revision to walk animation/system
[carveJwlIkooP6JGAAIwe30JlM.git] / skeleton.h
1 /*
2 * Copyright (C) 2021-2022 Mt.ZERO Software, Harry Godden - All Rights Reserved
3 */
4
5 #ifndef SKELETON_H
6 #define SKELETON_H
7
8 #include "model.h"
9
10 struct skeleton
11 {
12 struct skeleton_bone
13 {
14 v3f co, end;
15 u32 parent;
16
17 u32 flags;
18 int defer;
19
20 mdl_keyframe kf;
21 mdl_bone *orig_bone;
22
23 u32 collider;
24 boxf hitbox;
25 const char *name;
26 }
27 *bones;
28 u32 bone_count;
29
30 struct skeleton_anim
31 {
32 const char *name;
33 u32 length;
34
35 float rate;
36 mdl_keyframe *anim_data;
37 }
38 *anims;
39 u32 anim_count;
40
41 #if 0
42 m4x3f *final_mtx;
43 #endif
44
45 struct skeleton_ik
46 {
47 u32 lower, upper, target, pole;
48 m3x3f ia, ib;
49 }
50 *ik;
51 u32 ik_count;
52
53 u32
54 collider_count,
55 bindable_count;
56 };
57
58 static u32 skeleton_bone_id( struct skeleton *skele, const char *name )
59 {
60 for( u32 i=1; i<skele->bone_count; i++ ){
61 if( !strcmp( skele->bones[i].name, name ))
62 return i;
63 }
64
65 vg_error( "skeleton_bone_id( *, \"%s\" );\n", name );
66 vg_fatal_error( "Bone does not exist\n" );
67
68 return 0;
69 }
70
71 static void keyframe_copy_pose( mdl_keyframe *kfa, mdl_keyframe *kfb,
72 int num )
73 {
74 for( int i=0; i<num; i++ )
75 kfb[i] = kfa[i];
76 }
77
78
79 /* apply a rotation from the perspective of root */
80 static void keyframe_rotate_around( mdl_keyframe *kf,
81 v3f origin, v3f offset, v4f q )
82 {
83 v3f v0, co;
84 v3_add( kf->co, offset, co );
85 v3_sub( co, origin, v0 );
86 q_mulv( q, v0, v0 );
87 v3_add( v0, origin, co );
88 v3_sub( co, offset, kf->co );
89
90 q_mul( q, kf->q, kf->q );
91 q_normalize( kf->q );
92 }
93
94 /*
95 * Lerp between two sets of keyframes and store in dest. Rotations use Nlerp.
96 */
97 static void keyframe_lerp_pose( mdl_keyframe *kfa, mdl_keyframe *kfb,
98 float t, mdl_keyframe *kfd, int count )
99 {
100 if( t <= 0.0001f ){
101 keyframe_copy_pose( kfa, kfd, count );
102 return;
103 }
104 else if( t >= 0.9999f ){
105 keyframe_copy_pose( kfb, kfd, count );
106 return;
107 }
108
109 for( int i=0; i<count; i++ ){
110 v3_lerp( kfa[i].co, kfb[i].co, t, kfd[i].co );
111 q_nlerp( kfa[i].q, kfb[i].q, t, kfd[i].q );
112 v3_lerp( kfa[i].s, kfb[i].s, t, kfd[i].s );
113 }
114 }
115
116 static
117 void skeleton_lerp_pose( struct skeleton *skele,
118 mdl_keyframe *kfa, mdl_keyframe *kfb, float t,
119 mdl_keyframe *kfd )
120 {
121 keyframe_lerp_pose( kfa, kfb, t, kfd, skele->bone_count-1 );
122 }
123
124 static void skeleton_copy_pose( struct skeleton *skele,
125 mdl_keyframe *kfa, mdl_keyframe *kfd )
126 {
127 keyframe_copy_pose( kfa, kfd, skele->bone_count-1 );
128 }
129
130 /*
131 * Sample animation between 2 closest frames using time value. Output is a
132 * keyframe buffer that is allocated with an appropriate size
133 */
134 static void skeleton_sample_anim( struct skeleton *skele,
135 struct skeleton_anim *anim,
136 float time,
137 mdl_keyframe *output )
138 {
139 f32 animtime = fmodf( time*anim->rate, anim->length ),
140 animframe = floorf( animtime ),
141 t = animtime - animframe;
142
143 u32 frame = (u32)animframe % anim->length,
