X-Git-Url: https://harrygodden.com/git/?a=blobdiff_plain;f=rigidbody.h;h=efce416487fc164d2a2772d8c4a44d499fc2d989;hb=b4a83d4fcab39bee5a8cd6e8e6eec06314864e5b;hp=58c70d7205a969b97c63b36a094b2150e1ff9a77;hpb=55faf7fcd56fad190f53e6da4417c5bb1c2234d7;p=carveJwlIkooP6JGAAIwe30JlM.git diff --git a/rigidbody.h b/rigidbody.h index 58c70d7..efce416 100644 --- a/rigidbody.h +++ b/rigidbody.h @@ -1,3 +1,7 @@ +/* + * Copyright (C) 2021-2022 Mt.ZERO Software, Harry Godden - All Rights Reserved + */ + /* * Resources: Box2D - Erin Catto * qu3e - Randy Gaul @@ -5,83 +9,347 @@ #include "common.h" #include "bvh.h" +#include "scene.h" -static void rb_tangent_basis( v3f n, v3f tx, v3f ty ); -static bh_system bh_system_rigidbodies; +#include + +VG_STATIC void rb_tangent_basis( v3f n, v3f tx, v3f ty ); +VG_STATIC bh_system bh_system_rigidbodies; #ifndef RIGIDBODY_H #define RIGIDBODY_H -#define RB_DEPR -#define k_rb_rate 60.0f -#define k_rb_delta (1.0f/k_rb_rate) +/* + * ----------------------------------------------------------------------------- + * (K)onstants + * ----------------------------------------------------------------------------- + */ + +VG_STATIC const float + k_rb_rate = (1.0/VG_TIMESTEP_FIXED), + k_rb_delta = (1.0/k_rb_rate), + k_friction = 0.4f, + k_damp_linear = 0.1f, /* scale velocity 1/(1+x) */ + k_damp_angular = 0.1f, /* scale angular 1/(1+x) */ + k_penetration_slop = 0.01f, + k_inertia_scale = 8.0f, + k_phys_baumgarte = 0.2f, + k_gravity = 9.6f; + +VG_STATIC float + k_limit_bias = 0.02f, + k_joint_correction = 0.01f, + k_joint_impulse = 1.0f, + k_joint_bias = 0.08f; /* positional joints */ + +VG_STATIC void rb_register_cvar(void) +{ + VG_VAR_F32( k_limit_bias, flags=VG_VAR_CHEAT ); + VG_VAR_F32( k_joint_bias, flags=VG_VAR_CHEAT ); + VG_VAR_F32( k_joint_correction, flags=VG_VAR_CHEAT ); + VG_VAR_F32( k_joint_impulse, flags=VG_VAR_CHEAT ); +} + +/* + * ----------------------------------------------------------------------------- + * structure definitions + * ----------------------------------------------------------------------------- + */ typedef struct rigidbody rigidbody; +typedef struct rb_object rb_object; typedef struct contact rb_ct; +typedef struct rb_sphere rb_sphere; +typedef struct rb_capsule rb_capsule; +typedef struct rb_scene rb_scene; -struct rigidbody -{ +struct rb_sphere{ + float radius; +}; + +struct rb_capsule{ + float height, radius; +}; + +struct rb_scene{ + bh_tree *bh_scene; +}; + +struct rigidbody{ v3f co, v, w; v4f q; - enum rb_shape - { - k_rb_shape_box, - k_rb_shape_sphere, - k_rb_shape_capsule + boxf bbx, bbx_world; + float inv_mass; + + /* inertia model and inverse world tensor */ + v3f I; + m3x3f iI, iIw; + m4x3f to_world, to_local; +}; + +/* simple objects */ +struct rb_object{ + rigidbody rb; + enum rb_shape{ + k_rb_shape_box = 0, + k_rb_shape_sphere = 1, + k_rb_shape_capsule = 2, + k_rb_shape_scene = 3 } type; - union - { - struct rb_sphere - { - float radius; - } - sphere; - - struct rb_capsule - { - float height, radius; - } - capsule; + union{ + struct rb_sphere sphere; + struct rb_capsule capsule; + struct rb_scene scene; } inf; +}; - v3f right, up, forward; - - int is_world; +VG_STATIC struct contact{ + rigidbody *rba, *rbb; + v3f co, n; + v3f t[2]; + float p, bias, norm_impulse, tangent_impulse[2], + normal_mass, tangent_mass[2]; - boxf bbx, bbx_world; - float inv_mass; + u32 element_id; - v3f delta; /* where is the origin of this in relation to a parent body */ - m4x3f to_world, to_local; + enum contact_type type; +} +rb_contact_buffer[256]; +VG_STATIC int rb_contact_count = 0; + +typedef struct rb_constr_pos rb_constr_pos; +typedef struct rb_constr_swingtwist rb_constr_swingtwist; + +struct rb_constr_pos{ + rigidbody *rba, *rbb; + v3f lca, lcb; }; -static rigidbody rb_static_null = -{ - .co={0.0f,0.0f,0.0f}, - .q={0.0f,0.0f,0.0f,1.0f}, - .v={0.0f,0.0f,0.0f}, - .w={0.0f,0.0f,0.0f}, - .is_world = 1, - .inv_mass = 0.0f +struct rb_constr_swingtwist{ + rigidbody *rba, *rbb; + + v4f conevx, conevy; /* relative to rba */ + v3f view_offset, /* relative to rba */ + coneva, conevxb;/* relative to rbb */ + + int tangent_violation, axis_violation; + v3f axis, tangent_axis, tangent_target, axis_target; + + float conet; + float tangent_mass, axis_mass; }; -static void rb_debug( rigidbody *rb, u32 colour ); +struct rb_constr_spring{ + int nothing; +}; -static struct contact +/* + * ----------------------------------------------------------------------------- + * Math Utils + * ----------------------------------------------------------------------------- + */ + +VG_STATIC float sphere_volume( float radius ) { - rigidbody *rba, *rbb; - v3f co, n; - v3f t[2]; - float mass_total, p, bias, norm_impulse, tangent_impulse[2]; + float r3 = radius*radius*radius; + return (4.0f/3.0f) * VG_PIf * r3; } -rb_contact_buffer[256]; -static int rb_contact_count = 0; -static void rb_update_transform( rigidbody *rb ) +VG_STATIC void rb_tangent_basis( v3f n, v3f tx, v3f ty ) +{ + /* Compute tangent basis (box2d) */ + if( fabsf( n[0] ) >= 0.57735027f ){ + tx[0] = n[1]; + tx[1] = -n[0]; + tx[2] = 0.0f; + } + else{ + tx[0] = 0.0f; + tx[1] = n[2]; + tx[2] = -n[1]; + } + + v3_normalize( tx ); + v3_cross( n, tx, ty ); +} + +/* + * ----------------------------------------------------------------------------- + * Debugging + * ----------------------------------------------------------------------------- + */ + +VG_STATIC void rb_debug_contact( rb_ct *ct ) +{ + v3f p1; + v3_muladds( ct->co, ct->n, 0.05f, p1 ); + + if( ct->type == k_contact_type_default ){ + vg_line_pt3( ct->co, 0.0125f, 0xff0000ff ); + vg_line( ct->co, p1, 0xffffffff ); + } + else if( ct->type == k_contact_type_edge ){ + vg_line_pt3( ct->co, 0.0125f, 0xff00ffc0 ); + vg_line( ct->co, p1, 0xffffffff ); + } +} + +VG_STATIC void debug_sphere( m4x3f m, float radius, u32 colour ) +{ + v3f ly = { 0.0f, 0.0f, radius }, + lx = { 0.0f, radius, 0.0f }, + lz = { 0.0f, 0.0f, radius }; + + for( int i=0; i<16; i++ ){ + float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f, + s = sinf(t), + c = cosf(t); + + v3f py = { s*radius, 0.0f, c*radius }, + px = { s*radius, c*radius, 0.0f }, + pz = { 0.0f, s*radius, c*radius }; + + v3f p0, p1, p2, p3, p4, p5; + m4x3_mulv( m, py, p0 ); + m4x3_mulv( m, ly, p1 ); + m4x3_mulv( m, px, p2 ); + m4x3_mulv( m, lx, p3 ); + m4x3_mulv( m, pz, p4 ); + m4x3_mulv( m, lz, p5 ); + + vg_line( p0, p1, colour == 0x00? 0xff00ff00: colour ); + vg_line( p2, p3, colour == 0x00? 0xff0000ff: colour ); + vg_line( p4, p5, colour == 0x00? 0xffff0000: colour ); + + v3_copy( py, ly ); + v3_copy( px, lx ); + v3_copy( pz, lz ); + } +} + +VG_STATIC void debug_capsule( m4x3f m, float radius, float h, u32 colour ) +{ + v3f ly = { 0.0f, 0.0f, radius }, + lx = { 0.0f, radius, 0.0f }, + lz = { 0.0f, 0.0f, radius }; + + float s0 = sinf(0.0f)*radius, + c0 = cosf(0.0f)*radius; + + v3f p0, p1, up, right, forward; + m3x3_mulv( m, (v3f){0.0f,1.0f,0.0f}, up ); + m3x3_mulv( m, (v3f){1.0f,0.0f,0.0f}, right ); + m3x3_mulv( m, (v3f){0.0f,0.0f,-1.0f}, forward ); + v3_muladds( m[3], up, -h*0.5f+radius, p0 ); + v3_muladds( m[3], up, h*0.5f-radius, p1 ); + + v3f a0, a1, b0, b1; + v3_muladds( p0, right, radius, a0 ); + v3_muladds( p1, right, radius, a1 ); + v3_muladds( p0, forward, radius, b0 ); + v3_muladds( p1, forward, radius, b1 ); + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + v3_muladds( p0, right, -radius, a0 ); + v3_muladds( p1, right, -radius, a1 ); + v3_muladds( p0, forward, -radius, b0 ); + v3_muladds( p1, forward, -radius, b1 ); + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + for( int i=0; i<16; i++ ){ + float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f, + s1 = sinf(t)*radius, + c1 = cosf(t)*radius; + + v3f e0 = { s0, 0.0f, c0 }, + e1 = { s1, 0.0f, c1 }, + e2 = { s0, c0, 0.0f }, + e3 = { s1, c1, 0.0f }, + e4 = { 0.0f, c0, s0 }, + e5 = { 0.0f, c1, s1 }; + + m3x3_mulv( m, e0, e0 ); + m3x3_mulv( m, e1, e1 ); + m3x3_mulv( m, e2, e2 ); + m3x3_mulv( m, e3, e3 ); + m3x3_mulv( m, e4, e4 ); + m3x3_mulv( m, e5, e5 ); + + v3_add( p0, e0, a0 ); + v3_add( p0, e1, a1 ); + v3_add( p1, e0, b0 ); + v3_add( p1, e1, b1 ); + + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + if( c0 < 0.0f ){ + v3_add( p0, e2, a0 ); + v3_add( p0, e3, a1 ); + v3_add( p0, e4, b0 ); + v3_add( p0, e5, b1 ); + } + else{ + v3_add( p1, e2, a0 ); + v3_add( p1, e3, a1 ); + v3_add( p1, e4, b0 ); + v3_add( p1, e5, b1 ); + } + + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + s0 = s1; + c0 = c1; + } +} + +VG_STATIC void rb_object_debug( rb_object *obj, u32 colour ) +{ + if( obj->type == k_rb_shape_box ){ + v3f *box = obj->rb.bbx; + vg_line_boxf_transformed( obj->rb.to_world, obj->rb.bbx, colour ); + } + else if( obj->type == k_rb_shape_sphere ){ + debug_sphere( obj->rb.to_world, obj->inf.sphere.radius, colour ); + } + else if( obj->type == k_rb_shape_capsule ){ + m4x3f m0, m1; + float h = obj->inf.capsule.height, + r = obj->inf.capsule.radius; + + debug_capsule( obj->rb.to_world, r, h, colour ); + } + else if( obj->type == k_rb_shape_scene ){ + vg_line_boxf( obj->rb.bbx, colour ); + } +} + +/* + * ----------------------------------------------------------------------------- + * Integration + * ----------------------------------------------------------------------------- + */ + +/* + * Update world space bounding box based on local one + */ +VG_STATIC void rb_update_bounds( rigidbody *rb ) +{ + box_copy( rb->bbx, rb->bbx_world ); + m4x3_transform_aabb( rb->to_world, rb->bbx_world ); +} + +/* + * Commit transform to rigidbody. Updates matrices + */ +VG_STATIC void rb_update_transform( rigidbody *rb ) { q_normalize( rb->q ); q_m3x3( rb->q, rb->to_world ); @@ -89,66 +357,119 @@ static void rb_update_transform( rigidbody *rb ) m4x3_invert_affine( rb->to_world, rb->to_local ); - box_copy( rb->bbx, rb->bbx_world ); - m4x3_transform_aabb( rb->to_world, rb->bbx_world ); - +#if 0 m3x3_mulv( rb->to_world, (v3f){1.0f,0.0f, 0.0f}, rb->right ); m3x3_mulv( rb->to_world, (v3f){0.0f,1.0f, 0.0f}, rb->up ); m3x3_mulv( rb->to_world, (v3f){0.0f,0.0f,-1.0f}, rb->forward ); +#endif + + m3x3_mul( rb->iI, rb->to_local, rb->iIw ); + m3x3_mul( rb->to_world, rb->iIw, rb->iIw ); + + rb_update_bounds( rb ); } -static float sphere_volume( float radius ) +/* + * Extrapolate rigidbody into a transform based on vg accumulator. + * Useful for rendering + */ +VG_STATIC void rb_extrapolate( rigidbody *rb, v3f co, v4f q ) { - float r3 = radius*radius*radius; - return (4.0f/3.0f) * VG_PIf * r3; + float substep = vg.time_fixed_extrapolate; + v3_muladds( rb->co, rb->v, k_rb_delta*substep, co ); + + if( v3_length2( rb->w ) > 0.0f ){ + v4f rotation; + v3f axis; + v3_copy( rb->w, axis ); + + float mag = v3_length( axis ); + v3_divs( axis, mag, axis ); + q_axis_angle( rotation, axis, mag*k_rb_delta*substep ); + q_mul( rotation, rb->q, q ); + q_normalize( q ); + } + else{ + v4_copy( rb->q, q ); + } } -static void rb_init( rigidbody *rb ) +/* + * Initialize rigidbody and calculate masses, inertia + */ +VG_STATIC void rb_init_object( rb_object *obj ) { float volume = 1.0f; + int inert = 0; - if( rb->type == k_rb_shape_box ) - { + if( obj->type == k_rb_shape_box ){ v3f dims; - v3_sub( rb->bbx[1], rb->bbx[0], dims ); + v3_sub( obj->rb.bbx[1], obj->rb.bbx[0], dims ); volume = dims[0]*dims[1]*dims[2]; } - else if( rb->type == k_rb_shape_sphere ) - { - volume = sphere_volume( rb->inf.sphere.radius ); - v3_fill( rb->bbx[0], -rb->inf.sphere.radius ); - v3_fill( rb->bbx[1], rb->inf.sphere.radius ); + else if( obj->type == k_rb_shape_sphere ){ + volume = sphere_volume( obj->inf.sphere.radius ); + v3_fill( obj->rb.bbx[0], -obj->inf.sphere.radius ); + v3_fill( obj->rb.bbx[1], obj->inf.sphere.radius ); } - else if( rb->type == k_rb_shape_capsule ) - { - float r = rb->inf.capsule.radius, - h = rb->inf.capsule.height; + else if( obj->type == k_rb_shape_capsule ){ + float r = obj->inf.capsule.radius, + h = obj->inf.capsule.height; volume = sphere_volume( r ) + VG_PIf * r*r * (h - r*2.0f); - v3_fill( rb->bbx[0], -rb->inf.sphere.radius ); - v3_fill( rb->bbx[1], rb->inf.sphere.radius ); - rb->bbx[0][1] = -h; - rb->bbx[1][1] = h; + v3_fill( obj->rb.bbx[0], -r ); + v3_fill( obj->rb.bbx[1], r ); + obj->rb.bbx[0][1] = -h; + obj->rb.bbx[1][1] = h; + } + else if( obj->type == k_rb_shape_scene ){ + inert = 1; + box_copy( obj->inf.scene.bh_scene->nodes[0].bbx, obj->rb.bbx ); } - if( rb->is_world ) - { - rb->inv_mass = 0.0f; + if( inert ){ + obj->rb.inv_mass = 0.0f; + v3_zero( obj->rb.I ); + m3x3_zero( obj->rb.iI ); } - else - { - rb->inv_mass = 1.0f/(8.0f*volume); + else{ + float mass = 2.0f*volume; + obj->rb.inv_mass = 1.0f/mass; + + v3f extent; + v3_sub( obj->rb.bbx[1], obj->rb.bbx[0], extent ); + v3_muls( extent, 0.5f, extent ); + + /* local intertia tensor */ + float scale = k_inertia_scale; + float ex2 = scale*extent[0]*extent[0], + ey2 = scale*extent[1]*extent[1], + ez2 = scale*extent[2]*extent[2]; + + obj->rb.I[0] = ((1.0f/12.0f) * mass * (ey2+ez2)); + obj->rb.I[1] = ((1.0f/12.0f) * mass * (ex2+ez2)); + obj->rb.I[2] = ((1.0f/12.0f) * mass * (ex2+ey2)); + + m3x3_identity( obj->rb.iI ); + obj->rb.iI[0][0] = obj->rb.I[0]; + obj->rb.iI[1][1] = obj->rb.I[1]; + obj->rb.iI[2][2] = obj->rb.I[2]; + m3x3_inv( obj->rb.iI, obj->rb.iI ); } - v3_zero( rb->v ); - v3_zero( rb->w ); - - rb_update_transform( rb ); + rb_update_transform( &obj->rb ); } -static void rb_iter( rigidbody *rb ) +VG_STATIC void rb_iter( rigidbody *rb ) { - v3f gravity = { 0.0f, -9.6f, 0.0f }; + if( !vg_validf( rb->v[0] ) || + !vg_validf( rb->v[1] ) || + !vg_validf( rb->v[2] ) ) + { + vg_fatal_error( "NaN velocity" ); + } + + v3f gravity = { 0.0f, -9.8f, 0.0f }; v3_muladds( rb->v, gravity, k_rb_delta, rb->v ); /* intergrate velocity */ @@ -167,332 +488,586 @@ static void rb_iter( rigidbody *rb ) q_axis_angle( rotation, axis, mag*k_rb_delta ); q_mul( rotation, rb->q, rb->q ); } + + /* damping */ + v3_muls( rb->v, 1.0f/(1.0f+k_rb_delta*k_damp_linear), rb->v ); + v3_muls( rb->w, 1.0f/(1.0f+k_rb_delta*k_damp_angular), rb->w ); } -static void rb_torque( rigidbody *rb, v3f axis, float mag ) + +/* + * ----------------------------------------------------------------------------- + * Boolean shape overlap functions + * ----------------------------------------------------------------------------- + */ + +/* + * Project AABB, and triangle interval onto axis to check if they overlap + */ +VG_STATIC int rb_box_triangle_interval( v3f extent, v3f axis, v3f tri[3] ) { - v3_muladds( rb->w, axis, mag*k_rb_delta, rb->w ); + float + + r = extent[0] * fabsf(axis[0]) + + extent[1] * fabsf(axis[1]) + + extent[2] * fabsf(axis[2]), + + p0 = v3_dot( axis, tri[0] ), + p1 = v3_dot( axis, tri[1] ), + p2 = v3_dot( axis, tri[2] ), + + e = vg_maxf(-vg_maxf(p0,vg_maxf(p1,p2)), vg_minf(p0,vg_minf(p1,p2))); + + if( e > r ) return 0; + else return 1; } -static void rb_tangent_basis( v3f n, v3f tx, v3f ty ) +/* + * Seperating axis test box vs triangle + */ +VG_STATIC int rb_box_triangle_sat( v3f extent, v3f center, + m4x3f to_local, v3f tri_src[3] ) { - /* Compute tangent basis (box2d) */ - if( fabsf( n[0] ) >= 0.57735027f ) - { - tx[0] = n[1]; - tx[1] = -n[0]; - tx[2] = 0.0f; + v3f tri[3]; + + for( int i=0; i<3; i++ ){ + m4x3_mulv( to_local, tri_src[i], tri[i] ); + v3_sub( tri[i], center, tri[i] ); } - else - { - tx[0] = 0.0f; - tx[1] = n[2]; - tx[2] = -n[1]; + + v3f f0,f1,f2,n; + v3_sub( tri[1], tri[0], f0 ); + v3_sub( tri[2], tri[1], f1 ); + v3_sub( tri[0], tri[2], f2 ); + + + v3f axis[9]; + v3_cross( (v3f){1.0f,0.0f,0.0f}, f0, axis[0] ); + v3_cross( (v3f){1.0f,0.0f,0.0f}, f1, axis[1] ); + v3_cross( (v3f){1.0f,0.0f,0.0f}, f2, axis[2] ); + v3_cross( (v3f){0.0f,1.0f,0.0f}, f0, axis[3] ); + v3_cross( (v3f){0.0f,1.0f,0.0f}, f1, axis[4] ); + v3_cross( (v3f){0.0f,1.0f,0.0f}, f2, axis[5] ); + v3_cross( (v3f){0.0f,0.0f,1.0f}, f0, axis[6] ); + v3_cross( (v3f){0.0f,0.0f,1.0f}, f1, axis[7] ); + v3_cross( (v3f){0.0f,0.0f,1.0f}, f2, axis[8] ); + + for( int i=0; i<9; i++ ) + if(!rb_box_triangle_interval( extent, axis[i], tri )) return 0; + + /* u0, u1, u2 */ + if(!rb_box_triangle_interval( extent, (v3f){1.0f,0.0f,0.0f}, tri )) return 0; + if(!rb_box_triangle_interval( extent, (v3f){0.0f,1.0f,0.0f}, tri )) return 0; + if(!rb_box_triangle_interval( extent, (v3f){0.0f,0.0f,1.0f}, tri )) return 0; + + /* normal */ + v3_cross( f0, f1, n ); + if(!rb_box_triangle_interval( extent, n, tri )) return 0; + + return 1; +} + +/* + * ----------------------------------------------------------------------------- + * Manifold + * ----------------------------------------------------------------------------- + */ + +VG_STATIC int rb_manifold_apply_filtered( rb_ct *man, int len ) +{ + int k = 0; + + for( int i=0; itype == k_contact_type_disabled ) + continue; + + man[k ++] = man[i]; } - v3_normalize( tx ); - v3_cross( n, tx, ty ); + return k; } -static void rb_solver_reset(void); -static void rb_build_manifold_terrain( rigidbody *rb ); -static void rb_build_manifold_terrain_sphere( rigidbody *rb ); -static void rb_solve_contacts( rb_ct *buf, int len ); -static void rb_presolve_contacts( rb_ct *buffer, int len ); +/* + * Merge two contacts if they are within radius(r) of eachother + */ +VG_STATIC void rb_manifold_contact_weld( rb_ct *ci, rb_ct *cj, float r ) +{ + if( v3_dist2( ci->co, cj->co ) < r*r ){ + cj->type = k_contact_type_disabled; + ci->p = (ci->p + cj->p) * 0.5f; + + v3_add( ci->co, cj->co, ci->co ); + v3_muls( ci->co, 0.5f, ci->co ); + + v3f delta; + v3_sub( ci->rba->co, ci->co, delta ); + + float c0 = v3_dot( ci->n, delta ), + c1 = v3_dot( cj->n, delta ); + + if( c0 < 0.0f || c1 < 0.0f ){ + /* error */ + ci->type = k_contact_type_disabled; + } + else{ + v3f n; + v3_muls( ci->n, c0, n ); + v3_muladds( n, cj->n, c1, n ); + v3_normalize( n ); + v3_copy( n, ci->n ); + } + } +} + +/* + * + */ +VG_STATIC void rb_manifold_filter_joint_edges( rb_ct *man, int len, float r ) +{ + for( int i=0; itype != k_contact_type_edge ) + continue; + + for( int j=i+1; jtype != k_contact_type_edge ) + continue; + + rb_manifold_contact_weld( ci, cj, r ); + } + } +} + +/* + * Resolve overlapping pairs + * + * TODO: Remove? + */ +VG_STATIC void rb_manifold_filter_pairs( rb_ct *man, int len, float r ) +{ + for( int i=0; itype == k_contact_type_disabled ) continue; + + for( int j=i+1; jtype == k_contact_type_disabled ) continue; + + if( v3_dist2( ci->co, cj->co ) < r*r ){ + cj->type = k_contact_type_disabled; + v3_add( cj->n, ci->n, ci->n ); + ci->p += cj->p; + similar ++; + } + } + + if( similar ){ + float n = 1.0f/((float)similar+1.0f); + v3_muls( ci->n, n, ci->n ); + ci->p *= n; + + if( v3_length2(ci->n) < 0.1f*0.1f ) + ci->type = k_contact_type_disabled; + else + v3_normalize( ci->n ); + } + } +} + +/* + * Remove contacts that are facing away from A + */ +VG_STATIC void rb_manifold_filter_backface( rb_ct *man, int len ) +{ + for( int i=0; itype == k_contact_type_disabled ) + continue; + + v3f delta; + v3_sub( ct->co, ct->rba->co, delta ); + + if( v3_dot( delta, ct->n ) > -0.001f ) + ct->type = k_contact_type_disabled; + } +} + +/* + * Filter out duplicate coplanar results. Good for spheres. + */ +VG_STATIC void rb_manifold_filter_coplanar( rb_ct *man, int len, float w ) +{ + for( int i=0; itype == k_contact_type_disabled || + ci->type == k_contact_type_edge ) + continue; + + float d1 = v3_dot( ci->co, ci->n ); + + for( int j=0; jtype == k_contact_type_disabled ) + continue; + + float d2 = v3_dot( cj->co, ci->n ), + d = d2-d1; + + if( fabsf( d ) <= w ){ + cj->type = k_contact_type_disabled; + } + } + } +} + +/* + * ----------------------------------------------------------------------------- + * Collision matrix + * ----------------------------------------------------------------------------- + */ + +/* + * Contact generators + * + * These do not automatically allocate contacts, an appropriately sized + * buffer must be supplied. The function returns the size of the manifold + * which was generated. + * + * The values set on the contacts are: n, co, p, rba, rbb + */ /* - * These closest point tests were learned from Real-Time Collision Detection by - * Christer Ericson + * By collecting the minimum(time) and maximum(time) pairs of points, we + * build a reduced and stable exact manifold. + * + * tx: time at point + * rx: minimum distance of these points + * dx: the delta between the two points + * + * pairs will only ammend these if they are creating a collision */ -static float closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2, - float *s, float *t, v3f c1, v3f c2) +typedef struct capsule_manifold capsule_manifold; +struct capsule_manifold { - v3f d1,d2,r; - v3_sub( q1, p1, d1 ); - v3_sub( q2, p2, d2 ); - v3_sub( p1, p2, r ); - - float a = v3_length2( d1 ), - e = v3_length2( d2 ), - f = v3_dot( d2, r ); - - const float kEpsilon = 0.0001f; - - if( a <= kEpsilon && e <= kEpsilon ) - { - *s = 0.0f; - *t = 0.0f; - v3_copy( p1, c1 ); - v3_copy( p2, c2 ); + float t0, t1; + float r0, r1; + v3f d0, d1; +}; - v3f v0; - v3_sub( c1, c2, v0 ); +/* + * Expand a line manifold with a new pair. t value is the time along segment + * on the oriented object which created this pair. + */ +VG_STATIC void rb_capsule_manifold( v3f pa, v3f pb, float t, float r, + capsule_manifold *manifold ) +{ + v3f delta; + v3_sub( pa, pb, delta ); - return v3_length2( v0 ); - } - - if( a<= kEpsilon ) - { - *s = 0.0f; - *t = vg_clampf( f / e, 0.0f, 1.0f ); - } - else - { - float c = v3_dot( d1, r ); - if( e <= kEpsilon ) - { - *t = 0.0f; - *s = vg_clampf( -c / a, 0.0f, 1.0f ); + if( v3_length2(delta) < r*r ){ + if( t < manifold->t0 ){ + v3_copy( delta, manifold->d0 ); + manifold->t0 = t; + manifold->r0 = r; } - else - { - float b = v3_dot(d1,d2), - d = a*e-b*b; - - if( d != 0.0f ) - { - *s = vg_clampf((b*f - c*e)/d, 0.0f, 1.0f); - } - else - { - *s = 0.0f; - } - - *t = (b*(*s)+f) / e; - if( *t < 0.0f ) - { - *t = 0.0f; - *s = vg_clampf( -c / a, 0.0f, 1.0f ); - } - else if( *t > 1.0f ) - { - *t = 1.0f; - *s = vg_clampf((b-c)/a,0.0f,1.0f); - } + if( t > manifold->t1 ){ + v3_copy( delta, manifold->d1 ); + manifold->t1 = t; + manifold->r1 = r; } } - - v3_muladds( p1, d1, *s, c1 ); - v3_muladds( p2, d2, *t, c2 ); - - v3f v0; - v3_sub( c1, c2, v0 ); - return v3_length2( v0 ); } -static void closest_point_aabb( v3f p, boxf box, v3f dest ) +VG_STATIC void rb_capsule_manifold_init( capsule_manifold *manifold ) { - v3_maxv( p, box[0], dest ); - v3_minv( dest, box[1], dest ); + manifold->t0 = INFINITY; + manifold->t1 = -INFINITY; } -static void closest_point_obb( v3f p, rigidbody *rb, v3f dest ) +VG_STATIC int rb_capsule__manifold_done( m4x3f mtx, rb_capsule *c, + capsule_manifold *manifold, + rb_ct *buf ) { - v3f local; - m4x3_mulv( rb->to_local, p, local ); - closest_point_aabb( local, rb->bbx, local ); - m4x3_mulv( rb->to_world, local, dest ); -} + v3f p0, p1; + v3_muladds( mtx[3], mtx[1], -c->height*0.5f+c->radius, p0 ); + v3_muladds( mtx[3], mtx[1], c->height*0.5f-c->radius, p1 ); -static void closest_point_segment( v3f a, v3f b, v3f point, v3f dest ) -{ - v3f v0, v1; - v3_sub( b, a, v0 ); - v3_sub( point, a, v1 ); + int count = 0; + if( manifold->t0 <= 1.0f ){ + rb_ct *ct = buf; - float t = v3_dot( v1, v0 ) / v3_length2(v0); - v3_muladds( a, v0, vg_clampf(t,0.0f,1.0f), dest ); -} + v3f pa; + v3_muls( p0, 1.0f-manifold->t0, pa ); + v3_muladds( pa, p1, manifold->t0, pa ); -static void closest_on_triangle( v3f p, v3f tri[3], v3f dest ) -{ - v3f ab, ac, ap; - float d1, d2; + float d = v3_length( manifold->d0 ); + v3_muls( manifold->d0, 1.0f/d, ct->n ); + v3_muladds( pa, ct->n, -c->radius, ct->co ); - /* Region outside A */ - v3_sub( tri[1], tri[0], ab ); - v3_sub( tri[2], tri[0], ac ); - v3_sub( p, tri[0], ap ); - - d1 = v3_dot(ab,ap); - d2 = v3_dot(ac,ap); - if( d1 <= 0.0f && d2 <= 0.0f ) - { - v3_copy( tri[0], dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; + ct->p = manifold->r0 - d; + ct->type = k_contact_type_default; + count ++; } - /* Region outside B */ - v3f bp; - float d3, d4; + if( (manifold->t1 >= 0.0f) && (manifold->t0 != manifold->t1) ){ + rb_ct *ct = buf+count; - v3_sub( p, tri[1], bp ); - d3 = v3_dot( ab, bp ); - d4 = v3_dot( ac, bp ); + v3f pa; + v3_muls( p0, 1.0f-manifold->t1, pa ); + v3_muladds( pa, p1, manifold->t1, pa ); - if( d3 >= 0.0f && d4 <= d3 ) - { - v3_copy( tri[1], dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; - } - - /* Edge region of AB */ - float vc = d1*d4 - d3*d2; - if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f ) - { - float v = d1 / (d1-d3); - v3_muladds( tri[0], ab, v, dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; - } + float d = v3_length( manifold->d1 ); + v3_muls( manifold->d1, 1.0f/d, ct->n ); + v3_muladds( pa, ct->n, -c->radius, ct->co ); - /* Region outside C */ - v3f cp; - float d5, d6; - v3_sub( p, tri[2], cp ); - d5 = v3_dot(ab, cp); - d6 = v3_dot(ac, cp); - - if( d6 >= 0.0f && d5 <= d6 ) - { - v3_copy( tri[2], dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; - } + ct->p = manifold->r1 - d; + ct->type = k_contact_type_default; - /* Region of AC */ - float vb = d5*d2 - d1*d6; - if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f ) - { - float w = d2 / (d2-d6); - v3_muladds( tri[0], ac, w, dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; + count ++; } - /* Region of BC */ - float va = d3*d6 - d5*d4; - if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f ) - { - float w = (d4-d3) / ((d4-d3) + (d5-d6)); - v3f bc; - v3_sub( tri[2], tri[1], bc ); - v3_muladds( tri[1], bc, w, dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; - } + /* + * Debugging + */ - /* P inside region, Q via barycentric coordinates uvw */ - float d = 1.0f/(va+vb+vc), - v = vb*d, - w = vc*d; + if( count == 2 ) + vg_line( buf[0].co, buf[1].co, 0xff0000ff ); - v3_muladds( tri[0], ab, v, dest ); - v3_muladds( dest, ac, w, dest ); + return count; } -/* - * Contact generators - * - * These do not automatically allocate contacts, an appropriately sized - * buffer must be supplied. The function returns the size of the manifold - * which was generated. - * - * The values set on the contacts are: n, co, p, rba, rbb - */ - -static void rb_debug_contact( rb_ct *ct ) +VG_STATIC int rb_capsule_sphere( rb_object *obja, rb_object *objb, rb_ct *buf ) { - v3f p1; - v3_muladds( ct->co, ct->n, 0.2f, p1 ); - vg_line_pt3( ct->co, 0.1f, 0xff0000ff ); - vg_line( ct->co, p1, 