bad char
[vg.git] / vg_m.h
1 /* Copyright (C) 2021-2022 Harry Godden (hgn) - All Rights Reserved */
2
3 #ifndef VG_M_H
4 #define VG_M_H
5
6 #include "vg_platform.h"
7 #include <math.h>
8 #include <stdlib.h>
9
10 #define VG_PIf 3.14159265358979323846264338327950288f
11 #define VG_TAUf 6.28318530717958647692528676655900576f
12
13 static u32 vg_ftu32( float a )
14 {
15 u32 *ptr = (u32 *)(&a);
16 return *ptr;
17 }
18
19 static int vg_isinff( float a )
20 {
21 return ((vg_ftu32(a)) & 0x7FFFFFFFU) == 0x7F800000U;
22 }
23
24 static int vg_isnanf( float a )
25 {
26 return !vg_isinff(a) && ((vg_ftu32(a)) & 0x7F800000U) == 0x7F800000U;
27 }
28
29 static int vg_validf( float a )
30 {
31 return ((vg_ftu32(a)) & 0x7F800000U) != 0x7F800000U;
32 }
33
34 static inline float vg_minf( float a, float b )
35 {
36 return a < b? a: b;
37 }
38
39 static inline float vg_maxf( float a, float b )
40 {
41 return a > b? a: b;
42 }
43
44 static inline float vg_clampf( float a, float min, float max )
45 {
46 return vg_minf( max, vg_maxf( a, min ) );
47 }
48
49 static inline float vg_signf( float a )
50 {
51 return a < 0.0f? -1.0f: 1.0f;
52 }
53
54 static inline float vg_fractf( float a )
55 {
56 return a - floorf( a );
57 }
58
59
60 __attribute__ ((deprecated))
61 static float stable_force( float current, float diff )
62 {
63 float fnew = current + diff;
64
65 if( fnew * current < 0.0f )
66 return 0.0f;
67
68 return fnew;
69 }
70
71 static float vg_cfrictf( float current, float F )
72 {
73 return -vg_signf(current) * vg_minf( F, fabsf(current) );
74 }
75
76 static inline int vg_min( int a, int b )
77 {
78 return a < b? a: b;
79 }
80
81 static inline int vg_max( int a, int b )
82 {
83 return a > b? a: b;
84 }
85
86 static inline float vg_rad( float deg )
87 {
88 return deg * VG_PIf / 180.0f;
89 }
90
91 /*
92 * Vector 3
93 */
94 static inline void v2_copy( v2f a, v2f b )
95 {
96 b[0] = a[0]; b[1] = a[1];
97 }
98
99 static inline void v2_zero( v2f a )
100 {
101 a[0] = 0.f; a[1] = 0.f;
102 }
103
104 static inline void v2i_copy( v2i a, v2i b )
105 {
106 b[0] = a[0]; b[1] = a[1];
107 }
108
109 static inline int v2i_eq( v2i a, v2i b )
110 {
111 return ((a[0] == b[0]) && (a[1] == b[1]));
112 }
113
114 static inline void v2i_add( v2i a, v2i b, v2i d )
115 {
116 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
117 }
118
119 static inline void v2i_sub( v2i a, v2i b, v2i d )
120 {
121 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
122 }
123
124 static inline void v2_minv( v2f a, v2f b, v2f dest )
125 {
126 dest[0] = vg_minf(a[0], b[0]);
127 dest[1] = vg_minf(a[1], b[1]);
128 }
129
130 static inline void v2_maxv( v2f a, v2f b, v2f dest )
131 {
132 dest[0] = vg_maxf(a[0], b[0]);
133 dest[1] = vg_maxf(a[1], b[1]);
134 }
135
136 static inline void v2_sub( v2f a, v2f b, v2f d )
137 {
138 d[0] = a[0]-b[0]; d[1] = a[1]-b[1];
139 }
140
141 static inline float v2_dot( v2f a, v2f b )
142 {
143 return a[0] * b[0] + a[1] * b[1];
144 }
145
146 static inline float v2_cross( v2f a, v2f b )
147 {
148 return a[0]*b[1] - a[1]*b[0];
149 }
150
151 static inline void v2_add( v2f a, v2f b, v2f d )
152 {
153 d[0] = a[0]+b[0]; d[1] = a[1]+b[1];
154 }
155
156 static inline void v2_abs( v2f a, v2f d )
157 {
158 d[0] = fabsf( a[0] );
159 d[1] = fabsf( a[1] );
160 }
161
162 static inline void v2_muls( v2f a, float s, v2f d )
163 {
164 d[0] = a[0]*s; d[1] = a[1]*s;
165 }
166
167 static inline void v2_divs( v2f a, float s, v2f d )
168 {
169 d[0] = a[0]/s; d[1] = a[1]/s;
170 }
171
172 static inline void v2_mul( v2f a, v2f b, v2f d )
173 {
174 d[0] = a[0]*b[0];
175 d[1] = a[1]*b[1];
176 }
177
178 static inline void v2_div( v2f a, v2f b, v2f d )
179 {
180 d[0] = a[0]/b[0]; d[1] = a[1]/b[1];
181 }
182
183 static inline void v2_muladd( v2f a, v2f b, v2f s, v2f d )
184 {
185 d[0] = a[0]+b[0]*s[0];
186 d[1] = a[1]+b[1]*s[1];
187 }
188
189 static inline void v2_muladds( v2f a, v2f b, float s, v2f d )
190 {
191 d[0] = a[0]+b[0]*s;
192 d[1] = a[1]+b[1]*s;
193 }
194
195 static inline float v2_length2( v2f a )
196 {
197 return a[0]*a[0] + a[1]*a[1];
198 }
199
200 static inline float v2_length( v2f a )
201 {
202 return sqrtf( v2_length2( a ) );
203 }
204
205 static inline float v2_dist2( v2f a, v2f b )
206 {
207 v2f delta;
208 v2_sub( a, b, delta );
209 return v2_length2( delta );
210 }
211
212 static inline float v2_dist( v2f a, v2f b )
213 {
214 return sqrtf( v2_dist2( a, b ) );
215 }
216
217 static inline void v2_lerp( v2f a, v2f b, float t, v2f d )
218 {
219 d[0] = a[0] + t*(b[0]-a[0]);
220 d[1] = a[1] + t*(b[1]-a[1]);
221 }
222
223 static inline void v2_normalize( v2f a )
224 {
225 v2_muls( a, 1.0f / v2_length( a ), a );
226 }
227
228 static void v2_normalize_clamp( v2f a )
229 {
230 float l2 = v2_length2( a );
231 if( l2 > 1.0f )
232 v2_muls( a, 1.0f/sqrtf(l2), a );
233 }
234
235 static inline void v2_floor( v2f a, v2f b )
236 {
237 b[0] = floorf( a[0] );
238 b[1] = floorf( a[1] );
239 }
240
241 static inline void v2_fill( v2f a, float v )
242 {
243 a[0] = v;
244 a[1] = v;
245 }
246
247 /* copysign of b to a */
248 static inline void v2_copysign( v2f a, v2f b )
249 {
250 a[0] = copysignf( a[0], b[0] );
251 a[1] = copysignf( a[1], b[1] );
252 }
253
254 /*
255 * Vector 3
256 */
257 static inline void v3_zero( v3f a )
258 {
259 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f;
260 }
261
262 static inline void v3_copy( v3f a, v3f b )
263 {
264 b[0] = a[0]; b[1] = a[1]; b[2] = a[2];
265 }
266
267 static inline void v3_add( v3f a, v3f b, v3f d )
268 {
269 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
270 }
271
272 static inline void v3i_add( v3i a, v3i b, v3i d )
273 {
274 d[0] = a[0]+b[0]; d[1] = a[1]+b[1]; d[2] = a[2]+b[2];
275 }
276
277 static inline void v4_add( v4f a, v4f b, v4f d )
278 {
279 d[0] = a[0]+b[0];
280 d[1] = a[1]+b[1];
281 d[2] = a[2]+b[2];
282 d[3] = a[3]+b[3];
283 }
284
285 static inline void v3_sub( v3f a, v3f b, v3f d )
286 {
287 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
288 }
289
290 static inline void v3i_sub( v3i a, v3i b, v3i d )
291 {
292 d[0] = a[0]-b[0]; d[1] = a[1]-b[1]; d[2] = a[2]-b[2];
293 }
294
295 static inline void v3_mul( v3f a, v3f b, v3f d )
296 {
297 d[0] = a[0]*b[0]; d[1] = a[1]*b[1]; d[2] = a[2]*b[2];
298 }
299
300 static inline void v3_div( v3f a, v3f b, v3f d )
301 {
