/*
- * Copyright (C) 2021-2022 Mt.ZERO Software, Harry Godden - All Rights Reserved
+ * Copyright (C) 2021-2023 Mt.ZERO Software, Harry Godden - All Rights Reserved
*/
/*
* qu3e - Randy Gaul
*/
-#include "common.h"
+#include "vg/vg_console.h"
#include "bvh.h"
#include "scene.h"
#include <math.h>
-VG_STATIC void rb_tangent_basis( v3f n, v3f tx, v3f ty );
-VG_STATIC bh_system bh_system_rigidbodies;
+static bh_system bh_system_rigidbodies;
#ifndef RIGIDBODY_H
#define RIGIDBODY_H
* -----------------------------------------------------------------------------
*/
-VG_STATIC const float
+static const float
k_rb_rate = (1.0/VG_TIMESTEP_FIXED),
k_rb_delta = (1.0/k_rb_rate),
k_friction = 0.4f,
k_phys_baumgarte = 0.2f,
k_gravity = 9.6f;
-VG_STATIC float
+static float
k_limit_bias = 0.02f,
k_joint_correction = 0.01f,
k_joint_impulse = 1.0f,
k_joint_bias = 0.08f; /* positional joints */
-VG_STATIC void rb_register_cvar(void)
-{
+static void rb_register_cvar(void){
VG_VAR_F32( k_limit_bias, flags=VG_VAR_CHEAT );
VG_VAR_F32( k_joint_bias, flags=VG_VAR_CHEAT );
VG_VAR_F32( k_joint_correction, flags=VG_VAR_CHEAT );
float tangent_mass, axis_mass;
};
-struct rb_constr_spring{
- int nothing;
-};
-
-/*
- * -----------------------------------------------------------------------------
- * Math Utils
- * -----------------------------------------------------------------------------
- */
-
-VG_STATIC float sphere_volume( float radius )
-{
- float r3 = radius*radius*radius;
- return (4.0f/3.0f) * VG_PIf * r3;
-}
-
-VG_STATIC void rb_tangent_basis( v3f n, v3f tx, v3f ty )
-{
- /* Compute tangent basis (box2d) */
- if( fabsf( n[0] ) >= 0.57735027f ){
- tx[0] = n[1];
- tx[1] = -n[0];
- tx[2] = 0.0f;
- }
- else{
- tx[0] = 0.0f;
- tx[1] = n[2];
- tx[2] = -n[1];
- }
-
- v3_normalize( tx );
- v3_cross( n, tx, ty );
-}
-
/*
* -----------------------------------------------------------------------------
* Debugging
* -----------------------------------------------------------------------------
*/
-VG_STATIC void rb_debug_contact( rb_ct *ct )
-{
+VG_STATIC void rb_debug_contact( rb_ct *ct ){
v3f p1;
v3_muladds( ct->co, ct->n, 0.05f, p1 );
if( ct->type == k_contact_type_default ){
- vg_line_pt3( ct->co, 0.0125f, 0xff0000ff );
+ vg_line_point( ct->co, 0.0125f, 0xff0000ff );
vg_line( ct->co, p1, 0xffffffff );
}
else if( ct->type == k_contact_type_edge ){
- vg_line_pt3( ct->co, 0.0125f, 0xff00ffc0 );
+ vg_line_point( ct->co, 0.0125f, 0xff00ffc0 );
vg_line( ct->co, p1, 0xffffffff );
}
}
-VG_STATIC void debug_sphere( m4x3f m, float radius, u32 colour )
-{
- v3f ly = { 0.0f, 0.0f, radius },
- lx = { 0.0f, radius, 0.0f },
- lz = { 0.0f, 0.0f, radius };
-
- for( int i=0; i<16; i++ ){
- float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f,
- s = sinf(t),
- c = cosf(t);
-
- v3f py = { s*radius, 0.0f, c*radius },
- px = { s*radius, c*radius, 0.0f },
- pz = { 0.0f, s*radius, c*radius };
-
- v3f p0, p1, p2, p3, p4, p5;
- m4x3_mulv( m, py, p0 );
- m4x3_mulv( m, ly, p1 );
- m4x3_mulv( m, px, p2 );
- m4x3_mulv( m, lx, p3 );
- m4x3_mulv( m, pz, p4 );
- m4x3_mulv( m, lz, p5 );
-
