X-Git-Url: https://harrygodden.com/git/?a=blobdiff_plain;f=vg_m.h;h=91071ffb163d1b38617679c938bf68a7ba5bc590;hb=17dc0afed8913ce7756e86f1c69da4ada8ceda79;hp=833f1f01598a628a4c09df3c873c1a7cef7a3644;hpb=c8399b3248b4965990ec2573d3ac2e27b1b8dbcc;p=vg.git diff --git a/vg_m.h b/vg_m.h index 833f1f0..91071ff 100644 --- a/vg_m.h +++ b/vg_m.h @@ -18,6 +18,7 @@ * 5.c Closest points * 5.d Raycast & Spherecasts * 5.e Curves + * 5.f Volumes * 6. Statistics * 6.a Random numbers **/ @@ -31,6 +32,7 @@ #define VG_PIf 3.14159265358979323846264338327950288f #define VG_TAUf 6.28318530717958647692528676655900576f + /* * ----------------------------------------------------------------------------- * Section 0. Misc Operations @@ -62,6 +64,12 @@ static int vg_validf( f32 a ) return ((vg_ftu32(a)) & 0x7F800000U) != 0x7F800000U; } +static int v3_valid( v3f a ){ + for( u32 i=0; i<3; i++ ) + if( !vg_validf(a[i]) ) return 0; + return 1; +} + /* * ----------------------------------------------------------------------------- * Section 1. Scalar Operations @@ -99,6 +107,31 @@ static inline f32 vg_rad( f32 deg ) return deg * VG_PIf / 180.0f; } +/* angle to reach b from a */ +static f32 vg_angle_diff( f32 a, f32 b ){ + f32 d = fmod(b,VG_TAUf)-fmodf(a,VG_TAUf); + if( fabsf(d) > VG_PIf ) + d = -vg_signf(d) * (VG_TAUf - fabsf(d)); + + return d; +} + +/* + * quantize float to bit count + */ +static u32 vg_quantf( f32 a, u32 bits, f32 min, f32 max ){ + u32 mask = (0x1 << bits) - 1; + return vg_clampf((a - min) * ((f32)mask/(max-min)), 0.0f, mask ); +} + +/* + * un-quantize discreet to float + */ +static f32 vg_dequantf( u32 q, u32 bits, f32 min, f32 max ){ + u32 mask = (0x1 << bits) - 1; + return min + (f32)q * ((max-min) / (f32)mask); +} + /* * ----------------------------------------------------------------------------- * Section 2.a 2D Vectors @@ -392,8 +425,7 @@ static inline void v3_normalize( v3f a ) v3_muls( a, 1.f / v3_length( a ), a ); } -static inline f32 vg_lerpf( f32 a, f32 b, f32 t ) -{ +static inline f32 vg_lerpf( f32 a, f32 b, f32 t ){ return a + t*(b-a); } @@ -402,6 +434,17 @@ static inline f64 vg_lerp( f64 a, f64 b, f64 t ) return a + t*(b-a); } +static inline void vg_slewf( f32 *a, f32 b, f32 speed ){ + f32 d = vg_signf( b-*a ), + c = *a + d*speed; + *a = vg_minf( b*d, c*d ) * d; +} + +static inline f32 vg_smoothstepf( f32 x ){ + return x*x*(3.0f - 2.0f*x); +} + + /* correctly lerp around circular period -pi -> pi */ static f32 vg_alerpf( f32 a, f32 b, f32 t ) { @@ -480,6 +523,52 @@ static inline void v3_rotate( v3f v, f32 angle, v3f axis, v3f d ) v3_add( v1, v2, d ); } +static void v3_tangent_basis( v3f n, v3f tx, v3f ty ){ + /* Compute tangent basis (box2d) */ + if( fabsf( n[0] ) >= 0.57735027f ){ + tx[0] = n[1]; + tx[1] = -n[0]; + tx[2] = 0.0f; + } + else{ + tx[0] = 0.0f; + tx[1] = n[2]; + tx[2] = -n[1]; + } + + v3_normalize( tx ); + v3_cross( n, tx, ty ); +} + +/* + * Compute yaw and pitch based of a normalized vector representing forward + * forward: -z + * result -> (YAW,PITCH,0.0) + */ +static void v3_angles( v3f v, v3f out_angles ){ + float yaw = atan2f( v[0], -v[2] ), + pitch = atan2f( + -v[1], + sqrtf( + v[0]*v[0] + v[2]*v[2] + ) + ); + + out_angles[0] = yaw; + out_angles[1] = pitch; + out_angles[2] = 0.0f; +} + +/* + * Compute the forward vector from (YAW,PITCH,ROLL) + * forward: -z + */ +static void v3_angles_vector( v3f angles, v3f out_v ){ + out_v[0] = sinf( angles[0] ) * cosf( angles[1] ); + out_v[1] = -sinf( angles[1] ); + out_v[2] = -cosf( angles[0] ) * cosf( angles[1] ); +} + /* * ----------------------------------------------------------------------------- * Section 2.c 4D Vectors @@ -593,11 +682,11 @@ static inline void q_inv( v4f q, v4f d ) d[3] = q[3]*s; } -static inline void q_nlerp( v4f a, v4f b, f32 t, v4f d ) -{ +static inline void q_nlerp( v4f a, v4f b, f32 t, v4f d ){ if( v4_dot(a,b) < 0.0f ){ - v4_muls( b, -1.0f, d ); - v4_lerp( a, d, t, d ); + v4f c; + v4_muls( b, -1.0f, c ); + v4_lerp( a, c, t, d ); } else v4_lerp( a, b, t, d ); @@ -638,6 +727,10 @@ static void q_mulv( v4f q, v3f v, v3f d ) v3_add( v1, v2, d ); } +static f32 q_dist( v4f q0, v4f q1 ){ + return acosf( 2.0f * v4_dot(q0,q1) -1.0f ); +} + /* * ----------------------------------------------------------------------------- * Section 4.a 2x2 matrices @@ -675,6 +768,16 @@ static inline void m2x2_create_rotation( m2x2f a, f32 theta ) a[1][1] = c; } +static inline void m2x2_mulv( m2x2f m, v2f v, v2f d ) +{ + v2f res; + + res[0] = m[0][0]*v[0] + m[1][0]*v[1]; + res[1] = m[0][1]*v[0] + m[1][1]*v[1]; + + v2_copy( res, d ); +} + /* * ----------------------------------------------------------------------------- * Section 4.b 3x3 matrices @@ -1159,8 +1262,7 @@ static void m4x3_decompose( m4x3f m, v3f co, v4f q, v3f s ) m3x3_q( rot, q ); } -static void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point ) -{ +static void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point ){ v3f v; m4x3_mulv( m, point, v ); @@ -1168,26 +1270,19 @@ static void m4x3_expand_aabb_point( m4x3f m, boxf box, v3f point ) v3_maxv( box[1], v, box[1] ); } -static void m4x3_transform_aabb( m4x3f m, boxf box ) -{ +static void m4x3_expand_aabb_aabb( m4x3f m, boxf boxa, boxf boxb ){ v3f a; v3f b; - - v3_copy( box[0], a ); - v3_copy( box[1], b ); - v3_fill( box[0], INFINITY ); - v3_fill( box[1], -INFINITY ); - - m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], a[2] } ); - m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], a[2] } ); - m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], a[2] } ); - m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], a[2] } ); - - m4x3_expand_aabb_point( m, box, (v3f){ a[0], a[1], b[2] } ); - m4x3_expand_aabb_point( m, box, (v3f){ a[0], b[1], b[2] } ); - m4x3_expand_aabb_point( m, box, (v3f){ b[0], b[1], b[2] } ); - m4x3_expand_aabb_point( m, box, (v3f){ b[0], a[1], b[2] } ); + v3_copy( boxb[0], a ); + v3_copy( boxb[1], b ); + m4x3_expand_aabb_point( m, boxa, (v3f){ a[0], a[1], a[2] } ); + m4x3_expand_aabb_point( m, boxa, (v3f){ a[0], b[1], a[2] } ); + m4x3_expand_aabb_point( m, boxa, (v3f){ b[0], b[1], a[2] } ); + m4x3_expand_aabb_point( m, boxa, (v3f){ b[0], a[1], a[2] } ); + m4x3_expand_aabb_point( m, boxa, (v3f){ a[0], a[1], b[2] } ); + m4x3_expand_aabb_point( m, boxa, (v3f){ a[0], b[1], b[2] } ); + m4x3_expand_aabb_point( m, boxa, (v3f){ b[0], b[1], b[2] } ); + m4x3_expand_aabb_point( m, boxa, (v3f){ b[0], a[1], b[2] } ); } - static inline void m4x3_lookat( m4x3f m, v3f pos, v3f target, v3f up ) { v3f dir; @@ -1422,8 +1517,7 @@ static int box_within( boxf greater, boxf lesser ) return 0; } -static inline void box_init_inf( boxf box ) -{ +static inline void box_init_inf( boxf box ){ v3_fill( box[0], INFINITY ); v3_fill( box[1], -INFINITY ); } @@ -1510,7 +1604,7 @@ int plane_intersect2( v4f a, v4f b, v3f p, v3f n ) static int plane_segment( v4f plane, v3f a, v3f b, v3f co ) { f32 d0 = v3_dot( a, plane ) - plane[3], - d1 = v3_dot( b, plane ) - plane[3]; + d1 = v3_dot( b, plane ) - plane[3]; if( d0*d1 < 0.0f ) { @@ -1532,6 +1626,17 @@ static inline f64 plane_polarity( f64 p[4], f64 a[3] ) ; } +static f32 ray_plane( v4f plane, v3f co, v3f dir ){ + f32 d = v3_dot( plane, dir ); + if( fabsf(d) > 1e-6f ){ + v3f v0; + v3_muls( plane, plane[3], v0 ); + v3_sub( v0, co, v0 ); + return v3_dot( v0, plane ) / d; + } + else return INFINITY; +} + /* * ----------------------------------------------------------------------------- * Section 5.c Closest point functions @@ -1542,7 +1647,7 @@ static inline f64 plane_polarity( f64 p[4], f64 a[3] ) * These closest point tests were learned from Real-Time Collision Detection by * Christer Ericson */ -VG_STATIC f32 closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2, +static f32 closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2, f32 *s, f32 *t, v3f c1, v3f c2) { v3f d1,d2,r; @@ -1619,7 +1724,7 @@ VG_STATIC f32 closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2, return v3_length2( v0 ); } -VG_STATIC int point_inside_aabb( boxf box, v3f point ) +static int point_inside_aabb( boxf box, v3f point ) { if((point[0]<=box[1][0]) && (point[1]<=box[1][1]) && (point[2]<=box[1][2]) && (point[0]>=box[0][0]) && (point[1]>=box[0][1]) && (point[2]>=box[0][2]) ) @@ -1628,13 +1733,13 @@ VG_STATIC int point_inside_aabb( boxf box, v3f point ) return 0; } -VG_STATIC void closest_point_aabb( v3f p, boxf box, v3f dest ) +static void closest_point_aabb( v3f p, boxf box, v3f dest ) { v3_maxv( p, box[0], dest ); v3_minv( dest, box[1], dest ); } -VG_STATIC void closest_point_obb( v3f p, boxf box, +static void closest_point_obb( v3f p, boxf box, m4x3f mtx, m4x3f inv_mtx, v3f dest ) { v3f local; @@ -1643,7 +1748,7 @@ VG_STATIC void closest_point_obb( v3f p, boxf box, m4x3_mulv( mtx, local, dest ); } -VG_STATIC f32 closest_point_segment( v3f a, v3f b, v3f point, v3f dest ) +static f32 closest_point_segment( v3f a, v3f b, v3f point, v3f dest ) { v3f v0, v1; v3_sub( b, a, v0 ); @@ -1655,7 +1760,7 @@ VG_STATIC f32 closest_point_segment( v3f a, v3f b, v3f point, v3f dest ) return t; } -VG_STATIC void closest_on_triangle( v3f p, v3f tri[3], v3f dest ) +static void closest_on_triangle( v3f p, v3f tri[3], v3f dest ) { v3f ab, ac, ap; f32 d1, d2; @@ -1751,7 +1856,7 @@ enum contact_type k_contact_type_edge }; -VG_STATIC enum contact_type closest_on_triangle_1( v3f p, v3f tri[3], v3f dest ) +static enum contact_type closest_on_triangle_1( v3f p, v3f tri[3], v3f dest ) { v3f ab, ac, ap; f32 d1, d2; @@ -2124,6 +2229,17 @@ static void eval_bezier3( v3f p0, v3f p1, v3f p2, f32 t, v3f p ) v3_muladds( p, p2, t*t, p ); } +/* + * ----------------------------------------------------------------------------- + * Section 5.f Volumes + * ----------------------------------------------------------------------------- + */ + +static float vg_sphere_volume( float radius ){ + float r3 = radius*radius*radius; + return (4.0f/3.0f) * VG_PIf * r3; +} + /* * ----------------------------------------------------------------------------- * Section 6.a PSRNG and some distributions @@ -2157,8 +2273,7 @@ struct { } static vg_rand; -static void vg_rand_seed( unsigned long seed ) -{ +static void vg_rand_seed( unsigned long seed ) { /* set initial seeds to mt[STATE_VECTOR_LENGTH] using the generator * from Line 25 of Table 1 in: Donald Knuth, "The Art of Computer * Programming," Vol. 2 (2nd Ed.) pp.102. @@ -2173,8 +2288,7 @@ static void vg_rand_seed( unsigned long seed ) /* * Generates a pseudo-randomly generated long. */ -static u32 vg_randu32(void) -{ +static u32 vg_randu32(void) { u32 y; /* mag[x] = x * 0x9908b0df for x = 0,1 */ static u32 mag[2] = {0x0, 0x9908b0df}; @@ -2214,32 +2328,47 @@ static u32 vg_randu32(void) /* * Generates a pseudo-randomly generated f64 in the range [0..1]. */ -static inline f64 vg_randf64(void) -{ +static inline f64 vg_randf64(void){ return (f64)vg_randu32()/(f64)0xffffffff; } -static inline f64 vg_randf64_range( f64 min, f64 max ) -{ +static inline f64 vg_randf64_range( f64 min, f64 max ){ return vg_lerp( min, max, (f64)vg_randf64() ); } -static inline void vg_rand_dir( v3f dir ) -{ +static inline void vg_rand_dir( v3f dir ){ dir[0] = vg_randf64(); dir[1] = vg_randf64(); dir[2] = vg_randf64(); + /* warning: *could* be 0 length. + * very unlikely.. 1 in (2^32)^3. but its mathematically wrong. */ + v3_muls( dir, 2.0f, dir ); v3_sub( dir, (v3f){1.0f,1.0f,1.0f}, dir ); v3_normalize( dir ); } -static inline void vg_rand_sphere( v3f co ) -{ +static inline void vg_rand_sphere( v3f co ){ vg_rand_dir(co); v3_muls( co, cbrtf( vg_randf64() ), co ); } +static void vg_rand_disc( v2f co ){ + f32 a = vg_randf64() * VG_TAUf; + co[0] = sinf(a); + co[1] = cosf(a); + v2_muls( co, sqrtf( vg_randf64() ), co ); +} + +static void vg_rand_cone( v3f out_dir, f32 angle ){ + f32 r = sqrtf(vg_randf64()) * angle * 0.5f, + a = vg_randf64() * VG_TAUf; + + out_dir[0] = sinf(a) * sinf(r); + out_dir[1] = cosf(a) * sinf(r); + out_dir[2] = cosf(r); +} + #endif /* VG_M_H */