88 }
89
90 static inline f32 vg_signf( f32 a )
91 {
92 return a < 0.0f? -1.0f: 1.0f;
93 }
94
95 static inline f32 vg_fractf( f32 a )
96 {
97 return a - floorf( a );
98 }
99
100 static inline f64 vg_fractf64( f64 a ){
101 return a - floor( a );
102 }
103
104 static f32 vg_cfrictf( f32 velocity, f32 F )
105 {
106 return -vg_signf(velocity) * vg_minf( F, fabsf(velocity) );
107 }
108
109 static inline f32 vg_rad( f32 deg )
110 {
111 return deg * VG_PIf / 180.0f;
112 }
113
114 /* angle to reach b from a */
115 static f32 vg_angle_diff( f32 a, f32 b ){
116 f32 d = fmod(b,VG_TAUf)-fmodf(a,VG_TAUf);
117 if( fabsf(d) > VG_PIf )
118 d = -vg_signf(d) * (VG_TAUf - fabsf(d));
119
120 return d;
121 }
122
123 /*
124 * quantize float to bit count
125 */
126 static u32 vg_quantf( f32 a, u32 bits, f32 min, f32 max ){
127 u32 mask = (0x1 << bits) - 1;
128 return vg_clampf((a - min) * ((f32)mask/(max-min)), 0.0f, mask );
129 }
130
131 /*
132 * un-quantize discreet to float
133 */
134 static f32 vg_dequantf( u32 q, u32 bits, f32 min, f32 max ){
135 u32 mask = (0x1 << bits) - 1;
136 return min + (f32)q * ((max-min) / (f32)mask);
137 }
138
139 /* https://iquilezles.org/articles/functions/
140 *
141 * Use k to control the stretching of the function. Its maximum, which is 1,
142 * happens at exactly x = 1/k.
143 */
144 static f32 vg_exp_impulse( f32 x, f32 k ){
145 f32 h = k*x;
146 return h*expf(1.0f-h);
147 }
148
149 /*
150 * -----------------------------------------------------------------------------
151 * Section 2.a 2D Vectors
152 * -----------------------------------------------------------------------------
153 */
154
155 static inline void v2_copy( v2f a, v2f d )
156 {
157 d[0] = a[0]; d[1] = a[1];
158 }
159
160 static inline void v2_zero( v2f a )
161 {
162 a[0] = 0.f; a[1] = 0.f;
163 }
164
165 static inline void v2_add( v2f a, v2f b, v2f d )
166 {
167 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
168 }
169
170 static inline void v2_sub( v2f a, v2f b, v2f d )
171 {
172 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
173 }
174
175 static inline void v2_minv( v2f a, v2f b, v2f dest )
176 {
177 dest[0] = vg_minf(a[0], b[0]);
178 dest[1] = vg_minf(a[1], b[1]);
179 }
180
181 static inline void v2_maxv( v2f a, v2f b, v2f dest )
182 {
183 dest[0] = vg_maxf(a[0], b[0]);
184 dest[1] = vg_maxf(a[1], b[1]);
185 }
186
187 static inline f32 v2_dot( v2f a, v2f b )
188 {
189 return a[0] * b[0] + a[1] * b[1];
190 }
191
192 static inline f32 v2_cross( v2f a, v2f b )
193 {
194 return a[0]*b[1] - a[1]*b[0];
195 }
196
197 static inline void v2_abs( v2f a, v2f d )
198 {
199 d[0] = fabsf( a[0] );
200 d[1] = fabsf( a[1] );
201 }
202
203 static inline void v2_muls( v2f a, f32 s, v2f d )
204 {
205 d[0] = a[0]*s; d[1] = a[1]*s;
206 }
207
208 static inline void v2_divs( v2f a, f32 s, v2f d )
209 {
210 d[0] = a[0]/s; d[1] = a[1]/s;
211 }
212
213 static inline void v2_mul( v2f a, v2f b, v2f d )
214 {
215 d[0] = a[0]*b[0];
216 d[1] = a[1]*b[1];
217 }
218
219 static inline void v2_div( v2f a, v2f b, v2f d )
220 {
221 d[0] = a[0]/b[0]; d[1] = a[1]/b[1];
222 }
223
224 static inline void v2_muladd( v2f a, v2f b, v2f s, v2f d )
225 {
226 d[0] = a[0]+b[0]*s[0];
227 d[1] = a[1]+b[1]*s[1];
228 }
229
230 static inline void v2_muladds( v2f a, v2f b, f32 s, v2f d )
231 {
232 d[0] = a[0]+b[0]*s;
233 d[1] = a[1]+b[1]*s;
234 }
235
236 static inline f32 v2_length2( v2f a )
237 {
238 return a[0]*a[0] + a[1]*a[1];
239 }
240
241 static inline f32 v2_length( v2f a )
242 {
243 return sqrtf( v2_length2( a ) );
244 }
245
246 static inline f32 v2_dist2( v2f a, v2f b )
247 {
248 v2f delta;
249 v2_sub( a, b, delta );
250 return v2_length2( delta );
251 }
252
253 static inline f32 v2_dist( v2f a, v2f b )
254 {
255 return sqrtf( v2_dist2( a, b ) );
256 }
257
258 static inline void v2_lerp( v2f a, v2f b, f32 t, v2f d )
259 {
260 d[0] = a[0] + t*(b[0]-a[0]);
261 d[1] = a[1] + t*(b[1]-a[1]);
262 }
263
264 static inline void v2_normalize( v2f a )
265 {
266 v2_muls( a, 1.0f / v2_length( a ), a );
267 }
268
269 static void v2_normalize_clamp( v2f a )
270 {
271 f32 l2 = v2_length2( a );
272 if( l2 > 1.0f )
273 v2_muls( a, 1.0f/sqrtf(l2), a );
274 }
275
276 static inline void v2_floor( v2f a, v2f b )
277 {
278 b[0] = floorf( a[0] );
279 b[1] = floorf( a[1] );
280 }
281
282 static inline void v2_fill( v2f a, f32 v )
283 {
284 a[0] = v;
285 a[1] = v;
286 }
287
288 static inline void v2_copysign( v2f a, v2f b )
289 {
290 a[0] = copysignf( a[0], b[0] );
291 a[1] = copysignf( a[1], b[1] );
292 }
293
294 /* integer variants
295 * ---------------- */
296
297 static inline void v2i_copy( v2i a, v2i b )
298 {
299 b[0] = a[0]; b[1] = a[1];
300 }
301
302 static inline int v2i_eq( v2i a, v2i b )
303 {
304 return ((a[0] == b[0]) && (a[1] == b[1]));
305 }
306
307 static inline void v2i_add( v2i a, v2i b, v2i d )
308 {
309 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
310 }
311
312 static inline void v2i_sub( v2i a, v2i b, v2i d )
313 {
314 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
315 }
316
317 /*
318 * -----------------------------------------------------------------------------
319 * Section 2.b 3D Vectors
320 * -----------------------------------------------------------------------------
321 */
322
323 static inline void v3_copy( v3f a, v3f b )
324 {
325 b[0] = a[0]; b[1] = a[1]; b[2] = a[2];
326 }
327
328 static inline void v3_zero( v3f a )
329 {
330 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f;
331 }
332
333 static inline void v3_add( v3f a, v3f b, v3f d )
334 {
335 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
336 }
337
338 static inline void v3i_add( v3i a, v3i b, v3i d )
339 {
340 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
341 }
342
343 static inline void v3_sub( v3f a, v3f b, v3f d )
344 {
345 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
346 }
347
348 static inline void v3i_sub( v3i a, v3i b, v3i d )
349 {
350 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
351 }
352
353 static inline void v3_mul( v3f a, v3f b, v3f d )
354 {
355 d[0] = a[0]*b[0]; d[1] = a[1]*b[1]; d[2] = a[2]*b[2];
356 }
357
358 static inline void v3_div( v3f a, v3f b, v3f d )
359 {
360 d[0] = b[0]!=0.0f? a[0]/b[0]: INFINITY;
361 d[1] = b[1]!=0.0f? a[1]/b[1]: INFINITY;
362 d[2] = b[2]!=0.0f? a[2]/b[2]: INFINITY;
363 }
364
365 static inline void v3_muls( v3f a, f32 s, v3f d )
366 {
367 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s;
368 }
369
370 static inline void v3_fill( v3f a, f32 v )
371 {
372 a[0] = v;
373 a[1] = v;
374 a[2] = v;
375 }
376
377 static inline void v3_divs( v3f a, f32 s, v3f d )
378 {
379 if( s == 0.0f )
380 v3_fill( d, INFINITY );
381 else
382 {
383 d[0] = a[0]/s;
384 d[1] = a[1]/s;
385 d[2] = a[2]/s;
386 }
387 }
388
389 static inline void v3_muladds( v3f a, v3f b, f32 s, v3f d )
390 {
391 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s; d[2] = a[2]+b[2]*s;
392 }
393
394 static inline void v3_muladd( v2f a, v2f b, v2f s, v2f d )
395 {
396 d[0] = a[0]+b[0]*s[0];
397 d[1] = a[1]+b[1]*s[1];
398 d[2] = a[2]+b[2]*s[2];
399 }
400
401 static inline f32 v3_dot( v3f a, v3f b )
402 {
403 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
404 }
405
406 static inline void v3_cross( v3f a, v3f b, v3f dest )
407 {
408 v3f d;
409 d[0] = a[1]*b[2] - a[2]*b[1];
410 d[1] = a[2]*b[0] - a[0]*b[2];
411 d[2] = a[0]*b[1] - a[1]*b[0];