144 next = (frame+1) % anim->length;
145
146 mdl_keyframe *base = anim->anim_data + (skele->bone_count-1)*frame,
147 *nbase = anim->anim_data + (skele->bone_count-1)*next;
148
149 skeleton_lerp_pose( skele, base, nbase, t, output );
150 }
151
152 static int skeleton_sample_anim_clamped( struct skeleton *skele,
153 struct skeleton_anim *anim,
154 float time,
155 mdl_keyframe *output )
156 {
157 float end = (float)(anim->length-1) / anim->rate;
158 skeleton_sample_anim( skele, anim, vg_minf( end, time ), output );
159
160 if( time > end )
161 return 0;
162 else
163 return 1;
164 }
165
166 typedef enum anim_apply
167 {
168 k_anim_apply_always,
169 k_anim_apply_defer_ik,
170 k_anim_apply_deffered_only,
171 k_anim_apply_absolute
172 }
173 anim_apply;
174
175 static
176 int should_apply_bone( struct skeleton *skele, u32 id, anim_apply type )
177 {
178 struct skeleton_bone *sb = &skele->bones[ id ],
179 *sp = &skele->bones[ sb->parent ];
180
181 if( type == k_anim_apply_defer_ik ){
182 if( ((sp->flags & k_bone_flag_ik) && !(sb->flags & k_bone_flag_ik))
183 || sp->defer )
184 {
185 sb->defer = 1;
186 return 0;
187 }
188 else{
189 sb->defer = 0;
190 return 1;
191 }
192 }
193 else if( type == k_anim_apply_deffered_only ){
194 if( sb->defer )
195 return 1;
196 else
197 return 0;
198 }
199
200 return 1;
201 }
202
203 /*
204 * Apply block of keyframes to skeletons final pose
205 */
206 static void skeleton_apply_pose( struct skeleton *skele, mdl_keyframe *pose,
207 anim_apply passtype, m4x3f *final_mtx ){
208 if( passtype == k_anim_apply_absolute ){
209 for( u32 i=1; i<skele->bone_count; i++ ){
210 mdl_keyframe *kf = &pose[i-1];
211
212 v3f *posemtx = final_mtx[i];
213
214 q_m3x3( kf->q, posemtx );
215 m3x3_scale( posemtx, kf->s );
216 v3_copy( kf->co, posemtx[3] );
217 }
218 return;
219 }
220
221 m4x3_identity( final_mtx[0] );
222 skele->bones[0].defer = 0;
223 skele->bones[0].flags &= ~k_bone_flag_ik;
224
225 for( u32 i=1; i<skele->bone_count; i++ ){
226 struct skeleton_bone *sb = &skele->bones[i],
227 *sp = &skele->bones[sb->parent];
228
229 if( !should_apply_bone( skele, i, passtype ) )
230 continue;
231
232 sb->defer = 0;
233
234 /* process pose */
235 m4x3f posemtx;
236
237 v3f temp_delta;
238 v3_sub( skele->bones[i].co, skele->bones[sb->parent].co, temp_delta );
239
240 /* pose matrix */
241 mdl_keyframe *kf = &pose[i-1];
242 q_m3x3( kf->q, posemtx );
243 m3x3_scale( posemtx, kf->s );
244 v3_copy( kf->co, posemtx[3] );
245 v3_add( temp_delta, posemtx[3], posemtx[3] );
246
247 /* final matrix */
248 m4x3_mul( final_mtx[ sb->parent ], posemtx, final_mtx[i] );
249 }
250 }
251
252 /*
253 * Take the final matrices and decompose it into an absolute positioned anim
254 */
255 static void skeleton_decompose_mtx_absolute( struct skeleton *skele,
256 mdl_keyframe *anim,
257 m4x3f *final_mtx ){
258 for( u32 i=1; i<skele->bone_count; i++ ){
259 struct skeleton_bone *sb = &skele->bones[i];
260 mdl_keyframe *kf = &anim[i-1];
261 m4x3_decompose( final_mtx[i], kf->co, kf->q, kf->s );
262 }
263 }
264
265 /*
266 * creates the reference inverse matrix for an IK bone, as it has an initial
267 * intrisic rotation based on the direction that the IK is setup..
