init
[convexer.git] / src / cxr_math.h
1 // Copyright (C) 2021 Harry Godden (hgn)
2
3 #define CXR_INLINE static inline
4 #define CXR_PIf 3.14159265358979323846264338327950288f
5
6 // Simple min/max replacements
7 CXR_INLINE double cxr_minf( double a, double b )
8 {
9 return a < b? a: b;
10 }
11
12 CXR_INLINE double cxr_maxf( double a, double b )
13 {
14 return a > b? a: b;
15 }
16
17 CXR_INLINE int cxr_min( int a, int b )
18 {
19 return a < b? a: b;
20 }
21
22 CXR_INLINE int cxr_max( int a, int b )
23 {
24 return a > b? a: b;
25 }
26
27 // Convert degrees to radians
28 CXR_INLINE double cxr_rad( double deg )
29 {
30 return deg * CXR_PIf / 180.0f;
31 }
32
33 // Vector 2
34 // ==================================================================================================================
35
36 CXR_INLINE void v2_zero( v2f a )
37 {
38 a[0] = 0.0; a[1] = 0.0;
39 }
40
41 CXR_INLINE void v2_copy( v2f a, v2f b )
42 {
43 b[0] = a[0]; b[1] = a[1];
44 }
45
46 CXR_INLINE void v2_minv( v2f a, v2f b, v2f dest )
47 {
48 dest[0] = cxr_minf(a[0], b[0]);
49 dest[1] = cxr_minf(a[1], b[1]);
50 }
51
52 CXR_INLINE void v2_maxv( v2f a, v2f b, v2f dest )
53 {
54 dest[0] = cxr_maxf(a[0], b[0]);
55 dest[1] = cxr_maxf(a[1], b[1]);
56 }
57
58 CXR_INLINE void v2_sub( v2f a, v2f b, v2f d )
59 {
60 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
61 }
62
63 CXR_INLINE double v2_cross( v2f a, v2f b )
64 {
65 return a[0] * b[1] - a[1] * b[0];
66 }
67
68 CXR_INLINE void v2_add( v2f a, v2f b, v2f d )
69 {
70 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
71 }
72
73 CXR_INLINE void v2_muls( v2f a, double s, v2f d )
74 {
75 d[0] = a[0]*s; d[1] = a[1]*s;
76 }
77
78 CXR_INLINE void v2_mul( v2f a, v2f b, v2f d )
79 {
80 d[0] = a[0]*b[0]; d[1] = a[1]*b[1];
81 }
82
83 CXR_INLINE void v2_muladds( v2f a, v2f b, double s, v2f d )
84 {
85 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s;
86 }
87
88 CXR_INLINE double v2_dot( v2f a, v2f b )
89 {
90 return a[0] * b[0] + a[1] * b[1];
91 }
92
93 CXR_INLINE void v2_div( v2f a, v2f b, v2f d )
94 {
95 d[0] = a[0]/b[0]; d[1] = a[1]/b[1];
96 }
97
98 CXR_INLINE double v2_length2( v2f a )
99 {
100 return v2_dot( a, a );
101 }
102
103 CXR_INLINE double v2_length( v2f a )
104 {
105 return sqrt( v2_length2( a ) );
106 }
107
108 CXR_INLINE double v2_dist2( v2f a, v2f b )
109 {
110 v2f delta;
111 v2_sub( a, b, delta );
112 return v2_length2( delta );
113 }
114
115 CXR_INLINE double v2_dist( v2f a, v2f b )
116 {
117 return sqrt( v2_dist2( a, b ) );
118 }
119
120 CXR_INLINE void v2_normalize( v2f a )
121 {
122 v2_muls( a, 1.0 / v2_length( a ), a );
123 }
124
125 // Vector 3
126 // ==================================================================================================================
127
128 CXR_INLINE void v3_zero( v3f a )
129 {
130 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f;
131 }
132
133 CXR_INLINE void v3_copy( v3f a, v3f b )
134 {
135 b[0] = a[0]; b[1] = a[1]; b[2] = a[2];
136 }
137
138 CXR_INLINE void v3_add( v3f a, v3f b, v3f d )
139 {
140 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
141 }
142
143 CXR_INLINE void v3_sub( v3f a, v3f b, v3f d )
144 {
145 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
146 }
147
148 CXR_INLINE void v3_mul( v3f a, v3f b, v3f d )
149 {
150 d[0] = a[0]*b[0]; d[1] = a[1]*b[1]; d[2] = a[2]*b[2];
151 }
152
153 CXR_INLINE void v3_div( v3f a, v3f b, v3f d )
154 {
155 d[0] = a[0]/b[0]; d[1] = a[1]/b[1]; d[2] = a[2]/b[2];
156 }
157
158 CXR_INLINE void v3_muls( v3f a, double s, v3f d )
159 {
160 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s;