412 v3_copy( d, dest );
413 }
414
415 static inline f32 v3_length2( v3f a )
416 {
417 return v3_dot( a, a );
418 }
419
420 static inline f32 v3_length( v3f a )
421 {
422 return sqrtf( v3_length2( a ) );
423 }
424
425 static inline f32 v3_dist2( v3f a, v3f b )
426 {
427 v3f delta;
428 v3_sub( a, b, delta );
429 return v3_length2( delta );
430 }
431
432 static inline f32 v3_dist( v3f a, v3f b )
433 {
434 return sqrtf( v3_dist2( a, b ) );
435 }
436
437 static inline void v3_normalize( v3f a )
438 {
439 v3_muls( a, 1.f / v3_length( a ), a );
440 }
441
442 static inline f32 vg_lerpf( f32 a, f32 b, f32 t ){
443 return a + t*(b-a);
444 }
445
446 static inline f64 vg_lerp( f64 a, f64 b, f64 t )
447 {
448 return a + t*(b-a);
449 }
450
451 static inline void vg_slewf( f32 *a, f32 b, f32 speed ){
452 f32 d = vg_signf( b-*a ),
453 c = *a + d*speed;
454 *a = vg_minf( b*d, c*d ) * d;
455 }
456
457 static inline f32 vg_smoothstepf( f32 x ){
458 return x*x*(3.0f - 2.0f*x);
459 }
460
461
462 /* correctly lerp around circular period -pi -> pi */
463 static f32 vg_alerpf( f32 a, f32 b, f32 t )
464 {
465 f32 d = fmodf( b-a, VG_TAUf ),
466 s = fmodf( 2.0f*d, VG_TAUf ) - d;
467 return a + s*t;
468 }
469
470 static inline void v3_lerp( v3f a, v3f b, f32 t, v3f d )
471 {
472 d[0] = a[0] + t*(b[0]-a[0]);
473 d[1] = a[1] + t*(b[1]-a[1]);
474 d[2] = a[2] + t*(b[2]-a[2]);
475 }
476
477 static inline void v3_minv( v3f a, v3f b, v3f dest )
478 {
479 dest[0] = vg_minf(a[0], b[0]);
480 dest[1] = vg_minf(a[1], b[1]);
481 dest[2] = vg_minf(a[2], b[2]);
482 }
483
484 static inline void v3_maxv( v3f a, v3f b, v3f dest )
485 {
486 dest[0] = vg_maxf(a[0], b[0]);
487 dest[1] = vg_maxf(a[1], b[1]);
488 dest[2] = vg_maxf(a[2], b[2]);
489 }
490
491 static inline f32 v3_minf( v3f a )
492 {
493 return vg_minf( vg_minf( a[0], a[1] ), a[2] );
494 }
495
496 static inline f32 v3_maxf( v3f a )
497 {
498 return vg_maxf( vg_maxf( a[0], a[1] ), a[2] );
499 }
500
501 static inline void v3_floor( v3f a, v3f b )
502 {
503 b[0] = floorf( a[0] );
504 b[1] = floorf( a[1] );
505 b[2] = floorf( a[2] );
506 }
507
508 static inline void v3_ceil( v3f a, v3f b )
509 {
510 b[0] = ceilf( a[0] );
511 b[1] = ceilf( a[1] );
512 b[2] = ceilf( a[2] );
513 }
514
515 static inline void v3_negate( v3f a, v3f b )
516 {
517 b[0] = -a[0];
518 b[1] = -a[1];
519 b[2] = -a[2];
520 }
521
522 static inline void v3_rotate( v3f v, f32 angle, v3f axis, v3f d )
523 {
524 v3f v1, v2, k;
525 f32 c, s;
526
527 c = cosf( angle );
528 s = sinf( angle );
529
530 v3_copy( axis, k );
531 v3_normalize( k );
532 v3_muls( v, c, v1 );
533 v3_cross( k, v, v2 );
534 v3_muls( v2, s, v2 );
535 v3_add( v1, v2, v1 );
536 v3_muls( k, v3_dot(k, v) * (1.0f - c), v2);
537 v3_add( v1, v2, d );
538 }
539
540 static void v3_tangent_basis( v3f n, v3f tx, v3f ty ){
541 /* Compute tangent basis (box2d) */
542 if( fabsf( n[0] ) >= 0.57735027f ){
543 tx[0] = n[1];
544 tx[1] = -n[0];
545 tx[2] = 0.0f;
546 }
547 else{
548 tx[0] = 0.0f;
549 tx[1] = n[2];
550 tx[2] = -n[1];
551 }
552
553 v3_normalize( tx );
554 v3_cross( n, tx, ty );
555 }
556
557 /*
558 * Compute yaw and pitch based of a normalized vector representing forward
559 * forward: -z
560 * result -> (YAW,PITCH,0.0)
561 */
562 static void v3_angles( v3f v, v3f out_angles ){
563 float yaw = atan2f( v[0], -v[2] ),
564 pitch = atan2f(
565 -v[1],
566 sqrtf(
567 v[0]*v[0] + v[2]*v[2]
568 )
569 );
570
571 out_angles[0] = yaw;
572 out_angles[1] = pitch;
573 out_angles[2] = 0.0f;
574 }
575
576 /*
577 * Compute the forward vector from (YAW,PITCH,ROLL)
578 * forward: -z
579 */
580 static void v3_angles_vector( v3f angles, v3f out_v ){
581 out_v[0] = sinf( angles[0] ) * cosf( angles[1] );
582 out_v[1] = -sinf( angles[1] );
583 out_v[2] = -cosf( angles[0] ) * cosf( angles[1] );
584 }
585
586 /*
587 * -----------------------------------------------------------------------------
588 * Section 2.c 4D Vectors
589 * -----------------------------------------------------------------------------
590 */
591
592 static inline void v4_copy( v4f a, v4f b )
593 {
594 b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];
595 }
596
597 static inline void v4_add( v4f a, v4f b, v4f d )
598 {
599 d[0] = a[0]+b[0];
600 d[1] = a[1]+b[1];
601 d[2] = a[2]+b[2];
602 d[3] = a[3]+b[3];
603 }
604
605 static inline void v4_zero( v4f a )
606 {
607 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f; a[3] = 0.f;
608 }
609
610 static inline void v4_muls( v4f a, f32 s, v4f d )
611 {
612 d[0] = a[0]*s;
613 d[1] = a[1]*s;
614 d[2] = a[2]*s;
615 d[3] = a[3]*s;
616 }
617
618 static inline void v4_muladds( v4f a, v4f b, f32 s, v4f d )
619 {
620 d[0] = a[0]+b[0]*s;
621 d[1] = a[1]+b[1]*s;
622 d[2] = a[2]+b[2]*s;
623 d[3] = a[3]+b[3]*s;
624 }
625
626 static inline void v4_lerp( v4f a, v4f b, f32 t, v4f d )
627 {
628 d[0] = a[0] + t*(b[0]-a[0]);
629 d[1] = a[1] + t*(b[1]-a[1]);
630 d[2] = a[2] + t*(b[2]-a[2]);
631 d[3] = a[3] + t*(b[3]-a[3]);
632 }
633
634 static inline f32 v4_dot( v4f a, v4f b )
635 {
636 return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
637 }
638
639 static inline f32 v4_length( v4f a )
640 {
641 return sqrtf( v4_dot(a,a) );
642 }
643
644 /*
645 * -----------------------------------------------------------------------------
646 * Section 3 Quaternions
647 * -----------------------------------------------------------------------------
648 */
649
650 static inline void q_identity( v4f q )
651 {
652 q[0] = 0.0f; q[1] = 0.0f; q[2] = 0.0f; q[3] = 1.0f;
653 }
654
655 static inline void q_axis_angle( v4f q, v3f axis, f32 angle )
656 {
657 f32 a = angle*0.5f,
658 c = cosf(a),
659 s = sinf(a);
660
661 q[0] = s*axis[0];
662 q[1] = s*axis[1];
663 q[2] = s*axis[2];
664 q[3] = c;
665 }
666
667 static inline void q_mul( v4f q, v4f q1, v4f d )
668 {
669 v4f t;
670 t[0] = q[3]*q1[0] + q[0]*q1[3] + q[1]*q1[2] - q[2]*q1[1];
671 t[1] = q[3]*q1[1] - q[0]*q1[2] + q[1]*q1[3] + q[2]*q1[0];
672 t[2] = q[3]*q1[2] + q[0]*q1[1] - q[1]*q1[0] + q[2]*q1[3];
673 t[3] = q[3]*q1[3] - q[0]*q1[0] - q[1]*q1[1] - q[2]*q1[2];
674 v4_copy( t, d );
675 }
676
677 static inline void q_normalize( v4f q )
678 {
679 f32 l2 = v4_dot(q,q);
680 if( l2 < 0.00001f ) q_identity( q );
681 else {
682 f32 s = 1.0f/sqrtf(l2);
683 q[0] *= s;
684 q[1] *= s;
685 q[2] *= s;
686 q[3] *= s;
687 }
688 }
689
690 static inline void q_inv( v4f q, v4f d )
691 {
692 f32 s = 1.0f / v4_dot(q,q);
693 d[0] = -q[0]*s;
694 d[1] = -q[1]*s;
695 d[2] = -q[2]*s;
696 d[3] = q[3]*s;
697 }
698
699 static inline void q_nlerp( v4f a, v4f b, f32 t, v4f d ){
700 if( v4_dot(a,b) < 0.0f ){
701 v4f c;
702 v4_muls( b, -1.0f, c );
703 v4_lerp( a, c, t, d );
704 }
705 else
706 v4_lerp( a, b, t, d );
707
708 q_normalize( d );
709 }
710
711 static inline void q_m3x3( v4f q, m3x3f d )
712 {
713 f32
714 l = v4_length(q),
715 s = l > 0.0f? 2.0f/l: 0.0f,
716
717 xx = s*q[0]*q[0], xy = s*q[0]*q[1], wx = s*q[3]*q[0],
718 yy = s*q[1]*q[1], yz = s*q[1]*q[2], wy = s*q[3]*q[1],
719 zz = s*q[2]*q[2], xz = s*q[0]*q[2], wz = s*q[3]*q[2];
720
721 d[0][0] = 1.0f - yy - zz;
722 d[1][1] = 1.0f - xx - zz;
723 d[2][2] = 1.0f - xx - yy;
724 d[0][1] = xy + wz;
725 d[1][2] = yz + wx;
726 d[2][0] = xz + wy;
727 d[1][0] = xy - wz;
728 d[2][1] = yz - wx;
729 d[0][2] = xz - wy;
730 }
731
732 static void q_mulv( v4f q, v3f v, v3f d )
733 {
734 v3f v1, v2;
735
736 v3_muls( q, 2.0f*v3_dot(q,v), v1 );