- vg_line( p0, p1, colour == 0x00? 0xff00ff00: colour );
- vg_line( p2, p3, colour == 0x00? 0xff0000ff: colour );
- vg_line( p4, p5, colour == 0x00? 0xffff0000: colour );
-
- v3_copy( py, ly );
- v3_copy( px, lx );
- v3_copy( pz, lz );
- }
-}
-
-VG_STATIC void debug_capsule( m4x3f m, float radius, float h, u32 colour )
-{
- v3f ly = { 0.0f, 0.0f, radius },
- lx = { 0.0f, radius, 0.0f },
- lz = { 0.0f, 0.0f, radius };
-
- float s0 = sinf(0.0f)*radius,
- c0 = cosf(0.0f)*radius;
-
- v3f p0, p1, up, right, forward;
- m3x3_mulv( m, (v3f){0.0f,1.0f,0.0f}, up );
- m3x3_mulv( m, (v3f){1.0f,0.0f,0.0f}, right );
- m3x3_mulv( m, (v3f){0.0f,0.0f,-1.0f}, forward );
- v3_muladds( m[3], up, -h*0.5f+radius, p0 );
- v3_muladds( m[3], up, h*0.5f-radius, p1 );
-
- v3f a0, a1, b0, b1;
- v3_muladds( p0, right, radius, a0 );
- v3_muladds( p1, right, radius, a1 );
- v3_muladds( p0, forward, radius, b0 );
- v3_muladds( p1, forward, radius, b1 );
- vg_line( a0, a1, colour );
- vg_line( b0, b1, colour );
-
- v3_muladds( p0, right, -radius, a0 );
- v3_muladds( p1, right, -radius, a1 );
- v3_muladds( p0, forward, -radius, b0 );
- v3_muladds( p1, forward, -radius, b1 );
- vg_line( a0, a1, colour );
- vg_line( b0, b1, colour );
-
- for( int i=0; i<16; i++ ){
- float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f,
- s1 = sinf(t)*radius,
- c1 = cosf(t)*radius;
-
- v3f e0 = { s0, 0.0f, c0 },
- e1 = { s1, 0.0f, c1 },
- e2 = { s0, c0, 0.0f },
- e3 = { s1, c1, 0.0f },
- e4 = { 0.0f, c0, s0 },
- e5 = { 0.0f, c1, s1 };
-
- m3x3_mulv( m, e0, e0 );
- m3x3_mulv( m, e1, e1 );
- m3x3_mulv( m, e2, e2 );
- m3x3_mulv( m, e3, e3 );
- m3x3_mulv( m, e4, e4 );
- m3x3_mulv( m, e5, e5 );
-
- v3_add( p0, e0, a0 );
- v3_add( p0, e1, a1 );
- v3_add( p1, e0, b0 );
- v3_add( p1, e1, b1 );
-
- vg_line( a0, a1, colour );
- vg_line( b0, b1, colour );
-
- if( c0 < 0.0f ){
- v3_add( p0, e2, a0 );
- v3_add( p0, e3, a1 );
- v3_add( p0, e4, b0 );
- v3_add( p0, e5, b1 );
- }
- else{
- v3_add( p1, e2, a0 );
- v3_add( p1, e3, a1 );
- v3_add( p1, e4, b0 );
- v3_add( p1, e5, b1 );
- }
-
- vg_line( a0, a1, colour );
- vg_line( b0, b1, colour );
- s0 = s1;
- c0 = c1;
- }
-}
-
-VG_STATIC void rb_object_debug( rb_object *obj, u32 colour )
-{
+VG_STATIC void rb_object_debug( rb_object *obj, u32 colour ){
if( obj->type == k_rb_shape_box ){
v3f *box = obj->rb.bbx;
vg_line_boxf_transformed( obj->rb.to_world, obj->rb.bbx, colour );
}
else if( obj->type == k_rb_shape_sphere ){
- debug_sphere( obj->rb.to_world, obj->inf.sphere.radius, colour );
+ vg_line_sphere( obj->rb.to_world, obj->inf.sphere.radius, colour );
}
else if( obj->type == k_rb_shape_capsule ){
m4x3f m0, m1;
float h = obj->inf.capsule.height,
r = obj->inf.capsule.radius;
- debug_capsule( obj->rb.to_world, r, h, colour );
+ vg_line_capsule( obj->rb.to_world, r, h, colour );
}
else if( obj->type == k_rb_shape_scene ){
vg_line_boxf( obj->rb.bbx, colour );
v3_copy( rb->co, rb->to_world[3] );
m4x3_invert_affine( rb->to_world, rb->to_local );
-
-#if 0
- m3x3_mulv( rb->to_world, (v3f){1.0f,0.0f, 0.0f}, rb->right );
- m3x3_mulv( rb->to_world, (v3f){0.0f,1.0f, 0.0f}, rb->up );
