man[i].rbb = NULL;
}
+ return len;
+
rb_manifold_filter_coplanar( man, len, 0.05f );
if( len > 1 )
m3x3_copy( player->rb.to_world, mtx );
v3_copy( pos, mtx[3] );
+#if 0
debug_sphere( mtx, r, VG__CYAN );
+#endif
bh_iter it;
bh_iter_init( 0, &it );
{
v2f co;
v2f normal;
- v3f normal3;
+ v3f normal3,
+ centroid;
}
samples[48];
v3_copy( normal, sample->normal3 ); /* normalize later
if we want to us it */
+ v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
+ v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
+ v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
+
v2_normalize( sample->normal );
sample_count ++;
sj = &samples[j];
- if( v2_dist2( si->co, sj->co ) <= (0.01f*0.01f) &&
- v2_dot( si->normal, sj->normal ) < 0.7f )
- {
- /* TODO: Filter concave */
+ /* non overlapping */
+ if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
+ continue;
- v3f p0;
- v3_muls( support_axis, sj->co[0], p0 );
- p0[1] += sj->co[1];
+ /* not sharp angle */
+ if( v2_dot( si->normal, sj->normal ) >= 0.7f )
+ continue;
- v3_add( average_position, p0, average_position );
-
- v3f n0, n1, dir;
- v3_copy( si->normal3, n0 );
- v3_copy( sj->normal3, n1 );
- v3_cross( n0, n1, dir );
- v3_normalize( dir );
+ /* not convex */
+ v3f v0;
+ v3_sub( sj->centroid, si->centroid, v0 );
+ if( v3_dot( v0, si->normal3 ) >= 0.0f ||
+ v3_dot( v0, sj->normal3 ) <= 0.0f )
+ continue;
- /* make sure the directions all face a common hemisphere */
- v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
+ v3f p0;
+ v3_muls( support_axis, sj->co[0], p0 );
+ p0[1] += sj->co[1];
- v3_add( average_direction, dir, average_direction );
- passed_samples ++;
- }
+ v3_add( average_position, p0, average_position );
+
+ v3f n0, n1, dir;
+ v3_copy( si->normal3, n0 );
+ v3_copy( sj->normal3, n1 );
+ v3_cross( n0, n1, dir );
+ v3_normalize( dir );
+
+ /* make sure the directions all face a common hemisphere */
+ v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
+
+ v3_add( average_direction, dir, average_direction );
+ passed_samples ++;
}
}
v3_muladds( average_position, average_direction, -0.35f, p1 );
vg_line( p0, p1, VG__PINK );
+#if 0
if( passed_samples )
{
v3f displacement, dir;
/* Constraint based */
}
+#endif
+
+ return passed_samples;
}
/*
player->input_js1v->axis.value };
v2_normalize_clamp( steer );
+#if 0
s->state.steery -= steer[0] * k_steer_air * k_rb_delta;
s->state.steerx += steer[1] * s->state.reverse * k_steer_air * k_rb_delta;
+#endif
#if 0
v4f rotate;
limiter *= limiter;
limiter = 1.0f-limiter;
- if( fabsf(angle) < 0.99f )
+ if( fabsf(angle) < 0.9999f )
{
v4f correction;
q_axis_angle( correction, axis,
player->input_js1v->axis.value };
v2_normalize_clamp( steer );
+#if 0
s->state.steery -= steer[0] * k_steer_air * VG_TIMESTEP_FIXED;
s->state.steerx += steer[1] * s->state.reverse * k_steer_air
* limiter * k_rb_delta;
+#endif
s->land_dist = time_to_impact;
v3_copy( target_normal, s->land_normal );
}
steer = input * (1.0f-(s->state.jump_charge+grab)*0.4f),
steer_scaled = vg_signf(steer) * powf(steer,2.0f) * k_steer_ground;
- s->state.steery -= steer_scaled * k_rb_delta;
+ v3f steer_axis;
+ v3_muls( player->rb.to_world[1], -vg_signf( steer_scaled ), steer_axis );
+
+ float current = v3_dot( player->rb.to_world[1], player->rb.w ),
+ addspeed = (steer_scaled * -1.0f) - current,
+ maxaccel = 26.0f * k_rb_delta,
+ accel = vg_clampf( addspeed, -maxaccel, maxaccel );
+
+ v3_muladds( player->rb.w, player->rb.to_world[1], accel, player->rb.w );