737 v3_muls( v, q[3]*q[3] - v3_dot(q,q), v2 );
738 v3_add( v1, v2, v1 );
739 v3_cross( q, v, v2 );
740 v3_muls( v2, 2.0f*q[3], v2 );
741 v3_add( v1, v2, d );
742 }
743
744 static f32 q_dist( v4f q0, v4f q1 ){
745 return acosf( 2.0f * v4_dot(q0,q1) -1.0f );
746 }
747
748 /*
749 * -----------------------------------------------------------------------------
750 * Section 4.a 2x2 matrices
751 * -----------------------------------------------------------------------------
752 */
753
754 #define M2X2_INDENTIY {{1.0f, 0.0f, }, \
755 {0.0f, 1.0f, }}
756
757 #define M2X2_ZERO {{0.0f, 0.0f, }, \
758 {0.0f, 0.0f, }}
759
760 static inline void m2x2_copy( m2x2f a, m2x2f b )
761 {
762 v2_copy( a[0], b[0] );
763 v2_copy( a[1], b[1] );
764 }
765
766 static inline void m2x2_identity( m2x2f a )
767 {
768 m2x2f id = M2X2_INDENTIY;
769 m2x2_copy( id, a );
770 }
771
772 static inline void m2x2_create_rotation( m2x2f a, f32 theta )
773 {
774 f32 s, c;
775
776 s = sinf( theta );
777 c = cosf( theta );
778
779 a[0][0] = c;
780 a[0][1] = -s;
781 a[1][0] = s;
782 a[1][1] = c;
783 }
784
785 static inline void m2x2_mulv( m2x2f m, v2f v, v2f d )
786 {
787 v2f res;
788
789 res[0] = m[0][0]*v[0] + m[1][0]*v[1];
790 res[1] = m[0][1]*v[0] + m[1][1]*v[1];
791
792 v2_copy( res, d );
793 }
794
795 /*
796 * -----------------------------------------------------------------------------
797 * Section 4.b 3x3 matrices
798 * -----------------------------------------------------------------------------
799 */
800
801 #define M3X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
802 { 0.0f, 1.0f, 0.0f, },\
803 { 0.0f, 0.0f, 1.0f, }}
804
805 #define M3X3_ZERO {{0.0f, 0.0f, 0.0f, },\
806 { 0.0f, 0.0f, 0.0f, },\
807 { 0.0f, 0.0f, 0.0f, }}
808
809
810 static void euler_m3x3( v3f angles, m3x3f d )
811 {
812 f32 cosY = cosf( angles[0] ),
813 sinY = sinf( angles[0] ),
814 cosP = cosf( angles[1] ),
815 sinP = sinf( angles[1] ),
816 cosR = cosf( angles[2] ),
817 sinR = sinf( angles[2] );
818
819 d[2][0] = -sinY * cosP;
820 d[2][1] = sinP;
821 d[2][2] = cosY * cosP;
822
823 d[0][0] = cosY * cosR;
824 d[0][1] = sinR;
825 d[0][2] = sinY * cosR;
826
827 v3_cross( d[0], d[2], d[1] );
828 }
829
830 static void m3x3_q( m3x3f m, v4f q )
831 {
832 f32 diag, r, rinv;
833
834 diag = m[0][0] + m[1][1] + m[2][2];
835 if( diag >= 0.0f )
836 {
837 r = sqrtf( 1.0f + diag );
838 rinv = 0.5f / r;
839 q[0] = rinv * (m[1][2] - m[2][1]);
840 q[1] = rinv * (m[2][0] - m[0][2]);
841 q[2] = rinv * (m[0][1] - m[1][0]);
842 q[3] = r * 0.5f;
843 }
844 else if( m[0][0] >= m[1][1] && m[0][0] >= m[2][2] )
845 {
846 r = sqrtf( 1.0f - m[1][1] - m[2][2] + m[0][0] );
847 rinv = 0.5f / r;
848 q[0] = r * 0.5f;
849 q[1] = rinv * (m[0][1] + m[1][0]);
850 q[2] = rinv * (m[0][2] + m[2][0]);
851 q[3] = rinv * (m[1][2] - m[2][1]);
852 }
853 else if( m[1][1] >= m[2][2] )
854 {
855 r = sqrtf( 1.0f - m[0][0] - m[2][2] + m[1][1] );
856 rinv = 0.5f / r;
857 q[0] = rinv * (m[0][1] + m[1][0]);
858 q[1] = r * 0.5f;
859 q[2] = rinv * (m[1][2] + m[2][1]);
860 q[3] = rinv * (m[2][0] - m[0][2]);
861 }
862 else
863 {
864 r = sqrtf( 1.0f - m[0][0] - m[1][1] + m[2][2] );
865 rinv = 0.5f / r;
866 q[0] = rinv * (m[0][2] + m[2][0]);
867 q[1] = rinv * (m[1][2] + m[2][1]);
868 q[2] = r * 0.5f;
869 q[3] = rinv * (m[0][1] - m[1][0]);
870 }
871 }
872
873 /* a X b == [b]T a == ...*/
874 static void m3x3_skew_symetric( m3x3f a, v3f v )
875 {
876 a[0][0] = 0.0f;
877 a[0][1] = v[2];
878 a[0][2] = -v[1];
879 a[1][0] = -v[2];
880 a[1][1] = 0.0f;
881 a[1][2] = v[0];
882 a[2][0] = v[1];
883 a[2][1] = -v[0];
884 a[2][2] = 0.0f;
885 }
886
887 static void m3x3_add( m3x3f a, m3x3f b, m3x3f d )
888 {
889 v3_add( a[0], b[0], d[0] );
890 v3_add( a[1], b[1], d[1] );
891 v3_add( a[2], b[2], d[2] );
892 }
893
894 static inline void m3x3_copy( m3x3f a, m3x3f b )
895 {
896 v3_copy( a[0], b[0] );
897 v3_copy( a[1], b[1] );
898 v3_copy( a[2], b[2] );
899 }
900
901 static inline void m3x3_identity( m3x3f a )
902 {
903 m3x3f id = M3X3_IDENTITY;
904 m3x3_copy( id, a );
905 }
906
907 static void m3x3_diagonal( m3x3f a, f32 v )
908 {
909 m3x3_identity( a );
910 a[0][0] = v;
911 a[1][1] = v;
912 a[2][2] = v;
913 }
914
915 static void m3x3_setdiagonalv3( m3x3f a, v3f v )
916 {
917 a[0][0] = v[0];
918 a[1][1] = v[1];
919 a[2][2] = v[2];
920 }
921
922 static inline void m3x3_zero( m3x3f a )
923 {
924 m3x3f z = M3X3_ZERO;
925 m3x3_copy( z, a );
926 }
927
928 static inline void m3x3_inv( m3x3f src, m3x3f dest )
929 {
930 f32 a = src[0][0], b = src[0][1], c = src[0][2],
931 d = src[1][0], e = src[1][1], f = src[1][2],
932 g = src[2][0], h = src[2][1], i = src[2][2];
933
934 f32 det = 1.f /
935 (+a*(e*i-h*f)
936 -b*(d*i-f*g)
937 +c*(d*h-e*g));
938
939 dest[0][0] = (e*i-h*f)*det;
940 dest[0][1] = -(b*i-c*h)*det;
941 dest[0][2] = (b*f-c*e)*det;
942 dest[1][0] = -(d*i-f*g)*det;
943 dest[1][1] = (a*i-c*g)*det;
944 dest[1][2] = -(a*f-d*c)*det;
945 dest[2][0] = (d*h-g*e)*det;
946 dest[2][1] = -(a*h-g*b)*det;
947 dest[2][2] = (a*e-d*b)*det;
948 }
949
950 static f32 m3x3_det( m3x3f m )
951 {
952 return m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])
953 - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
954 + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
955 }
956
957 static inline void m3x3_transpose( m3x3f src, m3x3f dest )
958 {
959 f32 a = src[0][0], b = src[0][1], c = src[0][2],
960 d = src[1][0], e = src[1][1], f = src[1][2],
961 g = src[2][0], h = src[2][1], i = src[2][2];
962
963 dest[0][0] = a;
964 dest[0][1] = d;
965 dest[0][2] = g;
966 dest[1][0] = b;
967 dest[1][1] = e;
968 dest[1][2] = h;
969 dest[2][0] = c;
970 dest[2][1] = f;
971 dest[2][2] = i;
972 }
973
974 static inline void m3x3_mul( m3x3f a, m3x3f b, m3x3f d )
975 {
976 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
977 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
978 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
979
980 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
981 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
982 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2];
983
984 d[0][0] = a00*b00 + a10*b01 + a20*b02;
985 d[0][1] = a01*b00 + a11*b01 + a21*b02;
986 d[0][2] = a02*b00 + a12*b01 + a22*b02;
987 d[1][0] = a00*b10 + a10*b11 + a20*b12;
988 d[1][1] = a01*b10 + a11*b11 + a21*b12;
989 d[1][2] = a02*b10 + a12*b11 + a22*b12;
990 d[2][0] = a00*b20 + a10*b21 + a20*b22;
991 d[2][1] = a01*b20 + a11*b21 + a21*b22;
992 d[2][2] = a02*b20 + a12*b21 + a22*b22;
993 }
994
995 static inline void m3x3_mulv( m3x3f m, v3f v, v3f d )
996 {
997 v3f res;
998
999 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
1000 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
1001 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
1002
1003 v3_copy( res, d );
1004 }
1005
1006 static inline void m3x3_projection( m3x3f dst,
1007 f32 const left, f32 const right, f32 const bottom, f32 const top )
1008 {
1009 f32 rl, tb;
1010
1011 m3x3_zero( dst );
1012
1013 rl = 1.0f / (right - left);
1014 tb = 1.0f / (top - bottom);
1015
1016 dst[0][0] = 2.0f * rl;
1017 dst[1][1] = 2.0f * tb;
1018 dst[2][2] = 1.0f;
1019 }
1020
1021 static inline void m3x3_translate( m3x3f m, v3f v )
1022 {
1023 m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0];
1024 m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1];
1025 m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2];