- m3x3_mulv( rb->to_world, (v3f){0.0f,0.0f,-1.0f}, rb->forward );
-#endif
-
m3x3_mul( rb->iI, rb->to_local, rb->iIw );
m3x3_mul( rb->to_world, rb->iIw, rb->iIw );
/*
* Initialize rigidbody and calculate masses, inertia
*/
-VG_STATIC void rb_init_object( rb_object *obj )
-{
+VG_STATIC void rb_init_object( rb_object *obj ){
float volume = 1.0f;
int inert = 0;
volume = dims[0]*dims[1]*dims[2];
}
else if( obj->type == k_rb_shape_sphere ){
- volume = sphere_volume( obj->inf.sphere.radius );
+ volume = vg_sphere_volume( obj->inf.sphere.radius );
v3_fill( obj->rb.bbx[0], -obj->inf.sphere.radius );
v3_fill( obj->rb.bbx[1], obj->inf.sphere.radius );
}
else if( obj->type == k_rb_shape_capsule ){
float r = obj->inf.capsule.radius,
h = obj->inf.capsule.height;
- volume = sphere_volume( r ) + VG_PIf * r*r * (h - r*2.0f);
+ volume = vg_sphere_volume( r ) + VG_PIf * r*r * (h - r*2.0f);
v3_fill( obj->rb.bbx[0], -r );
v3_fill( obj->rb.bbx[1], r );
rb_update_transform( &obj->rb );
}
-VG_STATIC void rb_iter( rigidbody *rb )
-{
+VG_STATIC void rb_iter( rigidbody *rb ){
if( !vg_validf( rb->v[0] ) ||
!vg_validf( rb->v[1] ) ||
!vg_validf( rb->v[2] ) )
/*
* Project AABB, and triangle interval onto axis to check if they overlap
*/
-VG_STATIC int rb_box_triangle_interval( v3f extent, v3f axis, v3f tri[3] )
-{
+VG_STATIC int rb_box_triangle_interval( v3f extent, v3f axis, v3f tri[3] ){
float
r = extent[0] * fabsf(axis[0]) +
* Seperating axis test box vs triangle
*/
VG_STATIC int rb_box_triangle_sat( v3f extent, v3f center,
- m4x3f to_local, v3f tri_src[3] )
-{
+ m4x3f to_local, v3f tri_src[3] ){
v3f tri[3];
for( int i=0; i<3; i++ ){
* -----------------------------------------------------------------------------
*/
-VG_STATIC int rb_manifold_apply_filtered( rb_ct *man, int len )
-{
+VG_STATIC int rb_manifold_apply_filtered( rb_ct *man, int len ){
int k = 0;
for( int i=0; i<len; i++ ){
/*
* Merge two contacts if they are within radius(r) of eachother
*/
-VG_STATIC void rb_manifold_contact_weld( rb_ct *ci, rb_ct *cj, float r )
-{
+VG_STATIC void rb_manifold_contact_weld( rb_ct *ci, rb_ct *cj, float r ){
if( v3_dist2( ci->co, cj->co ) < r*r ){
cj->type = k_contact_type_disabled;
ci->p = (ci->p + cj->p) * 0.5f;
/*
*
*/
-VG_STATIC void rb_manifold_filter_joint_edges( rb_ct *man, int len, float r )
-{
+VG_STATIC void rb_manifold_filter_joint_edges( rb_ct *man, int len, float r ){
for( int i=0; i<len-1; i++ ){
rb_ct *ci = &man[i];
if( ci->type != k_contact_type_edge )
/*
* Resolve overlapping pairs
- *
- * TODO: Remove?
*/
-VG_STATIC void rb_manifold_filter_pairs( rb_ct *man, int len, float r )
-{
+VG_STATIC void rb_manifold_filter_pairs( rb_ct *man, int len, float r ){
for( int i=0; i<len-1; i++ ){
rb_ct *ci = &man[i];
int similar = 0;
/*
* Remove contacts that are facing away from A
*/
-VG_STATIC void rb_manifold_filter_backface( rb_ct *man, int len )
-{
+VG_STATIC void rb_manifold_filter_backface( rb_ct *man, int len ){
for( int i=0; i<len; i++ ){
rb_ct *ct = &man[i];
if( ct->type == k_contact_type_disabled )
/*
* Filter out duplicate coplanar results. Good for spheres.