+
+
+#if 0
+ player_accelerate( player->rb.w, steer_axis,
+ fabsf(steer_scaled) * 1.0f, 30.0f );
+
+ //s->state.steery -= steer_scaled * k_rb_delta;
+#endif
}
VG_STATIC void skate_apply_jump_model( player_instance *player )
player->input_js1v->axis.value };
v2_normalize_clamp( steer );
+#if 0
float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
s->state.steery_s = -steer[0] * maxspin;
s->state.steerx = s->state.steerx_s;
+#endif
s->state.lift_frames ++;
/* FIXME audio events */
{
struct contact *ct = &manifold[i];
- v3f dv, delta;
+ v3f rv, delta;
v3_sub( ct->co, player->rb.co, delta );
- v3_cross( player->rb.w, delta, dv );
- v3_add( player->rb.v, dv, dv );
+ v3_cross( player->rb.w, delta, rv );
+ v3_add( player->rb.v, rv, rv );
+
+ v3f raCn;
+ v3_cross( delta, ct->n, raCn );
- float vn = -v3_dot( dv, ct->n );
- vn += ct->bias;
+ float normal_mass = 1.0f / (1.0f + v3_dot(raCn,raCn));
+ float vn = v3_dot( rv, ct->n );
+ float lambda = normal_mass * ( -vn + ct->bias );
float temp = ct->norm_impulse;
- ct->norm_impulse = vg_maxf( temp + vn, 0.0f );
- vn = ct->norm_impulse - temp;
+ ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
+ lambda = ct->norm_impulse - temp;
v3f impulse;
- v3_muls( ct->n, vn, impulse );
+ v3_muls( ct->n, lambda, impulse );
if( fabsf(v3_dot( impulse, player->rb.to_world[2] )) > 10.0f ||
fabsf(v3_dot( impulse, player->rb.to_world[1] )) > 50.0f )
* components.
*/
- float wy = v3_dot( player->rb.to_world[1], impulse ) * 0.8f,
+ float wy = v3_dot( player->rb.to_world[1], impulse ) * 1.0f,
wx = v3_dot( player->rb.to_world[0], impulse ) * 1.0f,
- wz = v3_dot( player->rb.to_world[2], impulse ) * 2.0f;
+ wz = v3_dot( player->rb.to_world[2], impulse ) * 1.0f;
v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
v3_muladds( player->rb.w, player->rb.to_world[0], wx, player->rb.w );
v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
+
+
+ v3_cross( player->rb.w, delta, rv );
+ v3_add( player->rb.v, rv, rv );
+ vn = v3_dot( rv, ct->n );
}
}
}
v3_muladds( player->rb.co, player->rb.v, k_rb_delta, player->rb.co );
#endif
- float decay_rate = 0.5f*0.125f;
+ float decay_rate = 1.0f - (k_rb_delta * 3.0f);
+#if 0
if( s->state.activity == k_skate_activity_air )
{
float dist = 1.0f-(s->land_dist/4.0f);
decay_rate = 0.5f * vg_maxf( dist*dist, 0.0f );
}
+#endif
+
+ float wx = v3_dot( player->rb.w, player->rb.to_world[0] ) * decay_rate,
+ wy = v3_dot( player->rb.w, player->rb.to_world[1] ),
+ wz = v3_dot( player->rb.w, player->rb.to_world[2] ) * decay_rate;
- v3_lerp( player->rb.w, (v3f){0.0f,0.0f,0.0f}, decay_rate, player->rb.w );
+ v3_muls( player->rb.to_world[0], wx, player->rb.w );
+ v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
+ v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
#ifndef SKATE_CCD
if( v3_length2( player->rb.w ) > 0.0f )
#endif
/* integrate steering velocities */
+#if 0
v4f rotate;
float l = (s->state.activity == k_skate_activity_air)? 0.04f: 0.24f;
s->state.steerx = 0.0f;
s->state.steery = 0.0f;
+#endif
s->state.flip_time += s->state.flip_rate * k_rb_delta;
rb_update_transform( &player->rb );
return;
}
+ if( vg_input_button_down( player->input_reset ) )
+ {
+ player->rb.co[1] += 2.0f;
+ s->state.cog[1] += 2.0f;
+ q_axis_angle( player->rb.q, (v3f){1.0f,0.0f,0.0f}, VG_PIf * 0.25f );
+ v3_zero( player->rb.w );
+ v3_zero( player->rb.v );
+
+ rb_update_transform( &player->rb );
+ }
+
int trick_id;
if( (s->state.lift_frames > 0) &&
(trick_id = player_skate_trick_input( player )) )