1026 }
1027
1028 static inline void m3x3_scale( m3x3f m, v3f v )
1029 {
1030 v3_muls( m[0], v[0], m[0] );
1031 v3_muls( m[1], v[1], m[1] );
1032 v3_muls( m[2], v[2], m[2] );
1033 }
1034
1035 static inline void m3x3_scalef( m3x3f m, f32 f )
1036 {
1037 v3f v;
1038 v3_fill( v, f );
1039 m3x3_scale( m, v );
1040 }
1041
1042 static inline void m3x3_rotate( m3x3f m, f32 angle )
1043 {
1044 f32 m00 = m[0][0], m10 = m[1][0],
1045 m01 = m[0][1], m11 = m[1][1],
1046 m02 = m[0][2], m12 = m[1][2];
1047 f32 c, s;
1048
1049 s = sinf( angle );
1050 c = cosf( angle );
1051
1052 m[0][0] = m00 * c + m10 * s;
1053 m[0][1] = m01 * c + m11 * s;
1054 m[0][2] = m02 * c + m12 * s;
1055
1056 m[1][0] = m00 * -s + m10 * c;
1057 m[1][1] = m01 * -s + m11 * c;
1058 m[1][2] = m02 * -s + m12 * c;
1059 }
1060
1061 /*
1062 * -----------------------------------------------------------------------------
1063 * Section 4.c 4x3 matrices
1064 * -----------------------------------------------------------------------------
1065 */
1066
1067 #define M4X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
1068 { 0.0f, 1.0f, 0.0f, },\
1069 { 0.0f, 0.0f, 1.0f, },\
1070 { 0.0f, 0.0f, 0.0f }}
1071
1072 static inline void m4x3_to_3x3( m4x3f a, m3x3f b )
1073 {
1074 v3_copy( a[0], b[0] );
1075 v3_copy( a[1], b[1] );
1076 v3_copy( a[2], b[2] );
1077 }
1078
1079 static inline void m4x3_invert_affine( m4x3f a, m4x3f b )
1080 {
1081 m3x3_transpose( a, b );
1082 m3x3_mulv( b, a[3], b[3] );
1083 v3_negate( b[3], b[3] );
1084 }
1085
1086 static void m4x3_invert_full( m4x3f src, m4x3f dst )
1087 {
1088 f32 t2, t4, t5,
1089 det,
1090 a = src[0][0], b = src[0][1], c = src[0][2],
1091 e = src[1][0], f = src[1][1], g = src[1][2],
1092 i = src[2][0], j = src[2][1], k = src[2][2],
1093 m = src[3][0], n = src[3][1], o = src[3][2];
1094
1095 t2 = j*o - n*k;
1096 t4 = i*o - m*k;
1097 t5 = i*n - m*j;
1098
1099 dst[0][0] = f*k - g*j;
1100 dst[1][0] =-(e*k - g*i);
1101 dst[2][0] = e*j - f*i;
1102 dst[3][0] =-(e*t2 - f*t4 + g*t5);
1103
1104 dst[0][1] =-(b*k - c*j);
1105 dst[1][1] = a*k - c*i;
1106 dst[2][1] =-(a*j - b*i);
1107 dst[3][1] = a*t2 - b*t4 + c*t5;
1108
1109 t2 = f*o - n*g;
1110 t4 = e*o - m*g;
1111 t5 = e*n - m*f;
1112
1113 dst[0][2] = b*g - c*f ;
1114 dst[1][2] =-(a*g - c*e );
1115 dst[2][2] = a*f - b*e ;
1116 dst[3][2] =-(a*t2 - b*t4 + c * t5);
1117
1118 det = 1.0f / (a * dst[0][0] + b * dst[1][0] + c * dst[2][0]);
1119 v3_muls( dst[0], det, dst[0] );
1120 v3_muls( dst[1], det, dst[1] );
1121 v3_muls( dst[2], det, dst[2] );
1122 v3_muls( dst[3], det, dst[3] );
1123 }
1124
1125 static inline void m4x3_copy( m4x3f a, m4x3f b )
1126 {
1127 v3_copy( a[0], b[0] );
1128 v3_copy( a[1], b[1] );
1129 v3_copy( a[2], b[2] );
1130 v3_copy( a[3], b[3] );
1131 }
1132
1133 static inline void m4x3_identity( m4x3f a )
1134 {
1135 m4x3f id = M4X3_IDENTITY;
1136 m4x3_copy( id, a );
1137 }
1138
1139 static void m4x3_mul( m4x3f a, m4x3f b, m4x3f d )
1140 {
1141 f32
1142 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
1143 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
1144 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
1145 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2],
1146 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
1147 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
1148 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2],
1149 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2];
1150
1151 d[0][0] = a00*b00 + a10*b01 + a20*b02;
1152 d[0][1] = a01*b00 + a11*b01 + a21*b02;
1153 d[0][2] = a02*b00 + a12*b01 + a22*b02;
1154 d[1][0] = a00*b10 + a10*b11 + a20*b12;
1155 d[1][1] = a01*b10 + a11*b11 + a21*b12;
1156 d[1][2] = a02*b10 + a12*b11 + a22*b12;
1157 d[2][0] = a00*b20 + a10*b21 + a20*b22;
1158 d[2][1] = a01*b20 + a11*b21 + a21*b22;
1159 d[2][2] = a02*b20 + a12*b21 + a22*b22;
1160 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30;
1161 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31;
1162 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32;
1163 }
1164
1165 #if 0 /* shat appf mingw wstringop-overflow */
1166 inline
1167 #endif
1168 static void m4x3_mulv( m4x3f m, v3f v, v3f d )
1169 {
1170 v3f res;
1171
1172 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0];
1173 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1];
1174 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2];
1175
1176 v3_copy( res, d );
1177 }
1178
1179 /*
1180 * Transform plane ( xyz, distance )
1181 */
1182 static void m4x3_mulp( m4x3f m, v4f p, v4f d )
1183 {
1184 v3f o;
1185
1186 v3_muls( p, p[3], o );
1187 m4x3_mulv( m, o, o );
1188 m3x3_mulv( m, p, d );
1189
1190 d[3] = v3_dot( o, d );
1191 }
1192
1193 /*
1194 * Affine transforms
1195 */
1196
1197 static void m4x3_translate( m4x3f m, v3f v )
1198 {
1199 v3_muladds( m[3], m[0], v[0], m[3] );
1200 v3_muladds( m[3], m[1], v[1], m[3] );
1201 v3_muladds( m[3], m[2], v[2], m[3] );
1202 }
1203
1204 static void m4x3_rotate_x( m4x3f m, f32 angle )
1205 {
1206 m4x3f t = M4X3_IDENTITY;
1207 f32 c, s;
1208
1209 c = cosf( angle );
1210 s = sinf( angle );
1211
1212 t[1][1] = c;
1213 t[1][2] = s;
1214 t[2][1] = -s;
1215 t[2][2] = c;
1216
1217 m4x3_mul( m, t, m );
1218 }
1219
1220 static void m4x3_rotate_y( m4x3f m, f32 angle )
1221 {
1222 m4x3f t = M4X3_IDENTITY;
1223 f32 c, s;
1224
1225 c = cosf( angle );
1226 s = sinf( angle );
1227
1228 t[0][0] = c;
1229 t[0][2] = -s;
1230 t[2][0] = s;
1231 t[2][2] = c;
1232
1233 m4x3_mul( m, t, m );
1234 }
1235
1236 static void m4x3_rotate_z( m4x3f m, f32 angle )
1237 {
1238 m4x3f t = M4X3_IDENTITY;
1239 f32 c, s;
1240
1241 c = cosf( angle );
1242 s = sinf( angle );
1243
1244 t[0][0] = c;
1245 t[0][1] = s;
1246 t[1][0] = -s;
1247 t[1][1] = c;
1248
1249 m4x3_mul( m, t, m );
1250 }
1251
1252 static void m4x3_expand( m4x3f m, m4x4f d )
1253 {
1254 v3_copy( m[0], d[0] );
1255 v3_copy( m[1], d[1] );
1256 v3_copy( m[2], d[2] );
1257 v3_copy( m[3], d[3] );
1258 d[0][3] = 0.0f;
1259 d[1][3] = 0.0f;
1260 d[2][3] = 0.0f;
1261 d[3][3] = 1.0f;
1262 }
1263
1264 static void m4x3_decompose( m4x3f m, v3f co, v4f q, v3f s )
1265 {
1266 v3_copy( m[3], co );
1267 s[0] = v3_length(m[0]);
1268 s[1] = v3_length(m[1]);
1269 s[2] = v3_length(m[2]);
1270
1271 m3x3f rot;
1272 v3_divs( m[0], s[0], rot[0] );
1273 v3_divs( m[1], s[1], rot[1] );
1274 v3_divs( m[2], s[2], rot[2] );
1275
1276 m3x3_q( rot, q );
1277 }
1278
1279 static void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point ){
1280 v3f v;
1281 m4x3_mulv( m, point, v );
1282
1283 v3_minv( box[0], v, box[0] );
1284 v3_maxv( box[1], v, box[1] );
1285 }
1286
1287 static void m4x3_expand_aabb_aabb( m4x3f m, boxf boxa, boxf boxb ){
1288 v3f a; v3f b;
1289 v3_copy( boxb[0], a );
1290 v3_copy( boxb[1], b );
1291 m4x3_expand_aabb_point( m, boxa, (v3f){ a[0], a[1], a[2] } );
1292 m4x3_expand_aabb_point( m, boxa, (v3f){ a[0], b[1], a[2] } );
1293 m4x3_expand_aabb_point( m, boxa, (v3f){ b[0], b[1], a[2] } );
1294 m4x3_expand_aabb_point( m, boxa, (v3f){ b[0], a[1], a[2] } );
1295 m4x3_expand_aabb_point( m, boxa, (v3f){ a[0], a[1], b[2] } );
1296 m4x3_expand_aabb_point( m, boxa, (v3f){ a[0], b[1], b[2] } );
1297 m4x3_expand_aabb_point( m, boxa, (v3f){ b[0], b[1], b[2] } );
1298 m4x3_expand_aabb_point( m, boxa, (v3f){ b[0], a[1], b[2] } );
1299 }
1300 static inline void m4x3_lookat( m4x3f m, v3f pos, v3f target, v3f up )
1301 {
