command line, multisampling, optimisations
[csRadar.git] / vmf.h
1 #define SOLID_MAX_SIDES 512
2 #define VMF_FLAG_IS_PROP 0x1
3 #define VMF_FLAG_IS_INSTANCE 0x2
4 #define VMF_FLAG_BRUSH_ENT 0x4
5
6 typedef struct vmf_solid vmf_solid;
7 typedef struct vmf_vert vmf_vert;
8 typedef struct vmf_mat vmf_mat;
9 typedef struct vmf_face vmf_face;
10 typedef struct vmf_userdata vmf_userdata;
11 typedef struct vmf_map vmf_map;
12
13 typedef enum ESolidResult ESolidResult;
14
15 enum ESolidResult
16 {
17 k_ESolidResult_valid,
18 k_ESolidResult_maxsides,
19 k_ESolidResult_invalid,
20 k_ESolidResult_errnomem,
21 k_ESolidResult_corrupt,
22 k_ESolidResult_degenerate
23 };
24
25 struct vmf_vert
26 {
27 v3f co;
28 v3f nrm;
29 v2f xy;
30 };
31
32 struct vmf_face
33 {
34 u32 *indices;
35
36 vdf_node *dispinfo;
37
38 const char *material;
39 int blacklisted;
40 };
41
42 struct vmf_solid
43 {
44 vmf_vert *verts;
45 u32 *indices;
46 };
47
48 struct vmf_mat
49 {
50 char *str;
51 u32 hash;
52 };
53
54 struct vmf_map
55 {
56 vdf_node *root;
57
58 struct vmf_model
59 {
60 char *str;
61 u32 hash;
62
63 mdl_mesh_t mdl;
64 }
65 *models;
66
67 struct vmf_instance
68 {
69 char *name;
70 u32 hash;
71
72 vdf_node *root;
73
74 m4x3f transform;
75 }
76 *cache;
77
78 m4x3f transform;
79 };
80
81 // IMPLEMENTATION
82
83 void solidgen_ctx_reset( vmf_solid *ctx )
84 {
85 csr_sb_clear( ctx->verts );
86 csr_sb_clear( ctx->indices );
87 }
88
89 void solidgen_ctx_init( vmf_solid *ctx )
90 {
91 const u32 init_size = 128;
92
93 ctx->verts = csr_sb_reserve( NULL, init_size, sizeof(vmf_vert) );
94 ctx->indices = csr_sb_reserve( NULL, init_size, sizeof(u32) );
95 }
96
97 void solidgen_ctx_free( vmf_solid *ctx )
98 {
99 csr_sb_free( ctx->verts );
100 csr_sb_free( ctx->indices );
101 }
102
103 // Compute bounds of solid gen ctx
104 void solidgen_bounds( vmf_solid *ctx, boxf box )
105 {
106 v3f mine = { INFINITY, INFINITY, INFINITY };
107 v3f maxe = {-INFINITY,-INFINITY,-INFINITY };
108
109 for( int i = 0; i < csr_sb_count( ctx->verts ); i ++ )
110 {
111 vmf_vert *vert = ctx->verts + i;
112 v3_minv( mine, vert->co, mine );
113 v3_maxv( maxe, vert->co, maxe );
114 }
115
116 v3_copy( mine, box[0] );
117 v3_copy( maxe, box[1] );
118 }
119
120 struct
121 {
122 vmf_mat *blacklist;
123
124 double planes[ SOLID_MAX_SIDES*4 ];
125 u32 bisectors;
126 }
127 vmf_api;
128
129 // put an extra plane into the planes list
130 void vmf_addbisector( double p[4] )
131 {
132 double *plane = vmf_api.planes + vmf_api.bisectors * 4;
133
134 plane[0] = p[0];
135 plane[1] = p[1];
136 plane[2] = p[2];
137 plane[3] = p[3];
138
139 vmf_api.bisectors ++;
140 }
141
142 void vmf_clearbisectors( void )
143 {
144 vmf_api.bisectors = 0;
145 }
146
147 void vmf_ignore_mat( const char *material )
148 {
149 vmf_api.blacklist = csr_sb_reserve( vmf_api.blacklist, 1, sizeof( vmf_mat ) );
150 vmf_mat *mat = (vmf_mat *)csr_sb_use( vmf_api.blacklist );
151
152 mat->str = csr_malloc( strlen( material ) + 1 );
153 strcpy( mat->str, material );
154
155 mat->hash = djb2( ( const unsigned char * )material );
