77733cf5afdca45b04fa2bc1b2c52b185a511e30
[csRadar.git] / csrMath.h
1 // Util
2 // ==================================================================================================================
3
4 #define CSR_PIf 3.14159265358979323846264338327950288f
5
6 // Simple min/max replacements
7 float csr_minf( float a, float b )
8 {
9 return a < b? a: b;
10 }
11
12 float csr_maxf( float a, float b )
13 {
14 return a > b? a: b;
15 }
16
17 int csr_min( int a, int b )
18 {
19 return a < b? a: b;
20 }
21
22 int csr_max( int a, int b )
23 {
24 return a > b? a: b;
25 }
26
27 // Convert double precision vec3 into single
28 void v3d_v3f( double a[3], float b[3] )
29 {
30 b[0] = a[0];
31 b[1] = a[1];
32 b[2] = a[2];
33 }
34
35 // Convert degrees to radians
36 float csr_rad( float deg )
37 {
38 return deg * CSR_PIf / 180.0f;
39 }
40
41 // Vector 2
42 // ==================================================================================================================
43
44 void v2_copy( v2f a, v2f b )
45 {
46 b[0] = a[0]; b[1] = a[1];
47 }
48
49 void v2_minv( v2f a, v2f b, v2f dest )
50 {
51 dest[0] = csr_minf(a[0], b[0]);
52 dest[1] = csr_minf(a[1], b[1]);
53 }
54
55 void v2_maxv( v2f a, v2f b, v2f dest )
56 {
57 dest[0] = csr_maxf(a[0], b[0]);
58 dest[1] = csr_maxf(a[1], b[1]);
59 }
60
61 void v2_sub( v2f a, v2f b, v2f d )
62 {
63 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
64 }
65
66 float v2_cross( v2f a, v2f b )
67 {
68 return a[0] * b[1] - a[1] * b[0];
69 }
70
71 void v2_add( v2f a, v2f b, v2f d )
72 {
73 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
74 }
75
76 void v2_muls( v2f a, float s, v2f d )
77 {
78 d[0] = a[0]*s; d[1] = a[1]*s;
79 }
80
81 void v2_mul( v2f a, v2f b, v2f d )
82 {
83 d[0] = a[0]*b[0]; d[1] = a[1]*b[1];
84 }
85
86 // Vector 3
87 // ==================================================================================================================
88
89 void v3_zero( v3f a )
90 {
91 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f;
92 }
93
94 void v3_copy( v3f a, v3f b )
95 {
96 b[0] = a[0]; b[1] = a[1]; b[2] = a[2];
97 }
98
99 void v3_add( v3f a, v3f b, v3f d )
100 {
101 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
102 }
103
104 void v3_sub( v3f a, v3f b, v3f d )
105 {
106 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
107 }
108
109 void v3_mul( v3f a, v3f b, v3f d )
110 {
111 d[0] = a[0]*b[0]; d[1] = a[1]*b[1]; d[2] = a[2]*b[2];
112 }
113
114 void v3_div( v3f a, v3f b, v3f d )
115 {
116 d[0] = a[0]/b[0]; d[1] = a[1]/b[1]; d[2] = a[2]/b[2];
117 }
118
119 void v3_muls( v3f a, float s, v3f d )
120 {
121 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s;
122 }
123
124 void v3_divs( v3f a, float s, v3f d )
125 {
126 d[0] = a[0]/s; d[1] = a[1]/s; d[2] = a[2]/s;
127 }
128
129 void v3_muladds( v3f a, v3f b, float s, v3f d )
130 {
131 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s; d[2] = a[2]+b[2]*s;
132 }
133
134 float v3_dot( v3f a, v3f b )
135 {
136 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
137 }
138
139 void v3_cross( v3f a, v3f b, v3f d )