1302 v3f dir;
1303 v3_sub( target, pos, dir );
1304 v3_normalize( dir );
1305
1306 v3_copy( dir, m[2] );
1307
1308 v3_cross( up, m[2], m[0] );
1309 v3_normalize( m[0] );
1310
1311 v3_cross( m[2], m[0], m[1] );
1312 v3_copy( pos, m[3] );
1313 }
1314
1315 /*
1316 * -----------------------------------------------------------------------------
1317 * Section 4.d 4x4 matrices
1318 * -----------------------------------------------------------------------------
1319 */
1320
1321 #define M4X4_IDENTITY {{1.0f, 0.0f, 0.0f, 0.0f },\
1322 { 0.0f, 1.0f, 0.0f, 0.0f },\
1323 { 0.0f, 0.0f, 1.0f, 0.0f },\
1324 { 0.0f, 0.0f, 0.0f, 1.0f }}
1325 #define M4X4_ZERO {{0.0f, 0.0f, 0.0f, 0.0f },\
1326 { 0.0f, 0.0f, 0.0f, 0.0f },\
1327 { 0.0f, 0.0f, 0.0f, 0.0f },\
1328 { 0.0f, 0.0f, 0.0f, 0.0f }}
1329
1330 static void m4x4_projection( m4x4f m, f32 angle,
1331 f32 ratio, f32 fnear, f32 ffar )
1332 {
1333 f32 scale = tanf( angle * 0.5f * VG_PIf / 180.0f ) * fnear,
1334 r = ratio * scale,
1335 l = -r,
1336 t = scale,
1337 b = -t;
1338
1339 m[0][0] = 2.0f * fnear / (r - l);
1340 m[0][1] = 0.0f;
1341 m[0][2] = 0.0f;
1342 m[0][3] = 0.0f;
1343
1344 m[1][0] = 0.0f;
1345 m[1][1] = 2.0f * fnear / (t - b);
1346 m[1][2] = 0.0f;
1347 m[1][3] = 0.0f;
1348
1349 m[2][0] = (r + l) / (r - l);
1350 m[2][1] = (t + b) / (t - b);
1351 m[2][2] = -(ffar + fnear) / (ffar - fnear);
1352 m[2][3] = -1.0f;
1353
1354 m[3][0] = 0.0f;
1355 m[3][1] = 0.0f;
1356 m[3][2] = -2.0f * ffar * fnear / (ffar - fnear);
1357 m[3][3] = 0.0f;
1358 }
1359
1360 static void m4x4_translate( m4x4f m, v3f v )
1361 {
1362 v4_muladds( m[3], m[0], v[0], m[3] );
1363 v4_muladds( m[3], m[1], v[1], m[3] );
1364 v4_muladds( m[3], m[2], v[2], m[3] );
1365 }
1366
1367 static inline void m4x4_copy( m4x4f a, m4x4f b )
1368 {
1369 v4_copy( a[0], b[0] );
1370 v4_copy( a[1], b[1] );
1371 v4_copy( a[2], b[2] );
1372 v4_copy( a[3], b[3] );
1373 }
1374
1375 static inline void m4x4_identity( m4x4f a )
1376 {
1377 m4x4f id = M4X4_IDENTITY;
1378 m4x4_copy( id, a );
1379 }
1380
1381 static inline void m4x4_zero( m4x4f a )
1382 {
1383 m4x4f zero = M4X4_ZERO;
1384 m4x4_copy( zero, a );
1385 }
1386
1387 static inline void m4x4_mul( m4x4f a, m4x4f b, m4x4f d )
1388 {
1389 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1390 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1391 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1392 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1393
1394 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2], b03 = b[0][3],
1395 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2], b13 = b[1][3],
1396 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2], b23 = b[2][3],
1397 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2], b33 = b[3][3];
1398
1399 d[0][0] = a00*b00 + a10*b01 + a20*b02 + a30*b03;
1400 d[0][1] = a01*b00 + a11*b01 + a21*b02 + a31*b03;
1401 d[0][2] = a02*b00 + a12*b01 + a22*b02 + a32*b03;
1402 d[0][3] = a03*b00 + a13*b01 + a23*b02 + a33*b03;
1403 d[1][0] = a00*b10 + a10*b11 + a20*b12 + a30*b13;
1404 d[1][1] = a01*b10 + a11*b11 + a21*b12 + a31*b13;
1405 d[1][2] = a02*b10 + a12*b11 + a22*b12 + a32*b13;
1406 d[1][3] = a03*b10 + a13*b11 + a23*b12 + a33*b13;
1407 d[2][0] = a00*b20 + a10*b21 + a20*b22 + a30*b23;
1408 d[2][1] = a01*b20 + a11*b21 + a21*b22 + a31*b23;
1409 d[2][2] = a02*b20 + a12*b21 + a22*b22 + a32*b23;
1410 d[2][3] = a03*b20 + a13*b21 + a23*b22 + a33*b23;
1411 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30*b33;
1412 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31*b33;
1413 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32*b33;
1414 d[3][3] = a03*b30 + a13*b31 + a23*b32 + a33*b33;
1415 }
1416
1417 static inline void m4x4_mulv( m4x4f m, v4f v, v4f d )
1418 {
1419 v4f res;
1420
1421 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3];
1422 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3];
1423 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3];
1424 res[3] = m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3];
1425
1426 v4_copy( res, d );
1427 }
1428
1429 static inline void m4x4_inv( m4x4f a, m4x4f d )
1430 {
1431 f32 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1432 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1433 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1434 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1435 det,
1436 t[6];
1437
1438 t[0] = a22*a33 - a32*a23;
1439 t[1] = a21*a33 - a31*a23;
1440 t[2] = a21*a32 - a31*a22;
1441 t[3] = a20*a33 - a30*a23;
1442 t[4] = a20*a32 - a30*a22;
1443 t[5] = a20*a31 - a30*a21;
1444
1445 d[0][0] = a11*t[0] - a12*t[1] + a13*t[2];
1446 d[1][0] =-(a10*t[0] - a12*t[3] + a13*t[4]);
1447 d[2][0] = a10*t[1] - a11*t[3] + a13*t[5];
1448 d[3][0] =-(a10*t[2] - a11*t[4] + a12*t[5]);
1449
1450 d[0][1] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1451 d[1][1] = a00*t[0] - a02*t[3] + a03*t[4];
1452 d[2][1] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1453 d[3][1] = a00*t[2] - a01*t[4] + a02*t[5];
1454
1455 t[0] = a12*a33 - a32*a13;
1456 t[1] = a11*a33 - a31*a13;
1457 t[2] = a11*a32 - a31*a12;
1458 t[3] = a10*a33 - a30*a13;
1459 t[4] = a10*a32 - a30*a12;
1460 t[5] = a10*a31 - a30*a11;
1461
1462 d[0][2] = a01*t[0] - a02*t[1] + a03*t[2];
1463 d[1][2] =-(a00*t[0] - a02*t[3] + a03*t[4]);
1464 d[2][2] = a00*t[1] - a01*t[3] + a03*t[5];
1465 d[3][2] =-(a00*t[2] - a01*t[4] + a02*t[5]);
1466
1467 t[0] = a12*a23 - a22*a13;
1468 t[1] = a11*a23 - a21*a13;
1469 t[2] = a11*a22 - a21*a12;
1470 t[3] = a10*a23 - a20*a13;
1471 t[4] = a10*a22 - a20*a12;
1472 t[5] = a10*a21 - a20*a11;
1473
1474 d[0][3] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1475 d[1][3] = a00*t[0] - a02*t[3] + a03*t[4];
1476 d[2][3] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1477 d[3][3] = a00*t[2] - a01*t[4] + a02*t[5];
1478
1479 det = 1.0f / (a00*d[0][0] + a01*d[1][0] + a02*d[2][0] + a03*d[3][0]);
1480 v4_muls( d[0], det, d[0] );
1481 v4_muls( d[1], det, d[1] );
1482 v4_muls( d[2], det, d[2] );
1483 v4_muls( d[3], det, d[3] );
1484 }
1485
1486 /*
1487 * -----------------------------------------------------------------------------
1488 * Section 5.a Boxes
1489 * -----------------------------------------------------------------------------
1490 */
1491
1492 static inline void box_addpt( boxf a, v3f pt )
1493 {
1494 v3_minv( a[0], pt, a[0] );
1495 v3_maxv( a[1], pt, a[1] );
1496 }
1497
1498 static inline void box_concat( boxf a, boxf b )
1499 {
1500 v3_minv( a[0], b[0], a[0] );
1501 v3_maxv( a[1], b[1], a[1] );
1502 }
1503
1504 static inline void box_copy( boxf a, boxf b )
1505 {
1506 v3_copy( a[0], b[0] );
1507 v3_copy( a[1], b[1] );
1508 }
1509
1510 static inline int box_overlap( boxf a, boxf b )
1511 {
1512 return
1513 ( a[0][0] <= b[1][0] && a[1][0] >= b[0][0] ) &&
1514 ( a[0][1] <= b[1][1] && a[1][1] >= b[0][1] ) &&
1515 ( a[0][2] <= b[1][2] && a[1][2] >= b[0][2] )
1516 ;
1517 }
1518
1519 static int box_within( boxf greater, boxf lesser )
1520 {
1521 v3f a, b;
1522 v3_sub( lesser[0], greater[0], a );
1523 v3_sub( lesser[1], greater[1], b );
1524
1525 if( (a[0] >= 0.0f) && (a[1] >= 0.0f) && (a[2] >= 0.0f) &&
1526 (b[0] <= 0.0f) && (b[1] <= 0.0f) && (b[2] <= 0.0f) )
1527 {
1528 return 1;
1529 }
1530
1531 return 0;
1532 }
1533
1534 static inline void box_init_inf( boxf box ){
1535 v3_fill( box[0], INFINITY );
1536 v3_fill( box[1], -INFINITY );