*/
-VG_STATIC void rb_manifold_filter_coplanar( rb_ct *man, int len, float w )
-{
+VG_STATIC void rb_manifold_filter_coplanar( rb_ct *man, int len, float w ){
for( int i=0; i<len; i++ ){
rb_ct *ci = &man[i];
if( ci->type == k_contact_type_disabled ||
* pairs will only ammend these if they are creating a collision
*/
typedef struct capsule_manifold capsule_manifold;
-struct capsule_manifold
-{
+struct capsule_manifold{
float t0, t1;
float r0, r1;
v3f d0, d1;
* on the oriented object which created this pair.
*/
VG_STATIC void rb_capsule_manifold( v3f pa, v3f pb, float t, float r,
- capsule_manifold *manifold )
-{
+ capsule_manifold *manifold ){
v3f delta;
v3_sub( pa, pb, delta );
}
}
-VG_STATIC void rb_capsule_manifold_init( capsule_manifold *manifold )
-{
+VG_STATIC void rb_capsule_manifold_init( capsule_manifold *manifold ){
manifold->t0 = INFINITY;
manifold->t1 = -INFINITY;
}
VG_STATIC int rb_capsule__manifold_done( m4x3f mtx, rb_capsule *c,
capsule_manifold *manifold,
- rb_ct *buf )
-{
+ rb_ct *buf ){
v3f p0, p1;
v3_muladds( mtx[3], mtx[1], -c->height*0.5f+c->radius, p0 );
v3_muladds( mtx[3], mtx[1], c->height*0.5f-c->radius, p1 );
return count;
}
-VG_STATIC int rb_capsule_sphere( rb_object *obja, rb_object *objb, rb_ct *buf )
-{
+VG_STATIC int rb_capsule_sphere( rb_object *obja, rb_object *objb, rb_ct *buf ){
rigidbody *rba = &obja->rb, *rbb = &objb->rb;
float h = obja->inf.capsule.height,
ra = obja->inf.capsule.radius,
}
VG_STATIC int rb_capsule__capsule( m4x3f mtxA, rb_capsule *ca,
- m4x3f mtxB, rb_capsule *cb, rb_ct *buf )
-{
+ m4x3f mtxB, rb_capsule *cb, rb_ct *buf ){
float ha = ca->height,
hb = cb->height,
ra = ca->radius,
return rb_capsule__manifold_done( mtxA, ca, &manifold, buf );
}
-#if 0
-/*
- * Generates up to two contacts; optimised for the most stable manifold
- */
-VG_STATIC int rb_capsule_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf )
-{
- float h = rba->inf.capsule.height,
- r = rba->inf.capsule.radius;
-
- /*
- * Solving this in symetric local space of the cube saves us some time and a
- * couple branches when it comes to the quad stage.
- */
- v3f centroid;
- v3_add( rbb->bbx[0], rbb->bbx[1], centroid );
- v3_muls( centroid, 0.5f, centroid );
-
- boxf bbx;
- v3_sub( rbb->bbx[0], centroid, bbx[0] );
- v3_sub( rbb->bbx[1], centroid, bbx[1] );
-
- v3f pc, p0w, p1w, p0, p1;
- v3_muladds( rba->co, rba->up, -h*0.5f+r, p0w );
- v3_muladds( rba->co, rba->up, h*0.5f-r, p1w );
-
- m4x3_mulv( rbb->to_local, p0w, p0 );
- m4x3_mulv( rbb->to_local, p1w, p1 );
- v3_sub( p0, centroid, p0 );
- v3_sub( p1, centroid, p1 );
- v3_add( p0, p1, pc );
- v3_muls( pc, 0.5f, pc );
-
- /*
- * Finding an appropriate quad to collide lines with
- */
- v3f region;
- v3_div( pc, bbx[1], region );
-
- v3f quad[4];
- if( (fabsf(region[0]) > fabsf(region[1])) &&
- (fabsf(region[0]) > fabsf(region[2])) )
- {
- float px = vg_signf(region[0]) * bbx[1][0];
- v3_copy( (v3f){ px, bbx[0][1], bbx[0][2] }, quad[0] );