140 {
141 d[0] = a[1] * b[2] - a[2] * b[1];
142 d[1] = a[2] * b[0] - a[0] * b[2];
143 d[2] = a[0] * b[1] - a[1] * b[0];
144 }
145
146 float v3_length2( v3f a )
147 {
148 return v3_dot( a, a );
149 }
150
151 float v3_length( v3f a )
152 {
153 return sqrtf( v3_length2( a ) );
154 }
155
156 float v3_dist2( v3f a, v3f b )
157 {
158 v3f delta;
159 v3_sub( a, b, delta );
160 return v3_length2( delta );
161 }
162
163 float v3_dist( v3f a, v3f b )
164 {
165 return sqrtf( v3_dist2( a, b ) );
166 }
167
168 void v3_normalize( v3f a )
169 {
170 v3_muls( a, 1.f / v3_length( a ), a );
171 }
172
173 float csr_lerpf( float a, float b, float t )
174 {
175 return a + t*(b-a);
176 }
177
178 void v3_lerp( v3f a, v3f b, float t, v3f d )
179 {
180 d[0] = a[0] + t*(b[0]-a[0]);
181 d[1] = a[1] + t*(b[1]-a[1]);
182 d[2] = a[2] + t*(b[2]-a[2]);
183 }
184
185 void v3_minv( v3f a, v3f b, v3f dest )
186 {
187 dest[0] = csr_minf(a[0], b[0]);
188 dest[1] = csr_minf(a[1], b[1]);
189 dest[2] = csr_minf(a[2], b[2]);
190 }
191
192 void v3_maxv( v3f a, v3f b, v3f dest )
193 {
194 dest[0] = csr_maxf(a[0], b[0]);
195 dest[1] = csr_maxf(a[1], b[1]);
196 dest[2] = csr_maxf(a[2], b[2]);
197 }
198
199 float v3_minf( v3f a )
200 {
201 return csr_minf( csr_minf( a[0], a[1] ), a[2] );
202 }
203
204 float v3_maxf( v3f a )
205 {
206 return csr_maxf( csr_maxf( a[0], a[1] ), a[2] );
207 }
208
209 void v3_fill( v3f a, float v )
210 {
211 a[0] = v;
212 a[1] = v;
213 a[2] = v;
214 }
215
216 // Vector 4
217 // ==================================================================================================================
218
219 void v4_copy( v4f a, v4f b )
220 {
221 b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];
222 }
223
224 void v4_zero( v4f a )
225 {
226 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f; a[3] = 0.f;
227 }
228
229 // Matrix 3x3
230 //======================================================================================================
231
232 void m3x3_inv_transpose( m3x3f src, m3x3f dest )
233 {
234 float a = src[0][0], b = src[0][1], c = src[0][2],
235 d = src[1][0], e = src[1][1], f = src[1][2],
236 g = src[2][0], h = src[2][1], i = src[2][2];
237
238 float det = 1.f /
239 (+a*(e*i-h*f)
240 -b*(d*i-f*g)
241 +c*(d*h-e*g));
242
243 dest[0][0] = (e*i-h*f)*det;
244 dest[1][0] = -(b*i-c*h)*det;
245 dest[2][0] = (b*f-c*e)*det;
246 dest[0][1] = -(d*i-f*g)*det;
247 dest[1][1] = (a*i-c*g)*det;
248 dest[2][1] = -(a*f-d*c)*det;
249 dest[0][2] = (d*h-g*e)*det;
250 dest[1][2] = -(a*h-g*b)*det;
251 dest[2][2] = (a*e-d*b)*det;
252 }
253
254 void m3x3_mulv( m3x3f m, v3f v, v3f d )
255 {
256 v3f res;
257
258 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
259 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
260 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
261
262 v3_copy( res, d );
263 }
264
265 // Matrix 4x3
266 // ==================================================================================================================
267
268 #define M4X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
269 { 0.0f, 1.0f, 0.0f, },\