1537 }
1538
1539 /*
1540 * -----------------------------------------------------------------------------
1541 * Section 5.b Planes
1542 * -----------------------------------------------------------------------------
1543 */
1544
1545 static inline void tri_to_plane( f64 a[3], f64 b[3],
1546 f64 c[3], f64 p[4] )
1547 {
1548 f64 edge0[3];
1549 f64 edge1[3];
1550 f64 l;
1551
1552 edge0[0] = b[0] - a[0];
1553 edge0[1] = b[1] - a[1];
1554 edge0[2] = b[2] - a[2];
1555
1556 edge1[0] = c[0] - a[0];
1557 edge1[1] = c[1] - a[1];
1558 edge1[2] = c[2] - a[2];
1559
1560 p[0] = edge0[1] * edge1[2] - edge0[2] * edge1[1];
1561 p[1] = edge0[2] * edge1[0] - edge0[0] * edge1[2];
1562 p[2] = edge0[0] * edge1[1] - edge0[1] * edge1[0];
1563
1564 l = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
1565 p[3] = (p[0] * a[0] + p[1] * a[1] + p[2] * a[2]) / l;
1566
1567 p[0] = p[0] / l;
1568 p[1] = p[1] / l;
1569 p[2] = p[2] / l;
1570 }
1571
1572 static int plane_intersect3( v4f a, v4f b, v4f c, v3f p )
1573 {
1574 f32 const epsilon = 1e-6f;
1575
1576 v3f x;
1577 v3_cross( a, b, x );
1578 f32 d = v3_dot( x, c );
1579
1580 if( (d < epsilon) && (d > -epsilon) ) return 0;
1581
1582 v3f v0, v1, v2;
1583 v3_cross( b, c, v0 );
1584 v3_cross( c, a, v1 );
1585 v3_cross( a, b, v2 );
1586
1587 v3_muls( v0, a[3], p );
1588 v3_muladds( p, v1, b[3], p );
1589 v3_muladds( p, v2, c[3], p );
1590 v3_divs( p, d, p );
1591
1592 return 1;
1593 }
1594
1595 int plane_intersect2( v4f a, v4f b, v3f p, v3f n )
1596 {
1597 f32 const epsilon = 1e-6f;
1598
1599 v4f c;
1600 v3_cross( a, b, c );
1601 f32 d = v3_length2( c );
1602
1603 if( (d < epsilon) && (d > -epsilon) )
1604 return 0;
1605
1606 v3f v0, v1, vx;
1607 v3_cross( c, b, v0 );
1608 v3_cross( a, c, v1 );
1609
1610 v3_muls( v0, a[3], vx );
1611 v3_muladds( vx, v1, b[3], vx );
1612 v3_divs( vx, d, p );
1613 v3_copy( c, n );
1614
1615 return 1;
1616 }
1617
1618 static int plane_segment( v4f plane, v3f a, v3f b, v3f co )
1619 {
1620 f32 d0 = v3_dot( a, plane ) - plane[3],
1621 d1 = v3_dot( b, plane ) - plane[3];
1622
1623 if( d0*d1 < 0.0f )
1624 {
1625 f32 tot = 1.0f/( fabsf(d0)+fabsf(d1) );
1626
1627 v3_muls( a, fabsf(d1) * tot, co );
1628 v3_muladds( co, b, fabsf(d0) * tot, co );
1629 return 1;
1630 }
1631
1632 return 0;
1633 }
1634
1635 static inline f64 plane_polarity( f64 p[4], f64 a[3] )
1636 {
1637 return
1638 (a[0] * p[0] + a[1] * p[1] + a[2] * p[2])
1639 -(p[0]*p[3] * p[0] + p[1]*p[3] * p[1] + p[2]*p[3] * p[2])
1640 ;
1641 }
1642
1643 static f32 ray_plane( v4f plane, v3f co, v3f dir ){
1644 f32 d = v3_dot( plane, dir );
1645 if( fabsf(d) > 1e-6f ){
1646 v3f v0;
1647 v3_muls( plane, plane[3], v0 );
1648 v3_sub( v0, co, v0 );
1649 return v3_dot( v0, plane ) / d;
1650 }
1651 else return INFINITY;
1652 }
1653
1654 /*
1655 * -----------------------------------------------------------------------------
1656 * Section 5.c Closest point functions
1657 * -----------------------------------------------------------------------------
1658 */
1659
1660 /*
1661 * These closest point tests were learned from Real-Time Collision Detection by
1662 * Christer Ericson
1663 */
1664 static f32 closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2,
1665 f32 *s, f32 *t, v3f c1, v3f c2)
1666 {
1667 v3f d1,d2,r;
1668 v3_sub( q1, p1, d1 );
1669 v3_sub( q2, p2, d2 );
1670 v3_sub( p1, p2, r );
1671
1672 f32 a = v3_length2( d1 ),
1673 e = v3_length2( d2 ),
1674 f = v3_dot( d2, r );
1675
1676 const f32 kEpsilon = 0.0001f;
1677
1678 if( a <= kEpsilon && e <= kEpsilon )
1679 {
1680 *s = 0.0f;
1681 *t = 0.0f;
1682 v3_copy( p1, c1 );
1683 v3_copy( p2, c2 );
1684
1685 v3f v0;
1686 v3_sub( c1, c2, v0 );
1687
1688 return v3_length2( v0 );
1689 }
1690
1691 if( a<= kEpsilon )
1692 {
1693 *s = 0.0f;
1694 *t = vg_clampf( f / e, 0.0f, 1.0f );
1695 }
1696 else
1697 {
1698 f32 c = v3_dot( d1, r );
1699 if( e <= kEpsilon )
1700 {
1701 *t = 0.0f;
1702 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1703 }
1704 else
1705 {
1706 f32 b = v3_dot(d1,d2),
1707 d = a*e-b*b;
1708
1709 if( d != 0.0f )
1710 {
1711 *s = vg_clampf((b*f - c*e)/d, 0.0f, 1.0f);
1712 }
1713 else
1714 {
1715 *s = 0.0f;
1716 }
1717
1718 *t = (b*(*s)+f) / e;
1719
1720 if( *t < 0.0f )
1721 {
1722 *t = 0.0f;
1723 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1724 }
1725 else if( *t > 1.0f )
1726 {
1727 *t = 1.0f;
1728 *s = vg_clampf((b-c)/a,0.0f,1.0f);
1729 }
1730 }
1731 }
1732
1733 v3_muladds( p1, d1, *s, c1 );
1734 v3_muladds( p2, d2, *t, c2 );
1735
1736 v3f v0;
1737 v3_sub( c1, c2, v0 );
1738 return v3_length2( v0 );
1739 }
1740
1741 static int point_inside_aabb( boxf box, v3f point )
1742 {
1743 if((point[0]<=box[1][0]) && (point[1]<=box[1][1]) && (point[2]<=box[1][2]) &&
1744 (point[0]>=box[0][0]) && (point[1]>=box[0][1]) && (point[2]>=box[0][2]) )
1745 return 1;
1746 else
1747 return 0;
1748 }
1749
1750 static void closest_point_aabb( v3f p, boxf box, v3f dest )
1751 {
1752 v3_maxv( p, box[0], dest );
1753 v3_minv( dest, box[1], dest );
1754 }
1755
1756 static void closest_point_obb( v3f p, boxf box,
1757 m4x3f mtx, m4x3f inv_mtx, v3f dest )
1758 {
1759 v3f local;
1760 m4x3_mulv( inv_mtx, p, local );
1761 closest_point_aabb( local, box, local );
1762 m4x3_mulv( mtx, local, dest );
1763 }
1764
1765 static f32 closest_point_segment( v3f a, v3f b, v3f point, v3f dest )
1766 {
1767 v3f v0, v1;
1768 v3_sub( b, a, v0 );
1769 v3_sub( point, a, v1 );
1770
1771 f32 t = v3_dot( v1, v0 ) / v3_length2(v0);
1772 t = vg_clampf(t,0.0f,1.0f);
1773 v3_muladds( a, v0, t, dest );
1774 return t;
1775 }
1776
1777 static void closest_on_triangle( v3f p, v3f tri[3], v3f dest )
1778 {
1779 v3f ab, ac, ap;
1780 f32 d1, d2;
1781
1782 /* Region outside A */
1783 v3_sub( tri[1], tri[0], ab );
1784 v3_sub( tri[2], tri[0], ac );
1785 v3_sub( p, tri[0], ap );
1786
1787 d1 = v3_dot(ab,ap);
1788 d2 = v3_dot(ac,ap);
1789 if( d1 <= 0.0f && d2 <= 0.0f )
1790 {
1791 v3_copy( tri[0], dest );
1792 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1793 return;
1794 }
1795
1796 /* Region outside B */
1797 v3f bp;
1798 f32 d3, d4;
1799
1800 v3_sub( p, tri[1], bp );
1801 d3 = v3_dot( ab, bp );
1802 d4 = v3_dot( ac, bp );
1803
1804 if( d3 >= 0.0f && d4 <= d3 )
1805 {
1806 v3_copy( tri[1], dest );
1807 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1808 return;
1809 }
1810
1811 /* Edge region of AB */
1812 f32 vc = d1*d4 - d3*d2;
1813 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1814 {
1815 f32 v = d1 / (d1-d3);
1816 v3_muladds( tri[0], ab, v, dest );
1817 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1818 return;
1819 }
1820
1821 /* Region outside C */
1822 v3f cp;
1823 f32 d5, d6;
1824 v3_sub( p, tri[2], cp );
1825 d5 = v3_dot(ab, cp);
1826 d6 = v3_dot(ac, cp);
1827
1828 if( d6 >= 0.0f && d5 <= d6 )
1829 {
1830 v3_copy( tri[2], dest );
1831 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1832 return;
1833 }
1834
1835 /* Region of AC */
1836 f32 vb = d5*d2 - d1*d6;
1837 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1838 {
1839 f32 w = d2 / (d2-d6);
1840 v3_muladds( tri[0], ac, w, dest );
1841 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1842 return;
1843 }
1844
1845 /* Region of BC */
1846 f32 va = d3*d6 - d5*d4;
1847 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1848 {
1849 f32 w = (d4-d3) / ((d4-d3) + (d5-d6));
1850 v3f bc;
1851 v3_sub( tri[2], tri[1], bc );