156 }
157
158 void vmf_clearignore( void )
159 {
160 for( int i = 0; i < csr_sb_count( vmf_api.blacklist ); i ++ )
161 {
162 free( vmf_api.blacklist[ i ].str );
163 }
164
165 csr_sb_free( vmf_api.blacklist );
166 vmf_api.blacklist = NULL;
167 }
168
169 int mat_blacklisted( const char *material )
170 {
171 u32 hash = djb2((const u8 *)material);
172
173 for( int j = 0; j < csr_sb_count( vmf_api.blacklist ); j ++ )
174 {
175 if( vmf_api.blacklist[ j ].hash == hash )
176 {
177 if( !strcmp( material, vmf_api.blacklist[ j ].str ) )
178 {
179 return 1;
180 }
181 }
182 }
183
184 return 0;
185 }
186
187 void sort_coplanar( double p[4], vmf_vert *points, u32 *indices, u32 count )
188 {
189 v3f center = {0.f, 0.f, 0.f};
190 v3f norm;
191 v3d_v3f( p, norm );
192 v3_normalize( norm );
193
194 for( int i = 0; i < count; i ++ )
195 {
196 v3_add( points[ indices[i] ].co, center, center );
197 }
198 v3_divs( center, count, center );
199
200 v3f ref;
201 v3_sub( points[ indices[0] ].co, center, ref );
202
203 // Calc angles compared to ref
204 float *angles = (float*)alloca( sizeof(float)*count );
205 for( int i = 0; i < count; i ++ )
206 {
207 v3f diff;
208 v3f c;
209
210 v3_sub( points[ indices[i] ].co, center, diff );
211 v3_cross( diff, ref, c );
212
213 angles[i] =
214 atan2f( v3_length(c), v3_dot( diff, ref ) )
215 * (v3_dot( c, norm ) < 0.f ? -1.f: 1.f);
216 }
217
218 // Temporary local indexes
219 u32 *temp_indices = (u32 *)alloca( sizeof(u32)*count );
220 for( u32 i = 0; i < count; i ++ ) temp_indices[i] = i;
221
222 // Slow sort on large vertex counts
223 int it = 0;
224 while(1)
225 {
226 int modified = 0;
227 for( int i = 0; i < count-1; i ++ )
228 {
229 int s0 = i; int s1 = i + 1;
230
231 if( angles[temp_indices[s0]] > angles[temp_indices[s1]] )
232 {
233 // swap indices and mirror on local
234 u32 temp = indices[s1];
235 indices[s1] = indices[s0];
236 indices[s0] = temp;
237
238 temp = temp_indices[s1];
239 temp_indices[s1] = temp_indices[s0];
240 temp_indices[s0] = temp;
241
242 modified = 1;
243 }
244 }
245
246 it ++;
247 if( !modified ) break;
248 }
249 }
250
251 int solid_has_displacement( vdf_node *node )
252 {
253 int it = 0;
254 vdf_node *pSide;
255
256 while( (pSide = vdf_next(node, "side", &it)) )
257 {
258 if( vdf_next( pSide, "dispinfo", NULL ) )
259 {
260 return 1;
261 }
262 }
263 return 0;
264 }
265
266 void solid_disp_tri( vmf_solid *ctx, u32 a, u32 b, u32 c )
267 {
268 *((u32 *)csr_sb_use( ctx->indices )) = a;
269 *((u32 *)csr_sb_use( ctx->indices )) = b;
270 *((u32 *)csr_sb_use( ctx->indices )) = c;
271 }
272
273 void face_add_indice( vmf_face *f, u32 idx )
274 {
275 f->indices = csr_sb_reserve( f->indices, 1, sizeof( u32 ) );
276 *((u32 *)csr_sb_use( f->indices )) = idx;
277 }
278
279 ESolidResult solidgen_push( vmf_solid *ctx, vdf_node *node )
280 {
281 ESolidResult flag = k_ESolidResult_valid;
282
283 vmf_face faces[ SOLID_MAX_SIDES ];
284
285 int is_displacement = 0;
286 int num_planes = 0;
287
288 // TODO: What is this for again? surely it should be the other way around... i think...