270 { 0.0f, 0.0f, 1.0f, },\
271 { 0.0f, 0.0f, 0.0f }}
272
273 void m4x3_to_3x3( m4x3f a, m3x3f b )
274 {
275 v3_copy( a[0], b[0] );
276 v3_copy( a[1], b[1] );
277 v3_copy( a[2], b[2] );
278 }
279
280 void m4x3_copy( m4x3f a, m4x3f b )
281 {
282 v3_copy( a[0], b[0] );
283 v3_copy( a[1], b[1] );
284 v3_copy( a[2], b[2] );
285 v3_copy( a[3], b[3] );
286 }
287
288 void m4x3_identity( m4x3f a )
289 {
290 m4x3f id = M4X3_IDENTITY;
291 m4x3_copy( id, a );
292 }
293
294 void m4x3_mul( m4x3f a, m4x3f b, m4x3f d )
295 {
296 float
297 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
298 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
299 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
300 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2],
301 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
302 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
303 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2],
304 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2];
305
306 d[0][0] = a00*b00 + a10*b01 + a20*b02;
307 d[0][1] = a01*b00 + a11*b01 + a21*b02;
308 d[0][2] = a02*b00 + a12*b01 + a22*b02;
309 d[1][0] = a00*b10 + a10*b11 + a20*b12;
310 d[1][1] = a01*b10 + a11*b11 + a21*b12;
311 d[1][2] = a02*b10 + a12*b11 + a22*b12;
312 d[2][0] = a00*b20 + a10*b21 + a20*b22;
313 d[2][1] = a01*b20 + a11*b21 + a21*b22;
314 d[2][2] = a02*b20 + a12*b21 + a22*b22;
315 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30;
316 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31;
317 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32;
318 }
319
320 void m4x3_mulv( m4x3f m, v3f v, v3f d )
321 {
322 v3f res;
323
324 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0];
325 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1];
326 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2];
327
328 v3_copy( res, d );
329 }
330
331 // Affine transforms
332
333 void m4x3_translate( m4x3f m, v3f v )
334 {
335 v3_muladds( m[3], m[0], v[0], m[3] );
336 v3_muladds( m[3], m[1], v[1], m[3] );
337 v3_muladds( m[3], m[2], v[2], m[3] );
338 }
339
340 void m4x3_scale( m4x3f m, float s )
341 {
342 v3_muls( m[0], s, m[0] );
343 v3_muls( m[1], s, m[1] );
344 v3_muls( m[2], s, m[2] );
345 }
346
347 void m4x3_rotate_x( m4x3f m, float angle )
348 {
349 m4x3f t = M4X3_IDENTITY;
350 float c, s;
351
352 c = cosf( angle );
353 s = sinf( angle );
354
355 t[1][1] = c;
356 t[1][2] = s;
357 t[2][1] = -s;
358 t[2][2] = c;
359
360 m4x3_mul( m, t, m );
361 }
362
363 void m4x3_rotate_y( m4x3f m, float angle )
364 {
365 m4x3f t = M4X3_IDENTITY;
366 float c, s;
367
368 c = cosf( angle );
369 s = sinf( angle );
370
371 t[0][0] = c;
372 t[0][2] = -s;
373 t[2][0] = s;
374 t[2][2] = c;
375
376 m4x3_mul( m, t, m );
377 }
378
379 void m4x3_rotate_z( m4x3f m, float angle )
380 {
381 m4x3f t = M4X3_IDENTITY;
382 float c, s;
383
384 c = cosf( angle );
385 s = sinf( angle );
386
387 t[0][0] = c;
388 t[0][1] = s;
389 t[1][0] = -s;
390 t[1][1] = c;
391
392 m4x3_mul( m, t, m );
393 }
394
395 // Warning: These functions are unoptimized..