- v3_copy( (v3f){ px, bbx[1][1], bbx[0][2] }, quad[1] );
- v3_copy( (v3f){ px, bbx[1][1], bbx[1][2] }, quad[2] );
- v3_copy( (v3f){ px, bbx[0][1], bbx[1][2] }, quad[3] );
- }
- else if( fabsf(region[1]) > fabsf(region[2]) )
- {
- float py = vg_signf(region[1]) * bbx[1][1];
- v3_copy( (v3f){ bbx[0][0], py, bbx[0][2] }, quad[0] );
- v3_copy( (v3f){ bbx[1][0], py, bbx[0][2] }, quad[1] );
- v3_copy( (v3f){ bbx[1][0], py, bbx[1][2] }, quad[2] );
- v3_copy( (v3f){ bbx[0][0], py, bbx[1][2] }, quad[3] );
- }
- else
- {
- float pz = vg_signf(region[2]) * bbx[1][2];
- v3_copy( (v3f){ bbx[0][0], bbx[0][1], pz }, quad[0] );
- v3_copy( (v3f){ bbx[1][0], bbx[0][1], pz }, quad[1] );
- v3_copy( (v3f){ bbx[1][0], bbx[1][1], pz }, quad[2] );
- v3_copy( (v3f){ bbx[0][0], bbx[1][1], pz }, quad[3] );
- }
-
- capsule_manifold manifold;
- rb_capsule_manifold_init( &manifold );
-
- v3f c0, c1;
- closest_point_aabb( p0, bbx, c0 );
- closest_point_aabb( p1, bbx, c1 );
-
- v3f d0, d1, da;
- v3_sub( c0, p0, d0 );
- v3_sub( c1, p1, d1 );
- v3_sub( p1, p0, da );
-
- v3_normalize(d0);
- v3_normalize(d1);
- v3_normalize(da);
-
- if( v3_dot( da, d0 ) <= 0.01f )
- rb_capsule_manifold( p0, c0, 0.0f, r, &manifold );
-
- if( v3_dot( da, d1 ) >= -0.01f )
- rb_capsule_manifold( p1, c1, 1.0f, r, &manifold );
-
- for( int i=0; i<4; i++ )
- {
- int i0 = i,
- i1 = (i+1)%4;
-
- v3f ca, cb;
- float ta, tb;
- closest_segment_segment( p0, p1, quad[i0], quad[i1], &ta, &tb, ca, cb );
- rb_capsule_manifold( ca, cb, ta, r, &manifold );
- }
-
- /*
- * Create final contacts based on line manifold
- */
- m3x3_mulv( rbb->to_world, manifold.d0, manifold.d0 );
- m3x3_mulv( rbb->to_world, manifold.d1, manifold.d1 );
-
- /*
- * Debugging
- */
-
-#if 0
- for( int i=0; i<4; i++ )
- {
- v3f q0, q1;
- int i0 = i,
- i1 = (i+1)%4;
-
- v3_add( quad[i0], centroid, q0 );
- v3_add( quad[i1], centroid, q1 );
-
- m4x3_mulv( rbb->to_world, q0, q0 );
- m4x3_mulv( rbb->to_world, q1, q1 );
-
- vg_line( q0, q1, 0xffffffff );
- }
-#endif
-
- return rb_capsule_manifold_done( rba, rbb, &manifold, buf );
-}
-#endif
-
-VG_STATIC int rb_sphere_box( rb_object *obja, rb_object *objb, rb_ct *buf )
-{
+VG_STATIC int rb_sphere_box( rb_object *obja, rb_object *objb, rb_ct *buf ){
v3f co, delta;
rigidbody *rba = &obja->rb, *rbb = &objb->rb;
return 0;
}
-VG_STATIC int rb_sphere_sphere( rb_object *obja, rb_object *objb, rb_ct *buf )
-{
+VG_STATIC int rb_sphere_sphere( rb_object *obja, rb_object *objb, rb_ct *buf ){
rigidbody *rba = &obja->rb, *rbb = &objb->rb;
v3f delta;
v3_sub( rba->co, rbb->co, delta );
return 0;
}
-//#define RIGIDBODY_DYNAMIC_MESH_EDGES
-
-#if 0
-__attribute__ ((deprecated))
-VG_STATIC int rb_sphere_triangle( rigidbody *rba, rigidbody *rbb,
- v3f tri[3], rb_ct *buf )
-{
- v3f delta, co;
-
-#ifdef RIGIDBODY_DYNAMIC_MESH_EDGES
- closest_on_triangle_1( rba->co, tri, co );
-#else
- enum contact_type type = closest_on_triangle_1( rba->co, tri, co );