268 */
269 static void skeleton_inverse_for_ik( struct skeleton *skele,
270 v3f ivaxis,
271 u32 id, m3x3f inverse )
272 {
273 v3_copy( ivaxis, inverse[0] );
274 v3_copy( skele->bones[id].end, inverse[1] );
275 v3_normalize( inverse[1] );
276 v3_cross( inverse[0], inverse[1], inverse[2] );
277 m3x3_transpose( inverse, inverse );
278 }
279
280 /*
281 * Creates inverse rotation matrices which the IK system uses.
282 */
283 static void skeleton_create_inverses( struct skeleton *skele )
284 {
285 /* IK: inverse 'plane-bone space' axis '(^axis,^bone,...)[base] */
286 for( u32 i=0; i<skele->ik_count; i++ ){
287 struct skeleton_ik *ik = &skele->ik[i];
288
289 m4x3f inverse;
290 v3f iv0, iv1, ivaxis;
291 v3_sub( skele->bones[ik->target].co, skele->bones[ik->lower].co, iv0 );
292 v3_sub( skele->bones[ik->pole].co, skele->bones[ik->lower].co, iv1 );
293 v3_cross( iv0, iv1, ivaxis );
294 v3_normalize( ivaxis );
295
296 skeleton_inverse_for_ik( skele, ivaxis, ik->lower, ik->ia );
297 skeleton_inverse_for_ik( skele, ivaxis, ik->upper, ik->ib );
298 }
299 }
300
301 /*
302 * Apply a model matrix to all bones, should be done last
303 */
304 static
305 void skeleton_apply_transform( struct skeleton *skele, m4x3f transform,
306 m4x3f *final_mtx )
307 {
308 for( u32 i=0; i<skele->bone_count; i++ ){
309 struct skeleton_bone *sb = &skele->bones[i];
310 m4x3_mul( transform, final_mtx[i], final_mtx[i] );
311 }
312 }
313
314 /*
315 * Apply an inverse matrix to all bones which maps vertices from bind space into
316 * bone relative positions
317 */
318 static void skeleton_apply_inverses( struct skeleton *skele, m4x3f *final_mtx ){
319 for( u32 i=0; i<skele->bone_count; i++ ){
320 struct skeleton_bone *sb = &skele->bones[i];
321 m4x3f inverse;
322 m3x3_identity( inverse );
323 v3_negate( sb->co, inverse[3] );
324
325 m4x3_mul( final_mtx[i], inverse, final_mtx[i] );
326 }
327 }
328
329 /*
330 * Apply all IK modifiers (2 bone ik reference from blender is supported)
331 */
332 static void skeleton_apply_ik_pass( struct skeleton *skele, m4x3f *final_mtx ){
333 for( u32 i=0; i<skele->ik_count; i++ ){
334 struct skeleton_ik *ik = &skele->ik[i];
335
336 v3f v0, /* base -> target */
337 v1, /* base -> pole */
338 vaxis;
339
340 v3f co_base,
341 co_target,
342 co_pole;
343
344 v3_copy( final_mtx[ik->lower][3], co_base );
345 v3_copy( final_mtx[ik->target][3], co_target );
346 v3_copy( final_mtx[ik->pole][3], co_pole );
347
348 v3_sub( co_target, co_base, v0 );
349 v3_sub( co_pole, co_base, v1 );
350 v3_cross( v0, v1, vaxis );
351 v3_normalize( vaxis );
352 v3_normalize( v0 );
353 v3_cross( vaxis, v0, v1 );
354
355 /* localize problem into [x:v0,y:v1] 2d plane */
356 v2f base = { v3_dot( v0, co_base ), v3_dot( v1, co_base ) },
357 end = { v3_dot( v0, co_target ), v3_dot( v1, co_target ) },
358 knee;
359
360 /* Compute angles (basic trig)*/
361 v2f delta;
362 v2_sub( end, base, delta );
363
364 float
365 l1 = v3_length( skele->bones[ik->lower].end ),
366 l2 = v3_length( skele->bones[ik->upper].end ),
367 d = vg_clampf( v2_length(delta), fabsf(l1 - l2), l1+l2-0.00001f ),
368 c = acosf( (l1*l1 + d*d - l2*l2) / (2.0f*l1*d) ),
369 rot = atan2f( delta[1], delta[0] ) + c - VG_PIf/2.0f;
370
371 knee[0] = sinf(-rot) * l1;
372 knee[1] = cosf(-rot) * l1;
373