289 if( solid_has_displacement( node ) )
290 {
291 printf( "solid_has_displacement\n" );
292 num_planes = vmf_api.bisectors;
293
294 // Add dummy stuff for globals
295 // ???
296 for( int k = 0; k < vmf_api.bisectors; k ++ )
297 {
298 vmf_face *dummy = faces + k;
299 dummy->indices = NULL;
300 dummy->dispinfo = NULL;
301 dummy->material = NULL;
302 }
303
304 is_displacement = 1;
305 }
306
307 int it = 0;
308 vdf_node *pSide;
309 while( (pSide = vdf_next(node, "side", &it)) )
310 {
311 if( num_planes >= SOLID_MAX_SIDES )
312 {
313 flag = k_ESolidResult_maxsides;
314 fprintf( stderr, "Solid over maxsides limit (%i)\n", SOLID_MAX_SIDES );
315 break;
316 }
317
318 double points[3*3];
319
320 vmf_face *face = faces + num_planes;
321 face->indices = NULL;
322 face->dispinfo = vdf_next( pSide, "dispinfo", NULL );
323 face->material = kv_get( pSide, "material", "" );
324 face->blacklisted = mat_blacklisted( face->material );
325
326 kv_double_array( pSide, "plane", 9, points );
327
328 tri_to_plane( points+6, points+3, points+0, vmf_api.planes + num_planes * 4 );
329 num_planes ++;
330 }
331
332 // Compute plane intersections
333 int i[3];
334 csr_comb_init( 3, i );
335
336 v3f center = { 0.f, 0.f, 0.f };
337 int numpoints = 0;
338 u32 vert_start = csr_sb_count( ctx->verts );
339
340 do
341 {
342 // DO something with i j k
343 double p[3];
344
345 if( (faces[ i[0] ].blacklisted && faces[ i[1] ].blacklisted && faces[ i[2] ].blacklisted) )
346 continue;
347
348 if( !plane_intersect( vmf_api.planes+i[0]*4, vmf_api.planes+i[1]*4, vmf_api.planes+i[2]*4, p ) )
349 continue;
350
351 // Check for illegal verts (eg: got clipped by bisectors)
352 int valid = 1;
353 for( int m = 0; m < num_planes; m ++ )
354 {
355 if( plane_polarity( vmf_api.planes+m*4, p ) > 1e-6f )
356 {
357 valid = 0;
358 break;
359 }
360 }
361
362 if( valid )
363 {
364 ctx->verts = csr_sb_reserve( ctx->verts, 3, sizeof( vmf_vert ) );
365
366 // Take the vertex position and add it for centering base on average
367 numpoints ++;
368 v3_add( (v3f){ p[0], p[1], p[2] }, center, center );
369
370 // Store point / respecive normal for each plane that triggered the collision
371 for( int k = 0; k < 3; k ++ )
372 {
373 if( !faces[ i[k] ].blacklisted )
374 {
375 u32 c = csr_sb_count( ctx->verts );
376
377 face_add_indice( faces + i[k], c );
378
379 v3d_v3f( p, ctx->verts[ c ].co );
380 v3d_v3f( vmf_api.planes+i[k]*4, ctx->verts[ c ].nrm );
381
382 csr_sb_inc( ctx->verts, 1 );
383 }
384 }
385 }
386 }
387 while( csr_comb( 3, num_planes, i ) );
388
389 // Retrospectively set the center for each point
390 v3_divs( center, (float)numpoints, center );
391 for( ; vert_start < csr_sb_count( ctx->verts ); vert_start ++ )
392 {
393 v2_copy( center, ctx->verts[ vert_start ].xy );
394 }
395
396 // Sort each faces and trianglulalate them
397 for( int k = vmf_api.bisectors; k < num_planes; k ++ )
398 {
399 vmf_face *face = faces + k;
400
401 if( face->blacklisted ) continue;
