reset run when using lgider
[carveJwlIkooP6JGAAIwe30JlM.git] / vehicle.c
1 #ifndef VEHICLE_C
2 #define VEHICLE_C
3
4 #include "vehicle.h"
5
6 static int spawn_car( int argc, const char *argv[] ){
7 v3f ra, rb, rx;
8 v3_copy( skaterift.cam.pos, ra );
9 v3_muladds( ra, skaterift.cam.transform[2], -10.0f, rb );
10
11 float t;
12 if( spherecast_world( world_current_instance(),
13 ra, rb, 1.0f, &t, rx, 0 ) != -1 )
14 {
15 v3_lerp( ra, rb, t, gzoomer.rb.co );
16 gzoomer.rb.co[1] += 4.0f;
17 q_axis_angle( gzoomer.rb.q, (v3f){1.0f,0.0f,0.0f}, 0.001f );
18 v3_zero( gzoomer.rb.v );
19 v3_zero( gzoomer.rb.w );
20
21 rb_update_matrices( &gzoomer.rb );
22 gzoomer.alive = 1;
23
24 vg_success( "Spawned car\n" );
25 }
26 else{
27 vg_error( "Can't spawn here\n" );
28 }
29
30 return 0;
31 }
32
33 static void vehicle_init(void){
34 q_identity( gzoomer.rb.q );
35 v3_zero( gzoomer.rb.w );
36 v3_zero( gzoomer.rb.v );
37 v3_zero( gzoomer.rb.co );
38 rb_setbody_sphere( &gzoomer.rb, 1.0f, 8.0f, 1.0f );
39
40 VG_VAR_F32( k_car_spring, flags=VG_VAR_PERSISTENT );
41 VG_VAR_F32( k_car_spring_damp, flags=VG_VAR_PERSISTENT );
42 VG_VAR_F32( k_car_spring_length, flags=VG_VAR_PERSISTENT );
43 VG_VAR_F32( k_car_wheel_radius, flags=VG_VAR_PERSISTENT );
44 VG_VAR_F32( k_car_friction_lat, flags=VG_VAR_PERSISTENT );
45 VG_VAR_F32( k_car_friction_roll, flags=VG_VAR_PERSISTENT );
46 VG_VAR_F32( k_car_drive_force, flags=VG_VAR_PERSISTENT );
47 VG_VAR_F32( k_car_air_resistance,flags=VG_VAR_PERSISTENT );
48 VG_VAR_F32( k_car_downforce, flags=VG_VAR_PERSISTENT );
49
50 VG_VAR_I32( gzoomer.inside );
51
52 vg_console_reg_cmd( "spawn_car", spawn_car, NULL );
53
54 v3_copy((v3f){ -1.0f, -0.25f, -1.5f }, gzoomer.wheels_local[0] );
55 v3_copy((v3f){ 1.0f, -0.25f, -1.5f }, gzoomer.wheels_local[1] );
56 v3_copy((v3f){ -1.0f, -0.25f, 1.5f }, gzoomer.wheels_local[2] );
57 v3_copy((v3f){ 1.0f, -0.25f, 1.5f }, gzoomer.wheels_local[3] );
58 }
59
60 static void vehicle_wheel_force( int index ){
61 v3f pa, pb, n;
62 m4x3_mulv( gzoomer.rb.to_world, gzoomer.wheels_local[index], pa );
63 v3_muladds( pa, gzoomer.rb.to_world[1], -k_car_spring_length, pb );
64
65
66 #if 1
67 float t;
68 if( spherecast_world( world_current_instance(), pa, pb,
69 k_car_wheel_radius, &t, n, 0 ) == -1 )
70 { t = 1.0f;
71 }
72
73 #else
74
75 v3f dir;
76 v3_muls( gzoomer.rb.up, -1.0f, dir );
77
78 ray_hit hit;
79 hit.dist = k_car_spring_length;
80 ray_world( pa, dir, &hit );
81
82 float t = hit.dist / k_car_spring_length;
83
84 #endif
85
86 v3f pc;
87 v3_lerp( pa, pb, t, pc );
88
89 m4x3f mtx;
90 m3x3_copy( gzoomer.rb.to_world, mtx );
91 v3_copy( pc, mtx[3] );
92 vg_line_sphere( mtx, k_car_wheel_radius, VG__BLACK );
93 vg_line( pa, pc, VG__WHITE );