1852 v3_muladds( tri[1], bc, w, dest );
1853 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1854 return;
1855 }
1856
1857 /* P inside region, Q via barycentric coordinates uvw */
1858 f32 d = 1.0f/(va+vb+vc),
1859 v = vb*d,
1860 w = vc*d;
1861
1862 v3_muladds( tri[0], ab, v, dest );
1863 v3_muladds( dest, ac, w, dest );
1864 }
1865
1866 enum contact_type
1867 {
1868 k_contact_type_default,
1869 k_contact_type_disabled,
1870 k_contact_type_edge
1871 };
1872
1873 static enum contact_type closest_on_triangle_1( v3f p, v3f tri[3], v3f dest )
1874 {
1875 v3f ab, ac, ap;
1876 f32 d1, d2;
1877
1878 /* Region outside A */
1879 v3_sub( tri[1], tri[0], ab );
1880 v3_sub( tri[2], tri[0], ac );
1881 v3_sub( p, tri[0], ap );
1882
1883 d1 = v3_dot(ab,ap);
1884 d2 = v3_dot(ac,ap);
1885 if( d1 <= 0.0f && d2 <= 0.0f )
1886 {
1887 v3_copy( tri[0], dest );
1888 return k_contact_type_default;
1889 }
1890
1891 /* Region outside B */
1892 v3f bp;
1893 f32 d3, d4;
1894
1895 v3_sub( p, tri[1], bp );
1896 d3 = v3_dot( ab, bp );
1897 d4 = v3_dot( ac, bp );
1898
1899 if( d3 >= 0.0f && d4 <= d3 )
1900 {
1901 v3_copy( tri[1], dest );
1902 return k_contact_type_edge;
1903 }
1904
1905 /* Edge region of AB */
1906 f32 vc = d1*d4 - d3*d2;
1907 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1908 {
1909 f32 v = d1 / (d1-d3);
1910 v3_muladds( tri[0], ab, v, dest );
1911 return k_contact_type_edge;
1912 }
1913
1914 /* Region outside C */
1915 v3f cp;
1916 f32 d5, d6;
1917 v3_sub( p, tri[2], cp );
1918 d5 = v3_dot(ab, cp);
1919 d6 = v3_dot(ac, cp);
1920
1921 if( d6 >= 0.0f && d5 <= d6 )
1922 {
1923 v3_copy( tri[2], dest );
1924 return k_contact_type_edge;
1925 }
1926
1927 /* Region of AC */
1928 f32 vb = d5*d2 - d1*d6;
1929 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1930 {
1931 f32 w = d2 / (d2-d6);
1932 v3_muladds( tri[0], ac, w, dest );
1933 return k_contact_type_edge;
1934 }
1935
1936 /* Region of BC */
1937 f32 va = d3*d6 - d5*d4;
1938 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1939 {
1940 f32 w = (d4-d3) / ((d4-d3) + (d5-d6));
1941 v3f bc;
1942 v3_sub( tri[2], tri[1], bc );
1943 v3_muladds( tri[1], bc, w, dest );
1944 return k_contact_type_edge;
1945 }
1946
1947 /* P inside region, Q via barycentric coordinates uvw */
1948 f32 d = 1.0f/(va+vb+vc),
1949 v = vb*d,
1950 w = vc*d;
1951
1952 v3_muladds( tri[0], ab, v, dest );
1953 v3_muladds( dest, ac, w, dest );
1954
1955 return k_contact_type_default;
1956 }
1957
1958 static void closest_point_elipse( v2f p, v2f e, v2f o )
1959 {
1960 v2f pabs, ei, e2, ve, t;
1961
1962 v2_abs( p, pabs );
1963 v2_div( (v2f){ 1.0f, 1.0f }, e, ei );
1964 v2_mul( e, e, e2 );
1965 v2_mul( ei, (v2f){ e2[0]-e2[1], e2[1]-e2[0] }, ve );
1966
1967 v2_fill( t, 0.70710678118654752f );
1968
1969 for( int i=0; i<3; i++ ){
1970 v2f v, u, ud, w;
1971
1972 v2_mul( ve, t, v ); /* ve*t*t*t */
1973 v2_mul( v, t, v );
1974 v2_mul( v, t, v );
1975
1976 v2_sub( pabs, v, u );
1977 v2_normalize( u );
1978
1979 v2_mul( t, e, ud );
1980 v2_sub( ud, v, ud );
1981
1982 v2_muls( u, v2_length( ud ), u );
1983
1984 v2_add( v, u, w );
1985 v2_mul( w, ei, w );
1986
1987 v2_maxv( (v2f){0.0f,0.0f}, w, t );
1988 v2_normalize( t );
1989 }
1990
1991 v2_mul( t, e, o );
1992 v2_copysign( o, p );
1993 }
1994
1995 /*
1996 * -----------------------------------------------------------------------------
1997 * Section 5.d Raycasts & Spherecasts
1998 * -----------------------------------------------------------------------------
1999 */
2000
2001 int ray_aabb1( boxf box, v3f co, v3f dir_inv, f32 dist )
2002 {
2003 v3f v0, v1;
2004 f32 tmin, tmax;
2005
2006 v3_sub( box[0], co, v0 );
2007 v3_sub( box[1], co, v1 );
2008
2009 v3_mul( v0, dir_inv, v0 );
2010 v3_mul( v1, dir_inv, v1 );
2011
2012 tmin = vg_minf( v0[0], v1[0] );
2013 tmax = vg_maxf( v0[0], v1[0] );
2014 tmin = vg_maxf( tmin, vg_minf( v0[1], v1[1] ));
2015 tmax = vg_minf( tmax, vg_maxf( v0[1], v1[1] ));
2016 tmin = vg_maxf( tmin, vg_minf( v0[2], v1[2] ));
2017 tmax = vg_minf( tmax, vg_maxf( v0[2], v1[2] ));
2018
2019 return (tmax >= tmin) && (tmin <= dist) && (tmax >= 0.0f);
2020 }
2021
2022 /* Time of intersection with ray vs triangle */
2023 static int ray_tri( v3f tri[3], v3f co,
2024 v3f dir, f32 *dist, int backfaces )
2025 {
2026 f32 const kEpsilon = 0.00001f;
2027
2028 v3f v0, v1, h, s, q, n;
2029 f32 a,f,u,v,t;
2030
2031 f32 *pa = tri[0],
2032 *pb = tri[1],
2033 *pc = tri[2];
2034
2035 v3_sub( pb, pa, v0 );
2036 v3_sub( pc, pa, v1 );
2037 v3_cross( dir, v1, h );
2038 v3_cross( v0, v1, n );
2039
2040 if( (v3_dot( n, dir ) > 0.0f) && !backfaces ) /* Backface culling */
2041 return 0;
2042
2043 /* Parralel */
2044 a = v3_dot( v0, h );
2045
2046 if( a > -kEpsilon && a < kEpsilon )
2047 return 0;
2048
2049 f = 1.0f/a;
2050 v3_sub( co, pa, s );
2051
2052 u = f * v3_dot(s, h);
2053 if( u < 0.0f || u > 1.0f )
2054 return 0;
2055
2056 v3_cross( s, v0, q );
2057 v = f * v3_dot( dir, q );
2058 if( v < 0.0f || u+v > 1.0f )
2059 return 0;
2060
2061 t = f * v3_dot(v1, q);
2062 if( t > kEpsilon )
2063 {
2064 *dist = t;
2065 return 1;
2066 }
2067 else return 0;
2068 }
2069
2070 /* time of intersection with ray vs sphere */
2071 static int ray_sphere( v3f c, f32 r,
2072 v3f co, v3f dir, f32 *t )
2073 {
2074 v3f m;
2075 v3_sub( co, c, m );
2076
2077 f32 b = v3_dot( m, dir ),
2078 c1 = v3_dot( m, m ) - r*r;
2079
2080 /* Exit if r’s origin outside s (c > 0) and r pointing away from s (b > 0) */
2081 if( c1 > 0.0f && b > 0.0f )
2082 return 0;
2083
2084 f32 discr = b*b - c1;
2085
2086 /* A negative discriminant corresponds to ray missing sphere */
2087 if( discr < 0.0f )
2088 return 0;
2089
2090 /*
2091 * Ray now found to intersect sphere, compute smallest t value of
2092 * intersection
2093 */
2094 *t = -b - sqrtf( discr );
2095
2096 /* If t is negative, ray started inside sphere so clamp t to zero */
2097 if( *t < 0.0f )
2098 *t = 0.0f;
2099
2100 return 1;
2101 }
2102
2103 /*
2104 * time of intersection of ray vs cylinder
2105 * The cylinder does not have caps but is finite
2106 *
2107 * Heavily adapted from regular segment vs cylinder from:
2108 * Real-Time Collision Detection
2109 */
2110 static int ray_uncapped_finite_cylinder( v3f q, v3f p, f32 r,
2111 v3f co, v3f dir, f32 *t )
2112 {
2113 v3f d, m, n, sb;
2114 v3_muladds( co, dir, 1.0f, sb );
2115
2116 v3_sub( q, p, d );
2117 v3_sub( co, p, m );
2118 v3_sub( sb, co, n );
2119
2120 f32 md = v3_dot( m, d ),
2121 nd = v3_dot( n, d ),
2122 dd = v3_dot( d, d ),
2123 nn = v3_dot( n, n ),
2124 mn = v3_dot( m, n ),
2125 a = dd*nn - nd*nd,
2126 k = v3_dot( m, m ) - r*r,
2127 c = dd*k - md*md;
2128
2129 if( fabsf(a) < 0.00001f )
2130 {
2131 /* Segment runs parallel to cylinder axis */
2132 return 0;
2133 }
2134
2135 f32 b = dd*mn - nd*md,
2136 discr = b*b - a*c;
2137
2138 if( discr < 0.0f )
2139 return 0; /* No real roots; no intersection */
2140
2141 *t = (-b - sqrtf(discr)) / a;
2142 if( *t < 0.0f )
2143 return 0; /* Intersection behind ray */
2144
2145 /* Check within cylinder segment */
2146 if( md + (*t)*nd < 0.0f )
2147 return 0;
2148
2149 if( md + (*t)*nd > dd )
2150 return 0;
2151
2152 /* Segment intersects cylinder between the endcaps; t is correct */
2153 return 1;
2154 }
2155
2156 /*
2157 * Time of intersection of sphere and triangle. Origin must be outside the
2158 * colliding area. This is a fairly long procedure.