402
403 if( csr_sb_count( face->indices ) < 3 )
404 {
405 if( !vmf_api.bisectors )
406 {
407 flag = k_ESolidResult_degenerate;
408 fprintf( stderr, "Skipping degenerate face\n" );
409 }
410 continue;
411 }
412
413 // Sort only if there is no displacements, or if this side is
414 if( !is_displacement || ( is_displacement && face->dispinfo ) )
415 {
416 sort_coplanar( vmf_api.planes+k*4, ctx->verts, face->indices, csr_sb_count( face->indices ) );
417 }
418
419 if( is_displacement )
420 {
421 // Compute displacement
422 if( face->dispinfo )
423 {
424 if( csr_sb_count( face->indices ) != 4 )
425 {
426 // Mute error if we have global planes cause they
427 // are of course gonna fuck things up here
428 if( !vmf_api.bisectors )
429 {
430 flag = k_ESolidResult_degenerate;
431 fprintf( stderr, "Skipping degenerate displacement\n" );
432 }
433 continue;
434 }
435
436 // Match starting position
437 v3f start;
438 int sw = 0;
439 float dmin = 999999.f;
440
441 vdf_node *dispinfo = face->dispinfo;
442 vdf_node *vdf_normals = vdf_next( dispinfo, "normals", NULL );
443 vdf_node *vdf_distances = vdf_next( dispinfo, "distances", NULL );
444
445 kv_float_array( dispinfo, "startposition", 3, start );
446
447 for( int j = 0; j < csr_sb_count( face->indices ); j ++ )
448 {
449 float d2 = v3_dist2( start, ctx->verts[ face->indices[ j ] ].co );
450 if( d2 < dmin )
451 {
452 dmin = d2;
453 sw = j;
454 }
455 }
456
457 // Get corners of displacement
458 float *SW = ctx->verts[ face->indices[ sw ] ].co;
459 float *NW = ctx->verts[ face->indices[ (sw+1) % 4] ].co;
460 float *NE = ctx->verts[ face->indices[ (sw+2) % 4] ].co;
461 float *SE = ctx->verts[ face->indices[ (sw+3) % 4] ].co;
462
463 // Can be either 5, 9, 17
464 numpoints = pow( 2, kv_get_int( dispinfo, "power", 2 ) ) + 1;
465 u32 reqverts = numpoints*numpoints;
466 u32 reqidx = (numpoints-1)*(numpoints-1)*6;
467
468 ctx->verts = csr_sb_reserve( ctx->verts, reqverts, sizeof( vmf_vert ) );
469 ctx->indices = csr_sb_reserve( ctx->indices, reqidx, sizeof( u32 ) );
470
471 float normals[ 17*3 ];
472 float distances[ 17 ];
473
474 // Calculate displacement positions
475 for( int j = 0; j < numpoints; j ++ )
476 {
477 char key[14];
478 sprintf( key, "row%i", j );
479
480 kv_float_array( vdf_normals, key, 17*3, normals );
481 kv_float_array( vdf_distances, key, 17, distances );
482
483 float dx = (float)j / (float)(numpoints - 1); //Time values for linear interpolation
484
485 for( int m = 0; m < numpoints; m ++ )
486 {
487 vmf_vert *vert = &ctx->verts[ csr_sb_count( ctx->verts ) + j*numpoints + m ];
488
489 float dy = (float)m / (float)(numpoints - 1);
490
491 v3f lwr; v3f upr;
492
493 v3_lerp( SW, SE, dx, lwr );
494 v3_lerp( NW, NE, dx, upr );
495 v3_lerp( lwr, upr, dy, vert->co );
496
497 v3_muladds( vert->co, normals + m * 3, distances[ m ], vert->co );
498
499 // Todo, put correct normal
500 v3_copy( (v3f){ 0.f, 0.f, 1.f }, vert->nrm );
501 }
502 }
503