94 v3_copy( pc, gzoomer.wheels[index] );
95
96 if( t < 1.0f ){
97 /* spring force */
98 float Fv = (1.0f-t) * k_car_spring*k_rb_delta;
99
100 v3f delta;
101 v3_sub( pa, gzoomer.rb.co, delta );
102
103 v3f rv;
104 v3_cross( gzoomer.rb.w, delta, rv );
105 v3_add( gzoomer.rb.v, rv, rv );
106
107 Fv += v3_dot(rv, gzoomer.rb.to_world[1]) * -k_car_spring_damp*k_rb_delta;
108
109 /* scale by normal incident */
110 Fv *= v3_dot( n, gzoomer.rb.to_world[1] );
111
112 v3f F;
113 v3_muls( gzoomer.rb.to_world[1], Fv, F );
114 rb_linear_impulse( &gzoomer.rb, delta, F );
115
116 /* friction vectors
117 * -------------------------------------------------------------*/
118 v3f tx, ty;
119
120 if( index <= 1 )
121 v3_cross( gzoomer.steerv, n, tx );
122 else
123 v3_cross( n, gzoomer.rb.to_world[2], tx );
124 v3_cross( tx, n, ty );
125
126 v3_copy( tx, gzoomer.tangent_vectors[ index ][0] );
127 v3_copy( ty, gzoomer.tangent_vectors[ index ][1] );
128
129 gzoomer.normal_forces[ index ] = Fv;
130 gzoomer.tangent_forces[ index ][0] = 0.0f;
131 gzoomer.tangent_forces[ index ][1] = 0.0f;
132
133 /* orient inverse inertia tensors */
134 v3f raW;
135 m3x3_mulv( gzoomer.rb.to_world, gzoomer.wheels_local[index], raW );
136
137 v3f raCtx, raCtxI, raCty, raCtyI;
138 v3_cross( tx, raW, raCtx );
139 v3_cross( ty, raW, raCty );
140 m3x3_mulv( gzoomer.rb.iIw, raCtx, raCtxI );
141 m3x3_mulv( gzoomer.rb.iIw, raCty, raCtyI );
142
143 gzoomer.tangent_mass[index][0] = gzoomer.rb.inv_mass;
144 gzoomer.tangent_mass[index][0] += v3_dot( raCtx, raCtxI );
145 gzoomer.tangent_mass[index][0] = 1.0f/gzoomer.tangent_mass[index][0];
146
147 gzoomer.tangent_mass[index][1] = gzoomer.rb.inv_mass;
148 gzoomer.tangent_mass[index][1] += v3_dot( raCty, raCtyI );
149 gzoomer.tangent_mass[index][1] = 1.0f/gzoomer.tangent_mass[index][1];
150
151 /* apply drive force */
152 if( index >= 2 ){
153 v3_muls( ty, -gzoomer.drive * k_car_drive_force * k_rb_delta, F );
154 rb_linear_impulse( &gzoomer.rb, raW, F );
155 }
156 }
157 else{
158 gzoomer.normal_forces[ index ] = 0.0f;
159 gzoomer.tangent_forces[ index ][0] = 0.0f;
160 gzoomer.tangent_forces[ index ][1] = 0.0f;
161 }
162 }
163
164 static void vehicle_solve_friction(void){
165 rigidbody *rb = &gzoomer.rb;
166 for( int i=0; i<4; i++ ){
167 v3f raW;
168 m3x3_mulv( rb->to_world, gzoomer.wheels_local[i], raW );
169
170 v3f rv;
171 v3_cross( rb->w, raW, rv );
172 v3_add( rb->v, rv, rv );
173
174 float fx = k_car_friction_lat * gzoomer.normal_forces[i],
175 fy = k_car_friction_roll * gzoomer.normal_forces[i],
176 vtx = v3_dot( rv, gzoomer.tangent_vectors[i][0] ),
177 vty = v3_dot( rv, gzoomer.tangent_vectors[i][1] ),
178 lambdax = gzoomer.tangent_mass[i][0] * -vtx,
