command line, multisampling, optimisations
[csRadar.git] / csrMath.h
1 // Util
2 // ==================================================================================================================
3
4 #define CSR_PIf 3.14159265358979323846264338327950288f
5
6 float csr_minf( float a, float b )
7 {
8 if( a < b )
9 return a;
10 return b;
11 }
12
13 float csr_maxf( float a, float b )
14 {
15 if( a > b )
16 return a;
17 return b;
18 }
19
20 int csr_min( int a, int b )
21 {
22 if( a < b )
23 return a;
24 return b;
25 }
26
27 int csr_max( int a, int b )
28 {
29 if( a > b )
30 return a;
31 return b;
32 }
33
34 void v3d_v3f( double a[3], float b[3] )
35 {
36 b[0] = a[0];
37 b[1] = a[1];
38 b[2] = a[2];
39 }
40
41 float csr_rad( float deg )
42 {
43 return deg * CSR_PIf / 180.0f;
44 }
45
46 // Vector 2
47 // ==================================================================================================================
48
49 void v2_copy( v2f a, v2f b )
50 {
51 b[0] = a[0]; b[1] = a[1];
52 }
53
54 void v2_minv( v2f a, v2f b, v2f dest )
55 {
56 dest[0] = csr_minf(a[0], b[0]);
57 dest[1] = csr_minf(a[1], b[1]);
58 }
59
60 void v2_maxv( v2f a, v2f b, v2f dest )
61 {
62 dest[0] = csr_maxf(a[0], b[0]);
63 dest[1] = csr_maxf(a[1], b[1]);
64 }
65
66 void v2_sub( v2f a, v2f b, v2f d )
67 {
68 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
69 }
70
71 float v2_cross( v2f a, v2f b )
72 {
73 return a[0] * b[1] - a[1] * b[0];
74 }
75
76 void v2_add( v2f a, v2f b, v2f d )
77 {
78 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
79 }
80
81 // Vector 3
82 // ==================================================================================================================
83
84 void v3_zero( v3f a )
85 {
86 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f;
87 }
88
89 void v3_copy( v3f a, v3f b )
90 {
91 b[0] = a[0]; b[1] = a[1]; b[2] = a[2];
92 }
93
94 void v3_add( v3f a, v3f b, v3f d )
95 {
96 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
97 }
98
99 void v3_sub( v3f a, v3f b, v3f d )
100 {
101 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
102 }
103
104 void v3_mul( v3f a, v3f b, v3f d )
105 {
106 d[0] = a[0]*b[0]; d[1] = a[1]*b[1]; d[2] = a[2]*b[2];
107 }
108
109 void v3_div( v3f a, v3f b, v3f d )
110 {
111 d[0] = a[0]/b[0]; d[1] = a[1]/b[1]; d[2] = a[2]/b[2];
112 }
113
114 void v3_muls( v3f a, float s, v3f d )
115 {
116 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s;
117 }
118
119 void v3_divs( v3f a, float s, v3f d )
120 {
121 d[0] = a[0]/s; d[1] = a[1]/s; d[2] = a[2]/s;
122 }
123
124 void v3_muladds( v3f a, v3f b, float s, v3f d )
125 {
126 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s; d[2] = a[2]+b[2]*s;
127 }
128
129 float v3_dot( v3f a, v3f b )
130 {
131 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
132 }
133
134 void v3_cross( v3f a, v3f b, v3f d )
135 {
136 d[0] = a[1] * b[2] - a[2] * b[1];
137 d[1] = a[2] * b[0] - a[0] * b[2];
138 d[2] = a[0] * b[1] - a[1] * b[0];
139 }
140
141 float v3_length2( v3f a )
142 {
143 return v3_dot( a, a );
144 }
145
146 float v3_length( v3f a )
147 {
148 return sqrtf( v3_length2( a ) );
149 }
150
151 float v3_dist2( v3f a, v3f b )
152 {
153 v3f delta;
154 v3_sub( a, b, delta );
155 return v3_length2( delta );