2159 */
2160 static int spherecast_triangle( v3f tri[3],
2161 v3f co, v3f dir, f32 r, f32 *t, v3f n )
2162 {
2163 v3f sum[3];
2164 v3f v0, v1;
2165
2166 v3_sub( tri[1], tri[0], v0 );
2167 v3_sub( tri[2], tri[0], v1 );
2168 v3_cross( v0, v1, n );
2169 v3_normalize( n );
2170 v3_muladds( tri[0], n, r, sum[0] );
2171 v3_muladds( tri[1], n, r, sum[1] );
2172 v3_muladds( tri[2], n, r, sum[2] );
2173
2174 int hit = 0;
2175 f32 t_min = INFINITY,
2176 t1;
2177
2178 if( ray_tri( sum, co, dir, &t1, 0 ) ){
2179 t_min = vg_minf( t_min, t1 );
2180 hit = 1;
2181 }
2182
2183 /*
2184 * Currently disabled; ray_sphere requires |d| = 1. it is not very important.
2185 */
2186 #if 0
2187 for( int i=0; i<3; i++ ){
2188 if( ray_sphere( tri[i], r, co, dir, &t1 ) ){
2189 t_min = vg_minf( t_min, t1 );
2190 hit = 1;
2191 }
2192 }
2193 #endif
2194
2195 for( int i=0; i<3; i++ ){
2196 int i0 = i,
2197 i1 = (i+1)%3;
2198
2199 if( ray_uncapped_finite_cylinder( tri[i0], tri[i1], r, co, dir, &t1 ) ){
2200 if( t1 < t_min ){
2201 t_min = t1;
2202
2203 v3f co1, ct, cx;
2204 v3_add( dir, co, co1 );
2205 v3_lerp( co, co1, t_min, ct );
2206
2207 closest_point_segment( tri[i0], tri[i1], ct, cx );
2208 v3_sub( ct, cx, n );
2209 v3_normalize( n );
2210 }
2211
2212 hit = 1;
2213 }
2214 }
2215
2216 *t = t_min;
2217 return hit;
2218 }
2219
2220 /*
2221 * -----------------------------------------------------------------------------
2222 * Section 5.e Curves
2223 * -----------------------------------------------------------------------------
2224 */
2225
2226 static void eval_bezier_time( v3f p0, v3f p1, v3f h0, v3f h1, f32 t, v3f p )
2227 {
2228 f32 tt = t*t,
2229 ttt = tt*t;
2230
2231 v3_muls( p1, ttt, p );
2232 v3_muladds( p, h1, 3.0f*tt -3.0f*ttt, p );
2233 v3_muladds( p, h0, 3.0f*ttt -6.0f*tt +3.0f*t, p );
2234 v3_muladds( p, p0, 3.0f*tt -ttt -3.0f*t +1.0f, p );
2235 }
2236
2237 static void eval_bezier3( v3f p0, v3f p1, v3f p2, f32 t, v3f p )
2238 {
2239 f32 u = 1.0f-t;
2240
2241 v3_muls( p0, u*u, p );
2242 v3_muladds( p, p1, 2.0f*u*t, p );
2243 v3_muladds( p, p2, t*t, p );
2244 }
2245
2246 /*
2247 * -----------------------------------------------------------------------------
2248 * Section 5.f Volumes
2249 * -----------------------------------------------------------------------------
2250 */
2251
2252 static float vg_sphere_volume( float radius ){
2253 float r3 = radius*radius*radius;
2254 return (4.0f/3.0f) * VG_PIf * r3;
2255 }
2256
2257 /*
2258 * -----------------------------------------------------------------------------
2259 * Section 6.a PSRNG and some distributions
2260 * -----------------------------------------------------------------------------
2261 */
2262
2263 /* An implementation of the MT19937 Algorithm for the Mersenne Twister
2264 * by Evan Sultanik. Based upon the pseudocode in: M. Matsumoto and
2265 * T. Nishimura, "Mersenne Twister: A 623-dimensionally
2266 * equidistributed uniform pseudorandom number generator," ACM
2267 * Transactions on Modeling and Computer Simulation Vol. 8, No. 1,
2268 * January pp.3-30 1998.
2269 *
2270 * http://www.sultanik.com/Mersenne_twister
2271 * https://github.com/ESultanik/mtwister/blob/master/mtwister.c
2272 */
2273
2274 #define MT_UPPER_MASK 0x80000000
2275 #define MT_LOWER_MASK 0x7fffffff
2276 #define MT_TEMPERING_MASK_B 0x9d2c5680
2277 #define MT_TEMPERING_MASK_C 0xefc60000
2278
2279 #define MT_STATE_VECTOR_LENGTH 624
2280
2281 /* changes to STATE_VECTOR_LENGTH also require changes to this */
2282 #define MT_STATE_VECTOR_M 397
2283
2284 typedef struct vg_rand vg_rand;
2285 struct vg_rand {
2286 u32 mt[MT_STATE_VECTOR_LENGTH];
2287 i32 index;
2288 };
2289
2290 static void vg_rand_seed( vg_rand *rand, unsigned long seed ) {
2291 /* set initial seeds to mt[STATE_VECTOR_LENGTH] using the generator
2292 * from Line 25 of Table 1 in: Donald Knuth, "The Art of Computer
2293 * Programming," Vol. 2 (2nd Ed.) pp.102.
2294 */
2295 rand->mt[0] = seed & 0xffffffff;
2296 for( rand->index=1; rand->index<MT_STATE_VECTOR_LENGTH; rand->index++){
2297 rand->mt[rand->index] = (6069 * rand->mt[rand->index-1]) & 0xffffffff;
2298 }
2299 }
2300
2301 /*
2302 * Generates a pseudo-randomly generated long.
2303 */
2304 static u32 vg_randu32( vg_rand *rand ) {
2305 u32 y;
2306 /* mag[x] = x * 0x9908b0df for x = 0,1 */
2307 static u32 mag[2] = {0x0, 0x9908b0df};
2308 if( rand->index >= MT_STATE_VECTOR_LENGTH || rand->index < 0 ){
2309 /* generate STATE_VECTOR_LENGTH words at a time */
2310 int kk;
2311 if( rand->index >= MT_STATE_VECTOR_LENGTH+1 || rand->index < 0 ){
2312 vg_rand_seed( rand, 4357 );
2313 }
2314 for( kk=0; kk<MT_STATE_VECTOR_LENGTH-MT_STATE_VECTOR_M; kk++ ){
2315 y = (rand->mt[kk] & MT_UPPER_MASK) |
2316 (rand->mt[kk+1] & MT_LOWER_MASK);
2317 rand->mt[kk] = rand->mt[kk+MT_STATE_VECTOR_M] ^ (y>>1) ^ mag[y & 0x1];
2318 }
2319 for( ; kk<MT_STATE_VECTOR_LENGTH-1; kk++ ){
2320 y = (rand->mt[kk] & MT_UPPER_MASK) |
2321 (rand->mt[kk+1] & MT_LOWER_MASK);
2322 rand->mt[kk] =
2323 rand->mt[ kk+(MT_STATE_VECTOR_M-MT_STATE_VECTOR_LENGTH)] ^
2324 (y >> 1) ^ mag[y & 0x1];
2325 }
2326 y = (rand->mt[MT_STATE_VECTOR_LENGTH-1] & MT_UPPER_MASK) |
2327 (rand->mt[0] & MT_LOWER_MASK);
2328 rand->mt[MT_STATE_VECTOR_LENGTH-1] =
2329 rand->mt[MT_STATE_VECTOR_M-1] ^ (y >> 1) ^ mag[y & 0x1];
2330 rand->index = 0;
2331 }
2332 y = rand->mt[rand->index++];
2333 y ^= (y >> 11);
2334 y ^= (y << 7) & MT_TEMPERING_MASK_B;
2335 y ^= (y << 15) & MT_TEMPERING_MASK_C;
2336 y ^= (y >> 18);
2337 return y;
2338 }
2339
2340 /*
2341 * Generates a pseudo-randomly generated f64 in the range [0..1].
2342 */
2343 static inline f64 vg_randf64( vg_rand *rand ){
2344 return (f64)vg_randu32(rand)/(f64)0xffffffff;
2345 }
2346
2347 static inline f64 vg_randf64_range( vg_rand *rand, f64 min, f64 max ){
2348 return vg_lerp( min, max, (f64)vg_randf64(rand) );
2349 }
2350
2351 static inline void vg_rand_dir( vg_rand *rand, v3f dir ){
2352 dir[0] = vg_randf64(rand);
2353 dir[1] = vg_randf64(rand);
2354 dir[2] = vg_randf64(rand);
2355
2356 /* warning: *could* be 0 length.
2357 * very unlikely.. 1 in (2^32)^3. but its mathematically wrong. */
2358
2359 v3_muls( dir, 2.0f, dir );
2360 v3_sub( dir, (v3f){1.0f,1.0f,1.0f}, dir );
2361
2362 v3_normalize( dir );
2363 }
2364
2365 static inline void vg_rand_sphere( vg_rand *rand, v3f co ){
2366 vg_rand_dir(rand,co);
2367 v3_muls( co, cbrtf( vg_randf64(rand) ), co );
2368 }
2369
2370 static void vg_rand_disc( vg_rand *rand, v2f co ){
2371 f32 a = vg_randf64(rand) * VG_TAUf;
2372 co[0] = sinf(a);
2373 co[1] = cosf(a);
2374 v2_muls( co, sqrtf( vg_randf64(rand) ), co );
2375 }
2376
2377 static void vg_rand_cone( vg_rand *rand, v3f out_dir, f32 angle ){
2378 f32 r = sqrtf(vg_randf64(rand)) * angle * 0.5f,
2379 a = vg_randf64(rand) * VG_TAUf;
2380
2381 out_dir[0] = sinf(a) * sinf(r);
2382 out_dir[1] = cosf(a) * sinf(r);
2383 out_dir[2] = cosf(r);
2384 }
2385
2386 #endif /* VG_M_H */