float l = k_board_length,
w = 0.13f;
+#if 0
v3f wheel_positions[] =
{
{ -w, 0.0f, -l },
{ -w, 0.0f, l },
{ w, 0.0f, l },
};
+#else
+ v3f wheel_positions[] =
+ {
+ { 0.0f, 0.0f, -l },
+ { 0.0f, 0.0f, l },
+ };
+#endif
+
+ u32 wheel_colours[] =
+ {
+ VG__RED, VG__GREEN, VG__BLUE, VG__YELOW
+ };
int wheel_states[] =
{
1, 1, 1, 1
};
+ const int wheel_count = 2;
+
if( skate_grind_scansq( player, (v3f){ 0.0f, 0.0f, -l } ) )
{
+#if 0
wheel_states[0] = 0;
wheel_states[1] = 0;
+#endif
}
if( skate_grind_scansq( player, (v3f){ 0.0f, 0.0f, l } ) )
{
+#if 0
wheel_states[2] = 0;
wheel_states[3] = 0;
+#endif
}
rb_sphere collider;
s->substep = k_rb_delta;
- for( int i=0; i<4; i++ )
+
+ int substep_count = 0;
+
+begin_collision:;
+
+
+ for( int i=0; i<wheel_count; i++ )
{
m4x3f mtx;
m3x3_copy( player->rb.to_world, mtx );
m4x3_mulv( player->rb.to_world, wheel_positions[i], mtx[3] );
- debug_sphere( mtx, collider.radius, wheel_states[i]? VG__WHITE:
- VG__BLACK );
+ debug_sphere( mtx, collider.radius,
+ (u32[]){ VG__BLACK, VG__WHITE,
+ wheel_colours[i] }[ wheel_states[i] ]);
}
-begin_collision:;
-
#ifdef SKATE_CCD
/* calculate transform one step into future */
/* calculate the minimum time we can move */
float max_time = s->substep,
- cast_radius = collider.radius - 0.05f;
+ cast_radius = collider.radius - k_penetration_slop*1.2f;
- for( int i=0; i<4; i++ )
+ for( int i=0; i<wheel_count; i++ )
{
if( !wheel_states[i] )
continue;
}
/* clamp to a fraction of delta, to prevent locking */
- max_time = vg_minf( vg_maxf( max_time, k_rb_delta*0.025f ), s->substep );
+ float rate_lock = substep_count;
+ rate_lock *= k_rb_delta * 0.1f;
+ rate_lock *= rate_lock;
+
+ max_time = vg_maxf( max_time, rate_lock );
s->substep_delta = max_time;
/* integrate */
rb_ct *cmanifold = manifold;
- for( int i=0; i<4; i++ )
+ for( int i=0; i<wheel_count; i++ )
{
if( !wheel_states[i] )
continue;
int l = skate_collide_smooth( player, mtx, &collider, cmanifold );
+ if( l )
+ wheel_states[i] = 2;
+
cmanifold += l;
manifold_len += l;
manifold_interface += l;
manifold_back ++;
}
+#if 0
/* try to slap both wheels onto the ground when landing to prevent mega
* angular velocities being added */
if( (s->state.activity == k_skate_activity_air) &&
int grind_len = skate_grind_collide( player, cmanifold );
manifold_len += grind_len;
+#endif
+
+ int grind_len = 0;
+
+ v3f surface_normal = {0.0f,0.0f,0.0f};
for( int i=0; i<manifold_len; i ++ )
{
-#ifdef SKATE_CCD
rb_ct *ct = &manifold[i];
ct->bias = -0.2f *
(s->substep_delta * 3600.0f)
ct->norm_impulse = 0.0f;
ct->tangent_impulse[0] = 0.0f;
ct->tangent_impulse[1] = 0.0f;
-#else
- rb_prepare_contact( &manifold[i] );
+
+ v3_add( ct->n, surface_normal, surface_normal );
+ }
+
+ if( manifold_len )
+ {
+ v3_muls( surface_normal, 1.0f/(float)manifold_len, surface_normal );
+
+ float a = v3_dot( player->rb.to_world[1], surface_normal );
+
+ if( a <= 0.9999f )
+ {
+ v3f axis;
+ v3_cross( surface_normal, player->rb.to_world[1], axis );
+
+ float Fs = -a * k_board_spring,
+ Fd = -v3_dot( player->rb.w, axis ) * k_board_dampener;
+
+ v3_muladds( player->rb.w, axis, (Fs+Fd) * s->substep_delta,
+ player->rb.w );
+ }
+ }
+
+ v3f extent = { w, 0.1f, k_board_length };
+ float ex2 = k_board_interia*extent[0]*extent[0],
+ ey2 = k_board_interia*extent[1]*extent[1],
+ ez2 = k_board_interia*extent[2]*extent[2];
+
+ float mass = 2.0f * (extent[0]*extent[1]*extent[2]);
+ float inv_mass = 1.0f/mass;
+
+ v3f I;