-#endif
-
- v3_sub( rba->co, co, delta );
-
- float d2 = v3_length2( delta ),
- r = rba->inf.sphere.radius;
-
- if( d2 < r*r )
- {
- rb_ct *ct = buf;
-
- v3f ab, ac, tn;
- v3_sub( tri[2], tri[0], ab );
- v3_sub( tri[1], tri[0], ac );
- v3_cross( ac, ab, tn );
- v3_copy( tn, ct->n );
-
- if( v3_length2( ct->n ) <= 0.00001f )
- {
- vg_error( "Zero area triangle!\n" );
- return 0;
- }
-
- v3_normalize( ct->n );
-
- float d = sqrtf(d2);
-
- v3_copy( co, ct->co );
- ct->type = type;
- ct->p = r-d;
- ct->rba = rba;
- ct->rbb = rbb;
- return 1;
- }
-
- return 0;
-}
-#endif
-
VG_STATIC int rb_sphere__triangle( m4x3f mtxA, rb_sphere *b,
- v3f tri[3], rb_ct *buf )
-{
+ v3f tri[3], rb_ct *buf ){
v3f delta, co;
enum contact_type type = closest_on_triangle_1( mtxA[3], tri, co );
}
VG_STATIC int rb_sphere__scene( m4x3f mtxA, rb_sphere *b,
- m4x3f mtxB, rb_scene *s, rb_ct *buf )
-{
+ m4x3f mtxB, rb_scene *s, rb_ct *buf ){
scene_context *sc = s->bh_scene->user;
int count = 0;
}
VG_STATIC int rb_box__scene( m4x3f mtxA, boxf bbx,
- m4x3f mtxB, rb_scene *s, rb_ct *buf )
-{
-#if 1
+ m4x3f mtxB, rb_scene *s, rb_ct *buf ){
scene_context *sc = s->bh_scene->user;
v3f tri[3];
}
}
return count;
-#else
-
- scene *sc = s->bh_scene->user;
- v3f tri[3];
-
- v3f extent, center;
- v3_sub( bbx[1], bbx[0], extent );
- v3_muls( extent, 0.5f, extent );
- v3_add( bbx[0], extent, center );
-
- float r = v3_length(extent);
- boxf world_bbx;
- v3_fill( world_bbx[0], -r );
- v3_fill( world_bbx[1], r );
- for( int i=0; i<2; i++ ){
- v3_add( center, world_bbx[i], world_bbx[i] );
- v3_add( mtxA[3], world_bbx[i], world_bbx[i] );
- }
-
- m4x3f to_local;
- m4x3_invert_affine( mtxA, to_local );
-
- bh_iter it;
- bh_iter_init( 0, &it );
- int idx;
- int count = 0;
-
- vg_line_boxf( world_bbx, VG__RED );
-
- while( bh_next( s->bh_scene, &it, world_bbx, &idx ) ){
- u32 *ptri = &sc->arrindices[ idx*3 ];
-
- for( int j=0; j<3; j++ )
- v3_copy( sc->arrvertices[ptri[j]].co, tri[j] );
-
- vg_line( tri[0],tri[1],VG__BLACK );
- vg_line( tri[1],tri[2],VG__BLACK );
- vg_line( tri[2],tri[0],VG__BLACK );
-
- v3f clip[2][8];
- u32 clip_length = 0;
- }
-
-#endif
}
VG_STATIC int rb_capsule__triangle( m4x3f mtxA, rb_capsule *c,
- v3f tri[3], rb_ct *buf )
-{
+ v3f tri[3], rb_ct *buf ){
v3f pc, p0w, p1w;
v3_muladds( mtxA[3], mtxA[1], -c->height*0.5f+c->radius, p0w );
v3_muladds( mtxA[3], mtxA[1], c->height*0.5f-c->radius, p1w );
v3_sub( tri[1], tri[0], v0 );
v3_sub( tri[2], tri[0], v1 );
v3_cross( v0, v1, n );
+
+ if( v3_length2( n ) <= 0.00001f ){
+ vg_error( "Zero area triangle!\n" );
+ return 0;
+ }
+
v3_normalize( n );
int count = rb_capsule__manifold_done( mtxA, c, &manifold, buf );
/* mtxB is defined only for tradition; it is not used currently */
VG_STATIC int rb_capsule__scene( m4x3f mtxA, rb_capsule *c,
m4x3f mtxB, rb_scene *s,
- rb_ct *buf )
-{
+ rb_ct *buf ){
int count = 0;
boxf bbx;
return count;
}
-VG_STATIC int rb_global_has_space( void )
-{
