X-Git-Url: https://harrygodden.com/git/?a=blobdiff_plain;f=rigidbody.h;h=f4d6ef9ccf0e1c5336087ba135b7fcde726118b6;hb=2a238d32da833812e837cf38e16a7685c98db5c3;hp=e374f3fbd6e773cdbc5f33349a5202f576125903;hpb=1656d58a7bd17df4a1edcc9677ade4dbafc82229;p=carveJwlIkooP6JGAAIwe30JlM.git diff --git a/rigidbody.h b/rigidbody.h index e374f3f..f4d6ef9 100644 --- a/rigidbody.h +++ b/rigidbody.h @@ -1,566 +1,2393 @@ +/* + * Copyright (C) 2021-2022 Mt.ZERO Software, Harry Godden - All Rights Reserved + */ + /* * Resources: Box2D - Erin Catto * qu3e - Randy Gaul */ -#include "common.h" -static void rb_tangent_basis( v3f n, v3f tx, v3f ty ); +#include "common.h" +#include "bvh.h" +#include "scene.h" + +#include + +VG_STATIC void rb_tangent_basis( v3f n, v3f tx, v3f ty ); +VG_STATIC bh_system bh_system_rigidbodies; + +#ifndef RIGIDBODY_H +#define RIGIDBODY_H + +/* + * ----------------------------------------------------------------------------- + * (K)onstants + * ----------------------------------------------------------------------------- + */ + +VG_STATIC const float + k_rb_rate = (1.0/VG_TIMESTEP_FIXED), + k_rb_delta = (1.0/k_rb_rate), + k_friction = 0.4f, + k_damp_linear = 0.1f, /* scale velocity 1/(1+x) */ + k_damp_angular = 0.1f, /* scale angular 1/(1+x) */ + k_penetration_slop = 0.01f, + k_inertia_scale = 8.0f, + k_phys_baumgarte = 0.2f; + +VG_STATIC float + k_limit_bias = 0.02f, + k_joint_correction = 0.01f, + k_joint_impulse = 1.0f, + k_joint_bias = 0.08f; /* positional joints */ + +VG_STATIC void rb_register_cvar(void) +{ + vg_convar_push( (struct vg_convar){ + .name = "k_limit_bias", .data = &k_limit_bias, + .data_type = k_convar_dtype_f32, .opt_f32 = {.clamp = 0}, .persistent = 1 + }); + + vg_convar_push( (struct vg_convar){ + .name = "k_joint_bias", .data = &k_joint_bias, + .data_type = k_convar_dtype_f32, .opt_f32 = {.clamp = 0}, .persistent = 1 + }); + + vg_convar_push( (struct vg_convar){ + .name = "k_joint_correction", .data = &k_joint_correction, + .data_type = k_convar_dtype_f32, .opt_f32 = {.clamp = 0}, .persistent = 1 + }); + + vg_convar_push( (struct vg_convar){ + .name = "k_joint_impulse", .data = &k_joint_impulse, + .data_type = k_convar_dtype_f32, .opt_f32 = {.clamp = 0}, .persistent = 1 + }); +} + +/* + * ----------------------------------------------------------------------------- + * structure definitions + * ----------------------------------------------------------------------------- + */ + +typedef struct rigidbody rigidbody; +typedef struct contact rb_ct; + +struct rigidbody +{ + v3f co, v, w; + v4f q; + + enum rb_shape + { + k_rb_shape_box = 0, + k_rb_shape_sphere = 1, + k_rb_shape_capsule = 2, + k_rb_shape_scene = 3 + } + type; + + union + { + struct rb_sphere + { + float radius; + } + sphere; + + struct rb_capsule + { + float height, radius; + } + capsule; + + struct rb_scene + { + bh_tree *bh_scene; + } + scene; + } + inf; + + v3f right, up, forward; + + int is_world; + + boxf bbx, bbx_world; + float inv_mass; + + /* inertia model and inverse world tensor */ + v3f I; + m3x3f iI, iIw; + + m4x3f to_world, to_local; +}; + +VG_STATIC struct contact +{ + rigidbody *rba, *rbb; + v3f co, n; + v3f t[2]; + float p, bias, norm_impulse, tangent_impulse[2], + normal_mass, tangent_mass[2]; + + u32 element_id; + + enum contact_type type; +} +rb_contact_buffer[256]; +VG_STATIC int rb_contact_count = 0; + +typedef struct rb_constr_pos rb_constr_pos; +typedef struct rb_constr_swingtwist rb_constr_swingtwist; + +struct rb_constr_pos +{ + rigidbody *rba, *rbb; + v3f lca, lcb; +}; + +struct rb_constr_swingtwist +{ + rigidbody *rba, *rbb; + + v4f conevx, conevy; /* relative to rba */ + v3f view_offset, /* relative to rba */ + coneva, conevxb;/* relative to rbb */ + + int tangent_violation, axis_violation; + v3f axis, tangent_axis, tangent_target, axis_target; + + float conet; + float tangent_mass, axis_mass; +}; + +/* + * ----------------------------------------------------------------------------- + * Math Utils + * ----------------------------------------------------------------------------- + */ + +VG_STATIC float sphere_volume( float radius ) +{ + float r3 = radius*radius*radius; + return (4.0f/3.0f) * VG_PIf * r3; +} + +VG_STATIC void rb_tangent_basis( v3f n, v3f tx, v3f ty ) +{ + /* Compute tangent basis (box2d) */ + if( fabsf( n[0] ) >= 0.57735027f ) + { + tx[0] = n[1]; + tx[1] = -n[0]; + tx[2] = 0.0f; + } + else + { + tx[0] = 0.0f; + tx[1] = n[2]; + tx[2] = -n[1]; + } + + v3_normalize( tx ); + v3_cross( n, tx, ty ); +} + +/* + * ----------------------------------------------------------------------------- + * Debugging + * ----------------------------------------------------------------------------- + */ + +VG_STATIC void rb_debug_contact( rb_ct *ct ) +{ + if( ct->type != k_contact_type_disabled ) + { + v3f p1; + v3_muladds( ct->co, ct->n, 0.05f, p1 ); + vg_line_pt3( ct->co, 0.0025f, 0xff0000ff ); + vg_line( ct->co, p1, 0xffffffff ); + } +} + +VG_STATIC void debug_sphere( m4x3f m, float radius, u32 colour ) +{ + v3f ly = { 0.0f, 0.0f, radius }, + lx = { 0.0f, radius, 0.0f }, + lz = { 0.0f, 0.0f, radius }; + + for( int i=0; i<16; i++ ) + { + float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f, + s = sinf(t), + c = cosf(t); + + v3f py = { s*radius, 0.0f, c*radius }, + px = { s*radius, c*radius, 0.0f }, + pz = { 0.0f, s*radius, c*radius }; + + v3f p0, p1, p2, p3, p4, p5; + m4x3_mulv( m, py, p0 ); + m4x3_mulv( m, ly, p1 ); + m4x3_mulv( m, px, p2 ); + m4x3_mulv( m, lx, p3 ); + m4x3_mulv( m, pz, p4 ); + m4x3_mulv( m, lz, p5 ); + + vg_line( p0, p1, colour == 0x00? 0xff00ff00: colour ); + vg_line( p2, p3, colour == 0x00? 0xff0000ff: colour ); + vg_line( p4, p5, colour == 0x00? 0xffff0000: colour ); + + v3_copy( py, ly ); + v3_copy( px, lx ); + v3_copy( pz, lz ); + } +} + +VG_STATIC void debug_capsule( m4x3f m, float radius, float h, u32 colour ) +{ + v3f ly = { 0.0f, 0.0f, radius }, + lx = { 0.0f, radius, 0.0f }, + lz = { 0.0f, 0.0f, radius }; + + float s0 = sinf(0.0f)*radius, + c0 = cosf(0.0f)*radius; + + v3f p0, p1, up, right, forward; + m3x3_mulv( m, (v3f){0.0f,1.0f,0.0f}, up ); + m3x3_mulv( m, (v3f){1.0f,0.0f,0.0f}, right ); + m3x3_mulv( m, (v3f){0.0f,0.0f,-1.0f}, forward ); + v3_muladds( m[3], up, -h*0.5f+radius, p0 ); + v3_muladds( m[3], up, h*0.5f-radius, p1 ); + + v3f a0, a1, b0, b1; + v3_muladds( p0, right, radius, a0 ); + v3_muladds( p1, right, radius, a1 ); + v3_muladds( p0, forward, radius, b0 ); + v3_muladds( p1, forward, radius, b1 ); + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + v3_muladds( p0, right, -radius, a0 ); + v3_muladds( p1, right, -radius, a1 ); + v3_muladds( p0, forward, -radius, b0 ); + v3_muladds( p1, forward, -radius, b1 ); + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + for( int i=0; i<16; i++ ) + { + float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f, + s1 = sinf(t)*radius, + c1 = cosf(t)*radius; + + v3f e0 = { s0, 0.0f, c0 }, + e1 = { s1, 0.0f, c1 }, + e2 = { s0, c0, 0.0f }, + e3 = { s1, c1, 0.0f }, + e4 = { 0.0f, c0, s0 }, + e5 = { 0.0f, c1, s1 }; + + m3x3_mulv( m, e0, e0 ); + m3x3_mulv( m, e1, e1 ); + m3x3_mulv( m, e2, e2 ); + m3x3_mulv( m, e3, e3 ); + m3x3_mulv( m, e4, e4 ); + m3x3_mulv( m, e5, e5 ); + + v3_add( p0, e0, a0 ); + v3_add( p0, e1, a1 ); + v3_add( p1, e0, b0 ); + v3_add( p1, e1, b1 ); + + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + if( c0 < 0.0f ) + { + v3_add( p0, e2, a0 ); + v3_add( p0, e3, a1 ); + v3_add( p0, e4, b0 ); + v3_add( p0, e5, b1 ); + } + else + { + v3_add( p1, e2, a0 ); + v3_add( p1, e3, a1 ); + v3_add( p1, e4, b0 ); + v3_add( p1, e5, b1 ); + } + + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + s0 = s1; + c0 = c1; + } +} + +VG_STATIC void rb_debug( rigidbody *rb, u32 colour ) +{ + if( rb->type == k_rb_shape_box ) + { + v3f *box = rb->bbx; + vg_line_boxf_transformed( rb->to_world, rb->bbx, colour ); + } + else if( rb->type == k_rb_shape_sphere ) + { + debug_sphere( rb->to_world, rb->inf.sphere.radius, colour ); + } + else if( rb->type == k_rb_shape_capsule ) + { + m4x3f m0, m1; + float h = rb->inf.capsule.height, + r = rb->inf.capsule.radius; + + debug_capsule( rb->to_world, r, h, colour ); + } + else if( rb->type == k_rb_shape_scene ) + { + vg_line_boxf( rb->bbx, colour ); + } +} + +/* + * ----------------------------------------------------------------------------- + * Integration + * ----------------------------------------------------------------------------- + */ + +/* + * Update