504 // Build displacement indices
505 int condition = 0;
506 for( int row = 0; row < numpoints - 1; row ++ )
507 {
508 for( int col = 0; col < numpoints - 1; col ++ )
509 {
510 u32 c = csr_sb_count( ctx->verts );
511
512 u32 idxsw = c + ( row + 0 ) * numpoints + col + 0 ;
513 u32 idxse = c + ( row + 0 ) * numpoints + col + 1 ;
514 u32 idxnw = c + ( row + 1 ) * numpoints + col + 0 ;
515 u32 idxne = c + ( row + 1 ) * numpoints + col + 1 ;
516
517 if( (condition ++) % 2 == 0 )
518 {
519 solid_disp_tri( ctx, idxne, idxnw, idxsw );
520 solid_disp_tri( ctx, idxse, idxne, idxsw );
521 }
522 else
523 {
524 solid_disp_tri( ctx, idxse, idxnw, idxsw );
525 solid_disp_tri( ctx, idxse, idxne, idxnw );
526 }
527 }
528 condition ++;
529 }
530
531 csr_sb_inc( ctx->verts, numpoints*numpoints );
532 }
533 }
534 else
535 {
536 u32 tris = csr_sb_count( face->indices ) -2;
537 ctx->indices = csr_sb_reserve( ctx->indices, tris*3, sizeof( u32 ) );
538
539 u32 c = csr_sb_count( ctx->indices );
540
541 for( int j = 0; j < tris; j ++ )
542 {
543 ctx->indices[ c +j*3 +0 ] = face->indices[ 0 ];
544 ctx->indices[ c +j*3 +1 ] = face->indices[ j+1 ];
545 ctx->indices[ c +j*3 +2 ] = face->indices[ j+2 ];
546
547 // A 0,1,2:: A,B,C
548 // D B 0,2,3:: A,C,D
549 // C
550 }
551
552 csr_sb_inc( ctx->indices, tris*3 );
553 }
554 }
555
556 // Free temp polyon buffers
557 for( int j = 0; j < num_planes; j ++ )
558 {
559 csr_sb_free( faces[ j ].indices );
560 }
561
562 return flag;
563 }
564
565 u32 vmf_get_mdl( vmf_map *map, const char *mdl )
566 {
567 u32 hash = djb2( (const unsigned char *)mdl );
568
569 for( u32 i = 0; i < csr_sb_count( map->models ); i ++ )
570 {
571 if( hash == map->models[i].hash && !strcmp( map->models[i].str, mdl ) )
572 {
573 return i;
574 }
575 }
576
577 return 0;
578 }
579
580 int vmf_class_is_prop( vdf_node *ent )
581 {
582 return !strncmp( kv_get( ent, "classname", "" ), "prop_", 5 );
583 }
584
585 void vmf_populate_models( vdf_node *vmf, vmf_map *map )
586 {
587 vdf_foreach( vmf, "entity", ent )
588 {
589 // Use any class name with prop_
590 if( vmf_class_is_prop( ent ) )
591 {
592 // Check if it exists
593 const char *model_path = kv_get( ent, "model", "" );
594 u32 mdl_id = vmf_get_mdl( map, model_path );
595
596 if( !mdl_id )
597 {
598 map->models = csr_sb_reserve( map->models, 1, sizeof( struct vmf_model ));
599
600 struct vmf_model *entry = &map->models[ csr_sb_count( map->models ) ];
601 entry->str = csr_malloc( strlen( model_path ) +1 );
602 strcpy( entry->str, model_path );
603 entry->hash = djb2( (const unsigned char *)model_path );
604
605 mdl_id = csr_sb_count( map->models );
606 csr_sb_use( map->models );
607 }
608
609 // Assign prop-ID for later use
610 ent->user = VMF_FLAG_IS_PROP;
611 ent->user1 = mdl_id;
612 }
613 }
614 }
615
616 // Load all models
617 void vmf_load_models( vmf_map *map )
618 {
619 printf( "Loading all models\n" );
620
621 // Error model. TODO: Maybe don't have this be junk data.