302 d[0] = b[0]!=0.0f? a[0]/b[0]: INFINITY;
303 d[1] = b[1]!=0.0f? a[1]/b[1]: INFINITY;
304 d[2] = b[2]!=0.0f? a[2]/b[2]: INFINITY;
305 }
306
307 static inline void v3_muls( v3f a, float s, v3f d )
308 {
309 d[0] = a[0]*s; d[1] = a[1]*s; d[2] = a[2]*s;
310 }
311
312 static inline void v3_fill( v3f a, float v )
313 {
314 a[0] = v;
315 a[1] = v;
316 a[2] = v;
317 }
318
319 static inline void v3_divs( v3f a, float s, v3f d )
320 {
321 if( s == 0.0f )
322 v3_fill( d, INFINITY );
323 else
324 {
325 d[0] = a[0]/s;
326 d[1] = a[1]/s;
327 d[2] = a[2]/s;
328 }
329 }
330
331 static inline void v3_muladds( v3f a, v3f b, float s, v3f d )
332 {
333 d[0] = a[0]+b[0]*s; d[1] = a[1]+b[1]*s; d[2] = a[2]+b[2]*s;
334 }
335
336 static inline void v3_muladd( v2f a, v2f b, v2f s, v2f d )
337 {
338 d[0] = a[0]+b[0]*s[0];
339 d[1] = a[1]+b[1]*s[1];
340 d[2] = a[2]+b[2]*s[2];
341 }
342
343 static inline float v3_dot( v3f a, v3f b )
344 {
345 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
346 }
347
348 static inline void v3_cross( v3f a, v3f b, v3f dest )
349 {
350 v3f d;
351 d[0] = a[1]*b[2] - a[2]*b[1];
352 d[1] = a[2]*b[0] - a[0]*b[2];
353 d[2] = a[0]*b[1] - a[1]*b[0];
354 v3_copy( d, dest );
355 }
356
357 static inline float v3_length2( v3f a )
358 {
359 return v3_dot( a, a );
360 }
361
362 static inline float v3_length( v3f a )
363 {
364 return sqrtf( v3_length2( a ) );
365 }
366
367 static inline float v3_dist2( v3f a, v3f b )
368 {
369 v3f delta;
370 v3_sub( a, b, delta );
371 return v3_length2( delta );
372 }
373
374 static inline float v3_dist( v3f a, v3f b )
375 {
376 return sqrtf( v3_dist2( a, b ) );
377 }
378
379 static inline void v3_normalize( v3f a )
380 {
381 v3_muls( a, 1.f / v3_length( a ), a );
382 }
383
384 static inline float vg_lerpf( float a, float b, float t )
385 {
386 return a + t*(b-a);
387 }
388
389 static inline double vg_lerp( double a, double b, double t )
390 {
391 return a + t*(b-a);
392 }
393
394 /* correctly lerp around circular period -pi -> pi */
395 static float vg_alerpf( float a, float b, float t )
396 {
397 float d = fmodf( b-a, VG_TAUf ),
398 s = fmodf( 2.0f*d, VG_TAUf ) - d;
399 return a + s*t;
400 }
401
402 static inline void v3_lerp( v3f a, v3f b, float t, v3f d )
403 {
404 d[0] = a[0] + t*(b[0]-a[0]);
405 d[1] = a[1] + t*(b[1]-a[1]);
406 d[2] = a[2] + t*(b[2]-a[2]);
407 }
408
409 static inline void v3_minv( v3f a, v3f b, v3f dest )
410 {
411 dest[0] = vg_minf(a[0], b[0]);
412 dest[1] = vg_minf(a[1], b[1]);
413 dest[2] = vg_minf(a[2], b[2]);
414 }
415
416 static inline void v3_maxv( v3f a, v3f b, v3f dest )
417 {
418 dest[0] = vg_maxf(a[0], b[0]);
419 dest[1] = vg_maxf(a[1], b[1]);
420 dest[2] = vg_maxf(a[2], b[2]);
421 }
422
423 static inline float v3_minf( v3f a )
424 {
425 return vg_minf( vg_minf( a[0], a[1] ), a[2] );
426 }
427
428 static inline float v3_maxf( v3f a )
429 {
430 return vg_maxf( vg_maxf( a[0], a[1] ), a[2] );
431 }
432
433 static inline void v3_floor( v3f a, v3f b )
434 {
435 b[0] = floorf( a[0] );
436 b[1] = floorf( a[1] );
437 b[2] = floorf( a[2] );
438 }
439
440 static inline void v3_ceil( v3f a, v3f b )
441 {
442 b[0] = ceilf( a[0] );
443 b[1] = ceilf( a[1] );
444 b[2] = ceilf( a[2] );
445 }
446
447 static inline void v3_negate( v3f a, v3f b )
448 {
449 b[0] = -a[0];
450 b[1] = -a[1];
451 b[2] = -a[2];
452 }
453
454 static inline void v3_rotate( v3f v, float angle, v3f axis, v3f d )
455 {
456 v3f v1, v2, k;
457 float c, s;
458
459 c = cosf( angle );
460 s = sinf( angle );
461
462 v3_copy( axis, k );
463 v3_normalize( k );
464 v3_muls( v, c, v1 );
465 v3_cross( k, v, v2 );
466 v3_muls( v2, s, v2 );
467 v3_add( v1, v2, v1 );
468 v3_muls( k, v3_dot(k, v) * (1.0f - c), v2);
469 v3_add( v1, v2, d );
470 }
471
472 /*
473 * Vector 4
474 */
475 static inline void v4_copy( v4f a, v4f b )
476 {
477 b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];
478 }
479
480 static inline void v4_zero( v4f a )
481 {
482 a[0] = 0.f; a[1] = 0.f; a[2] = 0.f; a[3] = 0.f;
483 }
484
485 static inline void v4_muls( v4f a, float s, v4f d )
486 {
487 d[0] = a[0]*s;
488 d[1] = a[1]*s;
489 d[2] = a[2]*s;
490 d[3] = a[3]*s;
491 }
492
493 static inline void v4_muladds( v4f a, v4f b, float s, v4f d )
494 {
495 d[0] = a[0]+b[0]*s;
496 d[1] = a[1]+b[1]*s;
497 d[2] = a[2]+b[2]*s;
498 d[3] = a[3]+b[3]*s;
499 }
500
501 static inline void v4_lerp( v4f a, v4f b, float t, v4f d )
502 {
503 d[0] = a[0] + t*(b[0]-a[0]);
504 d[1] = a[1] + t*(b[1]-a[1]);
505 d[2] = a[2] + t*(b[2]-a[2]);
506 d[3] = a[3] + t*(b[3]-a[3]);
507 }
508
509 static inline float v4_dot( v4f a, v4f b )
510 {
511 return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
512 }
513
514 static inline float v4_length( v4f a )
515 {
516 return sqrtf( v4_dot(a,a) );
517 }
518
519 /*
520 * Matrix 2x2
521 */
522
523 #define M2X2_INDENTIY {{1.0f, 0.0f, }, \
524 { 0.0f, 1.0f, }}
525
526 #define M2X2_ZERO {{0.0f, 0.0f, }, \
527 { 0.0f, 0.0f, }}
528
529 static inline void m2x2_copy( m2x2f a, m2x2f b )
530 {
531 v2_copy( a[0], b[0] );
532 v2_copy( a[1], b[1] );
533 }
534
535 static inline void m2x2_identity( m2x2f a )
536 {
537 m2x2f id = M2X2_INDENTIY;
538 m2x2_copy( id, a );
539 }
540
541 static inline void m2x2_create_rotation( m2x2f a, float theta )
542 {
543 float s, c;
544
545 s = sinf( theta );
546 c = cosf( theta );
547
548 a[0][0] = c;
549 a[0][1] = -s;
550 a[1][0] = s;
551 a[1][1] = c;
552 }
553
554 /*
555 * Matrix 3x3
556 */
557
558 #define M3X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
559 { 0.0f, 1.0f, 0.0f, },\
560 { 0.0f, 0.0f, 1.0f, }}
561
562 #define M3X3_ZERO {{0.0f, 0.0f, 0.0f, },\
563 { 0.0f, 0.0f, 0.0f, },\
564 { 0.0f, 0.0f, 0.0f, }}
565
566
567 /* a X b == [b]T a == ...*/
568 static void m3x3_skew_symetric( m3x3f a, v3f v )
569 {
570 a[0][0] = 0.0f;
571 a[0][1] = v[2];
572 a[0][2] = -v[1];
573 a[1][0] = -v[2];
574 a[1][1] = 0.0f;
575 a[1][2] = v[0];
576 a[2][0] = v[1];
577 a[2][1] = -v[0];
578 a[2][2] = 0.0f;
579 }
580
581 static void m3x3_add( m3x3f a, m3x3f b, m3x3f d )
582 {
583 v3_add( a[0], b[0], d[0] );
584 v3_add( a[1], b[1], d[1] );
585 v3_add( a[2], b[2], d[2] );
586 }
587
588 static inline void m3x3_copy( m3x3f a, m3x3f b )
589 {
590 v3_copy( a[0], b[0] );
591 v3_copy( a[1], b[1] );
592 v3_copy( a[2], b[2] );
593 }
594
595 static inline void m3x3_identity( m3x3f a )