374 m4x3_identity( final_mtx[ik->lower] );
375 m4x3_identity( final_mtx[ik->upper] );
376
377 /* create rotation matrix */
378 v3f co_knee;
379 v3_muladds( co_base, v0, knee[0], co_knee );
380 v3_muladds( co_knee, v1, knee[1], co_knee );
381 vg_line( co_base, co_knee, 0xff00ff00 );
382
383 m4x3f transform;
384 v3_copy( vaxis, transform[0] );
385 v3_muls( v0, knee[0], transform[1] );
386 v3_muladds( transform[1], v1, knee[1], transform[1] );
387 v3_normalize( transform[1] );
388 v3_cross( transform[0], transform[1], transform[2] );
389 v3_copy( co_base, transform[3] );
390
391 m3x3_mul( transform, ik->ia, transform );
392 m4x3_copy( transform, final_mtx[ik->lower] );
393
394 /* upper/knee bone */
395 v3_copy( vaxis, transform[0] );
396 v3_sub( co_target, co_knee, transform[1] );
397 v3_normalize( transform[1] );
398 v3_cross( transform[0], transform[1], transform[2] );
399 v3_copy( co_knee, transform[3] );
400
401 m3x3_mul( transform, ik->ib, transform );
402 m4x3_copy( transform, final_mtx[ik->upper] );
403 }
404 }
405
406 /*
407 * Applies the typical operations that you want for an IK rig:
408 * Pose, IK, Pose(deferred), Inverses, Transform
409 */
410 static void skeleton_apply_standard( struct skeleton *skele, mdl_keyframe *pose,
411 m4x3f transform, m4x3f *final_mtx ){
412 skeleton_apply_pose( skele, pose, k_anim_apply_defer_ik, final_mtx );
413 skeleton_apply_ik_pass( skele, final_mtx );
414 skeleton_apply_pose( skele, pose, k_anim_apply_deffered_only, final_mtx );
415 skeleton_apply_inverses( skele, final_mtx );
416 skeleton_apply_transform( skele, transform, final_mtx );
417 }
418
419 /*
420 * Get an animation by name
421 */
422 static struct skeleton_anim *skeleton_get_anim( struct skeleton *skele,
423 const char *name ){
424 for( u32 i=0; i<skele->anim_count; i++ ){
425 struct skeleton_anim *anim = &skele->anims[i];
426
427 if( !strcmp( anim->name, name ) )
428 return anim;
429 }
430
431 vg_error( "skeleton_get_anim( *, \"%s\" )\n", name );
432 vg_fatal_error( "Invalid animation name\n" );
433
434 return NULL;
435 }
436
437 static void skeleton_alloc_from( struct skeleton *skele,
438 void *lin_alloc,
439 mdl_context *mdl,
440 mdl_armature *armature ){
441 skele->bone_count = armature->bone_count+1;
442 skele->anim_count = armature->anim_count;
443 skele->ik_count = 0;
444 skele->collider_count = 0;
445
446 for( u32 i=0; i<armature->bone_count; i++ ){
447 mdl_bone *bone = mdl_arritm( &mdl->bones, armature->bone_start+i );
448
449 if( bone->flags & k_bone_flag_ik )
450 skele->ik_count ++;
451
452 if( bone->collider )
453 skele->collider_count ++;
454 }
455
456 u32 bone_size = sizeof(struct skeleton_bone) * skele->bone_count,
457 ik_size = sizeof(struct skeleton_ik) * skele->ik_count,
458 mtx_size = sizeof(m4x3f) * skele->bone_count,
459 anim_size = sizeof(struct skeleton_anim) * skele->anim_count;
460
461 skele->bones = vg_linear_alloc( lin_alloc, bone_size );
462 skele->ik = vg_linear_alloc( lin_alloc, ik_size );
463 //skele->final_mtx = vg_linear_alloc( lin_alloc, mtx_size );
464 skele->anims = vg_linear_alloc( lin_alloc, anim_size );
465
466 memset( skele->bones, 0, bone_size );
467 memset( skele->ik, 0, ik_size );
468 //memset( skele->final_mtx, 0, mtx_size );
469 memset( skele->anims, 0, anim_size );
470 }
471