+VG_STATIC int rb_global_has_space( void ){
if( rb_contact_count + 16 > vg_list_size(rb_contact_buffer) )
return 0;
return 1;
}
-VG_STATIC rb_ct *rb_global_buffer( void )
-{
+VG_STATIC rb_ct *rb_global_buffer( void ){
return &rb_contact_buffer[ rb_contact_count ];
}
* -----------------------------------------------------------------------------
*/
-VG_STATIC void rb_solver_reset(void)
-{
+VG_STATIC void rb_solver_reset(void){
rb_contact_count = 0;
}
-VG_STATIC rb_ct *rb_global_ct(void)
-{
+VG_STATIC rb_ct *rb_global_ct(void){
return rb_contact_buffer + rb_contact_count;
}
-VG_STATIC void rb_prepare_contact( rb_ct *ct, float timestep )
-{
+VG_STATIC void rb_prepare_contact( rb_ct *ct, float timestep ){
ct->bias = -0.2f * (timestep*3600.0f)
* vg_minf( 0.0f, -ct->p+k_penetration_slop );
- rb_tangent_basis( ct->n, ct->t[0], ct->t[1] );
+ v3_tangent_basis( ct->n, ct->t[0], ct->t[1] );
ct->norm_impulse = 0.0f;
ct->tangent_impulse[0] = 0.0f;
ct->tangent_impulse[1] = 0.0f;
}
/* calculate total move. manifold should belong to ONE object only */
-VG_STATIC void rb_depenetrate( rb_ct *manifold, int len, v3f dt )
-{
+VG_STATIC void rb_depenetrate( rb_ct *manifold, int len, v3f dt ){
v3_zero( dt );
for( int j=0; j<7; j++ )
/*
* Initializing things like tangent vectors
*/
-VG_STATIC void rb_presolve_contacts( rb_ct *buffer, int len )
-{
+VG_STATIC void rb_presolve_contacts( rb_ct *buffer, int len ){
for( int i=0; i<len; i++ ){
rb_ct *ct = &buffer[i];
rb_prepare_contact( ct, k_rb_delta );
/*
* Creates relative contact velocity vector
*/
-VG_STATIC void rb_rcv( rigidbody *rba, rigidbody *rbb, v3f ra, v3f rb, v3f rv )
-{
+VG_STATIC void rb_rcv( rigidbody *rba, rigidbody *rbb, v3f ra, v3f rb, v3f rv ){
v3f rva, rvb;
v3_cross( rba->w, ra, rva );
v3_add( rba->v, rva, rva );
v3_sub( rva, rvb, rv );
}
-VG_STATIC void rb_contact_restitution( rb_ct *ct, float cr )
-{
+VG_STATIC void rb_contact_restitution( rb_ct *ct, float cr ){
v3f rv, ra, rb;
v3_sub( ct->co, ct->rba->co, ra );
v3_sub( ct->co, ct->rbb->co, rb );
/*
* Apply impulse to object
*/
-VG_STATIC void rb_linear_impulse( rigidbody *rb, v3f delta, v3f impulse )
-{
+VG_STATIC void rb_linear_impulse( rigidbody *rb, v3f delta, v3f impulse ){
/* linear */
v3_muladds( rb->v, impulse, rb->inv_mass, rb->v );
/*
* One iteration to solve the contact constraint
*/
-VG_STATIC void rb_solve_contacts( rb_ct *buf, int len )
-{
+VG_STATIC void rb_solve_contacts( rb_ct *buf, int len ){
for( int i=0; i<len; i++ ){
struct contact *ct = &buf[i];
* -----------------------------------------------------------------------------
*/
-VG_STATIC void rb_debug_position_constraints( rb_constr_pos *buffer, int len )
-{
+VG_STATIC void rb_debug_position_constraints( rb_constr_pos *buffer, int len ){
for( int i=0; i<len; i++ ){
rb_constr_pos *constr = &buffer[i];
rigidbody *rba = constr->rba, *rbb = constr->rbb;
v3f p0, p1;
v3_add( wca, rba->co, p0 );
v3_add( wcb, rbb->co, p1 );