596 {
597 m3x3f id = M3X3_IDENTITY;
598 m3x3_copy( id, a );
599 }
600
601 static void m3x3_diagonal( m3x3f a, float v )
602 {
603 m3x3_identity( a );
604 a[0][0] = v;
605 a[1][1] = v;
606 a[2][2] = v;
607 }
608
609 static inline void m3x3_zero( m3x3f a )
610 {
611 m3x3f z = M3X3_ZERO;
612 m3x3_copy( z, a );
613 }
614
615 static inline void m3x3_inv( m3x3f src, m3x3f dest )
616 {
617 float a = src[0][0], b = src[0][1], c = src[0][2],
618 d = src[1][0], e = src[1][1], f = src[1][2],
619 g = src[2][0], h = src[2][1], i = src[2][2];
620
621 float det = 1.f /
622 (+a*(e*i-h*f)
623 -b*(d*i-f*g)
624 +c*(d*h-e*g));
625
626 dest[0][0] = (e*i-h*f)*det;
627 dest[0][1] = -(b*i-c*h)*det;
628 dest[0][2] = (b*f-c*e)*det;
629 dest[1][0] = -(d*i-f*g)*det;
630 dest[1][1] = (a*i-c*g)*det;
631 dest[1][2] = -(a*f-d*c)*det;
632 dest[2][0] = (d*h-g*e)*det;
633 dest[2][1] = -(a*h-g*b)*det;
634 dest[2][2] = (a*e-d*b)*det;
635 }
636
637 static float m3x3_det( m3x3f m )
638 {
639 return m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])
640 - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
641 + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
642 }
643
644 static inline void m3x3_transpose( m3x3f src, m3x3f dest )
645 {
646 float a = src[0][0], b = src[0][1], c = src[0][2],
647 d = src[1][0], e = src[1][1], f = src[1][2],
648 g = src[2][0], h = src[2][1], i = src[2][2];
649
650 dest[0][0] = a;
651 dest[0][1] = d;
652 dest[0][2] = g;
653 dest[1][0] = b;
654 dest[1][1] = e;
655 dest[1][2] = h;
656 dest[2][0] = c;
657 dest[2][1] = f;
658 dest[2][2] = i;
659 }
660
661 static inline void m3x3_mul( m3x3f a, m3x3f b, m3x3f d )
662 {
663 float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
664 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
665 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
666
667 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
668 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
669 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2];
670
671 d[0][0] = a00*b00 + a10*b01 + a20*b02;
672 d[0][1] = a01*b00 + a11*b01 + a21*b02;
673 d[0][2] = a02*b00 + a12*b01 + a22*b02;
674 d[1][0] = a00*b10 + a10*b11 + a20*b12;
675 d[1][1] = a01*b10 + a11*b11 + a21*b12;
676 d[1][2] = a02*b10 + a12*b11 + a22*b12;
677 d[2][0] = a00*b20 + a10*b21 + a20*b22;
678 d[2][1] = a01*b20 + a11*b21 + a21*b22;
679 d[2][2] = a02*b20 + a12*b21 + a22*b22;
680 }
681
682 static inline void m3x3_mulv( m3x3f m, v3f v, v3f d )
683 {
684 v3f res;
685
686 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
687 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
688 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
689
690 v3_copy( res, d );
691 }
692
693 static inline void m3x3_projection( m3x3f dst,
694 float const left, float const right, float const bottom, float const top )
695 {
696 float rl, tb;
697
698 m3x3_zero( dst );
699
700 rl = 1.0f / (right - left);
701 tb = 1.0f / (top - bottom);
702
703 dst[0][0] = 2.0f * rl;
704 dst[1][1] = 2.0f * tb;
705 dst[2][2] = 1.0f;
706 }
707
708 static inline void m3x3_translate( m3x3f m, v3f v )
709 {
710 m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0];
711 m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1];
712 m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2];
713 }
714
715 static inline void m3x3_scale( m3x3f m, v3f v )
716 {
717 m[0][0] = m[0][0] * v[0];
718 m[0][1] = m[0][1] * v[0];
719 m[0][2] = m[0][2] * v[0];
720
721 m[1][0] = m[1][0] * v[1];
722 m[1][1] = m[1][1] * v[1];
723 m[1][2] = m[1][2] * v[1];
724 }
725
726 static inline void m3x3_rotate( m3x3f m, float angle )
727 {
728 float m00 = m[0][0], m10 = m[1][0],
729 m01 = m[0][1], m11 = m[1][1],
730 m02 = m[0][2], m12 = m[1][2];
731 float c, s;
732
733 s = sinf( angle );
734 c = cosf( angle );
735
736 m[0][0] = m00 * c + m10 * s;
737 m[0][1] = m01 * c + m11 * s;
738 m[0][2] = m02 * c + m12 * s;
739
740 m[1][0] = m00 * -s + m10 * c;
741 m[1][1] = m01 * -s + m11 * c;
742 m[1][2] = m02 * -s + m12 * c;
743 }
744
745 /*
746 * Matrix 4x3
747 */
748
749 #define M4X3_IDENTITY {{1.0f, 0.0f, 0.0f, },\
750 { 0.0f, 1.0f, 0.0f, },\
751 { 0.0f, 0.0f, 1.0f, },\
752 { 0.0f, 0.0f, 0.0f }}
753
754 static inline void m4x3_to_3x3( m4x3f a, m3x3f b )
755 {
756 v3_copy( a[0], b[0] );
757 v3_copy( a[1], b[1] );
758 v3_copy( a[2], b[2] );
759 }
760
761 static inline void m4x3_invert_affine( m4x3f a, m4x3f b )
762 {
763 m3x3_transpose( a, b );
764 m3x3_mulv( b, a[3], b[3] );
765 v3_negate( b[3], b[3] );
766 }
767
768 static void m4x3_invert_full( m4x3f src, m4x3f dst )
769 {
770 float t2, t4, t5,
771 det,
772 a = src[0][0], b = src[0][1], c = src[0][2],
773 e = src[1][0], f = src[1][1], g = src[1][2],
774 i = src[2][0], j = src[2][1], k = src[2][2],
775 m = src[3][0], n = src[3][1], o = src[3][2];
776
777 t2 = j*o - n*k;
778 t4 = i*o - m*k;
779 t5 = i*n - m*j;
780
781 dst[0][0] = f*k - g*j;
782 dst[1][0] =-(e*k - g*i);
783 dst[2][0] = e*j - f*i;
784 dst[3][0] =-(e*t2 - f*t4 + g*t5);
785
786 dst[0][1] =-(b*k - c*j);
787 dst[1][1] = a*k - c*i;
788 dst[2][1] =-(a*j - b*i);
789 dst[3][1] = a*t2 - b*t4 + c*t5;
790
791 t2 = f*o - n*g;
792 t4 = e*o - m*g;
793 t5 = e*n - m*f;
794
795 dst[0][2] = b*g - c*f ;
796 dst[1][2] =-(a*g - c*e );
797 dst[2][2] = a*f - b*e ;
798 dst[3][2] =-(a*t2 - b*t4 + c * t5);
799
800 det = 1.0f / (a * dst[0][0] + b * dst[1][0] + c * dst[2][0]);
801 v3_muls( dst[0], det, dst[0] );
802 v3_muls( dst[1], det, dst[1] );
803 v3_muls( dst[2], det, dst[2] );
804 v3_muls( dst[3], det, dst[3] );
805 }
806
807 static inline void m4x3_copy( m4x3f a, m4x3f b )
808 {
809 v3_copy( a[0], b[0] );
810 v3_copy( a[1], b[1] );
811 v3_copy( a[2], b[2] );
812 v3_copy( a[3], b[3] );
813 }
814
815 static inline void m4x3_identity( m4x3f a )
816 {
817 m4x3f id = M4X3_IDENTITY;
818 m4x3_copy( id, a );
819 }
820
821 static inline void m4x3_mul( m4x3f a, m4x3f b, m4x3f d )
822 {
823 float
824 a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
825 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
826 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2],
827 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2],
828 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2],
829 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2],
830 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2],