179 lambday = gzoomer.tangent_mass[i][1] * -vty;
180
181 float tempx = gzoomer.tangent_forces[i][0],
182 tempy = gzoomer.tangent_forces[i][1];
183 gzoomer.tangent_forces[i][0] = vg_clampf( tempx + lambdax, -fx, fx );
184 gzoomer.tangent_forces[i][1] = vg_clampf( tempy + lambday, -fy, fy );
185 lambdax = gzoomer.tangent_forces[i][0] - tempx;
186 lambday = gzoomer.tangent_forces[i][1] - tempy;
187
188 v3f impulsex, impulsey;
189 v3_muls( gzoomer.tangent_vectors[i][0], lambdax, impulsex );
190 v3_muls( gzoomer.tangent_vectors[i][1], lambday, impulsey );
191 rb_linear_impulse( rb, raW, impulsex );
192 rb_linear_impulse( rb, raW, impulsey );
193 }
194 }
195
196 static void vehicle_update_fixed(void)
197 {
198 if( !gzoomer.alive )
199 return;
200
201 rigidbody *rb = &gzoomer.rb;
202
203 v3_muls( rb->to_world[2], -cosf(gzoomer.steer), gzoomer.steerv );
204 v3_muladds( gzoomer.steerv, rb->to_world[0],
205 sinf(gzoomer.steer), gzoomer.steerv );
206
207 /* apply air resistance */
208 v3f Fair, Fdown;
209
210 v3_muls( rb->v, -k_car_air_resistance, Fair );
211 v3_muls( rb->to_world[1], -fabsf(v3_dot( rb->v, rb->to_world[2] )) *
212 k_car_downforce, Fdown );
213
214 v3_muladds( rb->v, Fair, k_rb_delta, rb->v );
215 v3_muladds( rb->v, Fdown, k_rb_delta, rb->v );
216
217 for( int i=0; i<4; i++ )
218 vehicle_wheel_force( i );
219
220 rigidbody _null = {0};
221 _null.inv_mass = 0.0f;
222 m3x3_zero( _null.iI );
223
224 rb_ct manifold[64];
225 int len = rb_sphere__scene( rb->to_world, 1.0f, NULL,
226 world_current_instance()->geo_bh,
227 manifold, 0 );
228 for( int j=0; j<len; j++ ){
229 manifold[j].rba = rb;
230 manifold[j].rbb = &_null;
231 }
232 rb_manifold_filter_coplanar( manifold, len, 0.05f );
233
234 if( len > 1 ){
235 rb_manifold_filter_backface( manifold, len );
236 rb_manifold_filter_joint_edges( manifold, len, 0.05f );
237 rb_manifold_filter_pairs( manifold, len, 0.05f );
238 }
239 len = rb_manifold_apply_filtered( manifold, len );
240
241 rb_presolve_contacts( manifold, len );
242 for( int i=0; i<8; i++ ){
243 rb_solve_contacts( manifold, len );
244 vehicle_solve_friction();
245 }
246
247 rb_iter( rb );
248 rb_update_matrices( rb );
249 }
250
251 static void vehicle_update_post(void){
252 if( !gzoomer.alive )
253 return;
254
255 vg_line_sphere( gzoomer.rb.to_world, 1.0f, VG__WHITE );
256
257 /* draw friction vectors */
258 v3f p0, px, py;
259
260 for( int i=0; i<4; i++ ){
261 v3_copy( gzoomer.wheels[i], p0 );
262 v3_muladds( p0, gzoomer.tangent_vectors[i][0], 0.5f, px );
263 v3_muladds( p0, gzoomer.tangent_vectors[i][1], 0.5f, py );
264
265 vg_line( p0, px, VG__RED );
266 vg_line( p0, py, VG__GREEN );
267 }
268 }
269
270 #endif /* VEHICLE_H */