0xffffffff ); + rigidbody *rba = &obja->rb, *rbb = &objb->rb; + float h = obja->inf.capsule.height, + ra = obja->inf.capsule.radius, + rb = objb->inf.sphere.radius; + + v3f p0, p1; + v3_muladds( rba->co, rba->to_world[1], -h*0.5f+ra, p0 ); + v3_muladds( rba->co, rba->to_world[1], h*0.5f-ra, p1 ); + + v3f c, delta; + closest_point_segment( p0, p1, rbb->co, c ); + v3_sub( c, rbb->co, delta ); + + float d2 = v3_length2(delta), + r = ra + rb; + + if( d2 < r*r ){ + float d = sqrtf(d2); + + rb_ct *ct = buf; + v3_muls( delta, 1.0f/d, ct->n ); + ct->p = r-d; + + v3f p0, p1; + v3_muladds( c, ct->n, -ra, p0 ); + v3_muladds( rbb->co, ct->n, rb, p1 ); + v3_add( p0, p1, ct->co ); + v3_muls( ct->co, 0.5f, ct->co ); + + ct->rba = rba; + ct->rbb = rbb; + ct->type = k_contact_type_default; + + return 1; + } + + return 0; } -static void rb_box_incident_dir( v3f p, boxf box, v3f dir ) +VG_STATIC int rb_capsule__capsule( m4x3f mtxA, rb_capsule *ca, + m4x3f mtxB, rb_capsule *cb, rb_ct *buf ) { + float ha = ca->height, + hb = cb->height, + ra = ca->radius, + rb = cb->radius, + r = ra+rb; + + v3f p0, p1, p2, p3; + v3_muladds( mtxA[3], mtxA[1], -ha*0.5f+ra, p0 ); + v3_muladds( mtxA[3], mtxA[1], ha*0.5f-ra, p1 ); + v3_muladds( mtxB[3], mtxB[1], -hb*0.5f+rb, p2 ); + v3_muladds( mtxB[3], mtxB[1], hb*0.5f-rb, p3 ); + + capsule_manifold manifold; + rb_capsule_manifold_init( &manifold ); + + v3f pa, pb; + float ta, tb; + closest_segment_segment( p0, p1, p2, p3, &ta, &tb, pa, pb ); + rb_capsule_manifold( pa, pb, ta, r, &manifold ); + + ta = closest_point_segment( p0, p1, p2, pa ); + tb = closest_point_segment( p0, p1, p3, pb ); + rb_capsule_manifold( pa, p2, ta, r, &manifold ); + rb_capsule_manifold( pb, p3, tb, r, &manifold ); + + closest_point_segment( p2, p3, p0, pa ); + closest_point_segment( p2, p3, p1, pb ); + rb_capsule_manifold( p0, pa, 0.0f, r, &manifold ); + rb_capsule_manifold( p1, pb, 1.0f, r, &manifold ); + return rb_capsule__manifold_done( mtxA, ca, &manifold, buf ); } +#if 0 /* * Generates up to two contacts; optimised for the most stable manifold */ -static int rb_capsule_vs_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +VG_STATIC int rb_capsule_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) { float h = rba->inf.capsule.height, r = rba->inf.capsule.radius; - - v3f p0, p1; - v3_muladds( rba->co, rba->up, h*0.5f-r*0.5f, p1 ); - v3_muladds( rba->co, rba->up, -h*0.5f+r*0.5f, p0 ); - m4x3_mulv( rbb->to_local, p0, p0 ); - m4x3_mulv( rbb->to_local, p1, p1 ); + /* + * Solving this in symetric local space of the cube saves us some time and a + * couple branches when it comes to the quad stage. + */ + v3f centroid; + v3_add( rbb->bbx[0], rbb->bbx[1], centroid ); + v3_muls( centroid, 0.5f, centroid ); + + boxf bbx; + v3_sub( rbb->bbx[0], centroid, bbx[0] ); + v3_sub( rbb->bbx[1], centroid, bbx[1] ); + + v3f pc, p0w, p1w, p0, p1; + v3_muladds( rba->co, rba->up, -h*0.5f+r, p0w ); + v3_muladds( rba->co, rba->up, h*0.5f-r, p1w ); + + m4x3_mulv( rbb->to_local, p0w, p0 ); + m4x3_mulv( rbb->to_local, p1w, p1 ); + v3_sub( p0, centroid, p0 ); + v3_sub( p1, centroid, p1 ); + v3_add( p0, p1, pc ); + v3_muls( pc, 0.5f, pc ); + + /* + * Finding an appropriate quad to collide lines with + */ + v3f region; + v3_div( pc, bbx[1], region ); + + v3f quad[4]; + if( (fabsf(region[0]) > fabsf(region[1])) && + (fabsf(region[0]) > fabsf(region[2])) ) + { + float px = vg_signf(region[0]) * bbx[1][0]; + v3_copy( (v3f){ px, bbx[0][1], bbx[0][2] }, quad[0] ); + v3_copy( (v3f){ px, bbx[1][1], bbx[0][2] }, quad[1] ); + v3_copy( (v3f){ px, bbx[1][1], bbx[1][2] }, quad[2] ); + v3_copy( (v3f){ px, bbx[0][1], bbx[1][2] }, quad[3] ); + } + else if( fabsf(region[1]) > fabsf(region[2]) ) + { + float py = vg_signf(region[1]) * bbx[1][1]; + v3_copy( (v3f){ bbx[0][0], py, bbx[0][2] }, quad[0] ); + v3_copy( (v3f){ bbx[1][0], py, bbx[0][2] }, quad[1] ); + v3_copy( (v3f){ bbx[1][0], py, bbx[1][2] }, quad[2] ); + v3_copy( (v3f){ bbx[0][0], py, bbx[1][2] }, quad[3] ); + } + else + { + float pz = vg_signf(region[2]) * bbx[1][2]; + v3_copy( (v3f){ bbx[0][0], bbx[0][1], pz }, quad[0] ); + v3_copy( (v3f){ bbx[1][0], bbx[0][1], pz }, quad[1] ); + v3_copy( (v3f){ bbx[1][0], bbx[1][1], pz }, quad[2] ); + v3_copy( (v3f){ bbx[0][0], bbx[1][1], pz }, quad[3] ); + } - /* Clip zone +y */ + capsule_manifold manifold; + rb_capsule_manifold_init( &manifold ); v3f c0, c1; - closest_point_aabb( p0, rbb->bbx, c0 ); - closest_point_aabb( p1, rbb->bbx, c1 ); - - v3f vis0; - m4x3_mulv( rbb->to_world, c0, vis0 ); - vg_line_pt3( vis0, 0.1f, 0xffff00ff ); - m4x3_mulv( rbb->to_world, c1, vis0 ); - vg_line_pt3( vis0, 0.1f, 0xffff00ff ); + closest_point_aabb( p0, bbx, c0 ); + closest_point_aabb( p1, bbx, c1 ); + + v3f d0, d1, da; + v3_sub( c0, p0, d0 ); + v3_sub( c1, p1, d1 ); + v3_sub( p1, p0, da ); - v3f d0, d1; - v3_sub( p0, c0, d0 ); - v3_sub( p1, c1, d1 ); + v3_normalize(d0); + v3_normalize(d1); + v3_normalize(da); - float d02 = v3_length2(d0), - d12 = v3_length2(d1); + if( v3_dot( da, d0 ) <= 0.01f ) + rb_capsule_manifold( p0, c0, 0.0f, r, &manifold ); - int count = 0; + if( v3_dot( da, d1 ) >= -0.01f ) + rb_capsule_manifold( p1, c1, 1.0f, r, &manifold ); - if( d02 <= r*r ) + for( int i=0; i<4; i++ ) { - rb_ct *ct = buf+count; - float d = sqrtf(d02); - - vg_info( "d: %.4f\n", d ); + int i0 = i, + i1 = (i+1)%4; - v3_muls( d0, -1.0f/d, ct->n ); - ct->p = r-d; - v3_add( c0, p0, ct->co ); - v3_muls( ct->co, 0.5f, ct->co ); - - m3x3_mulv( rbb->to_world, ct->n, ct->n ); - m4x3_mulv( rbb->to_world, ct->co, ct->co ); + v3f ca, cb; + float ta, tb; + closest_segment_segment( p0, p1, quad[i0], quad[i1], &ta, &tb, ca, cb ); + rb_capsule_manifold( ca, cb, ta, r, &manifold ); + } - ct->rba = rba; - ct->rbb = rbb; - count ++; + /* + * Create final contacts based on line manifold + */ + m3x3_mulv( rbb->to_world, manifold.d0, manifold.d0 ); + m3x3_mulv( rbb->to_world, manifold.d1, manifold.d1 ); + + /* + * Debugging + */ + +#if 0 + for( int i=0; i<4; i++ ) + { + v3f q0, q1; + int i0 = i, + i1 = (i+1)%4; + + v3_add( quad[i0], centroid, q0 ); + v3_add( quad[i1], centroid, q1 ); + + m4x3_mulv( rbb->to_world, q0, q0 ); + m4x3_mulv( rbb->to_world, q1, q1 ); + + vg_line( q0, q1, 0xffffffff ); } +#endif - return count; + return rb_capsule_manifold_done( rba, rbb, &manifold, buf ); } +#endif -static int rb_sphere_vs_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +VG_STATIC int rb_sphere_box( rb_object *obja, rb_object *objb, rb_ct *buf ) { v3f co, delta; + rigidbody *rba = &obja->rb, *rbb = &objb->rb; - closest_point_obb( rba->co, rbb, co ); + closest_point_obb( rba->co, rbb->bbx, rbb->to_world, rbb->to_local, co ); v3_sub( rba->co, co, delta ); float d2 = v3_length2(delta), - r = rba->inf.sphere.radius; + r = obja->inf.sphere.radius; - if( d2 <= r*r ) - { + if( d2 <= r*r ){ float d; rb_ct *ct = buf; - if( d2 <= 0.0001f ) - { + if( d2 <= 0.0001f ){ v3_sub( rba->co, rbb->co, delta ); /* @@ -500,60 +1075,60 @@ static int rb_sphere_vs_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) * object back outside the box. Since there isnt a clear seperating * vector already, especially on really high aspect boxes. */ - float lx = v3_dot( rbb->right, delta ), - ly = v3_dot( rbb->up, delta ), - lz = v3_dot( rbb->forward, delta ), + float lx = v3_dot( rbb->to_world[0], delta ), + ly = v3_dot( rbb->to_world[1], delta ), + lz = v3_dot( rbb->to_world[2], delta ), px = rbb->bbx[1][0] - fabsf(lx), py = rbb->bbx[1][1] - fabsf(ly), pz = rbb->bbx[1][2] - fabsf(lz); if( px < py && px < pz ) - v3_muls( rbb->right, vg_signf(lx), ct->n ); + v3_muls( rbb->to_world[0], vg_signf(lx), ct->n ); else if( py < pz ) - v3_muls( rbb->up, vg_signf(ly), ct->n ); + v3_muls( rbb->to_world[1], vg_signf(ly), ct->n ); else - v3_muls( rbb->forward, vg_signf(lz), ct->n ); + v3_muls( rbb->to_world[2], vg_signf(lz), ct->n ); v3_muladds( rba->co, ct->n, -r, ct->co ); ct->p = r; } - else - { + else{ d = sqrtf(d2); v3_muls( delta, 1.0f/d, ct->n ); ct->p = r-d; - v3_add( co, rba->co, ct->co ); - v3_muls( ct->co, 0.5f, ct->co ); + v3_copy( co, ct->co ); } ct->rba = rba; ct->rbb = rbb; + ct->type = k_contact_type_default; return 1; } return 0; } -static int rb_sphere_vs_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +VG_STATIC int rb_sphere_sphere( rb_object *obja, rb_object *objb, rb_ct *buf ) { + rigidbody *rba = &obja->rb, *rbb = &objb->rb; v3f delta; v3_sub( rba->co, rbb->co, delta ); float d2 = v3_length2(delta), - r = rba->inf.sphere.radius + rbb->inf.sphere.radius; + r = obja->inf.sphere.radius + objb->inf.sphere.radius; - if( d2 < r*r ) - { + if( d2 < r*r ){ float d = sqrtf(d2); rb_ct *ct = buf; - v3_muls( delta, -1.0f/d, ct->n ); + v3_muls( delta, 1.0f/d, ct->n ); v3f p0, p1; - v3_muladds( rba->co, ct->n, rba->inf.sphere.radius, p0 ); - v3_muladds( rbb->co, ct->n,-rbb->inf.sphere.radius, p1 ); + v3_muladds( rba->co, ct->n,-obja->inf.sphere.radius, p0 ); + v3_muladds( rbb->co, ct->n, objb->inf.sphere.radius, p1 ); v3_add( p0, p1, ct->co ); v3_muls( ct->co, 0.5f, ct->co ); + ct->type = k_contact_type_default; ct->p = r-d; ct->rba = rba; ct->rbb = rbb; @@ -563,28 +1138,21 @@ static int rb_sphere_vs_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) return 0; } -static int rb_box_vs_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) -{ - return rb_sphere_vs_box( rbb, rba, buf ); -} - -static int rb_box_vs_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) -{ - /* TODO: Generating a stable quad manifold, lots of clipping */ - return 0; -} +//#define RIGIDBODY_DYNAMIC_MESH_EDGES -/* - * This function does not accept triangle as a dynamic object, it is assumed - * to always be static. - * - * The triangle is also assumed to be one sided for better detection - */ -static int rb_sphere_vs_triangle( rigidbody *rba, v3f tri[3], rb_ct *buf ) +#if 0 +__attribute__ ((deprecated)) +VG_STATIC int rb_sphere_triangle( rigidbody *rba, rigidbody *rbb, + v3f tri[3], rb_ct *buf ) { v3f delta, co; - closest_on_triangle( rba->co, tri, co ); +#ifdef RIGIDBODY_DYNAMIC_MESH_EDGES + closest_on_triangle_1( rba->co, tri, co ); +#else + enum contact_type type = closest_on_triangle_1( rba->co, tri, co ); +#endif + v3_sub( rba->co, co, delta ); float d2 = v3_length2( delta ), @@ -592,207 +1160,451 @@ static int rb_sphere_vs_triangle( rigidbody *rba, v3f tri[3], rb_ct *buf ) if( d2 < r*r ) { + rb_ct *ct = buf; + v3f ab, ac, tn; - v3_sub( tri[1], tri[0], ab ); - v3_sub( tri[2], tri[0], ac ); + v3_sub( tri[2], tri[0], ab ); + v3_sub( tri[1], tri[0], ac ); v3_cross( ac, ab, tn ); + v3_copy( tn, ct->n ); - if( v3_dot( delta, tn ) > 0.0f ) - v3_muls( delta, -1.0f, delta ); + if( v3_length2( ct->n ) <= 0.00001f ) + { + vg_error( "Zero area triangle!\n" ); + return 0; + } + + v3_normalize( ct->n ); float d = sqrtf(d2); - rb_ct *ct = buf; - v3_muls( delta, 1.0f/d, ct->n ); v3_copy( co, ct->co ); + ct->type = type; ct->p = r-d; ct->rba = rba; - ct->rbb = &rb_static_null; + ct->rbb = rbb; return 1; } return 0; } +#endif - -/* - * Generic functions - */ - -RB_DEPR -static int sphere_vs_triangle( v3f c, float r, v3f tri[3], - v3f co, v3f norm, float *p ) +VG_STATIC int rb_sphere__triangle( m4x3f mtxA, rb_sphere *b, + v3f tri[3], rb_ct *buf ) { - v3f delta; - closest_on_triangle( c, tri, co ); + v3f delta, co; + enum contact_type type = closest_on_triangle_1( mtxA[3], tri, co ); - v3_sub( c, co, delta ); + v3_sub( mtxA[3], co, delta ); + float d2 = v3_length2( delta ), + r = b->radius; + + if( d2 <= r*r ){ + rb_ct *ct = buf; - float d = v3_length2( delta ); - if( d < r*r ) - { v3f ab, ac, tn; - v3_sub( tri[1], tri[0], ab ); - v3_sub( tri[2], tri[0], ac ); + v3_sub( tri[2], tri[0], ab ); + v3_sub( tri[1], tri[0], ac ); v3_cross( ac, ab, tn ); + v3_copy( tn, ct->n ); + + if( v3_length2( ct->n ) <= 0.00001f ){ + vg_error( "Zero area triangle!\n" ); + return 0; + } + + v3_normalize( ct->n ); + + float d = sqrtf(d2); + + v3_copy( co, ct->co ); + ct->type = type; + ct->p = r-d; + return 1; + } + + return 0; +} + +VG_STATIC int rb_sphere__scene( m4x3f mtxA, rb_sphere *b, + m4x3f mtxB, rb_scene *s, rb_ct *buf ) +{ + scene_context *sc = s->bh_scene->user; - if( v3_dot( delta, tn ) > 0.0f ) - v3_muls( delta, -1.0f, delta ); + bh_iter it; + bh_iter_init( 0, &it ); + int idx; - vg_line_pt3( co, 0.05f, 0xff00ff00 ); + int count = 0; + + float r = b->radius + 0.1f; + boxf box; + v3_sub( mtxA[3], (v3f){ r,r,r }, box[0] ); + v3_add( mtxA[3], (v3f){ r,r,r }, box[1] ); + + while( bh_next( s->bh_scene, &it, box, &idx ) ){ + u32 *ptri = &sc->arrindices[ idx*3 ]; + v3f tri[3]; + + for( int j=0; j<3; j++ ) + v3_copy( sc->arrvertices[ptri[j]].co, tri[j] ); + + buf[ count ].element_id = ptri[0]; + + vg_line( tri[0],tri[1],0x70ff6000 ); + vg_line( tri[1],tri[2],0x70ff6000 ); + vg_line( tri[2],tri[0],0x70ff6000 ); + + int contact = rb_sphere__triangle( mtxA, b, tri, &buf[count] ); + count += contact; + + if( count == 16 ){ + vg_warn( "Exceeding sphere_vs_scene capacity. Geometry too dense!\n" ); + return count; + } + } + + return count; +} + +VG_STATIC int rb_box__scene( m4x3f mtxA, boxf bbx, + m4x3f mtxB, rb_scene *s, rb_ct *buf ) +{ +#if 1 + scene_context *sc = s->bh_scene->user; + v3f tri[3]; + + v3f extent, center; + v3_sub( bbx[1], bbx[0], extent ); + v3_muls( extent, 0.5f, extent ); + v3_add( bbx[0], extent, center ); + + float r = v3_length(extent); + boxf world_bbx; + v3_fill( world_bbx[0], -r ); + v3_fill( world_bbx[1], r ); + for( int i=0; i<2; i++ ){ + v3_add( center, world_bbx[i], world_bbx[i] ); + v3_add( mtxA[3], world_bbx[i], world_bbx[i] ); + } + + m4x3f to_local; + m4x3_invert_affine( mtxA, to_local ); + + bh_iter it; + bh_iter_init( 0, &it ); + int idx; + int count = 0; + + vg_line_boxf( world_bbx, VG__RED ); + + while( bh_next( s->bh_scene, &it, world_bbx, &idx ) ){ + u32 *ptri = &sc->arrindices[ idx*3 ]; + + for( int j=0; j<3; j++ ) + v3_copy( sc->arrvertices[ptri[j]].co, tri[j] ); + + if( rb_box_triangle_sat( extent, center, to_local, tri ) ){ + vg_line(tri[0],tri[1],0xff50ff00 ); + vg_line(tri[1],tri[2],0xff50ff00 ); + vg_line(tri[2],tri[0],0xff50ff00 ); + } + else{ + vg_line(tri[0],tri[1],0xff0000ff ); + vg_line(tri[1],tri[2],0xff0000ff ); + vg_line(tri[2],tri[0],0xff0000ff ); + continue; + } + + v3f v0,v1,n; + v3_sub( tri[1], tri[0], v0 ); + v3_sub( tri[2], tri[0], v1 ); + v3_cross( v0, v1, n ); + v3_normalize( n ); + + /* find best feature */ + float best = v3_dot( mtxA[0], n ); + int axis = 0; + + for( int i=1; i<3; i++ ){ + float c = v3_dot( mtxA[i], n ); + + if( fabsf(c) > fabsf(best) ){ + best = c; + axis = i; + } + } + + v3f manifold[4]; + + if( axis == 0 ){ + float px = best > 0.0f? bbx[0][0]: bbx[1][0]; + manifold[0][0] = px; + manifold[0][1] = bbx[0][1]; + manifold[0][2] = bbx[0][2]; + manifold[1][0] = px; + manifold[1][1] = bbx[1][1]; + manifold[1][2] = bbx[0][2]; + manifold[2][0] = px; + manifold[2][1] = bbx[1][1]; + manifold[2][2] = bbx[1][2]; + manifold[3][0] = px; + manifold[3][1] = bbx[0][1]; + manifold[3][2] = bbx[1][2]; + } + else if( axis == 1 ){ + float py = best > 0.0f? bbx[0][1]: bbx[1][1]; + manifold[0][0] = bbx[0][0]; + manifold[0][1] = py; + manifold[0][2] = bbx[0][2]; + manifold[1][0] = bbx[1][0]; + manifold[1][1] = py; + manifold[1][2] = bbx[0][2]; + manifold[2][0] = bbx[1][0]; + manifold[2][1] = py; + manifold[2][2] = bbx[1][2]; + manifold[3][0] = bbx[0][0]; + manifold[3][1] = py; + manifold[3][2] = bbx[1][2]; + } + else{ + float pz = best > 0.0f? bbx[0][2]: bbx[1][2]; + manifold[0][0] = bbx[0][0]; + manifold[0][1] = bbx[0][1]; + manifold[0][2] = pz; + manifold[1][0] = bbx[1][0]; + manifold[1][1] = bbx[0][1]; + manifold[1][2] = pz; + manifold[2][0] = bbx[1][0]; + manifold[2][1] = bbx[1][1]; + manifold[2][2] = pz; + manifold[3][0] = bbx[0][0]; + manifold[3][1] = bbx[1][1]; + manifold[3][2] = pz; + } + + for( int j=0; j<4; j++ ) + m4x3_mulv( mtxA, manifold[j], manifold[j] ); + + vg_line( manifold[0], manifold[1], 0xffffffff ); + vg_line( manifold[1], manifold[2], 0xffffffff ); + vg_line( manifold[2], manifold[3], 0xffffffff ); + vg_line( manifold[3], manifold[0], 0xffffffff ); + + for( int j=0; j<4; j++ ){ + rb_ct *ct = buf+count; + + v3_copy( manifold[j], ct->co ); + v3_copy( n, ct->n ); + + float l0 = v3_dot( tri[0], n ), + l1 = v3_dot( manifold[j], n ); + + ct->p = (l0-l1)*0.5f; + if( ct->p < 0.0f ) + continue; + + ct->type = k_contact_type_default; + count ++; + + if( count >= 12 ) + return count; + } + } + return count; +#else + + scene *sc = s->bh_scene->user; + v3f tri[3]; + + v3f extent, center; + v3_sub( bbx[1], bbx[0], extent ); + v3_muls( extent, 0.5f, extent ); + v3_add( bbx[0], extent, center ); + + float r = v3_length(extent); + boxf world_bbx; + v3_fill( world_bbx[0], -r ); + v3_fill( world_bbx[1], r ); + for( int i=0; i<2; i++ ){ + v3_add( center, world_bbx[i], world_bbx[i] ); + v3_add( mtxA[3], world_bbx[i], world_bbx[i] ); + } + + m4x3f to_local; + m4x3_invert_affine( mtxA, to_local ); + + bh_iter it; + bh_iter_init( 0, &it ); + int idx; + int count = 0; + + vg_line_boxf( world_bbx, VG__RED ); + + while( bh_next( s->bh_scene, &it, world_bbx, &idx ) ){ + u32 *ptri = &sc->arrindices[ idx*3 ]; + + for( int j=0; j<3; j++ ) + v3_copy( sc->arrvertices[ptri[j]].co, tri[j] ); - d = sqrtf(d); - v3_muls( delta, 1.0f/d, norm ); + vg_line( tri[0],tri[1],VG__BLACK ); + vg_line( tri[1],tri[2],VG__BLACK ); + vg_line( tri[2],tri[0],VG__BLACK ); - *p = r-d; - return 1; + v3f clip[2][8]; + u32 clip_length = 0; } - return 0; +#endif } -#include "world.h" - -static void rb_solver_reset(void) +VG_STATIC int rb_capsule__triangle( m4x3f mtxA, rb_capsule *c, + v3f tri[3], rb_ct *buf ) { - rb_contact_count = 0; -} + v3f pc, p0w, p1w; + v3_muladds( mtxA[3], mtxA[1], -c->height*0.5f+c->radius, p0w ); + v3_muladds( mtxA[3], mtxA[1], c->height*0.5f-c->radius, p1w ); -static rb_ct *rb_global_ct(void) -{ - return rb_contact_buffer + rb_contact_count; -} + capsule_manifold manifold; + rb_capsule_manifold_init( &manifold ); + + v3f c0, c1; + closest_on_triangle_1( p0w, tri, c0 ); + closest_on_triangle_1( p1w, tri, c1 ); -static struct contact *rb_start_contact(void) -{ - if( rb_contact_count == vg_list_size(rb_contact_buffer) ) - { - vg_error( "rigidbody: too many contacts generated (%u)\n", - rb_contact_count ); - return NULL; - } + v3f d0, d1, da; + v3_sub( c0, p0w, d0 ); + v3_sub( c1, p1w, d1 ); + v3_sub( p1w, p0w, da ); + + v3_normalize(d0); + v3_normalize(d1); + v3_normalize(da); - return &rb_contact_buffer[ rb_contact_count ]; -} + if( v3_dot( da, d0 ) <= 0.01f ) + rb_capsule_manifold( p0w, c0, 0.0f, c->radius, &manifold ); -static void rb_commit_contact( struct contact *ct, float p ) -{ - ct->bias = -0.2f*k_rb_rate*vg_minf(0.0f,-p+0.04f); - rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); + if( v3_dot( da, d1 ) >= -0.01f ) + rb_capsule_manifold( p1w, c1, 1.0f, c->radius, &manifold ); - ct->norm_impulse = 0.0f; - ct->tangent_impulse[0] = 0.0f; - ct->tangent_impulse[1] = 0.0f; + for( int i=0; i<3; i++ ){ + int i0 = i, + i1 = (i+1)%3; - rb_contact_count ++; -} + v3f ca, cb; + float ta, tb; + closest_segment_segment( p0w, p1w, tri[i0], tri[i1], &ta, &tb, ca, cb ); + rb_capsule_manifold( ca, cb, ta, c->radius, &manifold ); + } -static void rb_build_manifold_terrain_sphere( rigidbody *rb ) -{ - u32 geo[256]; - v3f tri[3]; - int len = bh_select( &world.geo.bhtris, rb->bbx_world, geo, 256 ); - - for( int i=0; ico, rb->inf.sphere.radius, tri,co,norm,&p)) - { - struct contact *ct = rb_start_contact(); + boxf bbx; + v3_sub( mtxA[3], (v3f){ c->height, c->height, c->height }, bbx[0] ); + v3_add( mtxA[3], (v3f){ c->height, c->height, c->height }, bbx[1] ); + + scene_context *sc = s->bh_scene->user; + + while( bh_next( s->bh_scene, &it, bbx, &idx ) ){ + u32 *ptri = &sc->arrindices[ idx*3 ]; + v3f tri[3]; - if( !ct ) - return; + for( int j=0; j<3; j++ ) + v3_copy( sc->arrvertices[ptri[j]].co, tri[j] ); + + buf[ count ].element_id = ptri[0]; - v3f p1; - v3_muladds( rb->co, norm, p, p1 ); - vg_line( rb->co, p1, 0xffffffff ); + int contact = rb_capsule__triangle( mtxA, c, tri, &buf[count] ); + count += contact; - ct->rba = rb; - v3_copy( co, ct->co ); - v3_copy( norm, ct->n ); - rb_commit_contact( ct, p ); - } + if( count >= 16 ){ + vg_warn("Exceeding capsule_vs_scene capacity. Geometry too dense!\n"); + return count; } } + return count; } -RB_DEPR -static void rb_build_manifold_terrain( rigidbody *rb ) +VG_STATIC int rb_global_has_space( void ) { - v3f *box = rb->bbx; - v3f pts[8]; - float *p000 = pts[0], *p001 = pts[1], *p010 = pts[2], *p011 = pts[3], - *p100 = pts[4], *p101 = pts[5], *p110 = pts[6], *p111 = pts[7]; - - p000[0]=box[0][0];p000[1]=box[0][1];p000[2]=box[0][2]; - p001[0]=box[0][0];p001[1]=box[0][1];p001[2]=box[1][2]; - p010[0]=box[0][0];p010[1]=box[1][1];p010[2]=box[0][2]; - p011[0]=box[0][0];p011[1]=box[1][1];p011[2]=box[1][2]; - - p100[0]=box[1][0];p100[1]=box[0][1];p100[2]=box[0][2]; - p101[0]=box[1][0];p101[1]=box[0][1];p101[2]=box[1][2]; - p110[0]=box[1][0];p110[1]=box[1][1];p110[2]=box[0][2]; - p111[0]=box[1][0];p111[1]=box[1][1];p111[2]=box[1][2]; - - m4x3_mulv( rb->to_world, p000, p000 ); - m4x3_mulv( rb->to_world, p001, p001 ); - m4x3_mulv( rb->to_world, p010, p010 ); - m4x3_mulv( rb->to_world, p011, p011 ); - m4x3_mulv( rb->to_world, p100, p100 ); - m4x3_mulv( rb->to_world, p101, p101 ); - m4x3_mulv( rb->to_world, p110, p110 ); - m4x3_mulv( rb->to_world, p111, p111 ); + if( rb_contact_count + 16 > vg_list_size(rb_contact_buffer) ) + return 0; - int count = 0; + return 1; +} - for( int i=0; i<8; i++ ) - { - float *point = pts[i]; - struct contact *ct = rb_start_contact(); +VG_STATIC rb_ct *rb_global_buffer( void ) +{ + return &rb_contact_buffer[ rb_contact_count ]; +} - if( !ct ) - return; +/* + * ----------------------------------------------------------------------------- + * Dynamics + * ----------------------------------------------------------------------------- + */ - ct->rba = rb; - - v3f surface; - v3_copy( point, surface ); - surface[1] += 4.0f; +VG_STATIC void rb_solver_reset(void) +{ + rb_contact_count = 0; +} - ray_hit hit; - hit.dist = INFINITY; - if( !ray_world( surface, (v3f){0.0f,-1.0f,0.0f}, &hit )) - continue; +VG_STATIC rb_ct *rb_global_ct(void) +{ + return rb_contact_buffer + rb_contact_count; +} - v3_copy( hit.pos, surface ); +VG_STATIC void rb_prepare_contact( rb_ct *ct, float timestep ) +{ + ct->bias = -0.2f * (timestep*3600.0f) + * vg_minf( 0.0f, -ct->p+k_penetration_slop ); + + rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); + ct->norm_impulse = 0.0f; + ct->tangent_impulse[0] = 0.0f; + ct->tangent_impulse[1] = 0.0f; +} - float p = vg_minf( surface[1] - point[1], 1.0f ); +/* calculate total move. manifold should belong to ONE object only */ +VG_STATIC void rb_depenetrate( rb_ct *manifold, int len, v3f dt ) +{ + v3_zero( dt ); - if( p > 0.0f ) + for( int j=0; j<7; j++ ) + { + for( int i=0; in ); - v3_add( point, surface, ct->co ); - v3_muls( ct->co, 0.5f, ct->co ); + struct contact *ct = &manifold[i]; - rb_commit_contact( ct, p ); - count ++; - if( count == 4 ) - break; + float resolved_amt = v3_dot( ct->n, dt ), + remaining = (ct->p-k_penetration_slop) - resolved_amt, + apply = vg_maxf( remaining, 0.0f ) * 0.4f; + + v3_muladds( dt, ct->n, apply, dt ); } } } @@ -800,540 +1612,632 @@ static void rb_build_manifold_terrain( rigidbody *rb ) /* * Initializing things like tangent vectors */ - -static void rb_presolve_contacts( rb_ct *buffer, int len ) +VG_STATIC void rb_presolve_contacts( rb_ct *buffer, int len ) { - for( int i=0; ibias = -0.2f * k_rb_rate * vg_minf(0.0f,-ct->p+0.04f); - rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); + rb_prepare_contact( ct, k_rb_delta ); - ct->norm_impulse = 0.0f; - ct->tangent_impulse[0] = 0.0f; - ct->tangent_impulse[1] = 0.0f; - ct->mass_total = 1.0f/(ct->rba->inv_mass + ct->rbb->inv_mass); + v3f ra, rb, raCn, rbCn, raCt, rbCt; + v3_sub( ct->co, ct->rba->co, ra ); + v3_sub( ct->co, ct->rbb->co, rb ); + v3_cross( ra, ct->n, raCn ); + v3_cross( rb, ct->n, rbCn ); + + /* orient inverse inertia tensors */ + v3f raCnI, rbCnI; + m3x3_mulv( ct->rba->iIw, raCn, raCnI ); + m3x3_mulv( ct->rbb->iIw, rbCn, rbCnI ); + + ct->normal_mass = ct->rba->inv_mass + ct->rbb->inv_mass; + ct->normal_mass += v3_dot( raCn, raCnI ); + ct->normal_mass += v3_dot( rbCn, rbCnI ); + ct->normal_mass = 1.0f/ct->normal_mass; + + for( int j=0; j<2; j++ ){ + v3f raCtI, rbCtI; + v3_cross( ct->t[j], ra, raCt ); + v3_cross( ct->t[j], rb, rbCt ); + m3x3_mulv( ct->rba->iIw, raCt, raCtI ); + m3x3_mulv( ct->rbb->iIw, rbCt, rbCtI ); + + ct->tangent_mass[j] = ct->rba->inv_mass + ct->rbb->inv_mass; + ct->tangent_mass[j] += v3_dot( raCt, raCtI ); + ct->tangent_mass[j] += v3_dot( rbCt, rbCtI ); + ct->tangent_mass[j] = 1.0f/ct->tangent_mass[j]; + } rb_debug_contact( ct ); } } /* - * Creates relative contact velocity vector, and offsets between each body + * Creates relative contact velocity vector */ -static void rb_rcv( rb_ct *ct, v3f rv, v3f da, v3f db ) +VG_STATIC void rb_rcv( rigidbody *rba, rigidbody *rbb, v3f ra, v3f rb, v3f rv ) { - rigidbody *rba = ct->rba, - *rbb = ct->rbb; - - v3_sub( rba->co, ct->co, da ); - v3_sub( rbb->co, ct->co, db ); - v3f rva, rvb; - v3_cross( rba->w, da, rva ); - v3_add( rba->v, rva, rva ); + v3_cross( rba->w, ra, rva ); + v3_add( rba->v, rva, rva ); + v3_cross( rbb->w, rb, rvb ); + v3_add( rbb->v, rvb, rvb ); + + v3_sub( rva, rvb, rv ); +} - v3_cross( rbb->w, db, rvb ); - v3_add( rbb->v, rvb, rvb ); - v3_add( rva, rvb, rv ); +VG_STATIC void rb_contact_restitution( rb_ct *ct, float cr ) +{ + v3f rv, ra, rb; + v3_sub( ct->co, ct->rba->co, ra ); + v3_sub( ct->co, ct->rbb->co, rb ); + rb_rcv( ct->rba, ct->rbb, ra, rb, rv ); + + float v = v3_dot( rv, ct->n ); + + if( v < -1.0f ){ + ct->bias += -cr * v; + } } /* - * Apply regular and angular velocity impulses to objects involved in contact + * Apply impulse to object */ -static void rb_standard_impulse( rb_ct *ct, v3f da, v3f db, v3f impulse ) +VG_STATIC void rb_linear_impulse( rigidbody *rb, v3f delta, v3f impulse ) { - rigidbody *rba = ct->rba, - *rbb = ct->rbb; - - /* response */ - v3_muladds( rba->v, impulse, ct->mass_total * rba->inv_mass, rba->v ); - v3_muladds( rbb->v, impulse, ct->mass_total * rbb->inv_mass, rbb->v ); + /* linear */ + v3_muladds( rb->v, impulse, rb->inv_mass, rb->v ); /* Angular velocity */ - v3f wa, wb; - v3_cross( da, impulse, wa ); - v3_cross( db, impulse, wb ); - v3_muladds( rba->w, wa, ct->mass_total * rba->inv_mass, rba->w ); - v3_muladds( rbb->w, wb, ct->mass_total * rbb->inv_mass, rbb->w ); + v3f wa; + v3_cross( delta, impulse, wa ); + + m3x3_mulv( rb->iIw, wa, wa ); + v3_add( rb->w, wa, rb->w ); } /* * One iteration to solve the contact constraint */ -static void rb_solve_contacts( rb_ct *buf, int len ) +VG_STATIC void rb_solve_contacts( rb_ct *buf, int len ) { - float k_friction = 0.1f; - - /* Friction Impulse */ - for( int i=0; irba; - v3f rv, da, db; - rb_rcv( ct, rv, da, db ); + v3f rv, ra, rb; + v3_sub( ct->co, ct->rba->co, ra ); + v3_sub( ct->co, ct->rbb->co, rb ); + rb_rcv( ct->rba, ct->rbb, ra, rb, rv ); - for( int j=0; j<2; j++ ) - { - float f = k_friction * ct->norm_impulse, - vt = -v3_dot( rv, ct->t[j] ); + /* Friction */ + for( int j=0; j<2; j++ ){ + float f = k_friction * ct->norm_impulse, + vt = v3_dot( rv, ct->t[j] ), + lambda = ct->tangent_mass[j] * -vt; float temp = ct->tangent_impulse[j]; - ct->tangent_impulse[j] = vg_clampf( temp+vt, -f, f ); - vt = ct->tangent_impulse[j] - temp; + ct->tangent_impulse[j] = vg_clampf( temp + lambda, -f, f ); + lambda = ct->tangent_impulse[j] - temp; v3f impulse; - v3_muls( ct->t[j], vt, impulse ); - rb_standard_impulse( ct, da, db, impulse ); + v3_muls( ct->t[j], lambda, impulse ); + rb_linear_impulse( ct->rba, ra, impulse ); + + v3_muls( ct->t[j], -lambda, impulse ); + rb_linear_impulse( ct->rbb, rb, impulse ); } - } - - /* Normal Impulse */ - for( int i=0; irba, - *rbb = ct->rbb; - v3f rv, da, db; - rb_rcv( ct, rv, da, db ); - - float vn = -v3_dot( rv, ct->n ); - vn += ct->bias; + /* Normal */ + rb_rcv( ct->rba, ct->rbb, ra, rb, rv ); + float vn = v3_dot( rv, ct->n ), + lambda = ct->normal_mass * (-vn + ct->bias); float temp = ct->norm_impulse; - ct->norm_impulse = vg_maxf( temp + vn, 0.0f ); - vn = ct->norm_impulse - temp; + ct->norm_impulse = vg_maxf( temp + lambda, 0.0f ); + lambda = ct->norm_impulse - temp; v3f impulse; - v3_muls( ct->n, vn, impulse ); - rb_standard_impulse( ct, da, db, impulse ); + v3_muls( ct->n, lambda, impulse ); + rb_linear_impulse( ct->rba, ra, impulse ); + + v3_muls( ct->n, -lambda, impulse ); + rb_linear_impulse( ct->rbb, rb, impulse ); } } /* - * The following ventures into not really very sophisticated at all maths + * ----------------------------------------------------------------------------- + * Constraints + * ----------------------------------------------------------------------------- */ -struct rb_angle_limit -{ - rigidbody *rba, *rbb; - v3f axis; - float impulse, bias; -}; - -static int rb_angle_limit_force( rigidbody *rba, v3f va, - rigidbody *rbb, v3f vb, - float max ) +VG_STATIC void rb_debug_position_constraints( rb_constr_pos *buffer, int len ) { - v3f wva, wvb; - m3x3_mulv( rba->to_world, va, wva ); - m3x3_mulv( rbb->to_world, vb, wvb ); - - float dt = v3_dot(wva,wvb)*0.999f, - ang = fabsf(dt); - ang = acosf( dt ); - if( ang > max ) - { - float correction = max-ang; - - v3f axis; - v3_cross( wva, wvb, axis ); - - v4f rotation; - q_axis_angle( rotation, axis, -correction*0.25f ); - q_mul( rotation, rba->q, rba->q ); + for( int i=0; irba, *rbb = constr->rbb; - q_axis_angle( rotation, axis, correction*0.25f ); - q_mul( rotation, rbb->q, rbb->q ); + v3f wca, wcb; + m3x3_mulv( rba->to_world, constr->lca, wca ); + m3x3_mulv( rbb->to_world, constr->lcb, wcb ); - return 1; + v3f p0, p1; + v3_add( wca, rba->co, p0 ); + v3_add( wcb, rbb->co, p1 ); + vg_line_pt3( p0, 0.0025f, 0xff000000 ); + vg_line_pt3( p1, 0.0025f, 0xffffffff ); + vg_line2( p0, p1, 0xff000000, 0xffffffff ); } - - return 0; } -static void rb_constraint_angle_limit( struct rb_angle_limit *limit ) +VG_STATIC void rb_presolve_swingtwist_constraints( rb_constr_swingtwist *buf, + int len ) { + float size = 0.12f; -} + for( int i=0; irba->to_world, st->conevx, vx ); + m3x3_mulv( st->rbb->to_world, st->conevxb, vxb ); + m3x3_mulv( st->rba->to_world, st->conevy, vy ); + m3x3_mulv( st->rbb->to_world, st->coneva, va ); + m4x3_mulv( st->rba->to_world, st->view_offset, center ); + v3_cross( vy, vx, axis ); + + /* Constraint violated ? */ + float fx = v3_dot( vx, va ), /* projection world */ + fy = v3_dot( vy, va ), + fn = v3_dot( va, axis ), + + rx = st->conevx[3], /* elipse radii */ + ry = st->conevy[3], + + lx = fx/rx, /* projection local (fn==lz) */ + ly = fy/ry; + + st->tangent_violation = ((lx*lx + ly*ly) > fn*fn) || (fn <= 0.0f); + if( st->tangent_violation ){ + /* Calculate a good position and the axis to solve on */ + v2f closest, tangent, + p = { fx/fabsf(fn), fy/fabsf(fn) }; + + closest_point_elipse( p, (v2f){rx,ry}, closest ); + tangent[0] = -closest[1] / (ry*ry); + tangent[1] = closest[0] / (rx*rx); + v2_normalize( tangent ); + + v3f v0, v1; + v3_muladds( axis, vx, closest[0], v0 ); + v3_muladds( v0, vy, closest[1], v0 ); + v3_normalize( v0 ); + + v3_muls( vx, tangent[0], v1 ); + v3_muladds( v1, vy, tangent[1], v1 ); + + v3_copy( v0, st->tangent_target ); + v3_copy( v1, st->tangent_axis ); + + /* calculate mass */ + v3f aIw, bIw; + m3x3_mulv( st->rba->iIw, st->tangent_axis, aIw ); + m3x3_mulv( st->rbb->iIw, st->tangent_axis, bIw ); + st->tangent_mass = 1.0f / (v3_dot( st->tangent_axis, aIw ) + + v3_dot( st->tangent_axis, bIw )); + + float angle = v3_dot( va, st->tangent_target ); + } -RB_DEPR -static void rb_constraint_angle( rigidbody *rba, v3f va, - rigidbody *rbb, v3f vb, - float max, float spring ) -{ - v3f wva, wvb; - m3x3_mulv( rba->to_world, va, wva ); - m3x3_mulv( rbb->to_world, vb, wvb ); + v3f refaxis; + v3_cross( vy, va, refaxis ); /* our default rotation */ + v3_normalize( refaxis ); - float dt = v3_dot(wva,wvb)*0.999f, - ang = fabsf(dt); + float angle = v3_dot( refaxis, vxb ); + st->axis_violation = fabsf(angle) < st->conet; - v3f axis; - v3_cross( wva, wvb, axis ); - v3_muladds( rba->w, axis, ang*spring*0.5f, rba->w ); - v3_muladds( rbb->w, axis, -ang*spring*0.5f, rbb->w ); + if( st->axis_violation ){ + v3f dir_test; + v3_cross( refaxis, vxb, dir_test ); - return; - - /* TODO: convert max into the dot product value so we dont have to always - * evaluate acosf, only if its greater than the angle specified */ - ang = acosf( dt ); - if( ang > max ) - { - float correction = max-ang; - - v4f rotation; - q_axis_angle( rotation, axis, -correction*0.125f ); - q_mul( rotation, rba->q, rba->q ); + if( v3_dot(dir_test, va) < 0.0f ) + st->axis_violation = -st->axis_violation; + + float newang = (float)st->axis_violation * acosf(st->conet-0.0001f); - q_axis_angle( rotation, axis, correction*0.125f ); - q_mul( rotation, rbb->q, rbb->q ); + v3f refaxis_up; + v3_cross( va, refaxis, refaxis_up ); + v3_muls( refaxis_up, sinf(newang), st->axis_target ); + v3_muladds( st->axis_target, refaxis, -cosf(newang), st->axis_target ); + + /* calculate mass */ + v3_copy( va, st->axis ); + v3f aIw, bIw; + m3x3_mulv( st->rba->iIw, st->axis, aIw ); + m3x3_mulv( st->rbb->iIw, st->axis, bIw ); + st->axis_mass = 1.0f / (v3_dot( st->axis, aIw ) + + v3_dot( st->axis, bIw )); + } } } -static void rb_relative_velocity( rigidbody *ra, v3f lca, - rigidbody *rb, v3f lcb, v3f rcv ) +VG_STATIC void rb_debug_swingtwist_constraints( rb_constr_swingtwist *buf, + int len ) { - v3f wca, wcb; - m3x3_mulv( ra->to_world, lca, wca ); - m3x3_mulv( rb->to_world, lcb, wcb ); + float size = 0.12f; - v3_sub( ra->v, rb->v, rcv ); + for( int i=0; iw, wca, rcv_Ra ); - v3_cross( rb->w, wcb, rcv_Rb ); - v3_add( rcv_Ra, rcv, rcv ); - v3_sub( rcv, rcv_Rb, rcv ); -} + m3x3_mulv( st->rba->to_world, st->conevx, vx ); + m3x3_mulv( st->rbb->to_world, st->conevxb, vxb ); + m3x3_mulv( st->rba->to_world, st->conevy, vy ); + m3x3_mulv( st->rbb->to_world, st->coneva, va ); + m4x3_mulv( st->rba->to_world, st->view_offset, center ); + v3_cross( vy, vx, axis ); -static void rb_constraint_position( rigidbody *ra, v3f lca, - rigidbody *rb, v3f lcb ) -{ - /* C = (COa + Ra*LCa) - (COb + Rb*LCb) = 0 */ - v3f wca, wcb; - m3x3_mulv( ra->to_world, lca, wca ); - m3x3_mulv( rb->to_world, lcb, wcb ); + float rx = st->conevx[3], /* elipse radii */ + ry = st->conevy[3]; - v3f delta; - v3_add( wcb, rb->co, delta ); - v3_sub( delta, wca, delta ); - v3_sub( delta, ra->co, delta ); + v3f p0, p1; + v3_muladds( center, va, size, p1 ); + vg_line( center, p1, 0xffffffff ); + vg_line_pt3( p1, 0.00025f, 0xffffffff ); + + if( st->tangent_violation ){ + v3_muladds( center, st->tangent_target, size, p0 ); - v3_muladds( ra->co, delta, 0.5f, ra->co ); - v3_muladds( rb->co, delta, -0.5f, rb->co ); + vg_line( center, p0, 0xff00ff00 ); + vg_line_pt3( p0, 0.00025f, 0xff00ff00 ); + vg_line( p1, p0, 0xff000000 ); + } + + for( int x=0; x<32; x++ ){ + float t0 = ((float)x * (1.0f/32.0f)) * VG_TAUf, + t1 = (((float)x+1.0f) * (1.0f/32.0f)) * VG_TAUf, + c0 = cosf( t0 ), + s0 = sinf( t0 ), + c1 = cosf( t1 ), + s1 = sinf( t1 ); + + v3f v0, v1; + v3_muladds( axis, vx, c0*rx, v0 ); + v3_muladds( v0, vy, s0*ry, v0 ); + v3_muladds( axis, vx, c1*rx, v1 ); + v3_muladds( v1, vy, s1*ry, v1 ); + + v3_normalize( v0 ); + v3_normalize( v1 ); + + v3_muladds( center, v0, size, p0 ); + v3_muladds( center, v1, size, p1 ); + + u32 col0r = fabsf(c0) * 255.0f, + col0g = fabsf(s0) * 255.0f, + col1r = fabsf(c1) * 255.0f, + col1g = fabsf(s1) * 255.0f, + col = st->tangent_violation? 