831 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2];
832
833 d[0][0] = a00*b00 + a10*b01 + a20*b02;
834 d[0][1] = a01*b00 + a11*b01 + a21*b02;
835 d[0][2] = a02*b00 + a12*b01 + a22*b02;
836 d[1][0] = a00*b10 + a10*b11 + a20*b12;
837 d[1][1] = a01*b10 + a11*b11 + a21*b12;
838 d[1][2] = a02*b10 + a12*b11 + a22*b12;
839 d[2][0] = a00*b20 + a10*b21 + a20*b22;
840 d[2][1] = a01*b20 + a11*b21 + a21*b22;
841 d[2][2] = a02*b20 + a12*b21 + a22*b22;
842 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30;
843 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31;
844 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32;
845 }
846
847 static inline void m4x3_mulv( m4x3f m, v3f v, v3f d )
848 {
849 v3f res;
850
851 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0];
852 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1];
853 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2];
854
855 v3_copy( res, d );
856 }
857
858 /*
859 * Transform plane ( xyz, distance )
860 */
861 static inline void m4x3_mulp( m4x3f m, v4f p, v4f d )
862 {
863 v3f o;
864
865 v3_muls( p, p[3], o );
866 m4x3_mulv( m, o, o );
867 m3x3_mulv( m, p, d );
868
869 d[3] = v3_dot( o, d );
870 }
871
872 /*
873 * Affine transforms
874 */
875
876 static inline void m4x3_translate( m4x3f m, v3f v )
877 {
878 v3_muladds( m[3], m[0], v[0], m[3] );
879 v3_muladds( m[3], m[1], v[1], m[3] );
880 v3_muladds( m[3], m[2], v[2], m[3] );
881 }
882
883 static inline void m4x3_scale( m4x3f m, float s )
884 {
885 v3_muls( m[0], s, m[0] );
886 v3_muls( m[1], s, m[1] );
887 v3_muls( m[2], s, m[2] );
888 }
889
890 static inline void m4x3_scalev( m4x3f m, v3f v )
891 {
892 v3_muls(m[0], v[0], m[0]);
893 v3_muls(m[1], v[1], m[1]);
894 v3_muls(m[2], v[2], m[2]);
895 }
896
897 static inline void m4x3_rotate_x( m4x3f m, float angle )
898 {
899 m4x3f t = M4X3_IDENTITY;
900 float c, s;
901
902 c = cosf( angle );
903 s = sinf( angle );
904
905 t[1][1] = c;
906 t[1][2] = s;
907 t[2][1] = -s;
908 t[2][2] = c;
909
910 m4x3_mul( m, t, m );
911 }
912
913 static inline void m4x3_rotate_y( m4x3f m, float angle )
914 {
915 m4x3f t = M4X3_IDENTITY;
916 float c, s;
917
918 c = cosf( angle );
919 s = sinf( angle );
920
921 t[0][0] = c;
922 t[0][2] = -s;
923 t[2][0] = s;
924 t[2][2] = c;
925
926 m4x3_mul( m, t, m );
927 }
928
929 static inline void m4x3_rotate_z( m4x3f m, float angle )
930 {
931 m4x3f t = M4X3_IDENTITY;
932 float c, s;
933
934 c = cosf( angle );
935 s = sinf( angle );
936
937 t[0][0] = c;
938 t[0][1] = s;
939 t[1][0] = -s;
940 t[1][1] = c;
941
942 m4x3_mul( m, t, m );
943 }
944
945 static inline void m4x3_expand( m4x3f m, m4x4f d )
946 {
947 v3_copy( m[0], d[0] );
948 v3_copy( m[1], d[1] );
949 v3_copy( m[2], d[2] );
950 v3_copy( m[3], d[3] );
951 d[0][3] = 0.0f;
952 d[1][3] = 0.0f;
953 d[2][3] = 0.0f;
954 d[3][3] = 1.0f;
955 }
956
957 static inline void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point )
958 {
959 v3f v;
960 m4x3_mulv( m, point, v );
961
962 v3_minv( box[0], v, box[0] );
963 v3_maxv( box[1], v, box[1] );
964 }
965
966 static inline void box_addpt( boxf a, v3f pt )
967 {
968 v3_minv( a[0], pt, a[0] );
969 v3_maxv( a[1], pt, a[1] );
970 }
971
972 static inline void box_concat( boxf a, boxf b )
973 {
974 v3_minv( a[0], b[0], a[0] );
975 v3_maxv( a[1], b[1], a[1] );
976 }
977
978 static inline void box_copy( boxf a, boxf b )
979 {
980 v3_copy( a[0], b[0] );
981 v3_copy( a[1], b[1] );
982 }
983
984 static inline int box_overlap( boxf a, boxf b )
985 {
986 return
987 ( a[0][0] <= b[1][0] && a[1][0] >= b[0][0] ) &&
988 ( a[0][1] <= b[1][1] && a[1][1] >= b[0][1] ) &&
989 ( a[0][2] <= b[1][2] && a[1][2] >= b[0][2] )
990 ;
991 }
992
993 static int box_within( boxf greater, boxf lesser )
994 {
995 v3f a, b;
996 v3_sub( lesser[0], greater[0], a );
997 v3_sub( lesser[1], greater[1], b );
998
999 if( (a[0] >= 0.0f) && (a[1] >= 0.0f) && (a[2] >= 0.0f) &&
1000 (b[0] <= 0.0f) && (b[1] <= 0.0f) && (b[2] <= 0.0f) )
1001 {
1002 return 1;
1003 }
1004
1005 return 0;
1006 }
1007
1008 static inline void box_init_inf( boxf box )
1009 {
1010 v3_fill( box[0], INFINITY );
1011 v3_fill( box[1], -INFINITY );
1012 }
1013
1014 static inline void m4x3_transform_aabb( m4x3f m, boxf box )
1015 {
1016 v3f a; v3f b;
1017
1018 v3_copy( box[0], a );
1019 v3_copy( box[1], b );
1020 v3_fill( box[0], INFINITY );
1021 v3_fill( box[1], -INFINITY );
1022
1023 m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], a[2] } );
1024 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], a[2] } );
1025 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], a[2] } );
1026 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], a[2] } );
1027
1028 m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], b[2] } );
1029 m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], b[2] } );
1030 m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], b[2] } );
1031 m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], b[2] } );
1032 }
1033
1034 int ray_aabb1( boxf box, v3f co, v3f dir_inv, float dist )
1035 {
1036 v3f v0, v1;
1037 float tmin, tmax;
1038
1039 v3_sub( box[0], co, v0 );
1040 v3_sub( box[1], co, v1 );
1041
1042 v3_mul( v0, dir_inv, v0 );
1043 v3_mul( v1, dir_inv, v1 );
1044
1045 tmin = vg_minf( v0[0], v1[0] );
1046 tmax = vg_maxf( v0[0], v1[0] );
1047 tmin = vg_maxf( tmin, vg_minf( v0[1], v1[1] ));
1048 tmax = vg_minf( tmax, vg_maxf( v0[1], v1[1] ));
1049 tmin = vg_maxf( tmin, vg_minf( v0[2], v1[2] ));
1050 tmax = vg_minf( tmax, vg_maxf( v0[2], v1[2] ));
1051
1052 return (tmax >= tmin) && (tmin <= dist) && (tmax >= 0.0f);
1053 }
1054
1055 static inline void m4x3_lookat( m4x3f m, v3f pos, v3f target, v3f up )
1056 {
1057 v3f dir;
1058 v3_sub( target, pos, dir );
1059 v3_normalize( dir );
1060
1061 v3_copy( dir, m[2] );
1062
1063 v3_cross( up, m[2], m[0] );
1064 v3_normalize( m[0] );
1065
1066 v3_cross( m[2], m[0], m[1] );
1067 v3_copy( pos, m[3] );
1068 }
1069
1070 /*
1071 * Matrix 4x4
1072 */
1073
1074 #define M4X4_IDENTITY {{1.0f, 0.0f, 0.0f, 0.0f },\
1075 { 0.0f, 1.0f, 0.0f, 0.0f },\
1076 { 0.0f, 0.0f, 1.0f, 0.0f },\
1077 { 0.0f, 0.0f, 0.0f, 1.0f }}
1078 #define M4X4_ZERO {{0.0f, 0.0f, 0.0f, 0.0f },\
1079 { 0.0f, 0.0f, 0.0f, 0.0f },\
1080 { 0.0f, 0.0f, 0.0f, 0.0f },\
1081 { 0.0f, 0.0f, 0.0f, 0.0f }}