156 }
157
158 float v3_dist( v3f a, v3f b )
159 {
160 return sqrtf( v3_dist2( a, b ) );
161 }
162
163 void v3_normalize( v3f a )
164 {
165 v3_muls( a, 1.f / v3_length( a ), a );
166 }
167
168 float csr_lerpf( float a, float b, float t )
169 {
170 return a + t*(b-a);
171 }
172
173 void v3_lerp( v3f a, v3f b, float t, v3f d )
174 {
175 d[0] = a[0] + t*(b[0]-a[0]);
176 d[1] = a[1] + t*(b[1]-a[1]);
177 d[2] = a[2] + t*(b[2]-a[2]);
178 }
179
180 void v3_minv( v3f a, v3f b, v3f dest )
181 {
182 dest[0] = csr_minf(a[0], b[0]);
183 dest[1] = csr_minf(a[1], b[1]);
184 dest[2] = csr_minf(a[2], b[2]);
185 }
186
187 void v3_maxv( v3f a, v3f b, v3f dest )
188 {
189 dest[0] = csr_maxf(a[0], b[0]);
190 dest[1] = csr_maxf(a[1], b[1]);
191 dest[2] = csr_maxf(a[2], b[2]);
192 }
193
194 float v3_minf( v3f a )
195 {
196 return csr_minf( csr_minf( a[0], a[1] ), a[2] );
197 }
198
199 float v3_maxf( v3f a )
200 {
201 return csr_maxf( csr_maxf( a[0], a[1] ), a[2] );
202 }
203
204 void v3_fill( v3f a, float v )
205 {
206 a[0] = v;
207 a[1] = v;
208 a[2] = v;
209 }
210
211 // Vector 4
212 void v4_copy( v4f a, v4f b )
213 {
214 b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];
215 }
216
217 // Matrix 3x3
218 //======================================================================================================
219
220 void m3x3_inv_transpose( m3x3f src, m3x3f dest )
221 {
222 float a = src[0][0], b = src[0][1], c = src[0][2],
223 d = src[1][0], e = src[1][1], f = src[1][2],
224 g = src[2][0], h = src[2][1], i = src[2][2];
225
226 float det = 1.f /
227 (+a*(e*i-h*f)
228 -b*(d*i-f*g)
229 +c*(d*h-e*g));
230
231 dest[0][0] = (e*i-h*f)*det;
232 dest[1][0] = -(b*i-c*h)*det;
233 dest[2][0] = (b*f-c*e)*det;
234 dest[0][1] = -(d*i-f*g)*det;
235 dest[1][1] = (a*i-c*g)*det;
236 dest[2][1] = -(a*f-d*c)*det;
237 dest[0][2] = (d*h-g*e)*det;
238 dest[1][2] = -(a*h-g*b)*det;
239 dest[2][2] = (a*e-d*b)*det;
240 }
241
242 void m3x3_mulv( m3x3f m, v3f v, v3f d )
243 {
244 v3f res;
245
246 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
247 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
248 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
249
250 v3_copy( res, d );
251 }
252
253 // Matrix 4x3
254 // ==================================================================================================================
255
256 #define M4X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
257 { 0.0f, 1.0f, 0.0f, },\
258 { 0.0f, 0.0f, 1.0f, },\
259 { 0.0f, 0.0f, 0.0f }}
260
261 void m4x3_to_3x3( m4x3f a, m3x3f b )
262 {
263 v3_copy( a[0], b[0] );
264 v3_copy( a[1], b[1] );
265 v3_copy( a[2], b[2] );
266 }
267
268 void m4x3_copy( m4x3f a, m4x3f b )
269 {
270 v3_copy( a[0], b[0] );
271 v3_copy( a[1], b[1] );
272 v3_copy( a[2], b[2] );
273 v3_copy( a[3], b[3] );
274 }
275
276 void m4x3_identity( m4x3f a )
277 {
278 m4x3f id = M4X3_IDENTITY;
279 m4x3_copy( id, a );
280 }
281
282 void m4x3_mul( m4x3f a, m4x3f b, m4x3f d )
283 {
284 float
285 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
286 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
287 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
288 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2],
289 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