472 static void skeleton_fatal_err(void){
473 vg_fatal_error( "Skeleton setup failed" );
474 }
475
476 /* Setup an animated skeleton from model. mdl's metadata should stick around */
477 static void skeleton_setup( struct skeleton *skele,
478 void *lin_alloc, mdl_context *mdl ){
479 u32 ik_count = 0, collider_count = 0;
480 skele->bone_count = 0;
481 skele->bones = NULL;
482 //skele->final_mtx = NULL;
483 skele->anims = NULL;
484
485 if( !mdl->armatures.count ){
486 vg_error( "No skeleton in model\n" );
487 skeleton_fatal_err();
488 }
489
490 mdl_armature *armature = mdl_arritm( &mdl->armatures, 0 );
491 skeleton_alloc_from( skele, lin_alloc, mdl, armature );
492
493 for( u32 i=0; i<armature->bone_count; i++ ){
494 mdl_bone *bone = mdl_arritm( &mdl->bones, armature->bone_start+i );
495 struct skeleton_bone *sb = &skele->bones[i+1];
496
497 v3_copy( bone->co, sb->co );
498 v3_copy( bone->end, sb->end );
499
500 sb->parent = bone->parent;
501 sb->name = mdl_pstr( mdl, bone->pstr_name );
502 sb->flags = bone->flags;
503 sb->collider = bone->collider;
504 sb->orig_bone = bone;
505
506 if( sb->flags & k_bone_flag_ik ){
507 skele->bones[ sb->parent ].flags |= k_bone_flag_ik;
508
509 if( ik_count == skele->ik_count ){
510 vg_error( "Too many ik bones, corrupt model file\n" );
511 skeleton_fatal_err();
512 }
513
514 struct skeleton_ik *ik = &skele->ik[ ik_count ++ ];
515 ik->upper = i+1;
516 ik->lower = bone->parent;
517 ik->target = bone->ik_target;
518 ik->pole = bone->ik_pole;
519 }
520
521 box_copy( bone->hitbox, sb->hitbox );
522
523 if( bone->collider ){
524 if( collider_count == skele->collider_count ){
525 vg_error( "Too many collider bones\n" );
526 skeleton_fatal_err();
527 }
528
529 collider_count ++;
530 }
531 }
532
533 /* fill in implicit root bone */
534 v3_zero( skele->bones[0].co );
535 v3_copy( (v3f){0.0f,1.0f,0.0f}, skele->bones[0].end );
536 skele->bones[0].parent = 0xffffffff;
537 skele->bones[0].flags = 0;
538 skele->bones[0].name = "[root]";
539
540 /* process animation quick refs */
541 for( u32 i=0; i<skele->anim_count; i++ ){
542 mdl_animation *anim =
543 mdl_arritm( &mdl->animations, armature->anim_start+i );
544
545 skele->anims[i].rate = anim->rate;
546 skele->anims[i].length = anim->length;
547 skele->anims[i].name = mdl_pstr(mdl, anim->pstr_name);
548 skele->anims[i].anim_data =
549 mdl_arritm( &mdl->keyframes, anim->offset );
550
551 vg_info( "animation[ %f, %u ] '%s'\n", anim->rate,
552 anim->length,
553 skele->anims[i].name );
554 }
555
556 skeleton_create_inverses( skele );
557 vg_success( "Loaded skeleton with %u bones\n", skele->bone_count );
558 vg_success( " %u colliders\n", skele->collider_count );
559 }
560
561 static void skeleton_debug( struct skeleton *skele, m4x3f *final_mtx ){
562 for( u32 i=1; i<skele->bone_count; i ++ ){
563 struct skeleton_bone *sb = &skele->bones[i];
564
565 v3f p0, p1;
566 v3_copy( sb->co, p0 );
567 v3_add( p0, sb->end, p1 );
568
569 m4x3_mulv( final_mtx[i], p0, p0 );
570 m4x3_mulv( final_mtx[i], p1, p1 );
571
572 if( sb->flags & k_bone_flag_deform ){
573 if( sb->flags & k_bone_flag_ik ){
574 vg_line( p0, p1, 0xff0000ff );
575 }
576 else{
577 vg_line( p0, p1, 0xffcccccc );
578 }
579 }
580 else
581 vg_line( p0, p1, 0xff00ffff );
582 }
583 }
584
585 #endif /* SKELETON_H */