world space bounding box based on local one + */ +VG_STATIC void rb_update_bounds( rigidbody *rb ) +{ + box_copy( rb->bbx, rb->bbx_world ); + m4x3_transform_aabb( rb->to_world, rb->bbx_world ); +} + +/* + * Commit transform to rigidbody. Updates matrices + */ +VG_STATIC void rb_update_transform( rigidbody *rb ) +{ + q_normalize( rb->q ); + q_m3x3( rb->q, rb->to_world ); + v3_copy( rb->co, rb->to_world[3] ); + + m4x3_invert_affine( rb->to_world, rb->to_local ); + + m3x3_mulv( rb->to_world, (v3f){1.0f,0.0f, 0.0f}, rb->right ); + m3x3_mulv( rb->to_world, (v3f){0.0f,1.0f, 0.0f}, rb->up ); + m3x3_mulv( rb->to_world, (v3f){0.0f,0.0f,-1.0f}, rb->forward ); + + m3x3_mul( rb->iI, rb->to_local, rb->iIw ); + m3x3_mul( rb->to_world, rb->iIw, rb->iIw ); + + rb_update_bounds( rb ); +} + +/* + * Extrapolate rigidbody into a transform based on vg accumulator. + * Useful for rendering + */ +VG_STATIC void rb_extrapolate_transform( rigidbody *rb, m4x3f transform ) +{ + float substep = vg_clampf( vg.accumulator / k_rb_delta, 0.0f, 1.0f ); + + v3f co; + v4f q; + + v3_muladds( rb->co, rb->v, k_rb_delta*substep, co ); + + if( v3_length2( rb->w ) > 0.0f ) + { + v4f rotation; + v3f axis; + v3_copy( rb->w, axis ); + + float mag = v3_length( axis ); + v3_divs( axis, mag, axis ); + q_axis_angle( rotation, axis, mag*k_rb_delta*substep ); + q_mul( rotation, rb->q, q ); + q_normalize( q ); + } + else + { + v4_copy( rb->q, q ); + } + + q_m3x3( q, transform ); + v3_copy( co, transform[3] ); +} + +/* + * Initialize rigidbody and calculate masses, inertia + */ +VG_STATIC void rb_init( rigidbody *rb ) +{ + float volume = 1.0f; + + if( rb->type == k_rb_shape_box ) + { + v3f dims; + v3_sub( rb->bbx[1], rb->bbx[0], dims ); + volume = dims[0]*dims[1]*dims[2]; + } + else if( rb->type == k_rb_shape_sphere ) + { + volume = sphere_volume( rb->inf.sphere.radius ); + v3_fill( rb->bbx[0], -rb->inf.sphere.radius ); + v3_fill( rb->bbx[1], rb->inf.sphere.radius ); + } + else if( rb->type == k_rb_shape_capsule ) + { + float r = rb->inf.capsule.radius, + h = rb->inf.capsule.height; + volume = sphere_volume( r ) + VG_PIf * r*r * (h - r*2.0f); + + v3_fill( rb->bbx[0], -r ); + v3_fill( rb->bbx[1], r ); + rb->bbx[0][1] = -h; + rb->bbx[1][1] = h; + } + else if( rb->type == k_rb_shape_scene ) + { + rb->is_world = 1; + box_copy( rb->inf.scene.bh_scene->nodes[0].bbx, rb->bbx ); + } + + if( rb->is_world ) + { + rb->inv_mass = 0.0f; + v3_zero( rb->I ); + m3x3_zero(rb->iI); + } + else + { + float mass = 2.0f*volume; + rb->inv_mass = 1.0f/mass; + + v3f extent; + v3_sub( rb->bbx[1], rb->bbx[0], extent ); + v3_muls( extent, 0.5f, extent ); + + /* local intertia tensor */ + float scale = k_inertia_scale; + float ex2 = scale*extent[0]*extent[0], + ey2 = scale*extent[1]*extent[1], + ez2 = scale*extent[2]*extent[2]; + + rb->I[0] = ((1.0f/12.0f) * mass * (ey2+ez2)); + rb->I[1] = ((1.0f/12.0f) * mass * (ex2+ez2)); + rb->I[2] = ((1.0f/12.0f) * mass * (ex2+ey2)); + + m3x3_identity( rb->iI ); + rb->iI[0][0] = rb->I[0]; + rb->iI[1][1] = rb->I[1]; + rb->iI[2][2] = rb->I[2]; + m3x3_inv( rb->iI, rb->iI ); + } + + v3_zero( rb->v ); + v3_zero( rb->w ); + + rb_update_transform( rb ); +} + +VG_STATIC void rb_iter( rigidbody *rb ) +{ + if( !vg_validf( rb->v[0] ) || + !vg_validf( rb->v[1] ) || + !vg_validf( rb->v[2] ) ) + { + vg_fatal_exit_loop( "NaN velocity" ); + } + + v3f gravity = { 0.0f, -9.8f, 0.0f }; + v3_muladds( rb->v, gravity, k_rb_delta, rb->v ); + + /* intergrate velocity */ + v3_muladds( rb->co, rb->v, k_rb_delta, rb->co ); + v3_lerp( rb->w, (v3f){0.0f,0.0f,0.0f}, 0.0025f, rb->w ); + + /* inegrate inertia */ + if( v3_length2( rb->w ) > 0.0f ) + { + v4f rotation; + v3f axis; + v3_copy( rb->w, axis ); + + float mag = v3_length( axis ); + v3_divs( axis, mag, axis ); + q_axis_angle( rotation, axis, mag*k_rb_delta ); + q_mul( rotation, rb->q, rb->q ); + } + + /* damping */ + v3_muls( rb->v, 1.0f/(1.0f+k_rb_delta*k_damp_linear), rb->v ); + v3_muls( rb->w, 1.0f/(1.0f+k_rb_delta*k_damp_angular), rb->w ); +} + + +/* + * ----------------------------------------------------------------------------- + * Boolean shape overlap functions + * ----------------------------------------------------------------------------- + */ + +/* + * Project AABB, and triangle interval onto axis to check if they overlap + */ +VG_STATIC int rb_box_triangle_interval( v3f extent, v3f axis, v3f tri[3] ) +{ + float + + r = extent[0] * fabsf(axis[0]) + + extent[1] * fabsf(axis[1]) + + extent[2] * fabsf(axis[2]), + + p0 = v3_dot( axis, tri[0] ), + p1 = v3_dot( axis, tri[1] ), + p2 = v3_dot( axis, tri[2] ), + + e = vg_maxf(-vg_maxf(p0,vg_maxf(p1,p2)), vg_minf(p0,vg_minf(p1,p2))); + + if( e > r ) return 0; + else return 1; +} + +/* + * Seperating axis test box vs triangle + */ +VG_STATIC int rb_box_triangle_sat( rigidbody *rba, v3f tri_src[3] ) +{ + v3f tri[3]; + + v3f extent, c; + v3_sub( rba->bbx[1], rba->bbx[0], extent ); + v3_muls( extent, 0.5f, extent ); + v3_add( rba->bbx[0], extent, c ); + + for( int i=0; i<3; i++ ) + { + m4x3_mulv( rba->to_local, tri_src[i], tri[i] ); + v3_sub( tri[i], c, tri[i] ); + } + + /* u0, u1, u2 */ + if(!rb_box_triangle_interval( extent, (v3f){1.0f,0.0f,0.0f}, tri )) return 0; + if(!rb_box_triangle_interval( extent, (v3f){0.0f,1.0f,0.0f}, tri )) return 0; + if(!rb_box_triangle_interval( extent, (v3f){0.0f,0.0f,1.0f}, tri )) return 0; + + v3f v0,v1,v2,n, e0,e1,e2; + v3_sub( tri[1], tri[0], v0 ); + v3_sub( tri[2], tri[0], v1 ); + v3_sub( tri[2], tri[1], v2 ); + v3_normalize( v0 ); + v3_normalize( v1 ); + v3_normalize( v2 ); + v3_cross( v0, v1, n ); + v3_cross( v0, n, e0 ); + v3_cross( n, v1, e1 ); + v3_cross( v2, n, e2 ); + + /* normal */ + if(!rb_box_triangle_interval( extent, n, tri )) return 0; + + v3f axis[9]; + v3_cross( e0, (v3f){1.0f,0.0f,0.0f}, axis[0] ); + v3_cross( e0, (v3f){0.0f,1.0f,0.0f}, axis[1] ); + v3_cross( e0, (v3f){0.0f,0.0f,1.0f}, axis[2] ); + v3_cross( e1, (v3f){1.0f,0.0f,0.0f}, axis[3] ); + v3_cross( e1, (v3f){0.0f,1.0f,0.0f}, axis[4] ); + v3_cross( e1, (v3f){0.0f,0.0f,1.0f}, axis[5] ); + v3_cross( e2, (v3f){1.0f,0.0f,0.0f}, axis[6] ); + v3_cross( e2, (v3f){0.0f,1.0f,0.0f}, axis[7] ); + v3_cross( e2, (v3f){0.0f,0.0f,1.0f}, axis[8] ); + + for( int i=0; i<9; i++ ) + if(!rb_box_triangle_interval( extent, axis[i], tri )) return 0; + + return 1; +} + +/* + * ----------------------------------------------------------------------------- + * Manifold + * ----------------------------------------------------------------------------- + */ + +VG_STATIC int rb_manifold_apply_filtered( rb_ct *man, int len ) +{ + int k = 0; + + for( int i=0; itype == k_contact_type_disabled ) + continue; + + man[k ++] = man[i]; + } + + return k; +} + +/* + * Merge two contacts if they are within radius(r) of eachother + */ +VG_STATIC void rb_manifold_contact_weld( rb_ct *ci, rb_ct *cj, float r ) +{ + if( v3_dist2( ci->co, cj->co ) < r*r ) + { + cj->type = k_contact_type_disabled; + ci->p = (ci->p + cj->p) * 0.5f; + + v3_add( ci->co, cj->co, ci->co ); + v3_muls( ci->co, 0.5f, ci->co ); + + v3f delta; + v3_sub( ci->rba->co, ci->co, delta ); + + float c0 = v3_dot( ci->n, delta ), + c1 = v3_dot( cj->n, delta ); + + if( c0 < 0.0f || c1 < 0.0f ) + { + /* error */ + ci->type = k_contact_type_disabled; + } + else + { + v3f n; + v3_muls( ci->n, c0, n ); + v3_muladds( n, cj->n, c1, n ); + v3_normalize( n ); + v3_copy( n, ci->n ); + } + } +} + +/* + * + */ +VG_STATIC void rb_manifold_filter_joint_edges( rb_ct *man, int len, float r ) +{ + for( int i=0; itype != k_contact_type_edge ) + continue; + + for( int j=i+1; jtype != k_contact_type_edge ) + continue; + + rb_manifold_contact_weld( ci, cj, r ); + } + } +} + +/* + * Resolve overlapping pairs + * + * TODO: Remove? + */ +VG_STATIC void rb_manifold_filter_pairs( rb_ct *man, int len, float r ) +{ + for( int i=0; itype == k_contact_type_disabled ) continue; + + for( int j=i+1; jtype == k_contact_type_disabled ) continue; + + if( v3_dist2( ci->co, cj->co ) < r*r ) + { + cj->type = k_contact_type_disabled; + v3_add( cj->n, ci->n, ci->n ); + ci->p += cj->p; + similar ++; + } + } + + if( similar ) + { + float n = 1.0f/((float)similar+1.0f); + v3_muls( ci->n, n, ci->n ); + ci->p *= n; + + if( v3_length2(ci->n) < 0.1f*0.1f ) + ci->type = k_contact_type_disabled; + else + v3_normalize( ci->n ); + } + } +} + +/* + * Remove contacts that are facing away from A + */ +VG_STATIC void rb_manifold_filter_backface( rb_ct *man, int len ) +{ + for( int i=0; itype == k_contact_type_disabled ) + continue; + + v3f delta; + v3_sub( ct->co, ct->rba->co, delta ); + + if( v3_dot( delta, ct->n ) > -0.001f ) + ct->type = k_contact_type_disabled; + } +} + +/* + * Filter out duplicate coplanar results. Good for spheres. + */ +VG_STATIC void rb_manifold_filter_coplanar( rb_ct *man, int len, float w ) +{ + for( int i=0; itype == k_contact_type_disabled || + ci->type == k_contact_type_edge ) + continue; + + float d1 = v3_dot( ci->co, ci->n ); + + for( int j=0; jtype == k_contact_type_disabled ) + continue; + + float d2 = v3_dot( cj->co, ci->n ), + d = d2-d1; + + if( fabsf( d ) <= w ) + { + cj->type = k_contact_type_disabled; + } + } + } +} + +/* + * ----------------------------------------------------------------------------- + * Collision matrix + * ----------------------------------------------------------------------------- + */ + +/* + * Contact generators + * + * These do not automatically allocate contacts, an appropriately sized + * buffer must be supplied. The function returns the size of the manifold + * which was generated. + * + * The values set on the contacts are: n, co, p, rba, rbb + */ + +/* + * By collecting the minimum(time) and maximum(time) pairs of points, we + * build a reduced and stable exact manifold. + * + * tx: time at point + * rx: minimum distance of these points + * dx: the delta between the two points + * + * pairs will only ammend these if they are creating a collision + */ +typedef struct capsule_manifold capsule_manifold; +struct capsule_manifold +{ + float t0, t1; + float r0, r1; + v3f d0, d1; +}; + +/* + * Expand a line manifold with a new pair. t value is the time along segment + * on the oriented object which created this pair. + */ +VG_STATIC void rb_capsule_manifold( v3f pa, v3f pb, float t, float r, + capsule_manifold *manifold ) +{ + v3f delta; + v3_sub( pa, pb, delta ); + + if( v3_length2(delta) < r*r ) + { + if( t < manifold->t0 ) + { + v3_copy( delta, manifold->d0 ); + manifold->t0 = t; + manifold->r0 = r; + } + + if( t > manifold->t1 ) + { + v3_copy( delta, manifold->d1 ); + manifold->t1 = t; + manifold->r1 = r; + } + } +} + +VG_STATIC void rb_capsule_manifold_init( capsule_manifold *manifold ) +{ + manifold->t0 = INFINITY; + manifold->t1 = -INFINITY; +} + +VG_STATIC int rb_capsule_manifold_done( rigidbody *rba, rigidbody *rbb, + capsule_manifold *manifold, rb_ct *buf ) +{ + float h = rba->inf.capsule.height, + ra = rba->inf.capsule.radius; + + v3f p0, p1; + v3_muladds( rba->co, rba->up, -h*0.5f+ra, p0 ); + v3_muladds( rba->co, rba->up, h*0.5f-ra, p1 ); + + int count = 0; + if( manifold->t0 <= 1.0f ) + { + rb_ct *ct = buf; + + v3f pa; + v3_muls( p0, 1.0f-manifold->t0, pa ); + v3_muladds( pa, p1, manifold->t0, pa ); + + float d = v3_length( manifold->d0 ); + v3_muls( manifold->d0, 1.0f/d, ct->n ); + v3_muladds( pa, ct->n, -ra, ct->co ); + + ct->p = manifold->r0 - d; + ct->rba = rba; + ct->rbb = rbb; + ct->type = k_contact_type_default; + + count ++; + } + + if( (manifold->t1 >= 0.0f) && (manifold->t0 != manifold->t1) ) + { + rb_ct *ct = buf+count; + + v3f pa; + v3_muls( p0, 1.0f-manifold->t1, pa ); + v3_muladds( pa, p1, manifold->t1, pa ); + + float d = v3_length( manifold->d1 ); + v3_muls( manifold->d1, 1.0f/d, ct->n ); + v3_muladds( pa, ct->n, -ra, ct->co ); + + ct->p = manifold->r1 - d; + ct->rba = rba; + ct->rbb = rbb; + ct->type = k_contact_type_default; + + count ++; + } + + /* + * Debugging + */ + + if( count == 2 ) + vg_line( buf[0].co, buf[1].co, 0xff0000ff ); + + return count; +} + +VG_STATIC int rb_capsule_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + float h = rba->inf.capsule.height, + ra = rba->inf.capsule.radius, + rb = rbb->inf.sphere.radius; + + v3f p0, p1; + v3_muladds( rba->co, rba->up, -h*0.5f+ra, p0 ); + v3_muladds( rba->co, rba->up, h*0.5f-ra, p1 ); + + v3f c, delta; + closest_point_segment( p0, p1, rbb->co, c ); + v3_sub( c, rbb->co, delta ); + + float d2 = v3_length2(delta), + r = ra + rb; + + if( d2 < r*r ) + { + float d = sqrtf(d2); + + rb_ct *ct = buf; + v3_muls( delta, 1.0f/d, ct->n ); + ct->p = r-d; + + v3f p0, p1; + v3_muladds( c, ct->n, -ra, p0 ); + v3_muladds( rbb->co, ct->n, rb, p1 ); + v3_add( p0, p1, ct->co ); + v3_muls( ct->co, 0.5f, ct->co ); + + ct->rba = rba; + ct->rbb = rbb; + ct->type = k_contact_type_default; + + return 1; + } + + return 0; +} + +VG_STATIC int rb_capsule_capsule( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + if( !box_overlap( rba->bbx_world, rbb->bbx_world ) ) + return 0; + + float ha = rba->inf.capsule.height, + hb = rbb->inf.capsule.height, + ra = rba->inf.capsule.radius, + rb = rbb->inf.capsule.radius, + r = ra+rb; + + v3f p0, p1, p2, p3; + v3_muladds( rba->co, rba->up, -ha*0.5f+ra, p0 ); + v3_muladds( rba->co, rba->up, ha*0.5f-ra, p1 ); + v3_muladds( rbb->co, rbb->up, -hb*0.5f+rb, p2 ); + v3_muladds( rbb->co, rbb->up, hb*0.5f-rb, p3 ); + + capsule_manifold manifold; + rb_capsule_manifold_init( &manifold ); + + v3f pa, pb; + float ta, tb; + closest_segment_segment( p0, p1, p2, p3, &ta, &tb, pa, pb ); + rb_capsule_manifold( pa, pb, ta, r, &manifold ); + + ta = closest_point_segment( p0, p1, p2, pa ); + tb = closest_point_segment( p0, p1, p3, pb ); + rb_capsule_manifold( pa, p2, ta, r, &manifold ); + rb_capsule_manifold( pb, p3, tb, r, &manifold ); + + closest_point_segment( p2, p3, p0, pa ); + closest_point_segment( p2, p3, p1, pb ); + rb_capsule_manifold( p0, pa, 0.0f, r, &manifold ); + rb_capsule_manifold( p1, pb, 1.0f, r, &manifold ); + + return rb_capsule_manifold_done( rba, rbb, &manifold, buf ); +} + +/* + * Generates up to two contacts; optimised for the most stable manifold + */ +VG_STATIC int rb_capsule_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + float h = rba->inf.capsule.height, + r = rba->inf.capsule.radius; + + /* + * Solving this in symetric local space of the cube saves us some time and a + * couple branches when it comes to the quad stage. + */ + v3f centroid; + v3_add( rbb->bbx[0], rbb->bbx[1], centroid ); + v3_muls( centroid, 0.5f, centroid ); + + boxf bbx; + v3_sub( rbb->bbx[0], centroid, bbx[0] ); + v3_sub( rbb->bbx[1], centroid, bbx[1] ); + + v3f pc, p0w, p1w, p0, p1; + v3_muladds( rba->co, rba->up, -h*0.5f+r, p0w ); + v3_muladds( rba->co, rba->up, h*0.5f-r, p1w ); + + m4x3_mulv( rbb->to_local, p0w, p0 ); + m4x3_mulv( rbb->to_local, p1w, p1 ); + v3_sub( p0, centroid, p0 ); + v3_sub( p1, centroid, p1 ); + v3_add( p0, p1, pc ); + v3_muls( pc, 0.5f, pc ); + + /* + * Finding an appropriate quad to collide lines with + */ + v3f region; + v3_div( pc, bbx[1], region ); + + v3f quad[4]; + if( (fabsf(region[0]) > fabsf(region[1])) && + (fabsf(region[0]) > fabsf(region[2])) ) + { + float px = vg_signf(region[0]) * bbx[1][0]; + v3_copy( (v3f){ px, bbx[0][1], bbx[0][2] }, quad[0] ); + v3_copy( (v3f){ px, bbx[1][1], bbx[0][2] }, quad[1] ); + v3_copy( (v3f){ px, bbx[1][1], bbx[1][2] }, quad[2] ); + v3_copy( (v3f){ px, bbx[0][1], bbx[1][2] }, quad[3] ); + } + else if( fabsf(region[1]) > fabsf(region[2]) ) + { + float py = vg_signf(region[1]) * bbx[1][1]; + v3_copy( (v3f){ bbx[0][0], py, bbx[0][2] }, quad[0] ); + v3_copy( (v3f){ bbx[1][0], py, bbx[0][2] }, quad[1] ); + v3_copy( (v3f){ bbx[1][0], py, bbx[1][2] }, quad[2] ); + v3_copy( (v3f){ bbx[0][0], py, bbx[1][2] }, quad[3] ); + } + else + { + float pz = vg_signf(region[2]) * bbx[1][2]; + v3_copy( (v3f){ bbx[0][0], bbx[0][1], pz }, quad[0] ); + v3_copy( (v3f){ bbx[1][0], bbx[0][1], pz }, quad[1] ); + v3_copy( (v3f){ bbx[1][0], bbx[1][1], pz }, quad[2] ); + v3_copy( (v3f){ bbx[0][0], bbx[1][1], pz }, quad[3] ); + } + + capsule_manifold manifold; + rb_capsule_manifold_init( &manifold ); + + v3f c0, c1; + closest_point_aabb( p0, bbx, c0 ); + closest_point_aabb( p1, bbx, c1 ); + + v3f d0, d1, da; + v3_sub( c0, p0, d0 ); + v3_sub( c1, p1, d1 ); + v3_sub( p1, p0, da ); + + v3_normalize(d0); + v3_normalize(d1); + v3_normalize(da); + + if( v3_dot( da, d0 ) <= 0.01f ) + rb_capsule_manifold( p0, c0, 0.0f, r, &manifold ); + + if( v3_dot( da, d1 ) >= -0.01f ) + rb_capsule_manifold( p1, c1, 1.0f, r, &manifold ); + + for( int i=0; i<4; i++ ) + { + int i0 = i, + i1 = (i+1)%4; + + v3f ca, cb; + float ta, tb; + closest_segment_segment( p0, p1, quad[i0], quad[i1], &ta, &tb, ca, cb ); + rb_capsule_manifold( ca, cb, ta, r, &manifold ); + } + + /* + * Create final contacts based on line manifold + */ + m3x3_mulv( rbb->to_world, manifold.d0, manifold.d0 ); + m3x3_mulv( rbb->to_world, manifold.d1, manifold.d1 ); + + /* + * Debugging + */ + +#if 0 + for( int i=0; i<4; i++ ) + { + v3f q0, q1; + int i0 = i, + i1 = (i+1)%4; + + v3_add( quad[i0], centroid, q0 ); + v3_add( quad[i1], centroid, q1 ); + + m4x3_mulv( rbb->to_world, q0, q0 ); + m4x3_mulv( rbb->to_world, q1, q1 ); + + vg_line( q0, q1, 0xffffffff ); + } +#endif + + return rb_capsule_manifold_done( rba, rbb, &manifold, buf ); +} + +VG_STATIC int rb_sphere_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + v3f co, delta; + + closest_point_obb( rba->co, rbb->bbx, rbb->to_world, rbb->to_local, co ); + v3_sub( rba->co, co, delta ); + + float d2 = v3_length2(delta), + r = rba->inf.sphere.radius; + + if( d2 <= r*r ) + { + float d; + + rb_ct *ct = buf; + if( d2 <= 0.0001f ) + { + v3_sub( rba->co, rbb->co, delta ); + + /* + * some extra testing is required to find the best axis to push the + * object back outside the box. Since there isnt a clear seperating + * vector already, especially on really high aspect boxes. + */ + float lx = v3_dot( rbb->right, delta ), + ly = v3_dot( rbb->up, delta ), + lz = v3_dot( rbb->forward, delta ), + px = rbb->bbx[1][0] - fabsf(lx), + py = rbb->bbx[1][1] - fabsf(ly), + pz = rbb->bbx[1][2] - fabsf(lz); + + if( px < py && px < pz ) + v3_muls( rbb->right, vg_signf(lx), ct->n ); + else if( py < pz ) + v3_muls( rbb->up, vg_signf(ly), ct->n ); + else + v3_muls( rbb->forward, vg_signf(lz), ct->n ); + + v3_muladds( rba->co, ct->n, -r, ct->co ); + ct->p = r; + } + else + { + d = sqrtf(d2); + v3_muls( delta, 1.0f/d, ct->n ); + ct->p = r-d; + v3_copy( co, ct->co ); + } + + ct->rba = rba; + ct->rbb = rbb; + ct->type = k_contact_type_default; + return 1; + } + + return 0; +} + +VG_STATIC int rb_sphere_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + v3f delta; + v3_sub( rba->co, rbb->co, delta ); + + float d2 = v3_length2(delta), + r = rba->inf.sphere.radius + rbb->inf.sphere.radius; + + if( d2 < r*r ) + { + float d = sqrtf(d2); + + rb_ct *ct = buf; + v3_muls( delta, 1.0f/d, ct->n ); + + v3f p0, p1; + v3_muladds( rba->co, ct->n,-rba->inf.sphere.radius, p0 ); + v3_muladds( rbb->co, ct->n, rbb->inf.sphere.radius, p1 ); + v3_add( p0, p1, ct->co ); + v3_muls( ct->co, 0.5f, ct->co ); + ct->type = k_contact_type_default; + ct->p = r-d; + ct->rba = rba; + ct->rbb = rbb; + return 1; + } + + return 0; +} + +//#define RIGIDBODY_DYNAMIC_MESH_EDGES + +VG_STATIC int rb_sphere_triangle( rigidbody *rba, rigidbody *rbb, + v3f tri[3], rb_ct *buf ) +{ + v3f delta, co; + +#ifdef RIGIDBODY_DYNAMIC_MESH_EDGES + closest_on_triangle_1( rba->co, tri, co ); +#else + enum contact_type type = closest_on_triangle_1( rba->co, tri, co ); +#endif + + v3_sub( rba->co, co, delta ); + + float d2 = v3_length2( delta ), + r = rba->inf.sphere.radius; + + if( d2 < r*r ) + { + rb_ct *ct = buf; + + v3f ab, ac, tn; + v3_sub( tri[2], tri[0], ab ); + v3_sub( tri[1], tri[0], ac ); + v3_cross( ac, ab, tn ); + v3_copy( tn, ct->n ); + + if( v3_length2( ct->n ) <= 0.00001f ) + { + vg_error( "Zero area triangle!\n" ); + return 0; + } + + v3_normalize( ct->n ); + + float d = sqrtf(d2); + + v3_copy( co, ct->co ); + ct->type = type; + ct->p = r-d; + ct->rba = rba; + ct->rbb = rbb; + return 1; + } + + return 0; +} + + +VG_STATIC void rb_debug_sharp_scene_edges( rigidbody *rbb, float sharp_ang, + boxf box, u32 colour ) +{ + sharp_ang = cosf( sharp_ang ); + + scene *sc = rbb->inf.scene.bh_scene->user; + vg_line_boxf( box, 0xff00ff00 ); + + bh_iter it; + bh_iter_init( 0, &it ); + int idx; + + while( bh_next( rbb->inf.scene.bh_scene, &it, box, &idx ) ) + { + u32 *ptri = &sc->arrindices[ idx*3 ]; + v3f tri[3]; + + for( int j=0; j<3; j++ ) + v3_copy( sc->arrvertices[ptri[j]].co, tri[j] ); + + for( int j=0; j<3; j++ ) + { +#if 0 + v3f edir; + v3_sub( tri[(j+1)%3], tri[j], edir ); + + if( v3_dot( edir, (v3f){ 0.5184758473652127f, + 0.2073903389460850f, + -0.8295613557843402f } ) < 0.0f ) + continue; +#endif + + bh_iter jt; + bh_iter_init( 0, &jt ); + + boxf region; + float const k_r = 0.02f; + v3_add( (v3f){ k_r, k_r, k_r }, tri[j], region[1] ); + v3_add( (v3f){ -k_r, -k_r, -k_r }, tri[j], region[0] ); + + int jdx; + while( bh_next( rbb->inf.scene.bh_scene, &jt, region, &jdx ) ) + { + if( idx <= jdx ) + continue; + + u32 *ptrj = &sc->arrindices[ jdx*3 ]; + v3f trj[3]; + + for( int k=0; k<3; k++ ) + v3_copy( sc->arrvertices[ptrj[k]].co, trj[k] ); + + for( int k=0; k<3; k++ ) + { + if( v3_dist2( tri[j], trj[k] ) <= k_r*k_r ) + { + int jp1 = (j+1)%3, + jp2 = (j+2)%3, + km1 = (k+3-1)%3, + km2 = (k+3-2)%3; + + if( v3_dist2( tri[jp1], trj[km1] ) <= k_r*k_r ) + { + v3f b0, b1, b2; + v3_sub( tri[jp1], tri[j], b0 ); + v3_sub( tri[jp2], tri[j], b1 ); + v3_sub( trj[km2], tri[j], b2 ); + + v3f cx0, cx1; + v3_cross( b0, b1, cx0 ); + v3_cross( b2, b0, cx1 ); + + float polarity = v3_dot( cx0, b2 ); + + if( polarity < 0.0f ) + { +#if 0 + vg_line( tri[j], tri[jp1], 0xff00ff00 ); + float ang = v3_dot(cx0,cx1) / + (v3_length(cx0)*v3_length(cx1)); + if( ang < sharp_ang ) + { + vg_line( tri[j], tri[jp1], 0xff00ff00 ); + } +#endif + } + } + } + } + } + } + } +} + +VG_STATIC int rb_sphere_scene( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + scene *sc = rbb->inf.scene.bh_scene->user; + + bh_iter it; + bh_iter_init( 0, &it ); + int idx; + + int count = 0; + + while( bh_next( rbb->inf.scene.bh_scene, &it, rba->bbx_world, &idx ) ) + { + u32 *ptri = &sc->arrindices[ idx*3 ]; + v3f tri[3]; + + for( int j=0; j<3; j++ ) + v3_copy( sc->arrvertices[ptri[j]].co, tri[j] ); + + buf[ count ].element_id = ptri[0]; + + vg_line( tri[0],tri[1],0x70ff6000 ); + vg_line( tri[1],tri[2],0x70ff6000 ); + vg_line( tri[2],tri[0],0x70ff6000 ); + + int contact = rb_sphere_triangle( rba, rbb, tri, buf+count ); + count += contact; + + if( count == 16 ) + { + vg_warn( "Exceeding sphere_vs_scene capacity. Geometry too dense!\n" ); + return count; + } + } + + return count; +} + +VG_STATIC int rb_box_scene( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + scene *sc = rbb->inf.scene.bh_scene->user; + + v3f tri[3]; + + bh_iter it; + bh_iter_init( 0, &it ); + int idx; + + int count = 0; + + while( bh_next( rbb->inf.scene.bh_scene, &it, rba->bbx_world, &idx ) ) + { + u32 *ptri = &sc->arrindices[ idx*3 ]; + + for( int j=0; j<3; j++ ) + v3_copy( sc->arrvertices[ptri[j]].co, tri[j] ); + + if( rb_box_triangle_sat( rba, tri ) ) + { + vg_line(tri[0],tri[1],0xff50ff00 ); + vg_line(tri[1],tri[2],0xff50ff00 ); + vg_line(tri[2],tri[0],0xff50ff00 ); + } + else + { + vg_line(tri[0],tri[1],0xff0000ff ); + vg_line(tri[1],tri[2],0xff0000ff ); + vg_line(tri[2],tri[0],0xff0000ff ); + + continue; + } + + v3f v0,v1,n; + v3_sub( tri[1], tri[0], v0 ); + v3_sub( tri[2], tri[0], v1 ); + v3_cross( v0, v1, n ); + v3_normalize( n ); + + /* find best feature */ + float best = v3_dot( rba->right, n ); + int axis = 0; + + float cy = v3_dot( rba->up, n ); + if( fabsf(cy) > fabsf(best) ) + { + best = cy; + axis = 1; + } + + float cz = -v3_dot( rba->forward, n ); + if( fabsf(cz) > fabsf(best) ) + { + best = cz; + axis = 2; + } + + v3f manifold[4]; + + if( axis == 0 ) + { + float px = best > 0.0f? rba->bbx[0][0]: rba->bbx[1][0]; + manifold[0][0] = px; + manifold[0][1] = rba->bbx[0][1]; + manifold[0][2] = rba->bbx[0][2]; + manifold[1][0] = px; + manifold[1][1] = rba->bbx[1][1]; + manifold[1][2] = rba->bbx[0][2]; + manifold[2][0] = px; + manifold[2][1] = rba->bbx[1][1]; + manifold[2][2] = rba->bbx[1][2]; + manifold[3][0] = px; + manifold[3][1] = rba->bbx[0][1]; + manifold[3][2] = rba->bbx[1][2]; + } + else if( axis == 1 ) + { + float py = best > 0.0f? rba->bbx[0][1]: rba->bbx[1][1]; + manifold[0][0] = rba->bbx[0][0]; + manifold[0][1] = py; + manifold[0][2] = rba->bbx[0][2]; + manifold[1][0] = rba->bbx[1][0]; + manifold[1][1] = py; + manifold[1][2] = rba->bbx[0][2]; + manifold[2][0] = rba->bbx[1][0]; + manifold[2][1] = py; + manifold[2][2] = rba->bbx[1][2]; + manifold[3][0] = rba->bbx[0][0]; + manifold[3][1] = py; + manifold[3][2] = rba->bbx[1][2]; + } + else + { + float pz = best > 0.0f? rba->bbx[0][2]: rba->bbx[1][2]; + manifold[0][0] = rba->bbx[0][0]; + manifold[0][1] = rba->bbx[0][1]; + manifold[0][2] = pz; + manifold[1][0] = rba->bbx[1][0]; + manifold[1][1] = rba->bbx[0][1]; + manifold[1][2] = pz; + manifold[2][0] = rba->bbx[1][0]; + manifold[2][1] = rba->bbx[1][1]; + manifold[2][2] = pz; + manifold[3][0] = rba->bbx[0][0]; + manifold[3][1] = rba->bbx[1][1]; + manifold[3][2] = pz; + } + + for( int j=0; j<4; j++ ) + m4x3_mulv( rba->to_world, manifold[j], manifold[j] ); + + vg_line( manifold[0], manifold[1], 0xffffffff ); + vg_line( manifold[1], manifold[2], 0xffffffff ); + vg_line( manifold[2], manifold[3], 0xffffffff ); + vg_line( manifold[3], manifold[0], 0xffffffff ); -#ifndef RIGIDBODY_H -#define RIGIDBODY_H + for( int j=0; j<4; j++ ) + { + rb_ct *ct = buf+count; -#include "bvh.h" + v3_copy( manifold[j], ct->co ); + v3_copy( n, ct->n ); -#define RB_DEPR + float l0 = v3_dot( tri[0], n ), + l1 = v3_dot( manifold[j], n ); -#define k_rb_delta (1.0f/60.0f) + ct->p = (l0-l1)*0.5f; + if( ct->p < 0.0f ) + continue; -typedef struct rigidbody rigidbody; -struct rigidbody + ct->type = k_contact_type_default; + ct->rba = rba; + ct->rbb = rbb; + count ++; + + if( count >= 12 ) + return count; + } + } + return count; +} + +/* + * Generates up to two contacts; optimised for the most stable manifold + */ +VG_STATIC int rb_capsule_triangle( rigidbody *rba, rigidbody *rbb, + v3f tri[3], rb_ct *buf ) { - v3f co, v, I; - v4f q; - boxf bbx, bbx_world; - float inv_mass; + float h = rba->inf.capsule.height, + r = rba->inf.capsule.radius; + + v3f pc, p0w, p1w; + v3_muladds( rba->co, rba->up, -h*0.5f+r, p0w ); + v3_muladds( rba->co, rba->up, h*0.5f-r, p1w ); + + capsule_manifold manifold; + rb_capsule_manifold_init( &manifold ); + + v3f c0, c1; + closest_on_triangle_1( p0w, tri, c0 ); + closest_on_triangle_1( p1w, tri, c1 ); + + v3f d0, d1, da; + v3_sub( c0, p0w, d0 ); + v3_sub( c1, p1w, d1 ); + v3_sub( p1w, p0w, da ); + + v3_normalize(d0); + v3_normalize(d1); + v3_normalize(da); + + if( v3_dot( da, d0 ) <= 0.01f ) + rb_capsule_manifold( p0w, c0, 0.0f, r, &manifold ); + + if( v3_dot( da, d1 ) >= -0.01f ) + rb_capsule_manifold( p1w, c1, 1.0f, r, &manifold ); - struct contact + for( int i=0; i<3; i++ ) { - v3f co, n, delta; - v3f t[2]; - float bias, norm_impulse, tangent_impulse[2]; - } - manifold[12]; - int manifold_count; + int i0 = i, + i1 = (i+1)%3; - v3f delta; /* where is the origin of this in relation to a parent body */ - m4x3f to_world, to_local; -}; + v3f ca, cb; + float ta, tb; + closest_segment_segment( p0w, p1w, tri[i0], tri[i1], &ta, &tb, ca, cb ); + rb_capsule_manifold( ca, cb, ta, r, &manifold ); + } -static void rb_update_transform( rigidbody *rb ) -{ - q_normalize( rb->q ); - q_m3x3( rb->q, rb->to_world ); - v3_copy( rb->co, rb->to_world[3] ); + v3f v0, v1, n; + v3_sub( tri[1], tri[0], v0 ); + v3_sub( tri[2], tri[0], v1 ); + v3_cross( v0, v1, n ); + v3_normalize( n ); - m4x3_invert_affine( rb->to_world, rb->to_local ); + int count = rb_capsule_manifold_done( rba, rbb, &manifold, buf ); + for( int i=0; ibbx, rb->bbx_world ); - m4x3_transform_aabb( rb->to_world, rb->bbx_world ); + return count; } -static void rb_init( rigidbody *rb ) +VG_STATIC int rb_capsule_scene( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) { - q_identity( rb->q ); - v3_zero( rb->v ); - v3_zero( rb->I ); +#if 0 + float h = rba->inf.capsule.height, + r = rba->inf.capsule.radius, + g = 90.8f; + + v3f p[2]; + v3_muladds( rba->co, rba->up, -h*0.5f+r, p[0] ); + v3_muladds( rba->co, rba->up, h*0.5f-r, p[1] ); - v3f dims; - v3_sub( rb->bbx[1], rb->bbx[0], dims ); + int count = 0; - rb->inv_mass = 1.0f/(8.0f*dims[0]*dims[1]*dims[2]); - rb_update_transform( rb ); -} + for( int i=0; i<2; i++ ) + { + if( p[i][1] < g + r ) + { + rb_ct *ct = &buf[ count ++ ]; + + v3_copy( p[i], ct->co ); + ct->p = r - (p[i][1]-g); + ct->co[1] -= r; + v3_copy( (v3f){0.0f,1.0f,0.0f}, ct->n ); + ct->rba = rba; + ct->rbb = rbb; + ct->type = k_contact_type_default; + } + } -static void rb_iter( rigidbody *rb ) -{ - v3f gravity = { 0.0f, -9.6f, 0.0f }; - v3_muladds( rb->v, gravity, k_rb_delta, rb->v ); + return count; - /* intergrate velocity */ - v3_muladds( rb->co, rb->v, k_rb_delta, rb->co ); +#else + scene *sc = rbb->inf.scene.bh_scene->user; - v3_lerp( rb->I, (v3f){0.0f,0.0f,0.0f}, 0.0025f, rb->I ); + bh_iter it; + bh_iter_init( 0, &it ); + int idx; - /* inegrate inertia */ - if( v3_length2( rb->I ) > 0.0f ) + int count = 0; + + while( bh_next( rbb->inf.scene.bh_scene, &it, rba->bbx_world, &idx ) ) { - v4f rotation; - v3f axis; - v3_copy( rb->I, axis ); + u32 *ptri = &sc->arrindices[ idx*3 ]; + v3f tri[3]; + + for( int j=0; j<3; j++ ) + v3_copy( sc->arrvertices[ptri[j]].co, tri[j] ); - float mag = v3_length( axis ); - v3_divs( axis, mag, axis ); - q_axis_angle( rotation, axis, mag*k_rb_delta ); - q_mul( rotation, rb->q, rb->q ); + buf[ count ].element_id = ptri[0]; + +#if 0 + vg_line( tri[0],tri[1],0x70ff6000 ); + vg_line( tri[1],tri[2],0x70ff6000 ); + vg_line( tri[2],tri[0],0x70ff6000 ); +#endif + + int contact = rb_capsule_triangle( rba, rbb, tri, buf+count ); + count += contact; + + if( count == 16 ) + { + vg_warn("Exceeding capsule_vs_scene capacity. Geometry too dense!\n"); + return count; + } } + + return count; +#endif } -static void rb_torque( rigidbody *rb, v3f axis, float mag ) +VG_STATIC int rb_scene_capsule( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) { - v3_muladds( rb->I, axis, mag*k_rb_delta, rb->I ); + return rb_capsule_scene( rbb, rba, buf ); } -static void rb_tangent_basis( v3f n, v3f tx, v3f ty ) +VG_STATIC int RB_MATRIX_ERROR( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) { - /* Compute tangent basis (box2d) */ - if( fabsf( n[0] ) >= 0.57735027f ) - { - tx[0] = n[1]; - tx[1] = -n[0]; - tx[2] = 0.0f; - } - else - { - tx[0] = 0.0f; - tx[1] = n[2]; - tx[2] = -n[1]; - } +#if 0 + vg_error( "Collision type is unimplemented between types %d and %d\n", + rba->type, rbb->type ); +#endif - v3_normalize( tx ); - v3_cross( n, tx, ty ); + return 0; } -#include "world.h" +VG_STATIC int rb_sphere_capsule( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + return rb_capsule_sphere( rbb, rba, buf ); +} -static void rb_manifold_reset( rigidbody *rb ) +VG_STATIC int rb_box_capsule( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) { - rb->manifold_count = 0; + return rb_capsule_box( rbb, rba, buf ); } -static void rb_build_manifold_terrain( rigidbody *rb ) +VG_STATIC int rb_box_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) { - v3f *box = rb->bbx; - v3f pts[8]; - float *p000 = pts[0], *p001 = pts[1], *p010 = pts[2], *p011 = pts[3], - *p100 = pts[4], *p101 = pts[5], *p110 = pts[6], *p111 = pts[7]; - - p000[0]=box[0][0];p000[1]=box[0][1];p000[2]=box[0][2]; - p001[0]=box[0][0];p001[1]=box[0][1];p001[2]=box[1][2]; - p010[0]=box[0][0];p010[1]=box[1][1];p010[2]=box[0][2]; - p011[0]=box[0][0];p011[1]=box[1][1];p011[2]=box[1][2]; + return rb_sphere_box( rbb, rba, buf ); +} - p100[0]=box[1][0];p100[1]=box[0][1];p100[2]=box[0][2]; - p101[0]=box[1][0];p101[1]=box[0][1];p101[2]=box[1][2]; - p110[0]=box[1][0];p110[1]=box[1][1];p110[2]=box[0][2]; - p111[0]=box[1][0];p111[1]=box[1][1];p111[2]=box[1][2]; +VG_STATIC int rb_scene_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + return rb_box_scene( rbb, rba, buf ); +} - m4x3_mulv( rb->to_world, p000, p000 ); - m4x3_mulv( rb->to_world, p001, p001 ); - m4x3_mulv( rb->to_world, p010, p010 ); - m4x3_mulv( rb->to_world, p011, p011 ); - m4x3_mulv( rb->to_world, p100, p100 ); - m4x3_mulv( rb->to_world, p101, p101 ); - m4x3_mulv( rb->to_world, p110, p110 ); - m4x3_mulv( rb->to_world, p111, p111 ); +VG_STATIC int (*rb_jump_table[4][4])( rigidbody *a, rigidbody *b, rb_ct *buf ) = +{ + /* box */ /* Sphere */ /* Capsule */ /* Mesh */ + { RB_MATRIX_ERROR, rb_box_sphere, rb_box_capsule, rb_box_scene }, + { rb_sphere_box, rb_sphere_sphere, rb_sphere_capsule, rb_sphere_scene }, + { rb_capsule_box, rb_capsule_sphere, rb_capsule_capsule, rb_capsule_scene }, + { rb_scene_box, RB_MATRIX_ERROR, rb_scene_capsule, RB_MATRIX_ERROR } +}; - int count = 0; +VG_STATIC int rb_collide( rigidbody *rba, rigidbody *rbb ) +{ + int (*collider_jump)(rigidbody *rba, rigidbody *rbb, rb_ct *buf ) + = rb_jump_table[rba->type][rbb->type]; + + /* + * 12 is the maximum manifold size we can generate, so we are forced to abort + * potentially checking any more. + */ + if( rb_contact_count + 12 > vg_list_size(rb_contact_buffer) ) + { + vg_warn( "Too many contacts made in global collider buffer (%d of %d\n)", + rb_contact_count, vg_list_size(rb_contact_buffer) ); + return 0; + } - for( int i=0; i<8; i++ ) + /* + * FUTURE: Replace this with a more dedicated broad phase pass + */ + if( box_overlap( rba->bbx_world, rbb->bbx_world ) ) { - float *point = pts[i]; - struct contact *ct = &rb->manifold[rb->manifold_count]; - - v3f surface; - v3_copy( point, surface ); - surface[1] += 