161 }
162
163 CXR_INLINE void v3_divs( v3f a, double s, v3f d )
164 {
165 d[0] = a[0]/s; d[1] = a[1]/s; d[2] = a[2]/s;
166 }
167
168 CXR_INLINE void v3_muladds( v3f a, v3f b, double s, v3f d )
169 {
170 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s; d[2] = a[2]+b[2]*s;
171 }
172
173 CXR_INLINE double v3_dot( v3f a, v3f b )
174 {
175 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
176 }
177
178 CXR_INLINE void v3_cross( v3f a, v3f b, v3f d )
179 {
180 d[0] = a[1] * b[2] - a[2] * b[1];
181 d[1] = a[2] * b[0] - a[0] * b[2];
182 d[2] = a[0] * b[1] - a[1] * b[0];
183 }
184
185 CXR_INLINE double v3_length2( v3f a )
186 {
187 return v3_dot( a, a );
188 }
189
190 CXR_INLINE double v3_length( v3f a )
191 {
192 return sqrt( v3_length2( a ) );
193 }
194
195 CXR_INLINE double v3_dist2( v3f a, v3f b )
196 {
197 v3f delta;
198 v3_sub( a, b, delta );
199 return v3_length2( delta );
200 }
201
202 CXR_INLINE double v3_dist( v3f a, v3f b )
203 {
204 return sqrt( v3_dist2( a, b ) );
205 }
206
207 CXR_INLINE void v3_normalize( v3f a )
208 {
209 v3_muls( a, 1.0 / v3_length( a ), a );
210 }
211
212 CXR_INLINE void v3_negate( v3f a, v3f dest )
213 {
214 v3_muls( a, -1.0, dest );
215 }
216
217 CXR_INLINE double cxr_lerpf( double a, double b, double t )
218 {
219 return a + t*(b-a);
220 }
221
222 CXR_INLINE void v3_lerp( v3f a, v3f b, double t, v3f d )
223 {
224 d[0] = a[0] + t*(b[0]-a[0]);
225 d[1] = a[1] + t*(b[1]-a[1]);
226 d[2] = a[2] + t*(b[2]-a[2]);
227 }
228
229 CXR_INLINE void v3_minv( v3f a, v3f b, v3f dest )
230 {
231 dest[0] = cxr_minf(a[0], b[0]);
232 dest[1] = cxr_minf(a[1], b[1]);
233 dest[2] = cxr_minf(a[2], b[2]);
234 }
235
236 CXR_INLINE void v3_maxv( v3f a, v3f b, v3f dest )
237 {
238 dest[0] = cxr_maxf(a[0], b[0]);
239 dest[1] = cxr_maxf(a[1], b[1]);
240 dest[2] = cxr_maxf(a[2], b[2]);
241 }
242
243 CXR_INLINE double v3_minf( v3f a )
244 {
245 return cxr_minf( cxr_minf( a[0], a[1] ), a[2] );
246 }
247
248 CXR_INLINE double v3_maxf( v3f a )
249 {
250 return cxr_maxf( cxr_maxf( a[0], a[1] ), a[2] );
251 }
252
253 CXR_INLINE void v3_fill( v3f a, double v )
254 {
255 a[0] = v;
256 a[1] = v;
257 a[2] = v;
258 }
259
260 // Vector 4
261 // ==================================================================================================================
262
263 CXR_INLINE void v4_copy( v4f a, v4f b )
264 {
265 b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];
266 }
267
268 CXR_INLINE void v4_zero( v4f a )
269 {
270 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f; a[3] = 0.f;
271 }
272
273 CXR_INLINE void v4_muls( v4f a, double s, v4f d )
274 {
275 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s; d[3] = a[3]*s;
276 }
277
278 // Matrix 3x3
279 //======================================================================================================
280
281 CXR_INLINE void m3x3_inv_transpose( m3x3f src, m3x3f dest )
282 {
283 double a = src[0][0], b = src[0][1], c = src[0][2],
284 d = src[1][0], e = src[1][1], f = src[1][2],
285 g = src[2][0], h = src[2][1], i = src[2][2];
286
287 double det = 1.f /
288 (+a*(e*i-h*f)
289 -b*(d*i-f*g)
290 +c*(d*h-e*g));
291
292 dest[0][0] = (e*i-h*f)*det;
293 dest[1][0] = -(b*i-c*h)*det;
294 dest[2][0] = (b*f-c*e)*det;
295 dest[0][1] = -(d*i-f*g)*det;
296 dest[1][1] = (a*i-c*g)*det;
297 dest[2][1] = -(a*f-d*c)*det;
298 dest[0][2] = (d*h-g*e)*det;
299 dest[1][2] = -(a*h-g*b)*det;
300 dest[2][2] = (a*e-d*b)*det;
301 }
302
303 CXR_INLINE void m3x3_mulv( m3x3f m, v3f v, v3f d )
304 {
305 v3f res;
306
307 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