1082
1083 static void m4x4_projection( m4x4f m, float angle,
1084 float ratio, float fnear, float ffar )
1085 {
1086 float scale = tanf( angle * 0.5f * VG_PIf / 180.0f ) * fnear,
1087 r = ratio * scale,
1088 l = -r,
1089 t = scale,
1090 b = -t;
1091
1092 m[0][0] = 2.0f * fnear / (r - l);
1093 m[0][1] = 0.0f;
1094 m[0][2] = 0.0f;
1095 m[0][3] = 0.0f;
1096
1097 m[1][0] = 0.0f;
1098 m[1][1] = 2.0f * fnear / (t - b);
1099 m[1][2] = 0.0f;
1100 m[1][3] = 0.0f;
1101
1102 m[2][0] = (r + l) / (r - l);
1103 m[2][1] = (t + b) / (t - b);
1104 m[2][2] = -(ffar + fnear) / (ffar - fnear);
1105 m[2][3] = -1.0f;
1106
1107 m[3][0] = 0.0f;
1108 m[3][1] = 0.0f;
1109 m[3][2] = -2.0f * ffar * fnear / (ffar - fnear);
1110 m[3][3] = 0.0f;
1111 }
1112
1113 static void m4x4_translate( m4x4f m, v3f v )
1114 {
1115 v4_muladds( m[3], m[0], v[0], m[3] );
1116 v4_muladds( m[3], m[1], v[1], m[3] );
1117 v4_muladds( m[3], m[2], v[2], m[3] );
1118 }
1119
1120 static inline void m4x4_copy( m4x4f a, m4x4f b )
1121 {
1122 v4_copy( a[0], b[0] );
1123 v4_copy( a[1], b[1] );
1124 v4_copy( a[2], b[2] );
1125 v4_copy( a[3], b[3] );
1126 }
1127
1128 static inline void m4x4_identity( m4x4f a )
1129 {
1130 m4x4f id = M4X4_IDENTITY;
1131 m4x4_copy( id, a );
1132 }
1133
1134 static inline void m4x4_zero( m4x4f a )
1135 {
1136 m4x4f zero = M4X4_ZERO;
1137 m4x4_copy( zero, a );
1138 }
1139
1140 static inline void m4x4_mul( m4x4f a, m4x4f b, m4x4f d )
1141 {
1142 float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1143 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1144 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1145 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1146
1147 b00 = b[0][0], b01 = b[0][1], b02 = b[0][2], b03 = b[0][3],
1148 b10 = b[1][0], b11 = b[1][1], b12 = b[1][2], b13 = b[1][3],
1149 b20 = b[2][0], b21 = b[2][1], b22 = b[2][2], b23 = b[2][3],
1150 b30 = b[3][0], b31 = b[3][1], b32 = b[3][2], b33 = b[3][3];
1151
1152 d[0][0] = a00*b00 + a10*b01 + a20*b02 + a30*b03;
1153 d[0][1] = a01*b00 + a11*b01 + a21*b02 + a31*b03;
1154 d[0][2] = a02*b00 + a12*b01 + a22*b02 + a32*b03;
1155 d[0][3] = a03*b00 + a13*b01 + a23*b02 + a33*b03;
1156 d[1][0] = a00*b10 + a10*b11 + a20*b12 + a30*b13;
1157 d[1][1] = a01*b10 + a11*b11 + a21*b12 + a31*b13;
1158 d[1][2] = a02*b10 + a12*b11 + a22*b12 + a32*b13;
1159 d[1][3] = a03*b10 + a13*b11 + a23*b12 + a33*b13;
1160 d[2][0] = a00*b20 + a10*b21 + a20*b22 + a30*b23;
1161 d[2][1] = a01*b20 + a11*b21 + a21*b22 + a31*b23;
1162 d[2][2] = a02*b20 + a12*b21 + a22*b22 + a32*b23;
1163 d[2][3] = a03*b20 + a13*b21 + a23*b22 + a33*b23;
1164 d[3][0] = a00*b30 + a10*b31 + a20*b32 + a30*b33;
1165 d[3][1] = a01*b30 + a11*b31 + a21*b32 + a31*b33;
1166 d[3][2] = a02*b30 + a12*b31 + a22*b32 + a32*b33;
1167 d[3][3] = a03*b30 + a13*b31 + a23*b32 + a33*b33;
1168 }
1169
1170 static inline void m4x4_mulv( m4x4f m, v4f v, v4f d )
1171 {
1172 v4f res;
1173
1174 res[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3];
1175 res[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3];
1176 res[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3];
1177 res[3] = m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3];
1178
1179 v4_copy( res, d );
1180 }
1181
1182 static inline void m4x4_inv( m4x4f a, m4x4f d )
1183 {
1184 float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a03 = a[0][3],
1185 a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a13 = a[1][3],
1186 a20 = a[2][0], a21 = a[2][1], a22 = a[2][2], a23 = a[2][3],
1187 a30 = a[3][0], a31 = a[3][1], a32 = a[3][2], a33 = a[3][3],
1188 det,
1189 t[6];
1190
1191 t[0] = a22*a33 - a32*a23;
1192 t[1] = a21*a33 - a31*a23;
1193 t[2] = a21*a32 - a31*a22;
1194 t[3] = a20*a33 - a30*a23;
1195 t[4] = a20*a32 - a30*a22;
1196 t[5] = a20*a31 - a30*a21;
1197
1198 d[0][0] = a11*t[0] - a12*t[1] + a13*t[2];
1199 d[1][0] =-(a10*t[0] - a12*t[3] + a13*t[4]);
1200 d[2][0] = a10*t[1] - a11*t[3] + a13*t[5];
1201 d[3][0] =-(a10*t[2] - a11*t[4] + a12*t[5]);
1202
1203 d[0][1] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1204 d[1][1] = a00*t[0] - a02*t[3] + a03*t[4];
1205 d[2][1] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1206 d[3][1] = a00*t[2] - a01*t[4] + a02*t[5];
1207
1208 t[0] = a12*a33 - a32*a13;
1209 t[1] = a11*a33 - a31*a13;
1210 t[2] = a11*a32 - a31*a12;
1211 t[3] = a10*a33 - a30*a13;
1212 t[4] = a10*a32 - a30*a12;
1213 t[5] = a10*a31 - a30*a11;
1214
1215 d[0][2] = a01*t[0] - a02*t[1] + a03*t[2];
1216 d[1][2] =-(a00*t[0] - a02*t[3] + a03*t[4]);
1217 d[2][2] = a00*t[1] - a01*t[3] + a03*t[5];
1218 d[3][2] =-(a00*t[2] - a01*t[4] + a02*t[5]);
1219
1220 t[0] = a12*a23 - a22*a13;
1221 t[1] = a11*a23 - a21*a13;
1222 t[2] = a11*a22 - a21*a12;
1223 t[3] = a10*a23 - a20*a13;
1224 t[4] = a10*a22 - a20*a12;
1225 t[5] = a10*a21 - a20*a11;
1226
1227 d[0][3] =-(a01*t[0] - a02*t[1] + a03*t[2]);
1228 d[1][3] = a00*t[0] - a02*t[3] + a03*t[4];
1229 d[2][3] =-(a00*t[1] - a01*t[3] + a03*t[5]);
1230 d[3][3] = a00*t[2] - a01*t[4] + a02*t[5];
1231
1232 det = 1.0f / (a00*d[0][0] + a01*d[1][0] + a02*d[2][0] + a03*d[3][0]);
1233 v4_muls( d[0], det, d[0] );
1234 v4_muls( d[1], det, d[1] );
1235 v4_muls( d[2], det, d[2] );
1236 v4_muls( d[3], det, d[3] );
1237 }
1238
1239 /*
1240 * Planes (double precision)
1241 */
1242 static inline void tri_to_plane( double a[3], double b[3],
1243 double c[3], double p[4] )
1244 {
1245 double edge0[3];
1246 double edge1[3];
1247 double l;
1248
1249 edge0[0] = b[0] - a[0];
1250 edge0[1] = b[1] - a[1];
1251 edge0[2] = b[2] - a[2];
1252
1253 edge1[0] = c[0] - a[0];
1254 edge1[1] = c[1] - a[1];
1255 edge1[2] = c[2] - a[2];
1256
1257 p[0] = edge0[1] * edge1[2] - edge0[2] * edge1[1];
1258 p[1] = edge0[2] * edge1[0] - edge0[0] * edge1[2];
1259 p[2] = edge0[0] * edge1[1] - edge0[1] * edge1[0];
1260
1261 l = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
1262 p[3] = (p[0] * a[0] + p[1] * a[1] + p[2] * a[2]) / l;
1263
1264 p[0] = p[0] / l;
1265 p[1] = p[1] / l;
1266 p[2] = p[2] / l;
1267 }
1268
1269 static int plane_intersect3( v4f a, v4f b, v4f c, v3f p )
1270 {
1271 float const epsilon = 1e-6f;
1272
1273 v3f x;
1274 v3_cross( a, b, x );
1275 float d = v3_dot( x, c );
1276
1277 if( (d < epsilon) && (d > -epsilon) ) return 0;
1278
1279 v3f v0, v1, v2;
1280 v3_cross( b, c, v0 );
1281 v3_cross( c, a, v1 );