622 map->models = csr_sb_reserve( map->models, 1, sizeof( struct vmf_model ));
623 csr_sb_use( map->models );
624 mdl_error( &map->models[0].mdl );
625
626 // Create listings for each model
627 vmf_populate_models( map->root, map );
628
629 for( int i = 0; i < csr_sb_count( map->cache ); i ++ )
630 {
631 vmf_populate_models( map->cache[i].root, map );
632 }
633
634 printf( "Indexed (%u) models\n", csr_sb_count( map->models )-1 );
635
636 u32 num_success = 0;
637
638 // Load model data
639 // TODO: Make nice loading bar
640 for( int i = 1; i < csr_sb_count( map->models ); i ++ )
641 {
642 struct vmf_model *mdl = &map->models[i];
643
644 if( mdl_from_find_files( mdl->str, &mdl->mdl ) )
645 {
646 num_success ++;
647 }
648 else
649 {
650 fprintf( stderr, "Failed to load model: %s\n", mdl->str );
651 }
652 }
653
654 printf( "Done (%u of %u loaded)\n", num_success, csr_sb_count( map->models )-1 );
655 }
656
657 u32 vmf_init_subvmf( vmf_map *map, const char *subvmf );
658
659 void vmf_load_all_instances( vmf_map *map, vdf_node *vmf )
660 {
661 vdf_foreach( vmf, "entity", ent )
662 {
663 if( !strcmp( kv_get( ent, "classname", "" ), "func_instance" ))
664 {
665 // Entity is in use if file is specified, if not just ignore the entity.
666 const char *path = kv_get( ent, "file", "" );
667 if( strcmp( path, "" ) )
668 {
669 if( (ent->user1 = vmf_init_subvmf( map, path )))
670 {
671 ent->user1 --;
672 ent->user = VMF_FLAG_IS_INSTANCE;
673 }
674 }
675 }
676 }
677 }
678
679 // TODO: Merge this into above function.. doesnt need to be seperated
680 u32 vmf_init_subvmf( vmf_map *map, const char *subvmf )
681 {
682 u32 id;
683 u32 hash = djb2( (const unsigned char *)subvmf );
684
685 // Check if present
686 for( u32 i = 0; i < csr_sb_count( map->cache ); i ++ )
687 {
688 if( hash == map->cache[i].hash )
689 {
690 if( !strcmp( map->cache[i].name, subvmf ) )
691 {
692 return i+1;
693 }
694 }
695 }
696
697 printf( "Loading subvmf: %s\n", subvmf );
698
699 id = csr_sb_count( map->cache );
700 map->cache = csr_sb_reserve( map->cache, 1, sizeof( struct vmf_instance ));
701 struct vmf_instance *inst = &map->cache[ id ];
702
703 if( (inst->root = vdf_open_file( subvmf )) )
704 {
705 csr_sb_use( map->cache );
706
707 inst->hash = hash;
708 inst->name = csr_malloc( strlen( subvmf )+1 );
709 strcpy( inst->name, subvmf );
710
711 // Recursive load other instances
712 vmf_load_all_instances( map, inst->root );
713
714 return id+1;
715 }
716 else
717 {
718 fprintf( stderr, "Failed to load instance file\n" );
719 return 0;
720 }
721 }
722
723 vmf_map *vmf_init( const char *path, int load_models )
724 {
725 vmf_map *map = csr_calloc( sizeof( vmf_map ) );
726 map->root = vdf_open_file( path );
727
728 if( !map->root )
729 {
730 free( map );
731 return NULL;
732 }
733
734 // Prepare instances
735 vmf_load_all_instances( map, map->root );
736