308 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
309 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
310
311 v3_copy( res, d );
312 }
313
314 // Matrix 4x3
315 // ==================================================================================================================
316
317 #define M4X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
318 { 0.0f, 1.0f, 0.0f, },\
319 { 0.0f, 0.0f, 1.0f, },\
320 { 0.0f, 0.0f, 0.0f }}
321
322 CXR_INLINE void m4x3_to_3x3( m4x3f a, m3x3f b )
323 {
324 v3_copy( a[0], b[0] );
325 v3_copy( a[1], b[1] );
326 v3_copy( a[2], b[2] );
327 }
328
329 CXR_INLINE void m4x3_copy( m4x3f a, m4x3f b )
330 {
331 v3_copy( a[0], b[0] );
332 v3_copy( a[1], b[1] );
333 v3_copy( a[2], b[2] );
334 v3_copy( a[3], b[3] );
335 }
336
337 CXR_INLINE void m4x3_identity( m4x3f a )
338 {
339 m4x3f id = M4X3_IDENTITY;
340 m4x3_copy( id, a );
341 }
342
343 CXR_INLINE void m4x3_mul( m4x3f a, m4x3f b, m4x3f d )
344 {
345 double
346 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
347 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
348 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
349 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2],
350 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
351 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
352 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2],
353 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2];
354
355 d[0][0] = a00*b00 + a10*b01 + a20*b02;
356 d[0][1] = a01*b00 + a11*b01 + a21*b02;
357 d[0][2] = a02*b00 + a12*b01 + a22*b02;
358 d[1][0] = a00*b10 + a10*b11 + a20*b12;
359 d[1][1] = a01*b10 + a11*b11 + a21*b12;
360 d[1][2] = a02*b10 + a12*b11 + a22*b12;
361 d[2][0] = a00*b20 + a10*b21 + a20*b22;
362 d[2][1] = a01*b20 + a11*b21 + a21*b22;
363 d[2][2] = a02*b20 + a12*b21 + a22*b22;
364 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30;
365 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31;
366 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32;
367 }
368
369 CXR_INLINE void m4x3_mulv( m4x3f m, v3f v, v3f d )
370 {
371 v3f res;
372
373 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0];
374 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1];
375 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2];
376
377 v3_copy( res, d );
378 }
379
380 // Affine transforms
381
382 CXR_INLINE void m4x3_translate( m4x3f m, v3f v )
383 {
384 v3_muladds( m[3], m[0], v[0], m[3] );
385 v3_muladds( m[3], m[1], v[1], m[3] );
386 v3_muladds( m[3], m[2], v[2], m[3] );
387 }
388
389 CXR_INLINE void m4x3_scale( m4x3f m, double s )
390 {
391 v3_muls( m[0], s, m[0] );
392 v3_muls( m[1], s, m[1] );
393 v3_muls( m[2], s, m[2] );
394 }
395
396 CXR_INLINE void m4x3_rotate_x( m4x3f m, double angle )
397 {
398 m4x3f t = M4X3_IDENTITY;
399 double c, s;
400
401 c = cosf( angle );
402 s = sinf( angle );
403
404 t[1][1] = c;
405 t[1][2] = s;
406 t[2][1] = -s;
407 t[2][2] = c;
408
409 m4x3_mul( m, t, m );
410 }
411
412 CXR_INLINE void m4x3_rotate_y( m4x3f m, double angle )
413 {
414 m4x3f t = M4X3_IDENTITY;
415 double c, s;
416
417 c = cosf( angle );
418 s = sinf( angle );
419
420 t[0][0] = c;
421 t[0][2] = -s;
422 t[2][0] = s;
423 t[2][2] = c;
424
425 m4x3_mul( m, t, m );
426 }
427
428 CXR_INLINE void m4x3_rotate_z( m4x3f m, double angle )
429 {
430 m4x3f t = M4X3_IDENTITY;
431 double c, s;
432
433 c = cosf( angle );
434 s = sinf( angle );
435
436 t[0][0] = c;
437 t[0][1] = s;
438 t[1][0] = -s;
439 t[1][1] = c;
440
441 m4x3_mul( m, t, m );
442 }
443
444 // Warning: These functions are unoptimized..