1282 v3_cross( a, b, v2 );
1283
1284 v3_muls( v0, a[3], p );
1285 v3_muladds( p, v1, b[3], p );
1286 v3_muladds( p, v2, c[3], p );
1287 v3_divs( p, d, p );
1288
1289 return 1;
1290 }
1291
1292 int plane_intersect2( v4f a, v4f b, v3f p, v3f n )
1293 {
1294 float const epsilon = 1e-6f;
1295
1296 v4f c;
1297 v3_cross( a, b, c );
1298 float d = v3_length2( c );
1299
1300 if( (d < epsilon) && (d > -epsilon) )
1301 return 0;
1302
1303 v3f v0, v1, vx;
1304 v3_cross( c, b, v0 );
1305 v3_cross( a, c, v1 );
1306
1307 v3_muls( v0, a[3], vx );
1308 v3_muladds( vx, v1, b[3], vx );
1309 v3_divs( vx, d, p );
1310 v3_copy( c, n );
1311
1312 return 1;
1313 }
1314
1315 static int plane_segment( v4f plane, v3f a, v3f b, v3f co )
1316 {
1317 float d0 = v3_dot( a, plane ) - plane[3],
1318 d1 = v3_dot( b, plane ) - plane[3];
1319
1320 if( d0*d1 < 0.0f )
1321 {
1322 float tot = 1.0f/( fabsf(d0)+fabsf(d1) );
1323
1324 v3_muls( a, fabsf(d1) * tot, co );
1325 v3_muladds( co, b, fabsf(d0) * tot, co );
1326 return 1;
1327 }
1328
1329 return 0;
1330 }
1331
1332 static inline double plane_polarity( double p[4], double a[3] )
1333 {
1334 return
1335 (a[0] * p[0] + a[1] * p[1] + a[2] * p[2])
1336 -(p[0]*p[3] * p[0] + p[1]*p[3] * p[1] + p[2]*p[3] * p[2])
1337 ;
1338 }
1339
1340 /* Quaternions */
1341
1342 static inline void q_identity( v4f q )
1343 {
1344 q[0] = 0.0f; q[1] = 0.0f; q[2] = 0.0f; q[3] = 1.0f;
1345 }
1346
1347 static inline void q_axis_angle( v4f q, v3f axis, float angle )
1348 {
1349 float a = angle*0.5f,
1350 c = cosf(a),
1351 s = sinf(a);
1352
1353 q[0] = s*axis[0];
1354 q[1] = s*axis[1];
1355 q[2] = s*axis[2];
1356 q[3] = c;
1357 }
1358
1359 static inline void q_mul( v4f q, v4f q1, v4f d )
1360 {
1361 v4f t;
1362 t[0] = q[3]*q1[0] + q[0]*q1[3] + q[1]*q1[2] - q[2]*q1[1];
1363 t[1] = q[3]*q1[1] - q[0]*q1[2] + q[1]*q1[3] + q[2]*q1[0];
1364 t[2] = q[3]*q1[2] + q[0]*q1[1] - q[1]*q1[0] + q[2]*q1[3];
1365 t[3] = q[3]*q1[3] - q[0]*q1[0] - q[1]*q1[1] - q[2]*q1[2];
1366 v4_copy( t, d );
1367 }
1368
1369 static inline void q_normalize( v4f q )
1370 {
1371 float s = 1.0f/ sqrtf(v4_dot(q,q));
1372 q[0] *= s;
1373 q[1] *= s;
1374 q[2] *= s;
1375 q[3] *= s;
1376 }
1377
1378 static inline void q_inv( v4f q, v4f d )
1379 {
1380 float s = 1.0f / v4_dot(q,q);
1381 d[0] = -q[0]*s;
1382 d[1] = -q[1]*s;
1383 d[2] = -q[2]*s;
1384 d[3] = q[3]*s;
1385 }
1386
1387 static inline void q_nlerp( v4f a, v4f b, float t, v4f d )
1388 {
1389 if( v4_dot(a,b) < 0.0f )
1390 {
1391 v4_muls( b, -1.0f, d );
1392 v4_lerp( a, d, t, d );
1393 }
1394 else
1395 v4_lerp( a, b, t, d );
1396
1397 q_normalize( d );
1398 }
1399
1400 static void euler_m3x3( v3f angles, m3x3f d )
1401 {
1402 float cosY = cosf( angles[0] ),
1403 sinY = sinf( angles[0] ),
1404 cosP = cosf( angles[1] ),
1405 sinP = sinf( angles[1] ),
1406 cosR = cosf( angles[2] ),
1407 sinR = sinf( angles[2] );
1408
1409 d[2][0] = -sinY * cosP;
1410 d[2][1] = sinP;
1411 d[2][2] = cosY * cosP;
1412
1413 d[0][0] = cosY * cosR;
1414 d[0][1] = sinR;
1415 d[0][2] = sinY * cosR;
1416
1417 v3_cross( d[0], d[2], d[1] );
1418 }
1419
1420 static inline void q_m3x3( v4f q, m3x3f d )
1421 {
1422 float
1423 l = v4_length(q),
1424 s = l > 0.0f? 2.0f/l: 0.0f,
1425
1426 xx = s*q[0]*q[0], xy = s*q[0]*q[1], wx = s*q[3]*q[0],
1427 yy = s*q[1]*q[1], yz = s*q[1]*q[2], wy = s*q[3]*q[1],
1428 zz = s*q[2]*q[2], xz = s*q[0]*q[2], wz = s*q[3]*q[2];
1429
1430 d[0][0] = 1.0f - yy - zz;
1431 d[1][1] = 1.0f - xx - zz;
1432 d[2][2] = 1.0f - xx - yy;
1433 d[0][1] = xy + wz;
1434 d[1][2] = yz + wx;
1435 d[2][0] = xz + wy;
1436 d[1][0] = xy - wz;
1437 d[2][1] = yz - wx;
1438 d[0][2] = xz - wy;
1439 }
1440
1441 static void m3x3_q( m3x3f m, v4f q )
1442 {
1443 float diag, r, rinv;
1444
1445 diag = m[0][0] + m[1][1] + m[2][2];
1446 if( diag >= 0.0f )
1447 {
1448 r = sqrtf( 1.0f + diag );
1449 rinv = 0.5f / r;
1450 q[0] = rinv * (m[1][2] - m[2][1]);
1451 q[1] = rinv * (m[2][0] - m[0][2]);
1452 q[2] = rinv * (m[0][1] - m[1][0]);
1453 q[3] = r * 0.5f;
1454 }
1455 else if( m[0][0] >= m[1][1] && m[0][0] >= m[2][2] )
1456 {
1457 r = sqrtf( 1.0f - m[1][1] - m[2][2] + m[0][0] );
1458 rinv = 0.5f / r;
1459 q[0] = r * 0.5f;
1460 q[1] = rinv * (m[0][1] + m[1][0]);
1461 q[2] = rinv * (m[0][2] + m[2][0]);
1462 q[3] = rinv * (m[1][2] - m[2][1]);
1463 }
1464 else if( m[1][1] >= m[2][2] )
1465 {
1466 r = sqrtf( 1.0f - m[0][0] - m[2][2] + m[1][1] );
1467 rinv = 0.5f / r;
1468 q[0] = rinv * (m[0][1] + m[1][0]);
1469 q[1] = r * 0.5f;
1470 q[2] = rinv * (m[1][2] + m[2][1]);
1471 q[3] = rinv * (m[2][0] - m[0][2]);
1472 }
1473 else
1474 {
1475 r = sqrtf( 1.0f - m[0][0] - m[1][1] + m[2][2] );
1476 rinv = 0.5f / r;
1477 q[0] = rinv * (m[0][2] + m[2][0]);
1478 q[1] = rinv * (m[1][2] + m[2][1]);
1479 q[2] = r * 0.5f;
1480 q[3] = rinv * (m[0][1] - m[1][0]);
1481 }
1482 }
1483
1484 static void q_mulv( v4f q, v3f v, v3f d )
1485 {
1486 v3f v1, v2;
1487
1488 v3_muls( q, 2.0f*v3_dot(q,v), v1 );
1489 v3_muls( v, q[3]*q[3] - v3_dot(q,q), v2 );
1490 v3_add( v1, v2, v1 );
1491 v3_cross( q, v, v2 );
1492 v3_muls( v2, 2.0f*q[3], v2 );
1493 v3_add( v1, v2, d );
1494 }
1495
1496 enum contact_type
1497 {
1498 k_contact_type_default,
1499 k_contact_type_disabled,
1500 k_contact_type_edge
1501 };
1502
1503 /*
1504 * -----------------------------------------------------------------------------
1505 * Closest point functions
1506 * -----------------------------------------------------------------------------
1507 */
1508
1509 /*
1510 * These closest point tests were learned from Real-Time Collision Detection by
1511 * Christer Ericson
1512 */
1513 VG_STATIC float closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2,
1514 float *s, float *t, v3f c1, v3f c2)
1515 {
1516 v3f d1,d2,r;
1517 v3_sub( q1, p1, d1 );
1518 v3_sub( q2, p2, d2 );
1519 v3_sub( p1, p2, r );
1520
1521 float a = v3_length2( d1 ),
1522 e = v3_length2( d2 ),
1523 f = v3_dot( d2, r );
1524
1525 const float kEpsilon = 0.0001f;
1526
1527 if( a <= kEpsilon && e <= kEpsilon )
1528 {
1529 *s = 0.0f;
1530 *t = 0.0f;
1531 v3_copy( p1, c1 );
1532 v3_copy( p2, c2 );
1533
1534 v3f v0;
1535 v3_sub( c1, c2, v0 );
1536
1537 return v3_length2( v0 );
1538 }
1539
1540 if( a<= kEpsilon )
1541 {
1542 *s = 0.0f;
1543 *t = vg_clampf( f / e, 0.0f, 1.0f );
1544 }
1545 else
1546 {