- vg_line_pt3( p0, 0.0025f, 0xff000000 );
- vg_line_pt3( p1, 0.0025f, 0xffffffff );
+ vg_line_point( p0, 0.0025f, 0xff000000 );
+ vg_line_point( p1, 0.0025f, 0xffffffff );
vg_line2( p0, p1, 0xff000000, 0xffffffff );
}
}
VG_STATIC void rb_presolve_swingtwist_constraints( rb_constr_swingtwist *buf,
- int len )
-{
+ int len ){
float size = 0.12f;
for( int i=0; i<len; i++ ){
}
VG_STATIC void rb_debug_swingtwist_constraints( rb_constr_swingtwist *buf,
- int len )
-{
+ int len ){
float size = 0.12f;
for( int i=0; i<len; i++ ){
v3f p0, p1;
v3_muladds( center, va, size, p1 );
vg_line( center, p1, 0xffffffff );
- vg_line_pt3( p1, 0.00025f, 0xffffffff );
+ vg_line_point( p1, 0.00025f, 0xffffffff );
if( st->tangent_violation ){
v3_muladds( center, st->tangent_target, size, p0 );
vg_line( center, p0, 0xff00ff00 );
- vg_line_pt3( p0, 0.00025f, 0xff00ff00 );
+ vg_line_point( p0, 0.00025f, 0xff00ff00 );
vg_line( p1, p0, 0xff000000 );
}
if( st->axis_violation ){
v3_muladds( p0, st->axis_target, size*1.25f, p1 );
vg_line( p0, p1, 0xffffff00 );
- vg_line_pt3( p1, 0.0025f, 0xffffff80 );
+ vg_line_point( p1, 0.0025f, 0xffffff80 );
}
v3f refaxis;
/*
* Solve a list of positional constraints
*/
-VG_STATIC void rb_solve_position_constraints( rb_constr_pos *buf, int len )
-{
+VG_STATIC void rb_solve_position_constraints( rb_constr_pos *buf, int len ){
for( int i=0; i<len; i++ ){
rb_constr_pos *constr = &buf[i];
rigidbody *rba = constr->rba, *rbb = constr->rbb;
}
VG_STATIC void rb_solve_swingtwist_constraints( rb_constr_swingtwist *buf,
- int len )
-{
+ int len ){
float size = 0.12f;
for( int i=0; i<len; i++ ){
}
VG_STATIC void rb_solve_constr_angle( rigidbody *rba, rigidbody *rbb,
- v3f ra, v3f rb )
-{
+ v3f ra, v3f rb ){
m3x3f ssra, ssrb, ssrat, ssrbt;
m3x3f cma, cmb;
* [ 0.0 <= amt <= 1.0 ]: the correction amount
*/
VG_STATIC void rb_correct_position_constraints( rb_constr_pos *buf, int len,
- float amt )
-{
+ float amt ){
for( int i=0; i<len; i++ ){
rb_constr_pos *constr = &buf[i];
rigidbody *rba = constr->rba, *rbb = constr->rbb;
}
VG_STATIC void rb_correct_swingtwist_constraints( rb_constr_swingtwist *buf,
- int len, float amt )
-{
+ int len, float amt ){
for( int i=0; i<len; i++ ){
rb_constr_swingtwist *st = &buf[i];
}
}
-VG_STATIC void rb_correct_contact_constraints( rb_ct *buf, int len, float amt )
-{
+VG_STATIC void rb_correct_contact_constraints( rb_ct *buf, int len, float amt ){
for( int i=0; i<len; i++ ){
rb_ct *ct = &buf[i];
rigidbody *rba = ct->rba,
*/
VG_STATIC void rb_effect_simple_bouyency( rigidbody *ra, v4f plane,
- float amt, float drag )
-{
+ float amt, float drag ){
/* float */
float depth = v3_dot( plane, ra->co ) - plane[3],
lambda = vg_clampf( -depth, 0.0f, 1.0f ) * amt;
*/
VG_STATIC void rb_effect_spring_target_vector( rigidbody *rba, v3f ra, v3f rt,
float spring, float dampening,
- float timestep )
-{
+ float timestep ){
float d = v3_dot( rt, ra );
float a = acosf( vg_clampf( d, -1.0f, 1.0f ) );