290 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
291 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2],
292 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2];
293
294 d[0][0] = a00*b00 + a10*b01 + a20*b02;
295 d[0][1] = a01*b00 + a11*b01 + a21*b02;
296 d[0][2] = a02*b00 + a12*b01 + a22*b02;
297 d[1][0] = a00*b10 + a10*b11 + a20*b12;
298 d[1][1] = a01*b10 + a11*b11 + a21*b12;
299 d[1][2] = a02*b10 + a12*b11 + a22*b12;
300 d[2][0] = a00*b20 + a10*b21 + a20*b22;
301 d[2][1] = a01*b20 + a11*b21 + a21*b22;
302 d[2][2] = a02*b20 + a12*b21 + a22*b22;
303 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30;
304 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31;
305 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32;
306 }
307
308 void m4x3_mulv( m4x3f m, v3f v, v3f d )
309 {
310 v3f res;
311
312 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0];
313 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1];
314 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2];
315
316 v3_copy( res, d );
317 }
318
319 // Affine transforms
320
321 void m4x3_translate( m4x3f m, v3f v )
322 {
323 v3_muladds( m[3], m[0], v[0], m[3] );
324 v3_muladds( m[3], m[1], v[1], m[3] );
325 v3_muladds( m[3], m[2], v[2], m[3] );
326 }
327
328 void m4x3_scale( m4x3f m, float s )
329 {
330 v3_muls( m[0], s, m[0] );
331 v3_muls( m[1], s, m[1] );
332 v3_muls( m[2], s, m[2] );
333 }
334
335 void m4x3_rotate_x( m4x3f m, float angle )
336 {
337 m4x3f t = M4X3_IDENTITY;
338 float c, s;
339
340 c = cosf( angle );
341 s = sinf( angle );
342
343 t[1][1] = c;
344 t[1][2] = s;
345 t[2][1] = -s;
346 t[2][2] = c;
347
348 m4x3_mul( m, t, m );
349 }
350
351 void m4x3_rotate_y( m4x3f m, float angle )
352 {
353 m4x3f t = M4X3_IDENTITY;
354 float c, s;
355
356 c = cosf( angle );
357 s = sinf( angle );
358
359 t[0][0] = c;
360 t[0][2] = -s;
361 t[2][0] = s;
362 t[2][2] = c;
363
364 m4x3_mul( m, t, m );
365 }
366
367 void m4x3_rotate_z( m4x3f m, float angle )
368 {
369 m4x3f t = M4X3_IDENTITY;
370 float c, s;
371
372 c = cosf( angle );
373 s = sinf( angle );
374
375 t[0][0] = c;
376 t[0][1] = s;
377 t[1][0] = -s;
378 t[1][1] = c;
379
380 m4x3_mul( m, t, m );
381 }
382
383 // Warning: These functions are unoptimized..
384 void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point )
385 {
386 v3f v;
387 m4x3_mulv( m, point, v );
388
389 v3_minv( box[0], v, box[0] );
390 v3_maxv( box[1], v, box[1] );
391 }
392
393 void box_concat( boxf a, boxf b )
394 {
395 v3_minv( a[0], b[0], a[0] );
396 v3_maxv( a[1], b[1], a[1] );
397 }
398
399 void box_copy( boxf a, boxf b )
400 {
401 v3_copy( a[0], b[0] );
402 v3_copy( a[1], b[1] );
403 }
404
405 void m4x3_transform_aabb( m4x3f m, boxf box )
406 {
407 v3f a; v3f b;
408
409 v3_copy( box[0], a );
410 v3_copy( box[1], b );
411
412 m4x3_expand_aabb_point( m, box, a );
413 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], a[2] } );
414 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], a[2] } );
415 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], a[2] } );
416 m4x3_expand_aabb_point( m, box, b );
417 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], b[2] } );
418 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], b[2] } );