396 void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point )
397 {
398 v3f v;
399 m4x3_mulv( m, point, v );
400
401 v3_minv( box[0], v, box[0] );
402 v3_maxv( box[1], v, box[1] );
403 }
404
405 void box_concat( boxf a, boxf b )
406 {
407 v3_minv( a[0], b[0], a[0] );
408 v3_maxv( a[1], b[1], a[1] );
409 }
410
411 void box_copy( boxf a, boxf b )
412 {
413 v3_copy( a[0], b[0] );
414 v3_copy( a[1], b[1] );
415 }
416
417 void m4x3_transform_aabb( m4x3f m, boxf box )
418 {
419 v3f a; v3f b;
420
421 v3_copy( box[0], a );
422 v3_copy( box[1], b );
423 v3_fill( box[0], INFINITY );
424 v3_fill( box[1], -INFINITY );
425
426 m4x3_expand_aabb_point( m, box, a );
427 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], a[2] } );
428 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], a[2] } );
429 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], a[2] } );
430 m4x3_expand_aabb_point( m, box, b );
431 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], b[2] } );
432 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], b[2] } );
433 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], b[2] } );
434 }
435
436 // Planes (double precision)
437 // ==================================================================================================================
438
439 void tri_to_plane( double a[3], double b[3], double c[3], double p[4] )
440 {
441 double edge0[3];
442 double edge1[3];
443 double l;
444
445 edge0[0] = b[0] - a[0];
446 edge0[1] = b[1] - a[1];
447 edge0[2] = b[2] - a[2];
448
449 edge1[0] = c[0] - a[0];
450 edge1[1] = c[1] - a[1];
451 edge1[2] = c[2] - a[2];
452
453 p[0] = edge0[1] * edge1[2] - edge0[2] * edge1[1];
454 p[1] = edge0[2] * edge1[0] - edge0[0] * edge1[2];
455 p[2] = edge0[0] * edge1[1] - edge0[1] * edge1[0];
456
457 l = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
458 p[3] = (p[0] * a[0] + p[1] * a[1] + p[2] * a[2]) / l;
459
460 p[0] = p[0] / l;
461 p[1] = p[1] / l;
462 p[2] = p[2] / l;
463 }
464
465 int plane_intersect( double a[4], double b[4], double c[4], double p[4] )
466 {
467 double const epsilon = 1e-8f;
468
469 double x[3];
470 double d;
471
472 x[0] = a[1] * b[2] - a[2] * b[1];
473 x[1] = a[2] * b[0] - a[0] * b[2];
474 x[2] = a[0] * b[1] - a[1] * b[0];
475
476 d = x[0] * c[0] + x[1] * c[1] + x[2] * c[2];
477
478 if( d < epsilon && d > -epsilon ) return 0;
479
480 p[0] = (b[1] * c[2] - b[2] * c[1]) * -a[3];
481 p[1] = (b[2] * c[0] - b[0] * c[2]) * -a[3];
482 p[2] = (b[0] * c[1] - b[1] * c[0]) * -a[3];
483
484 p[0] += (c[1] * a[2] - c[2] * a[1]) * -b[3];
485 p[1] += (c[2] * a[0] - c[0] * a[2]) * -b[3];
486 p[2] += (c[0] * a[1] - c[1] * a[0]) * -b[3];
487
488 p[0] += (a[1] * b[2] - a[2] * b[1]) * -c[3];
489 p[1] += (a[2] * b[0] - a[0] * b[2]) * -c[3];
490 p[2] += (a[0] * b[1] - a[1] * b[0]) * -c[3];
491
492 p[0] = -p[0] / d;
493 p[1] = -p[1] / d;
494 p[2] = -p[2] / d;
495
496 return 1;
497 }
498
499 double plane_polarity( double p[4], double a[3] )
500 {
501 return
502 (a[0] * p[0] + a[1] * p[1] + a[2] * p[2])
503 -(p[0]*p[3] * p[0] + p[1]*p[3] * p[1] + p[2]*p[3] * p[2])
504 ;
505 }