+ I[0] = ((1.0f/12.0f) * mass * (ey2+ez2));
+ I[1] = ((1.0f/12.0f) * mass * (ex2+ez2));
+ I[2] = ((1.0f/12.0f) * mass * (ex2+ey2));
+
+ m3x3f iI;
+ m3x3_identity( iI );
+ iI[0][0] = I[0];
+ iI[1][1] = I[1];
+ iI[2][2] = I[2];
+ m3x3_inv( iI, iI );
+
+ m3x3f iIw;
+ m3x3_mul( iI, player->rb.to_local, iIw );
+ m3x3_mul( player->rb.to_world, iIw, iIw );
+
+ for( int j=0; j<10; j++ )
+ {
+ for( int i=0; i<manifold_len; i++ )
+ {
+ struct contact *ct = &manifold[i];
+
+ v3f rv, delta;
+ v3_sub( ct->co, player->rb.co, delta );
+ v3_cross( player->rb.w, delta, rv );
+ v3_add( player->rb.v, rv, rv );
+
+ v3f raCn;
+ v3_cross( delta, ct->n, raCn );
+
+ v3f raCnI, rbCnI;
+ m3x3_mulv( iIw, raCn, raCnI );
+
+ float normal_mass = 1.0f / (inv_mass + v3_dot(raCn,raCnI));
+ float vn = v3_dot( rv, ct->n );
+
+
+
+
+ float lambda = normal_mass * ( -vn + ct->bias );
+
+ float temp = ct->norm_impulse;
+ ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
+ lambda = ct->norm_impulse - temp;
+
+ v3f impulse;
+ v3_muls( ct->n, lambda, impulse );
+
+#if 0
+ if( fabsf(v3_dot( impulse, player->rb.to_world[2] )) > 10.0f ||
+ fabsf(v3_dot( impulse, player->rb.to_world[1] )) > 50.0f )
+ {
+ player__dead_transition( player );
+ return;
+ }
#endif
+
+ v3_muladds( player->rb.v, impulse, inv_mass, player->rb.v );
+ v3_cross( delta, impulse, impulse );
+ m3x3_mulv( iIw, impulse, impulse );
+ v3_add( impulse, player->rb.w, player->rb.w );
+
+ v3_cross( player->rb.w, delta, rv );
+ v3_add( player->rb.v, rv, rv );
+ vn = v3_dot( rv, ct->n );
+
+ }
}
- skate_collision_response( player, manifold, manifold_len );
+
+
+
+
+
+
+ substep_count ++;
+
if( s->substep >= 0.0001f )
goto begin_collision;
+
+
+ for( int i=0; i<wheel_count; i++ )
+ {
+ m4x3f mtx;
+ m3x3_copy( player->rb.to_world, mtx );
+ m4x3_mulv( player->rb.to_world, wheel_positions[i], mtx[3] );
+ debug_sphere( mtx, collider.radius,
+ (u32[]){ VG__BLACK, VG__WHITE,
+ wheel_colours[i] }[ wheel_states[i] ]);
+ }
+
+
+
+
+
+
+
skate_apply_grind_model( player, &manifold[manifold_interface], grind_len );
skate_apply_interface_model( player, manifold, manifold_interface );
"k_skate_activity_ground",
"k_skate_activity_grind }" }
[s->state.activity] );
+#if 0
player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
s->state.steerx_s, s->state.steery_s,
k_steer_ground, k_steer_air );
+#endif
player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
s->state.flip_time );
player__debugtext( 1, "trickv: %.2f %.2f %.2f",
/* transform */
rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
- v3_muladds( dest->root_co, player->rb.to_world[1], -0.28f, dest->root_co );
+ v3_muladds( dest->root_co, player->rb.to_world[1], -0.1f, dest->root_co );
+ float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
+#if 0
v4f qresy, qresx, qresidual;
m3x3f mtx_residual;
- float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
q_axis_angle( qresy, player->rb.to_world[1], s->state.steery_s*substep );
q_axis_angle( qresx, player->rb.to_world[0], s->state.steerx_s*substep );
q_normalize( qresidual );
q_mul( dest->root_q, qresidual, dest->root_q );
q_normalize( dest->root_q );
+#endif
v4f qflip;
if( (s->state.activity == k_skate_activity_air) &&
s->state.jump_charge = 0.0f;
s->state.lift_frames = 0;
s->state.flip_rate = 0.0f;
+#if 0
s->state.steery = 0.0f;
s->state.steerx = 0.0f;
s->state.steery_s = 0.0f;
s->state.steerx_s = 0.0f;
+#endif
s->state.reverse = 0.0f;
s->state.slip = 0.0f;
v3_copy( player->rb.co, s->state.prev_pos );