1547 float c = v3_dot( d1, r );
1548 if( e <= kEpsilon )
1549 {
1550 *t = 0.0f;
1551 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1552 }
1553 else
1554 {
1555 float b = v3_dot(d1,d2),
1556 d = a*e-b*b;
1557
1558 if( d != 0.0f )
1559 {
1560 *s = vg_clampf((b*f - c*e)/d, 0.0f, 1.0f);
1561 }
1562 else
1563 {
1564 *s = 0.0f;
1565 }
1566
1567 *t = (b*(*s)+f) / e;
1568
1569 if( *t < 0.0f )
1570 {
1571 *t = 0.0f;
1572 *s = vg_clampf( -c / a, 0.0f, 1.0f );
1573 }
1574 else if( *t > 1.0f )
1575 {
1576 *t = 1.0f;
1577 *s = vg_clampf((b-c)/a,0.0f,1.0f);
1578 }
1579 }
1580 }
1581
1582 v3_muladds( p1, d1, *s, c1 );
1583 v3_muladds( p2, d2, *t, c2 );
1584
1585 v3f v0;
1586 v3_sub( c1, c2, v0 );
1587 return v3_length2( v0 );
1588 }
1589
1590 VG_STATIC int point_inside_aabb( boxf box, v3f point )
1591 {
1592 if((point[0]<=box[1][0]) && (point[1]<=box[1][1]) && (point[2]<=box[1][2]) &&
1593 (point[0]>=box[0][0]) && (point[1]>=box[0][1]) && (point[2]>=box[0][2]) )
1594 return 1;
1595 else
1596 return 0;
1597 }
1598
1599 VG_STATIC void closest_point_aabb( v3f p, boxf box, v3f dest )
1600 {
1601 v3_maxv( p, box[0], dest );
1602 v3_minv( dest, box[1], dest );
1603 }
1604
1605 VG_STATIC void closest_point_obb( v3f p, boxf box,
1606 m4x3f mtx, m4x3f inv_mtx, v3f dest )
1607 {
1608 v3f local;
1609 m4x3_mulv( inv_mtx, p, local );
1610 closest_point_aabb( local, box, local );
1611 m4x3_mulv( mtx, local, dest );
1612 }
1613
1614 VG_STATIC float closest_point_segment( v3f a, v3f b, v3f point, v3f dest )
1615 {
1616 v3f v0, v1;
1617 v3_sub( b, a, v0 );
1618 v3_sub( point, a, v1 );
1619
1620 float t = v3_dot( v1, v0 ) / v3_length2(v0);
1621 t = vg_clampf(t,0.0f,1.0f);
1622 v3_muladds( a, v0, t, dest );
1623 return t;
1624 }
1625
1626 VG_STATIC void closest_on_triangle( v3f p, v3f tri[3], v3f dest )
1627 {
1628 v3f ab, ac, ap;
1629 float d1, d2;
1630
1631 /* Region outside A */
1632 v3_sub( tri[1], tri[0], ab );
1633 v3_sub( tri[2], tri[0], ac );
1634 v3_sub( p, tri[0], ap );
1635
1636 d1 = v3_dot(ab,ap);
1637 d2 = v3_dot(ac,ap);
1638 if( d1 <= 0.0f && d2 <= 0.0f )
1639 {
1640 v3_copy( tri[0], dest );
1641 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1642 return;
1643 }
1644
1645 /* Region outside B */
1646 v3f bp;
1647 float d3, d4;
1648
1649 v3_sub( p, tri[1], bp );
1650 d3 = v3_dot( ab, bp );
1651 d4 = v3_dot( ac, bp );
1652
1653 if( d3 >= 0.0f && d4 <= d3 )
1654 {
1655 v3_copy( tri[1], dest );
1656 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1657 return;
1658 }
1659
1660 /* Edge region of AB */
1661 float vc = d1*d4 - d3*d2;
1662 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1663 {
1664 float v = d1 / (d1-d3);
1665 v3_muladds( tri[0], ab, v, dest );
1666 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1667 return;
1668 }
1669
1670 /* Region outside C */
1671 v3f cp;
1672 float d5, d6;
1673 v3_sub( p, tri[2], cp );
1674 d5 = v3_dot(ab, cp);
1675 d6 = v3_dot(ac, cp);
1676
1677 if( d6 >= 0.0f && d5 <= d6 )
1678 {
1679 v3_copy( tri[2], dest );
1680 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1681 return;
1682 }
1683
1684 /* Region of AC */
1685 float vb = d5*d2 - d1*d6;
1686 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1687 {
1688 float w = d2 / (d2-d6);
1689 v3_muladds( tri[0], ac, w, dest );
1690 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1691 return;
1692 }
1693
1694 /* Region of BC */
1695 float va = d3*d6 - d5*d4;
1696 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1697 {
1698 float w = (d4-d3) / ((d4-d3) + (d5-d6));
1699 v3f bc;
1700 v3_sub( tri[2], tri[1], bc );
1701 v3_muladds( tri[1], bc, w, dest );
1702 v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest );
1703 return;
1704 }
1705
1706 /* P inside region, Q via barycentric coordinates uvw */
1707 float d = 1.0f/(va+vb+vc),
1708 v = vb*d,
1709 w = vc*d;
1710
1711 v3_muladds( tri[0], ab, v, dest );
1712 v3_muladds( dest, ac, w, dest );
1713 }
1714
1715 VG_STATIC enum contact_type closest_on_triangle_1( v3f p, v3f tri[3], v3f dest )
1716 {
1717 v3f ab, ac, ap;
1718 float d1, d2;
1719
1720 /* Region outside A */
1721 v3_sub( tri[1], tri[0], ab );
1722 v3_sub( tri[2], tri[0], ac );
1723 v3_sub( p, tri[0], ap );
1724
1725 d1 = v3_dot(ab,ap);
1726 d2 = v3_dot(ac,ap);
1727 if( d1 <= 0.0f && d2 <= 0.0f )
1728 {
1729 v3_copy( tri[0], dest );
1730 return k_contact_type_default;
1731 }
1732
1733 /* Region outside B */
1734 v3f bp;
1735 float d3, d4;
1736
1737 v3_sub( p, tri[1], bp );
1738 d3 = v3_dot( ab, bp );
1739 d4 = v3_dot( ac, bp );
1740
1741 if( d3 >= 0.0f && d4 <= d3 )
1742 {
1743 v3_copy( tri[1], dest );
1744 return k_contact_type_edge;
1745 }
1746
1747 /* Edge region of AB */
1748 float vc = d1*d4 - d3*d2;
1749 if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
1750 {
1751 float v = d1 / (d1-d3);
1752 v3_muladds( tri[0], ab, v, dest );
1753 return k_contact_type_edge;
1754 }
1755
1756 /* Region outside C */
1757 v3f cp;
1758 float d5, d6;
1759 v3_sub( p, tri[2], cp );
1760 d5 = v3_dot(ab, cp);
1761 d6 = v3_dot(ac, cp);
1762
1763 if( d6 >= 0.0f && d5 <= d6 )
1764 {
1765 v3_copy( tri[2], dest );
1766 return k_contact_type_edge;
1767 }
1768
1769 /* Region of AC */
1770 float vb = d5*d2 - d1*d6;
1771 if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f )
1772 {
1773 float w = d2 / (d2-d6);
1774 v3_muladds( tri[0], ac, w, dest );
1775 return k_contact_type_edge;
1776 }
1777
1778 /* Region of BC */
1779 float va = d3*d6 - d5*d4;
1780 if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
1781 {
1782 float w = (d4-d3) / ((d4-d3) + (d5-d6));
1783 v3f bc;
1784 v3_sub( tri[2], tri[1], bc );
1785 v3_muladds( tri[1], bc, w, dest );
1786 return k_contact_type_edge;
1787 }
1788
1789 /* P inside region, Q via barycentric coordinates uvw */
1790 float d = 1.0f/(va+vb+vc),
1791 v = vb*d,
1792 w = vc*d;
1793
1794 v3_muladds( tri[0], ab, v, dest );
1795 v3_muladds( dest, ac, w, dest );
1796
1797 return k_contact_type_default;
1798 }
1799
1800
1801 static void closest_point_elipse( v2f p, v2f e, v2f o )
1802 {
1803 v2f pabs, ei, e2, ve, t;
1804
1805 v2_abs( p, pabs );
1806 v2_div( (v2f){ 1.0f, 1.0f }, e, ei );
1807 v2_mul( e, e, e2 );
1808 v2_mul( ei, (v2f){ e2[0]-e2[1], e2[1]-e2[0] }, ve );
1809
1810 v2_fill( t, 0.70710678118654752f );
1811
1812 for( int i=0; i<3; i++ )
1813 {