445 CXR_INLINE void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point )
446 {
447 v3f v;
448 m4x3_mulv( m, point, v );
449
450 v3_minv( box[0], v, box[0] );
451 v3_maxv( box[1], v, box[1] );
452 }
453
454 CXR_INLINE void box_concat( boxf a, boxf b )
455 {
456 v3_minv( a[0], b[0], a[0] );
457 v3_maxv( a[1], b[1], a[1] );
458 }
459
460 CXR_INLINE void box_copy( boxf a, boxf b )
461 {
462 v3_copy( a[0], b[0] );
463 v3_copy( a[1], b[1] );
464 }
465
466 CXR_INLINE void m4x3_transform_aabb( m4x3f m, boxf box )
467 {
468 v3f a; v3f b;
469
470 v3_copy( box[0], a );
471 v3_copy( box[1], b );
472 v3_fill( box[0], INFINITY );
473 v3_fill( box[1], -INFINITY );
474
475 m4x3_expand_aabb_point( m, box, a );
476 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], a[2] } );
477 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], a[2] } );
478 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], a[2] } );
479 m4x3_expand_aabb_point( m, box, b );
480 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], b[2] } );
481 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], b[2] } );
482 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], b[2] } );
483 }
484
485 CXR_INLINE void tri_normal( v3f p0, v3f p1, v3f p2, v3f normal )
486 {
487 v3f v0, v1;
488 v3_sub( p1, p0, v0 );
489 v3_sub( p2, p0, v1 );
490 v3_cross( v0, v1, normal );
491 v3_normalize( normal );
492 }
493
494 CXR_INLINE void tri_to_plane( v3f a, v3f b, v3f c, v4f plane )
495 {
496 tri_normal( a,b,c, plane );
497 plane[3] = v3_dot( plane, a );
498 }
499
500 // TODO update this code to use normal v3_x functions
501 CXR_INLINE void tri_to_plane1( double a[3], double b[3], double c[3], double p[4] )
502 {
503 double edge0[3];
504 double edge1[3];
505 double l;
506
507 edge0[0] = b[0] - a[0];
508 edge0[1] = b[1] - a[1];
509 edge0[2] = b[2] - a[2];
510
511 edge1[0] = c[0] - a[0];
512 edge1[1] = c[1] - a[1];
513 edge1[2] = c[2] - a[2];
514
515 p[0] = edge0[1] * edge1[2] - edge0[2] * edge1[1];
516 p[1] = edge0[2] * edge1[0] - edge0[0] * edge1[2];
517 p[2] = edge0[0] * edge1[1] - edge0[1] * edge1[0];
518
519 l = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
520 p[3] = (p[0] * a[0] + p[1] * a[1] + p[2] * a[2]) / l;
521
522 p[0] = p[0] / l;
523 p[1] = p[1] / l;
524 p[2] = p[2] / l;
525 }
526
527 CXR_INLINE int plane_intersect( double a[4], double b[4], double c[4], double p[3] )
528 {
529 double const epsilon = 0.001;
530
531 double x[3];
532 double d;
533
534 x[0] = a[1] * b[2] - a[2] * b[1];
535 x[1] = a[2] * b[0] - a[0] * b[2];
536 x[2] = a[0] * b[1] - a[1] * b[0];
537
538 d = x[0] * c[0] + x[1] * c[1] + x[2] * c[2];
539
540 if( d < epsilon && d > -epsilon ) return 0;
541
542 p[0] = (b[1] * c[2] - b[2] * c[1]) * -a[3];
543 p[1] = (b[2] * c[0] - b[0] * c[2]) * -a[3];
544 p[2] = (b[0] * c[1] - b[1] * c[0]) * -a[3];
545
546 p[0] += (c[1] * a[2] - c[2] * a[1]) * -b[3];
547 p[1] += (c[2] * a[0] - c[0] * a[2]) * -b[3];
548 p[2] += (c[0] * a[1] - c[1] * a[0]) * -b[3];
549
550 p[0] += (a[1] * b[2] - a[2] * b[1]) * -c[3];
551 p[1] += (a[2] * b[0] - a[0] * b[2]) * -c[3];
552 p[2] += (a[0] * b[1] - a[1] * b[0]) * -c[3];
553
554 p[0] = -p[0] / d;
555 p[1] = -p[1] / d;
556 p[2] = -p[2] / d;
557
558 return 1;
559 }
560
561 CXR_INLINE void normal_to_plane( v3f normal, v3f p, v4f plane )
562 {
563 v3_copy( normal, plane );
564 plane[3] = v3_dot( normal, p );
565 }
566
567 CXR_INLINE double plane_polarity( double p[4], double a[3] )
568 {
569 return
570 (a[0] * p[0] + a[1] * p[1] + a[2] * p[2])
571 -(p[0]*p[3] * p[0] + p[1]*p[3] * p[1] + p[2]*p[3] * p[2])
572 ;
573 }