419 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], b[2] } );
420 }
421
422 // Planes (double precision)
423 // ==================================================================================================================
424
425 void tri_to_plane( double a[3], double b[3], double c[3], double p[4] )
426 {
427 double edge0[3];
428 double edge1[3];
429 double l;
430
431 edge0[0] = b[0] - a[0];
432 edge0[1] = b[1] - a[1];
433 edge0[2] = b[2] - a[2];
434
435 edge1[0] = c[0] - a[0];
436 edge1[1] = c[1] - a[1];
437 edge1[2] = c[2] - a[2];
438
439 p[0] = edge0[1] * edge1[2] - edge0[2] * edge1[1];
440 p[1] = edge0[2] * edge1[0] - edge0[0] * edge1[2];
441 p[2] = edge0[0] * edge1[1] - edge0[1] * edge1[0];
442
443 l = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
444 p[3] = (p[0] * a[0] + p[1] * a[1] + p[2] * a[2]) / l;
445
446 p[0] = p[0] / l;
447 p[1] = p[1] / l;
448 p[2] = p[2] / l;
449 }
450
451 int plane_intersect( double a[4], double b[4], double c[4], double p[4] )
452 {
453 double const epsilon = 1e-8f;
454
455 double x[3];
456 double d;
457
458 x[0] = a[1] * b[2] - a[2] * b[1];
459 x[1] = a[2] * b[0] - a[0] * b[2];
460 x[2] = a[0] * b[1] - a[1] * b[0];
461
462 d = x[0] * c[0] + x[1] * c[1] + x[2] * c[2];
463
464 if( d < epsilon && d > -epsilon ) return 0;
465
466 p[0] = (b[1] * c[2] - b[2] * c[1]) * -a[3];
467 p[1] = (b[2] * c[0] - b[0] * c[2]) * -a[3];
468 p[2] = (b[0] * c[1] - b[1] * c[0]) * -a[3];
469
470 p[0] += (c[1] * a[2] - c[2] * a[1]) * -b[3];
471 p[1] += (c[2] * a[0] - c[0] * a[2]) * -b[3];
472 p[2] += (c[0] * a[1] - c[1] * a[0]) * -b[3];
473
474 p[0] += (a[1] * b[2] - a[2] * b[1]) * -c[3];
475 p[1] += (a[2] * b[0] - a[0] * b[2]) * -c[3];
476 p[2] += (a[0] * b[1] - a[1] * b[0]) * -c[3];
477
478 p[0] = -p[0] / d;
479 p[1] = -p[1] / d;
480 p[2] = -p[2] / d;
481
482 return 1;
483 }
484
485 double plane_polarity( double p[4], double a[3] )
486 {
487 return
488 (a[0] * p[0] + a[1] * p[1] + a[2] * p[2])
489 -(p[0]*p[3] * p[0] + p[1]*p[3] * p[1] + p[2]*p[3] * p[2])
490 ;
491 }
492
493 // Raycasting
494 // ==================================================================================================================
495
496 int csr_slabs( v3f box[2], v3f o, v3f id )
497 {
498 v3f t0; v3f t1;
499 v3f tmin; v3f tmax;
500
501 v3_sub( box[0], o, t0 );
502 v3_sub( box[1], o, t1 );
503 v3_mul( t0, id, t0 );
504 v3_mul( t1, id, t1 );
505
506 v3_minv( t0, t1, tmin );
507 v3_maxv( t0, t1, tmax );
508
509 return v3_maxf( tmin ) <= v3_minf( tmax );
510 }
511
512 float csr_ray_tri( v3f o, v3f d, v3f v0, v3f v1, v3f v2, float *u, float *v )
513 {
514 float const k_cullEpsilon = 0.000001f;
515
516 v3f v0v1;
517 v3f v0v2;
518 v3f p;
519 float det, inv;
520
521 v3f tv;
522 v3f qv;
523
524 v3_sub( v1, v0, v0v1 );
525 v3_sub( v2, v0, v0v2 );
526 v3_cross( d, v0v2, p );
527
528 det = v3_dot( v0v1, p );
529
530 if( det < k_cullEpsilon ) return -INFINITY;
531
532 inv = 1.f / det;
533
534 v3_sub( o, v0, tv );
535 *u = v3_dot( tv, p ) * inv;
536
537 if( *u < 0.f || *u > 1.f ) return -INFINITY;
538
539 v3_cross( tv, v0v1, qv );
540 *v = v3_dot( d, qv ) * inv;
541
542 if( *v < 0.f || *u + *v > 1.f ) return -INFINITY;
543
544 return v3_dot( v0v2, qv ) * inv;
545 }