4.0f; + int count = collider_jump( rba, rbb, rb_contact_buffer+rb_contact_count); + rb_contact_count += count; + return count; + } + else + return 0; +} - ray_hit hit; - hit.dist = INFINITY; - if( !ray_world( surface, (v3f){0.0f,-1.0f,0.0f}, &hit )) - continue; +/* + * ----------------------------------------------------------------------------- + * Dynamics + * ----------------------------------------------------------------------------- + */ - v3_copy( hit.normal, ct->n ); - v3_copy( hit.pos, surface ); +VG_STATIC void rb_solver_reset(void) +{ + rb_contact_count = 0; +} - float p = vg_minf( surface[1] - point[1], 1.0f ); +VG_STATIC rb_ct *rb_global_ct(void) +{ + return rb_contact_buffer + rb_contact_count; +} - if( p > 0.0f ) - { - v3_add( point, surface, ct->co ); - v3_muls( ct->co, 0.5f, ct->co ); +/* + * Initializing things like tangent vectors + */ +VG_STATIC void rb_presolve_contacts( rb_ct *buffer, int len ) +{ + for( int i=0; ico, 0.0125f, 0xff0000ff ); + ct->bias = -0.2f * k_rb_rate * vg_minf( 0.0f, -ct->p+k_penetration_slop ); + rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); - v3_sub( ct->co, rb->co, ct->delta ); - ct->bias = -0.2f * (1.0f/k_rb_delta) * vg_minf( 0.0f, -p+0.04f ); - rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); +#if 0 + ct->type = k_contact_type_default; +#endif + ct->norm_impulse = 0.0f; + ct->tangent_impulse[0] = 0.0f; + ct->tangent_impulse[1] = 0.0f; + + v3f ra, rb, raCn, rbCn, raCt, rbCt; + v3_sub( ct->co, ct->rba->co, ra ); + v3_sub( ct->co, ct->rbb->co, rb ); + v3_cross( ra, ct->n, raCn ); + v3_cross( rb, ct->n, rbCn ); + + /* orient inverse inertia tensors */ + v3f raCnI, rbCnI; + m3x3_mulv( ct->rba->iIw, raCn, raCnI ); + m3x3_mulv( ct->rbb->iIw, rbCn, rbCnI ); - ct->norm_impulse = 0.0f; - ct->tangent_impulse[0] = 0.0f; - ct->tangent_impulse[1] = 0.0f; + ct->normal_mass = ct->rba->inv_mass + ct->rbb->inv_mass; + ct->normal_mass += v3_dot( raCn, raCnI ); + ct->normal_mass += v3_dot( rbCn, rbCnI ); + ct->normal_mass = 1.0f/ct->normal_mass; - rb->manifold_count ++; - count ++; - if( count == 4 ) - break; + for( int j=0; j<2; j++ ) + { + v3f raCtI, rbCtI; + v3_cross( ct->t[j], ra, raCt ); + v3_cross( ct->t[j], rb, rbCt ); + m3x3_mulv( ct->rba->iIw, raCt, raCtI ); + m3x3_mulv( ct->rbb->iIw, rbCt, rbCtI ); + + ct->tangent_mass[j] = ct->rba->inv_mass + ct->rbb->inv_mass; + ct->tangent_mass[j] += v3_dot( raCt, raCtI ); + ct->tangent_mass[j] += v3_dot( rbCt, rbCtI ); + ct->tangent_mass[j] = 1.0f/ct->tangent_mass[j]; } + + rb_debug_contact( ct ); } } -static void rb_constraint_manifold( rigidbody *rb ) +/* + * Creates relative contact velocity vector + */ +VG_STATIC void rb_rcv( rigidbody *rba, rigidbody *rbb, v3f ra, v3f rb, v3f rv ) +{ + v3f rva, rvb; + v3_cross( rba->w, ra, rva ); + v3_add( rba->v, rva, rva ); + v3_cross( rbb->w, rb, rvb ); + v3_add( rbb->v, rvb, rvb ); + + v3_sub( rva, rvb, rv ); +} + +/* + * Apply impulse to object + */ +VG_STATIC void rb_linear_impulse( rigidbody *rb, v3f delta, v3f impulse ) { - float k_friction = 0.1f; + /* linear */ + v3_muladds( rb->v, impulse, rb->inv_mass, rb->v ); + + /* Angular velocity */ + v3f wa; + v3_cross( delta, impulse, wa ); + + m3x3_mulv( rb->iIw, wa, wa ); + v3_add( rb->w, wa, rb->w ); +} - /* Friction Impulse */ - for( int i=0; imanifold_count; i++ ) +/* + * One iteration to solve the contact constraint + */ +VG_STATIC void rb_solve_contacts( rb_ct *buf, int len ) +{ + for( int i=0; imanifold[i]; + struct contact *ct = &buf[i]; - v3f dv; - v3_cross( rb->I, ct->delta, dv ); - v3_add( rb->v, dv, dv ); + v3f rv, ra, rb; + v3_sub( ct->co, ct->rba->co, ra ); + v3_sub( ct->co, ct->rbb->co, rb ); + rb_rcv( ct->rba, ct->rbb, ra, rb, rv ); + /* Friction */ for( int j=0; j<2; j++ ) { - float vt = vg_clampf( -v3_dot( dv, ct->t[j] ), - -k_friction, k_friction ); - - vt = -v3_dot( dv, ct->t[j] ); + float f = k_friction * ct->norm_impulse, + vt = v3_dot( rv, ct->t[j] ), + lambda = ct->tangent_mass[j] * -vt; float temp = ct->tangent_impulse[j]; - ct->tangent_impulse[j] = vg_clampf( temp+vt, -k_friction, k_friction ); - vt = ct->tangent_impulse[j] - temp; + ct->tangent_impulse[j] = vg_clampf( temp + lambda, -f, f ); + lambda = ct->tangent_impulse[j] - temp; v3f impulse; - - v3_muls( ct->t[j], vt, impulse ); - v3_add( impulse, rb->v, rb->v ); - v3_cross( ct->delta, impulse, impulse ); - v3_add( impulse, rb->I, rb->I ); + v3_muls( ct->t[j], lambda, impulse ); + rb_linear_impulse( ct->rba, ra, impulse ); + + v3_muls( ct->t[j], -lambda, impulse ); + rb_linear_impulse( ct->rbb, rb, impulse ); } - } - - /* Normal Impulse */ - for( int i=0; imanifold_count; i++ ) - { - struct contact *ct = &rb->manifold[i]; - - v3f dv; - v3_cross( rb->I, ct->delta, dv ); - v3_add( rb->v, dv, dv ); - float vn = -v3_dot( dv, ct->n ); - vn += ct->bias; + /* Normal */ + rb_rcv( ct->rba, ct->rbb, ra, rb, rv ); + float vn = v3_dot( rv, ct->n ), + lambda = ct->normal_mass * (-vn + ct->bias); float temp = ct->norm_impulse; - ct->norm_impulse = vg_maxf( temp + vn, 0.0f ); - vn = ct->norm_impulse - temp; + ct->norm_impulse = vg_maxf( temp + lambda, 0.0f ); + lambda = ct->norm_impulse - temp; v3f impulse; + v3_muls( ct->n, lambda, impulse ); + rb_linear_impulse( ct->rba, ra, impulse ); - v3_muls( ct->n, vn, impulse ); - v3_add( impulse, rb->v, rb->v ); - v3_cross( ct->delta, impulse, impulse ); - v3_add( impulse, rb->I, rb->I ); + v3_muls( ct->n, -lambda, impulse ); + rb_linear_impulse( ct->rbb, rb, impulse ); } } -struct rb_angle_limit +/* + * ----------------------------------------------------------------------------- + * Constraints + * ----------------------------------------------------------------------------- + */ + +VG_STATIC void rb_debug_position_constraints( rb_constr_pos *buffer, int len ) { - rigidbody *rba, *rbb; - v3f axis; - float impulse, bias; -}; + for( int i=0; irba, *rbb = constr->rbb; + + v3f wca, wcb; + m3x3_mulv( rba->to_world, constr->lca, wca ); + m3x3_mulv( rbb->to_world, constr->lcb, wcb ); + + v3f p0, p1; + v3_add( wca, rba->co, p0 ); + v3_add( wcb, rbb->co, p1 ); + vg_line_pt3( p0, 0.0025f, 0xff000000 ); + vg_line_pt3( p1, 0.0025f, 0xffffffff ); + vg_line2( p0, p1, 0xff000000, 0xffffffff ); + } +} -static int rb_angle_limit_force( rigidbody *rba, v3f va, - rigidbody *rbb, v3f vb, - float max ) +VG_STATIC void rb_presolve_swingtwist_constraints( rb_constr_swingtwist *buf, + int len ) { - v3f wva, wvb; - m3x3_mulv( rba->to_world, va, wva ); - m3x3_mulv( rbb->to_world, vb, wvb ); + float size = 0.12f; - float dt = v3_dot(wva,wvb)*0.999f, - ang = fabsf(dt); - ang = acosf( dt ); - if( ang > max ) + for( int i=0; iq, rba->q ); + v3f vx, vy, va, vxb, axis, center; - q_axis_angle( rotation, axis, correction*0.25f ); - q_mul( rotation, rbb->q, rbb->q ); + m3x3_mulv( st->rba->to_world, st->conevx, vx ); + m3x3_mulv( st->rbb->to_world, st->conevxb, vxb ); + m3x3_mulv( st->rba->to_world, st->conevy, vy ); + m3x3_mulv( st->rbb->to_world, st->coneva, va ); + m4x3_mulv( st->rba->to_world, st->view_offset, center ); + v3_cross( vy, vx, axis ); - return 1; - } + /* Constraint violated ? */ + float fx = v3_dot( vx, va ), /* projection world */ + fy = v3_dot( vy, va ), + fn = v3_dot( va, axis ), - return 0; + rx = st->conevx[3], /* elipse radii */ + ry = st->conevy[3], + + lx = fx/rx, /* projection local (fn==lz) */ + ly = fy/ry; + + st->tangent_violation = ((lx*lx + ly*ly) > fn*fn) || (fn <= 0.0f); + if( st->tangent_violation ) + { + /* Calculate a good position and the axis to solve on */ + v2f closest, tangent, + p = { fx/fabsf(fn), fy/fabsf(fn) }; + + closest_point_elipse( p, (v2f){rx,ry}, closest ); + tangent[0] = -closest[1] / (ry*ry); + tangent[1] = closest[0] / (rx*rx); + v2_normalize( tangent ); + + v3f v0, v1; + v3_muladds( axis, vx, closest[0], v0 ); + v3_muladds( v0, vy, closest[1], v0 ); + v3_normalize( v0 ); + + v3_muls( vx, tangent[0], v1 ); + v3_muladds( v1, vy, tangent[1], v1 ); + + v3_copy( v0, st->tangent_target ); + v3_copy( v1, st->tangent_axis ); + + /* calculate mass */ + v3f aIw, bIw; + m3x3_mulv( st->rba->iIw, st->tangent_axis, aIw ); + m3x3_mulv( st->rbb->iIw, st->tangent_axis, bIw ); + st->tangent_mass = 1.0f / (v3_dot( st->tangent_axis, aIw ) + + v3_dot( st->tangent_axis, bIw )); + + float angle = v3_dot( va, st->tangent_target ); + } + + v3f refaxis; + v3_cross( vy, va, refaxis ); /* our default rotation */ + v3_normalize( refaxis ); + + float angle = v3_dot( refaxis, vxb ); + st->axis_violation = fabsf(angle) < st->conet; + + if( st->axis_violation ) + { + v3f dir_test; + v3_cross( refaxis, vxb, dir_test ); + + if( v3_dot(dir_test, va) < 0.0f ) + st->axis_violation = -st->axis_violation; + + float newang = (float)st->axis_violation * acosf(st->conet-0.0001f); + + v3f refaxis_up; + v3_cross( va, refaxis, refaxis_up ); + v3_muls( refaxis_up, sinf(newang), st->axis_target ); + v3_muladds( st->axis_target, refaxis, -cosf(newang), st->axis_target ); + + /* calculate mass */ + v3_copy( va, st->axis ); + v3f aIw, bIw; + m3x3_mulv( st->rba->iIw, st->axis, aIw ); + m3x3_mulv( st->rbb->iIw, st->axis, bIw ); + st->axis_mass = 1.0f / (v3_dot( st->axis, aIw ) + + v3_dot( st->axis, bIw )); + } + } } -static void rb_constraint_angle_limit( struct rb_angle_limit *limit ) +VG_STATIC void rb_debug_swingtwist_constraints( rb_constr_swingtwist *buf, + int len ) { + float size = 0.12f; -} + for( int i=0; irba->to_world, st->conevx, vx ); + m3x3_mulv( st->rbb->to_world, st->conevxb, vxb ); + m3x3_mulv( st->rba->to_world, st->conevy, vy ); + m3x3_mulv( st->rbb->to_world, st->coneva, va ); + m4x3_mulv( st->rba->to_world, st->view_offset, center ); + v3_cross( vy, vx, axis ); -RB_DEPR -static void rb_constraint_angle( rigidbody *rba, v3f va, - rigidbody *rbb, v3f vb, - float max, float spring ) -{ - v3f wva, wvb; - m3x3_mulv( rba->to_world, va, wva ); - m3x3_mulv( rbb->to_world, vb, wvb ); + float rx = st->conevx[3], /* elipse radii */ + ry = st->conevy[3]; - float dt = v3_dot(wva,wvb)*0.999f, - ang = fabsf(dt); + v3f p0, p1; + v3_muladds( center, va, size, p1 ); + vg_line( center, p1, 0xffffffff ); + vg_line_pt3( p1, 0.00025f, 0xffffffff ); - v3f axis; - v3_cross( wva, wvb, axis ); - v3_muladds( rba->I, axis, ang*spring*0.5f, rba->I ); - v3_muladds( rbb->I, axis, -ang*spring*0.5f, rbb->I ); + if( st->tangent_violation ) + { + v3_muladds( center, st->tangent_target, size, p0 ); - return; - - /* TODO: convert max into the dot product value so we dont have to always - * evaluate acosf, only if its greater than the angle specified */ - ang = acosf( dt ); - if( ang > max ) - { - float correction = max-ang; + vg_line( center, p0, 0xff00ff00 ); + vg_line_pt3( p0, 0.00025f, 0xff00ff00 ); + vg_line( p1, p0, 0xff000000 ); + } - v4f rotation; - q_axis_angle( rotation, axis, -correction*0.125f ); - q_mul( rotation, rba->q, rba->q ); + for( int x=0; x<32; x++ ) + { + float t0 = ((float)x * (1.0f/32.0f)) * VG_TAUf, + t1 = (((float)x+1.0f) * (1.0f/32.0f)) * VG_TAUf, + c0 = cosf( t0 ), + s0 = sinf( t0 ), + c1 = cosf( t1 ), + s1 = sinf( t1 ); + + v3f v0, v1; + v3_muladds( axis, vx, c0*rx, v0 ); + v3_muladds( v0, vy, s0*ry, v0 ); + v3_muladds( axis, vx, c1*rx, v1 ); + v3_muladds( v1, vy, s1*ry, v1 ); + + v3_normalize( v0 ); + v3_normalize( v1 ); + + v3_muladds( center, v0, size, p0 ); + v3_muladds( center, v1, size, p1 ); + + u32 col0r = fabsf(c0) * 255.0f, + col0g = fabsf(s0) * 255.0f, + col1r = fabsf(c1) * 255.0f, + col1g = fabsf(s1) * 255.0f, + col = st->tangent_violation? 0xff0000ff: 0xff000000, + col0 = col | (col0r<<16) | (col0g << 8), + col1 = col | (col1r<<16) | (col1g << 8); + + vg_line2( center, p0, VG__NONE, col0 ); + vg_line2( p0, p1, col0, col1 ); + } + + /* Draw twist */ + v3_muladds( center, va, size, p0 ); + v3_muladds( p0, vxb, size, p1 ); + + vg_line( p0, p1, 0xff0000ff ); + + if( st->axis_violation ) + { + v3_muladds( p0, st->axis_target, size*1.25f, p1 ); + vg_line( p0, p1, 0xffffff00 ); + vg_line_pt3( p1, 0.0025f, 0xffffff80 ); + } + + v3f refaxis; + v3_cross( vy, va, refaxis ); /* our default rotation */ + v3_normalize( refaxis ); + v3f refaxis_up; + v3_cross( va, refaxis, refaxis_up ); + float newang = acosf(st->conet-0.0001f); + + v3_muladds( p0, refaxis_up, sinf(newang)*size, p1 ); + v3_muladds( p1, refaxis, -cosf(newang)*size, p1 ); + vg_line( p0, p1, 0xff000000 ); - q_axis_angle( rotation, axis, correction*0.125f ); - q_mul( rotation, rbb->q, rbb->q ); + v3_muladds( p0, refaxis_up, sinf(-newang)*size, p1 ); + v3_muladds( p1, refaxis, -cosf(-newang)*size, p1 ); + vg_line( p0, p1, 0xff404040 ); } } -static void rb_relative_velocity( rigidbody *ra, v3f lca, - rigidbody *rb, v3f lcb, v3f rcv ) +/* + * Solve a list of positional constraints + */ +VG_STATIC void rb_solve_position_constraints( rb_constr_pos *buf, int len ) { - v3f wca, wcb; - m3x3_mulv( ra->to_world, lca, wca ); - m3x3_mulv( rb->to_world, lcb, wcb ); + for( int i=0; irba, *rbb = constr->rbb; - v3_sub( ra->v, rb->v, rcv ); + v3f wa, wb; + m3x3_mulv( rba->to_world, constr->lca, wa ); + m3x3_mulv( rbb->to_world, constr->lcb, wb ); - v3f rcv_Ra, rcv_Rb; - v3_cross( ra->I, wca, rcv_Ra ); - v3_cross( rb->I, wcb, rcv_Rb ); - v3_add( rcv_Ra, rcv, rcv ); - v3_sub( rcv, rcv_Rb, rcv ); + m3x3f ssra, ssrat, ssrb, ssrbt; + + m3x3_skew_symetric( ssrat, wa ); + m3x3_skew_symetric( ssrbt, wb ); + m3x3_transpose( ssrat, ssra ); + m3x3_transpose( ssrbt, ssrb ); + + v3f b, b_wa, b_wb, b_a, b_b; + m3x3_mulv( ssra, rba->w, b_wa ); + m3x3_mulv( ssrb, rbb->w, b_wb ); + v3_add( rba->v, b_wa, b ); + v3_sub( b, rbb->v, b ); + v3_sub( b, b_wb, b ); + v3_muls( b, -1.0f, b ); + + m3x3f invMa, invMb; + m3x3_diagonal( invMa, rba->inv_mass ); + m3x3_diagonal( invMb, rbb->inv_mass ); + + m3x3f ia, ib; + m3x3_mul( ssra, rba->iIw, ia ); + m3x3_mul( ia, ssrat, ia ); + m3x3_mul( ssrb, rbb->iIw, ib ); + m3x3_mul( ib, ssrbt, ib ); + + m3x3f cma, cmb; + m3x3_add( invMa, ia, cma ); + m3x3_add( invMb, ib, cmb ); + + m3x3f A; + m3x3_add( cma, cmb, A ); + + /* Solve Ax = b ( A^-1*b = x ) */ + v3f impulse; + m3x3f invA; + m3x3_inv( A, invA ); + m3x3_mulv( invA, b, impulse ); + + v3f delta_va, delta_wa, delta_vb, delta_wb; + m3x3f iwa, iwb; + m3x3_mul( rba->iIw, ssrat, iwa ); + m3x3_mul( rbb->iIw, ssrbt, iwb ); + + m3x3_mulv( invMa, impulse, delta_va ); + m3x3_mulv( invMb, impulse, delta_vb ); + m3x3_mulv( iwa, impulse, delta_wa ); + m3x3_mulv( iwb, impulse, delta_wb ); + + v3_add( rba->v, delta_va, rba->v ); + v3_add( rba->w, delta_wa, rba->w ); + v3_sub( rbb->v, delta_vb, rbb->v ); + v3_sub( rbb->w, delta_wb, rbb->w ); + } } -static void rb_constraint_position( rigidbody *ra, v3f lca, - rigidbody *rb, v3f lcb ) +VG_STATIC void rb_solve_swingtwist_constraints( rb_constr_swingtwist *buf, + int len ) { - /* C = (COa + Ra*LCa) - (COb + Rb*LCb) = 0 */ - v3f wca, wcb; - m3x3_mulv( ra->to_world, lca, wca ); - m3x3_mulv( rb->to_world, lcb, wcb ); + float size = 0.12f; - v3f delta; - v3_add( wcb, rb->co, delta ); - v3_sub( delta, wca, delta ); - v3_sub( delta, ra->co, delta ); + for( int i=0; ico, delta, 0.5f, ra->co ); - v3_muladds( rb->co, delta, -0.5f, rb->co ); + if( !st->axis_violation ) + continue; - v3f rcv; - v3_sub( ra->v, rb->v, rcv ); + float rv = v3_dot( st->axis, st->rbb->w ) - + v3_dot( st->axis, st->rba->w ); - v3f rcv_Ra, rcv_Rb; - v3_cross( ra->I, wca, rcv_Ra ); - v3_cross( rb->I, wcb, rcv_Rb ); - v3_add( rcv_Ra, rcv, rcv ); - v3_sub( rcv, rcv_Rb, rcv ); + if( rv * (float)st->axis_violation > 0.0f ) + continue; - float nm = 0.5f/(rb->inv_mass + ra->inv_mass); + v3f impulse, wa, wb; + v3_muls( st->axis, rv*st->axis_mass, impulse ); + m3x3_mulv( st->rba->iIw, impulse, wa ); + v3_add( st->rba->w, wa, st->rba->w ); - float mass_a = 1.0f/ra->inv_mass, - mass_b = 1.0f/rb->inv_mass, - total_mass = mass_a+mass_b; - - v3f impulse; - v3_muls( rcv, 1.0f, impulse ); - v3_muladds( rb->v, impulse, mass_b/total_mass, rb->v ); - v3_cross( wcb, impulse, impulse ); - v3_add( impulse, rb->I, rb->I ); + v3_muls( impulse, -1.0f, impulse ); + m3x3_mulv( st->rbb->iIw, impulse, wb ); + v3_add( st->rbb->w, wb, st->rbb->w ); - v3_muls( rcv, -1.0f, impulse ); - v3_muladds( ra->v, impulse, mass_a/total_mass, ra->v ); - v3_cross( wca, impulse, impulse ); - v3_add( impulse, ra->I, ra->I ); + float rv2 = v3_dot( st->axis, st->rbb->w ) - + v3_dot( st->axis, st->rba->w ); + } -#if 0 - v3f impulse; - v3_muls( delta, 0.5f*spring, impulse ); + for( int i=0; iv, ra->v ); - v3_cross( wca, impulse, impulse ); - v3_add( impulse, ra->I, ra->I ); + if( !st->tangent_violation ) + continue; - v3_muls( delta, -0.5f*spring, impulse ); + float rv = v3_dot( st->tangent_axis, st->rbb->w ) - + v3_dot( st->tangent_axis, st->rba->w ); - v3_add( impulse, rb->v, rb->v ); - v3_cross( wcb, impulse, impulse ); - v3_add( impulse, rb->I, rb->I ); -#endif + if( rv > 0.0f ) + continue; + + v3f impulse, wa, wb; + v3_muls( st->tangent_axis, rv*st->tangent_mass, impulse ); + m3x3_mulv( st->rba->iIw, impulse, wa ); + v3_add( st->rba->w, wa, st->rba->w ); + + v3_muls( impulse, -1.0f, impulse ); + m3x3_mulv( st->rbb->iIw, impulse, wb ); + v3_add( st->rbb->w, wb, st->rbb->w ); + + float rv2 = v3_dot( st->tangent_axis, st->rbb->w ) - + v3_dot( st->tangent_axis, st->rba->w ); + } } -static void rb_debug( rigidbody *rb, u32 colour ) +VG_STATIC void rb_solve_constr_angle( rigidbody *rba, rigidbody *rbb, + v3f ra, v3f rb ) { - v3f *box = rb->bbx; - v3f p000, p001, p010, p011, p100, p101, p110, p111; - - p000[0]=box[0][0];p000[1]=box[0][1];p000[2]=box[0][2]; - p001[0]=box[0][0];p001[1]=box[0][1];p001[2]=box[1][2]; - p010[0]=box[0][0];p010[1]=box[1][1];p010[2]=box[0][2]; - p011[0]=box[0][0];p011[1]=box[1][1];p011[2]=box[1][2]; + m3x3f ssra, ssrb, ssrat, ssrbt; + m3x3f cma, cmb; - p100[0]=box[1][0];p100[1]=box[0][1];p100[2]=box[0][2]; - p101[0]=box[1][0];p101[1]=box[0][1];p101[2]=box[1][2]; - p110[0]=box[1][0];p110[1]=box[1][1];p110[2]=box[0][2]; - p111[0]=box[1][0];p111[1]=box[1][1];p111[2]=box[1][2]; + m3x3_skew_symetric( ssrat, ra ); + m3x3_skew_symetric( ssrbt, rb ); + m3x3_transpose( ssrat, ssra ); + m3x3_transpose( ssrbt, ssrb ); - m4x3_mulv( rb->to_world, p000, p000 ); - m4x3_mulv( rb->to_world, p001, p001 ); - m4x3_mulv( rb->to_world, p010, p010 ); - m4x3_mulv( rb->to_world, p011, p011 ); - m4x3_mulv( rb->to_world, p100, p100 ); - m4x3_mulv( rb->to_world, p101, p101 ); - m4x3_mulv( rb->to_world, p110, p110 ); - m4x3_mulv( rb->to_world, p111, p111 ); - - vg_line( p000, p001, colour ); - vg_line( p001, p011, colour ); - vg_line( p011, p010, colour ); - vg_line( p010, p000, colour ); + m3x3_mul( ssra, rba->iIw, cma ); + m3x3_mul( cma, ssrat, cma ); + m3x3_mul( ssrb, rbb->iIw, cmb ); + m3x3_mul( cmb, ssrbt, cmb ); - vg_line( p100, p101, colour ); - vg_line( p101, p111, colour ); - vg_line( p111, p110, colour ); - vg_line( p110, p100, colour ); + m3x3f A, invA; + m3x3_add( cma, cmb, A ); + m3x3_inv( A, invA ); - vg_line( p100, p000, colour ); - vg_line( p101, p001, colour ); - vg_line( p110, p010, colour ); - vg_line( p111, p011, colour ); + v3f b_wa, b_wb, b; + m3x3_mulv( ssra, rba->w, b_wa ); + m3x3_mulv( ssrb, rbb->w, b_wb ); + v3_add( b_wa, b_wb, b ); + v3_negate( b, b ); - vg_line( p000, p110, colour ); - vg_line( p100, p010, colour ); + v3f impulse; + m3x3_mulv( invA, b, impulse ); + + v3f delta_wa, delta_wb; + m3x3f iwa, iwb; + m3x3_mul( rba->iIw, ssrat, iwa ); + m3x3_mul( rbb->iIw, ssrbt, iwb ); + m3x3_mulv( iwa, impulse, delta_wa ); + m3x3_mulv( iwb, impulse, delta_wb ); + v3_add( rba->w, delta_wa, rba->w ); + v3_sub( rbb->w, delta_wb, rbb->w ); } /* - * out penetration distance, normal + * Correct position constraint drift errors + * [ 0.0 <= amt <= 1.0 ]: the correction amount */ -static int rb_point_in_body( rigidbody *rb, v3f pos, float *pen, v3f normal ) +VG_STATIC void rb_correct_position_constraints( rb_constr_pos *buf, int len, + float amt ) { - v3f local; - m4x3_mulv( rb->to_local, pos, local ); + for( int i=0; irba, *rbb = constr->rbb; + + v3f p0, p1, d; + m3x3_mulv( rba->to_world, constr->lca, p0 ); + m3x3_mulv( rbb->to_world, constr->lcb, p1 ); + v3_add( rba->co, p0, p0 ); + v3_add( rbb->co, p1, p1 ); + v3_sub( p1, p0, d ); + + v3_muladds( rbb->co, d, -1.0f * amt, rbb->co ); + rb_update_transform( rbb ); + } +} - if( local[0] > rb->bbx[0][0] && local[0] < rb->bbx[1][0] && - local[1] > rb->bbx[0][1] && local[1] < rb->bbx[1][1] && - local[2] > rb->bbx[0][2] && local[2] < rb->bbx[1][2] ) +VG_STATIC void rb_correct_swingtwist_constraints( rb_constr_swingtwist *buf, + int len, float amt ) +{ + for( int i=0; ibbx[0], rb->bbx[1], com ); - v3_muls( com, 0.5f, com ); + rb_constr_swingtwist *st = &buf[i]; - v3_sub( rb->bbx[1], rb->bbx[0], area ); - v3_sub( local, com, comrel ); - v3_div( comrel, area, comrel ); + if( !st->tangent_violation ) + continue; - int axis = 0; - float max_mag = fabsf(comrel[0]); - - if( fabsf(comrel[1]) > max_mag ) - { - axis = 1; - max_mag = fabsf(comrel[1]); - } - if( fabsf(comrel[2]) > max_mag ) - { - axis = 2; - max_mag = fabsf(comrel[2]); - } - - v3_zero( normal ); - normal[axis] = vg_signf(comrel[axis]); + v3f va; + m3x3_mulv( st->rbb->to_world, st->coneva, va ); - if( normal[axis] < 0.0f ) - *pen = local[axis] - rb->bbx[0][axis]; - else - *pen = rb->bbx[1][axis] - local[axis]; + float angle = v3_dot( va, st->tangent_target ); - m3x3_mulv( rb->to_world, normal, normal ); - return 1; + if( fabsf(angle) < 0.9999f ) + { + v3f axis; + v3_cross( va, st->tangent_target, axis ); + + v4f correction; + q_axis_angle( correction, axis, acosf(angle) * amt ); + q_mul( correction, st->rbb->q, st->rbb->q ); + rb_update_transform( st->rbb ); + } } - return 0; -} + for( int i=0; iaxis_violation ) + continue; - v3f a, b; - v3_copy( ra->bbx[0], a ); - v3_copy( ra->bbx[1], b ); - - m4x3_mulv( ra->to_world, (v3f){ a[0], a[1], a[2] }, verts[0] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], b[1], a[2] }, verts[1] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], b[1], a[2] }, verts[2] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], a[1], a[2] }, verts[3] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], a[1], b[2] }, verts[4] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], b[1], b[2] }, verts[5] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], b[1], b[2] }, verts[6] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], a[1], b[2] }, verts[7] ); + v3f vxb; + m3x3_mulv( st->rbb->to_world, st->conevxb, vxb ); - int count = 0; + float angle = v3_dot( vxb, st->axis_target ); - for( int i=0; i<8; i++ ) - { - if( ra->manifold_count == vg_list_size(ra->manifold) ) - return; + if( fabsf(angle) < 0.9999f ) + { + v3f axis; + v3_cross( vxb, st->axis_target, axis ); - struct contact *ct = &ra->manifold[ ra->manifold_count ]; - - float p; - v3f normal; + v4f correction; + q_axis_angle( correction, axis, acosf(angle) * amt ); + q_mul( correction, st->rbb->q, st->rbb->q ); + rb_update_transform( st->rbb ); + } + } +} - if( rb_point_in_body( rb_static, verts[i], &p, normal )) - { - v3_copy( normal, ct->n ); - v3_muladds( verts[i], ct->n, p*0.5f, ct->co ); - v3_sub( ct->co, ra->co, ct->delta ); - vg_line_pt3( ct->co, 0.0125f, 0xffff00ff ); - - ct->bias = -0.2f * (1.0f/k_rb_delta) * vg_minf( 0.0f, -p+0.04f ); - rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); +/* + * Effectors + */ - ct->norm_impulse = 0.0f; - ct->tangent_impulse[0] = 0.0f; - ct->tangent_impulse[1] = 0.0f; +VG_STATIC void rb_effect_simple_bouyency( rigidbody *ra, v4f plane, + float amt, float drag ) +{ + /* float */ + float depth = v3_dot( plane, ra->co ) - plane[3], + lambda = vg_clampf( -depth, 0.0f, 1.0f ) * amt; - ra->manifold_count ++; - count ++; - if( count == 4 ) - return; - } - } + v3_muladds( ra->v, plane, lambda * k_rb_delta, ra->v ); + + if( depth < 0.0f ) + v3_muls( ra->v, 1.0f-(drag*k_rb_delta), ra->v ); } /* - * BVH implementation, this is ONLY for static rigidbodies, its to slow for + * ----------------------------------------------------------------------------- + * BVH implementation, this is ONLY for VG_STATIC rigidbodies, its to slow for * realtime use. + * ----------------------------------------------------------------------------- */ -static void rb_bh_expand_bound( void *user, boxf bound, u32 item_index ) +VG_STATIC void rb_bh_expand_bound( void *user, boxf bound, u32 item_index ) { rigidbody *rb = &((rigidbody *)user)[ item_index ]; box_concat( bound, rb->bbx_world ); } -static float rb_bh_centroid( void *user, u32 item_index, int axis ) +VG_STATIC float rb_bh_centroid( void *user, u32 item_index, int axis ) { rigidbody *rb = &((rigidbody *)user)[ item_index ]; return (rb->bbx_world[axis][0] + rb->bbx_world[1][axis]) * 0.5f; } -static void rb_bh_swap( void *user, u32 ia, u32 ib ) +VG_STATIC void rb_bh_swap( void *user, u32 ia, u32 ib ) { rigidbody temp, *rba, *rbb; rba = &((rigidbody *)user)[ ia ]; @@ -571,21 +2398,19 @@ static void rb_bh_swap( void *user, u32 ia, u32 ib ) *rbb = temp; } -static void rb_bh_debug( void *user, u32 item_index ) +VG_STATIC void rb_bh_debug( void *user, u32 item_index ) { rigidbody *rb = &((rigidbody *)user)[ item_index ]; rb_debug( rb, 0xff00ffff ); } -static bh_system bh_system_rigidbodies = +VG_STATIC bh_system bh_system_rigidbodies = { .expand_bound = rb_bh_expand_bound, .item_centroid = rb_bh_centroid, .item_swap = rb_bh_swap, .item_debug = rb_bh_debug, - .cast_ray = NULL, - - .item_size = sizeof(rigidbody) + .cast_ray = NULL }; #endif /* RIGIDBODY_H */