737 // Other resources
738 if( load_models )
739 {
740 vmf_load_models( map );
741 }
742
743 return map;
744 }
745
746 void vmf_free( vmf_map *map )
747 {
748 for( int i = 0; i < csr_sb_count( map->cache ); i ++ )
749 {
750 vdf_free_r( map->cache[i].root );
751 free( map->cache[i].name );
752 }
753
754 for( int i = 1; i < csr_sb_count( map->models ); i ++ )
755 {
756 free( map->models[i].str );
757 mdl_free( &map->models[i].mdl );
758 }
759
760 vdf_free_r( map->root );
761 csr_sb_free( map->models );
762 csr_sb_free( map->cache );
763 free( map );
764 }
765
766 void solidgen_to_obj( vmf_solid *ctx, const char *path )
767 {
768 FILE *fp = fopen( path, "w" );
769
770 if( fp )
771 {
772 fprintf( fp, "o vmf_export\n" );
773
774 vmf_vert *vert;
775
776 // Write vertex block
777 for( int i = 0; i < csr_sb_count( ctx->verts ); i ++ )
778 {
779 vert = &ctx->verts[i];
780 fprintf( fp, "v %f %f %f\n", vert->co[0], vert->co[1], vert->co[2] );
781 }
782
783 // Write normals block
784 for( int i = 0; i < csr_sb_count( ctx->verts ); i ++ )
785 {
786 vert = &ctx->verts[i];
787 fprintf( fp, "vn %f %f %f\n", vert->nrm[0], vert->nrm[1], vert->nrm[2] );
788 }
789
790 fprintf( fp, "s off\n" );
791
792 // Indices
793 for( int i = 0; i < csr_sb_count( ctx->indices )/3; i ++ )
794 {
795 u32 * base = ctx->indices + i*3;
796 fprintf( fp, "f %u//%u %u//%u %u//%u\n",
797 base[2]+1, base[2]+1,
798 base[1]+1, base[1]+1,
799 base[0]+1, base[0]+1
800 );
801 }
802
803 fclose( fp );
804 }
805 else
806 {
807 fprintf( stderr, "Could not open %s for writing\n", path );
808 }
809 }
810
811 void vmf_entity_transform( vdf_node *ent, m4x3f mat )
812 {
813 v3f angles = {0.f,0.f,0.f};
814 v3f offset = {0.f,0.f,0.f};
815 float scale;
816
817 // Parse
818 scale = kv_get_float( ent, "uniformscale", 1.f );
819 kv_float_array( ent, "angles", 3, angles );
820 kv_float_array( ent, "origin", 3, offset );
821
822 // Translation
823 m4x3_translate( mat, offset );
824
825 // Make rotation ( Pitch yaw roll // YZX. Source->OpenGL ordering a lil messed up )
826 m4x3_rotate_z( mat, csr_rad( angles[1] ) );
827 m4x3_rotate_y( mat, csr_rad( angles[0] ) );
828 m4x3_rotate_x( mat, csr_rad( angles[2] ) );
829
830 // Scale
831 m4x3_scale( mat, scale );
832 }
833
834 u32 vmf_visgroup_id( vdf_node *root, const char *name )
835 {
836 vdf_node *dict = vdf_next( root, "visgroups", NULL );
837
838 if( dict )
839 {
840 vdf_foreach( dict, "visgroup", group )
841 {
842 if( !strcmp( kv_get( group, "name", "" ), name ) )
843 {
844 return kv_get_int( group, "visgroupid", 0 );
845 }
846 }
847 }
848
849 return 0;
850 }
851
852 int vmf_visgroup_match( vdf_node *ent, u32 target )
853 {
854 vdf_node *editor = vdf_next( ent, "editor", NULL );
855
856 if( editor )
857 {
858 kv_foreach( editor, "visgroupid", groupe )
859 {
860 if( target == atoi( groupe ) )
861 return 1;
862 }
863 }
864
865 return 0;
866 }