1814 v2f v, u, ud, w;
1815
1816 v2_mul( ve, t, v ); /* ve*t*t*t */
1817 v2_mul( v, t, v );
1818 v2_mul( v, t, v );
1819
1820 v2_sub( pabs, v, u );
1821 v2_normalize( u );
1822
1823 v2_mul( t, e, ud );
1824 v2_sub( ud, v, ud );
1825
1826 v2_muls( u, v2_length( ud ), u );
1827
1828 v2_add( v, u, w );
1829 v2_mul( w, ei, w );
1830
1831 v2_maxv( (v2f){0.0f,0.0f}, w, t );
1832 v2_normalize( t );
1833 }
1834
1835 v2_mul( t, e, o );
1836 v2_copysign( o, p );
1837 }
1838
1839 /*
1840 * Raycasts
1841 */
1842
1843 /* Time of intersection with ray vs triangle */
1844 static int ray_tri( v3f tri[3], v3f co,
1845 v3f dir, float *dist )
1846 {
1847 float const kEpsilon = 0.00001f;
1848
1849 v3f v0, v1, h, s, q, n;
1850 float a,f,u,v,t;
1851
1852 float *pa = tri[0],
1853 *pb = tri[1],
1854 *pc = tri[2];
1855
1856 v3_sub( pb, pa, v0 );
1857 v3_sub( pc, pa, v1 );
1858 v3_cross( dir, v1, h );
1859 v3_cross( v0, v1, n );
1860
1861 if( v3_dot( n, dir ) > 0.0f ) /* Backface culling */
1862 return 0;
1863
1864 /* Parralel */
1865 a = v3_dot( v0, h );
1866
1867 if( a > -kEpsilon && a < kEpsilon )
1868 return 0;
1869
1870 f = 1.0f/a;
1871 v3_sub( co, pa, s );
1872
1873 u = f * v3_dot(s, h);
1874 if( u < 0.0f || u > 1.0f )
1875 return 0;
1876
1877 v3_cross( s, v0, q );
1878 v = f * v3_dot( dir, q );
1879 if( v < 0.0f || u+v > 1.0f )
1880 return 0;
1881
1882 t = f * v3_dot(v1, q);
1883 if( t > kEpsilon )
1884 {
1885 *dist = t;
1886 return 1;
1887 }
1888 else return 0;
1889 }
1890
1891 /* time of intersection with ray vs sphere */
1892 static int ray_sphere( v3f c, float r,
1893 v3f co, v3f dir, float *t )
1894 {
1895 v3f m;
1896 v3_sub( co, c, m );
1897
1898 float b = v3_dot( m, dir ),
1899 c1 = v3_dot( m, m ) - r*r;
1900
1901 /* Exit if r’s origin outside s (c > 0) and r pointing away from s (b > 0) */
1902 if( c1 > 0.0f && b > 0.0f )
1903 return 0;
1904
1905 float discr = b*b - c1;
1906
1907 /* A negative discriminant corresponds to ray missing sphere */
1908 if( discr < 0.0f )
1909 return 0;
1910
1911 /*
1912 * Ray now found to intersect sphere, compute smallest t value of
1913 * intersection
1914 */
1915 *t = -b - sqrtf( discr );
1916
1917 /* If t is negative, ray started inside sphere so clamp t to zero */
1918 if( *t < 0.0f )
1919 *t = 0.0f;
1920
1921 return 1;
1922 }
1923
1924 /*
1925 * time of intersection of ray vs cylinder
1926 * The cylinder does not have caps but is finite
1927 *
1928 * Heavily adapted from regular segment vs cylinder from:
1929 * Real-Time Collision Detection
1930 */
1931 static int ray_uncapped_finite_cylinder( v3f q, v3f p, float r,
1932 v3f co, v3f dir, float *t )
1933 {
1934 v3f d, m, n, sb;
1935 v3_muladds( co, dir, 1.0f, sb );
1936
1937 v3_sub( q, p, d );
1938 v3_sub( co, p, m );
1939 v3_sub( sb, co, n );
1940
1941 float md = v3_dot( m, d ),
1942 nd = v3_dot( n, d ),
1943 dd = v3_dot( d, d ),
1944 nn = v3_dot( n, n ),
1945 mn = v3_dot( m, n ),
1946 a = dd*nn - nd*nd,
1947 k = v3_dot( m, m ) - r*r,
1948 c = dd*k - md*md;
1949
1950 if( fabsf(a) < 0.00001f )
1951 {
1952 /* Segment runs parallel to cylinder axis */
1953 return 0;
1954 }
1955
1956 float b = dd*mn - nd*md,
1957 discr = b*b - a*c;
1958
1959 if( discr < 0.0f )
1960 return 0; /* No real roots; no intersection */
1961
1962 *t = (-b - sqrtf(discr)) / a;
1963 if( *t < 0.0f )
1964 return 0; /* Intersection behind ray */
1965
1966 /* Check within cylinder segment */
1967 if( md + (*t)*nd < 0.0f )
1968 return 0;
1969
1970 if( md + (*t)*nd > dd )
1971 return 0;
1972
1973 /* Segment intersects cylinder between the endcaps; t is correct */
1974 return 1;
1975 }
1976
1977 /*
1978 * Time of intersection of sphere and triangle. Origin must be outside the
1979 * colliding area. This is a fairly long procedure.
1980 */
1981 static int spherecast_triangle( v3f tri[3],
1982 v3f co, v3f dir, float r, float *t, v3f n )
1983 {
1984 v3f sum[3];
1985 v3f v0, v1;
1986
1987 v3_sub( tri[1], tri[0], v0 );
1988 v3_sub( tri[2], tri[0], v1 );
1989 v3_cross( v0, v1, n );
1990 v3_normalize( n );
1991 v3_muladds( tri[0], n, r, sum[0] );
1992 v3_muladds( tri[1], n, r, sum[1] );
1993 v3_muladds( tri[2], n, r, sum[2] );
1994
1995 int hit = 0;
1996 float t_min = INFINITY,
1997 t1;
1998
1999 if( ray_tri( sum, co, dir, &t1 ) )
2000 {
2001 t_min = vg_minf( t_min, t1 );
2002 hit = 1;
2003 }
2004
2005 /*
2006 * Currently disabled; ray_sphere requires |d| = 1. it is not very important.
2007 */
2008 #if 0
2009 for( int i=0; i<3; i++ )
2010 {
2011 if( ray_sphere( tri[i], r, co, dir, &t1 ) )
2012 {
2013 t_min = vg_minf( t_min, t1 );
2014 hit = 1;
2015 }
2016 }
2017 #endif
2018
2019 for( int i=0; i<3; i++ )
2020 {
2021 int i0 = i,
2022 i1 = (i+1)%3;
2023
2024 if( ray_uncapped_finite_cylinder( tri[i0], tri[i1], r, co, dir, &t1 ) )
2025 {
2026 if( t1 < t_min )
2027 {
2028 t_min = t1;
2029
2030 v3f co1, ct, cx;
2031 v3_add( dir, co, co1 );
2032 v3_lerp( co, co1, t_min, ct );
2033
2034 closest_point_segment( tri[i0], tri[i1], ct, cx );
2035 v3_sub( ct, cx, n );
2036 v3_normalize( n );
2037 }
2038
2039 hit = 1;
2040 }
2041 }
2042
2043 *t = t_min;
2044 return hit;
2045 }
2046
2047 static inline float vg_randf(void)
2048 {
2049 /* TODO: replace with our own rand */
2050 return (float)rand()/(float)(RAND_MAX);
2051 }
2052
2053 static inline void vg_rand_dir(v3f dir)
2054 {
2055 dir[0] = vg_randf();
2056 dir[1] = vg_randf();
2057 dir[2] = vg_randf();
2058
2059 v3_muls( dir, 2.0f, dir );
2060 v3_sub( dir, (v3f){1.0f,1.0f,1.0f}, dir );
2061
2062 v3_normalize( dir );
2063 }
2064
2065 static inline void vg_rand_sphere( v3f co )
2066 {
2067 vg_rand_dir(co);
2068 v3_muls( co, cbrtf( vg_randf() ), co );
2069 }
2070
2071 static inline int vg_randint(int max)
2072 {
2073 return rand()%max;
2074 }
2075
2076 static void eval_bezier_time( v3f p0, v3f p1, v3f h0, v3f h1, float t, v3f p )
2077 {
2078 float tt = t*t,
2079 ttt = tt*t;
2080
2081 v3_muls( p1, ttt, p );
2082 v3_muladds( p, h1, 3.0f*tt -3.0f*ttt, p );
2083 v3_muladds( p, h0, 3.0f*ttt -6.0f*tt +3.0f*t, p );
2084 v3_muladds( p, p0, 3.0f*tt -ttt -3.0f*t +1.0f, p );
2085 }
2086
2087 static void eval_bezier3( v3f p0, v3f p1, v3f p2, float t, v3f p )
2088 {
2089 float u = 1.0f-t;
2090
2091 v3_muls( p0, u*u, p );
2092 v3_muladds( p, p1, 2.0f*u*t, p );
2093 v3_muladds( p, p2, t*t, p );
2094 }
2095
2096 #endif /* VG_M_H */