0xff0000ff: 0xff000000, + col0 = col | (col0r<<16) | (col0g << 8), + col1 = col | (col1r<<16) | (col1g << 8); + + vg_line2( center, p0, VG__NONE, col0 ); + vg_line2( p0, p1, col0, col1 ); + } - v3f rcv; - v3_sub( ra->v, rb->v, rcv ); + /* Draw twist */ + v3_muladds( center, va, size, p0 ); + v3_muladds( p0, vxb, size, p1 ); - v3f rcv_Ra, rcv_Rb; - v3_cross( ra->w, wca, rcv_Ra ); - v3_cross( rb->w, wcb, rcv_Rb ); - v3_add( rcv_Ra, rcv, rcv ); - v3_sub( rcv, rcv_Rb, rcv ); + vg_line( p0, p1, 0xff0000ff ); - float nm = 0.5f/(rb->inv_mass + ra->inv_mass); + if( st->axis_violation ){ + v3_muladds( p0, st->axis_target, size*1.25f, p1 ); + vg_line( p0, p1, 0xffffff00 ); + vg_line_pt3( p1, 0.0025f, 0xffffff80 ); + } - float mass_a = 1.0f/ra->inv_mass, - mass_b = 1.0f/rb->inv_mass, - total_mass = mass_a+mass_b; - - v3f impulse; - v3_muls( rcv, 1.0f, impulse ); - v3_muladds( rb->v, impulse, mass_b/total_mass, rb->v ); - v3_cross( wcb, impulse, impulse ); - v3_add( impulse, rb->w, rb->w ); + v3f refaxis; + v3_cross( vy, va, refaxis ); /* our default rotation */ + v3_normalize( refaxis ); + v3f refaxis_up; + v3_cross( va, refaxis, refaxis_up ); + float newang = acosf(st->conet-0.0001f); - v3_muls( rcv, -1.0f, impulse ); - v3_muladds( ra->v, impulse, mass_a/total_mass, ra->v ); - v3_cross( wca, impulse, impulse ); - v3_add( impulse, ra->w, ra->w ); + v3_muladds( p0, refaxis_up, sinf(newang)*size, p1 ); + v3_muladds( p1, refaxis, -cosf(newang)*size, p1 ); + vg_line( p0, p1, 0xff000000 ); -#if 0 - /* - * this could be used for spring joints - * its not good for position constraint - */ - v3f impulse; - v3_muls( delta, 0.5f*spring, impulse ); + v3_muladds( p0, refaxis_up, sinf(-newang)*size, p1 ); + v3_muladds( p1, refaxis, -cosf(-newang)*size, p1 ); + vg_line( p0, p1, 0xff404040 ); + } +} - v3_add( impulse, ra->v, ra->v ); - v3_cross( wca, impulse, impulse ); - v3_add( impulse, ra->w, ra->w ); +/* + * Solve a list of positional constraints + */ +VG_STATIC void rb_solve_position_constraints( rb_constr_pos *buf, int len ) +{ + for( int i=0; irba, *rbb = constr->rbb; - v3_muls( delta, -0.5f*spring, impulse ); + v3f wa, wb; + m3x3_mulv( rba->to_world, constr->lca, wa ); + m3x3_mulv( rbb->to_world, constr->lcb, wb ); - v3_add( impulse, rb->v, rb->v ); - v3_cross( wcb, impulse, impulse ); - v3_add( impulse, rb->w, rb->w ); -#endif + m3x3f ssra, ssrat, ssrb, ssrbt; + + m3x3_skew_symetric( ssrat, wa ); + m3x3_skew_symetric( ssrbt, wb ); + m3x3_transpose( ssrat, ssra ); + m3x3_transpose( ssrbt, ssrb ); + + v3f b, b_wa, b_wb, b_a, b_b; + m3x3_mulv( ssra, rba->w, b_wa ); + m3x3_mulv( ssrb, rbb->w, b_wb ); + v3_add( rba->v, b_wa, b ); + v3_sub( b, rbb->v, b ); + v3_sub( b, b_wb, b ); + v3_muls( b, -1.0f, b ); + + m3x3f invMa, invMb; + m3x3_diagonal( invMa, rba->inv_mass ); + m3x3_diagonal( invMb, rbb->inv_mass ); + + m3x3f ia, ib; + m3x3_mul( ssra, rba->iIw, ia ); + m3x3_mul( ia, ssrat, ia ); + m3x3_mul( ssrb, rbb->iIw, ib ); + m3x3_mul( ib, ssrbt, ib ); + + m3x3f cma, cmb; + m3x3_add( invMa, ia, cma ); + m3x3_add( invMb, ib, cmb ); + + m3x3f A; + m3x3_add( cma, cmb, A ); + + /* Solve Ax = b ( A^-1*b = x ) */ + v3f impulse; + m3x3f invA; + m3x3_inv( A, invA ); + m3x3_mulv( invA, b, impulse ); + + v3f delta_va, delta_wa, delta_vb, delta_wb; + m3x3f iwa, iwb; + m3x3_mul( rba->iIw, ssrat, iwa ); + m3x3_mul( rbb->iIw, ssrbt, iwb ); + + m3x3_mulv( invMa, impulse, delta_va ); + m3x3_mulv( invMb, impulse, delta_vb ); + m3x3_mulv( iwa, impulse, delta_wa ); + m3x3_mulv( iwb, impulse, delta_wb ); + + v3_add( rba->v, delta_va, rba->v ); + v3_add( rba->w, delta_wa, rba->w ); + v3_sub( rbb->v, delta_vb, rbb->v ); + v3_sub( rbb->w, delta_wb, rbb->w ); + } } -static void debug_sphere( m4x3f m, float radius, u32 colour ) +VG_STATIC void rb_solve_swingtwist_constraints( rb_constr_swingtwist *buf, + int len ) { - v3f ly = { 0.0f, 0.0f, radius }, - lx = { 0.0f, radius, 0.0f }, - lz = { 0.0f, 0.0f, radius }; - - for( int i=0; i<16; i++ ) - { - float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f, - s = sinf(t), - c = cosf(t); + float size = 0.12f; - v3f py = { s*radius, 0.0f, c*radius }, - px = { s*radius, c*radius, 0.0f }, - pz = { 0.0f, s*radius, c*radius }; + for( int i=0; iaxis_violation ) + continue; - vg_line( p0, p1, colour == 0x00? 0xff00ff00: colour ); - vg_line( p2, p3, colour == 0x00? 0xff0000ff: colour ); - vg_line( p4, p5, colour == 0x00? 0xffff0000: colour ); + float rv = v3_dot( st->axis, st->rbb->w ) - + v3_dot( st->axis, st->rba->w ); - v3_copy( py, ly ); - v3_copy( px, lx ); - v3_copy( pz, lz ); - } -} + if( rv * (float)st->axis_violation > 0.0f ) + continue; -static void rb_debug( rigidbody *rb, u32 colour ) -{ - if( rb->type == k_rb_shape_box ) - { - v3f *box = rb->bbx; - vg_line_boxf_transformed( rb->to_world, rb->bbx, colour ); - } - else if( rb->type == k_rb_shape_sphere ) - { - debug_sphere( rb->to_world, rb->inf.sphere.radius, colour ); - } - else if( rb->type == k_rb_shape_capsule ) - { - m4x3f m0, m1; - float h = rb->inf.capsule.height, - r = rb->inf.capsule.radius; + v3f impulse, wa, wb; + v3_muls( st->axis, rv*st->axis_mass, impulse ); + m3x3_mulv( st->rba->iIw, impulse, wa ); + v3_add( st->rba->w, wa, st->rba->w ); - m3x3_copy( rb->to_world, m0 ); - m3x3_copy( rb->to_world, m1 ); - - v3_muladds( rb->co, rb->up, -h*0.5f, m0[3] ); - v3_muladds( rb->co, rb->up, h*0.5f, m1[3] ); + v3_muls( impulse, -1.0f, impulse ); + m3x3_mulv( st->rbb->iIw, impulse, wb ); + v3_add( st->rbb->w, wb, st->rbb->w ); - debug_sphere( m0, r, colour ); - debug_sphere( m1, r, colour ); - vg_line( m0[3], m1[3], colour ); + float rv2 = v3_dot( st->axis, st->rbb->w ) - + v3_dot( st->axis, st->rba->w ); } -} -/* - * out penetration distance, normal - */ -static int rb_point_in_body( rigidbody *rb, v3f pos, float *pen, v3f normal ) -{ - v3f local; - m4x3_mulv( rb->to_local, pos, local ); + for( int i=0; i rb->bbx[0][0] && local[0] < rb->bbx[1][0] && - local[1] > rb->bbx[0][1] && local[1] < rb->bbx[1][1] && - local[2] > rb->bbx[0][2] && local[2] < rb->bbx[1][2] ) - { - v3f area, com, comrel; - v3_add( rb->bbx[0], rb->bbx[1], com ); - v3_muls( com, 0.5f, com ); + if( !st->tangent_violation ) + continue; - v3_sub( rb->bbx[1], rb->bbx[0], area ); - v3_sub( local, com, comrel ); - v3_div( comrel, area, comrel ); + float rv = v3_dot( st->tangent_axis, st->rbb->w ) - + v3_dot( st->tangent_axis, st->rba->w ); - int axis = 0; - float max_mag = fabsf(comrel[0]); - - if( fabsf(comrel[1]) > max_mag ) - { - axis = 1; - max_mag = fabsf(comrel[1]); - } - if( fabsf(comrel[2]) > max_mag ) - { - axis = 2; - max_mag = fabsf(comrel[2]); - } - - v3_zero( normal ); - normal[axis] = vg_signf(comrel[axis]); + if( rv > 0.0f ) + continue; - if( normal[axis] < 0.0f ) - *pen = local[axis] - rb->bbx[0][axis]; - else - *pen = rb->bbx[1][axis] - local[axis]; + v3f impulse, wa, wb; + v3_muls( st->tangent_axis, rv*st->tangent_mass, impulse ); + m3x3_mulv( st->rba->iIw, impulse, wa ); + v3_add( st->rba->w, wa, st->rba->w ); - m3x3_mulv( rb->to_world, normal, normal ); - return 1; - } + v3_muls( impulse, -1.0f, impulse ); + m3x3_mulv( st->rbb->iIw, impulse, wb ); + v3_add( st->rbb->w, wb, st->rbb->w ); - return 0; + float rv2 = v3_dot( st->tangent_axis, st->rbb->w ) - + v3_dot( st->tangent_axis, st->rba->w ); + } } -#if 0 -static void rb_build_manifold_rb_static( rigidbody *ra, rigidbody *rb_static ) +VG_STATIC void rb_solve_constr_angle( rigidbody *rba, rigidbody *rbb, + v3f ra, v3f rb ) { - v3f verts[8]; + m3x3f ssra, ssrb, ssrat, ssrbt; + m3x3f cma, cmb; - v3f a, b; - v3_copy( ra->bbx[0], a ); - v3_copy( ra->bbx[1], b ); - - m4x3_mulv( ra->to_world, (v3f){ a[0], a[1], a[2] }, verts[0] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], b[1], a[2] }, verts[1] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], b[1], a[2] }, verts[2] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], a[1], a[2] }, verts[3] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], a[1], b[2] }, verts[4] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], b[1], b[2] }, verts[5] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], b[1], b[2] }, verts[6] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], a[1], b[2] }, verts[7] ); + m3x3_skew_symetric( ssrat, ra ); + m3x3_skew_symetric( ssrbt, rb ); + m3x3_transpose( ssrat, ssra ); + m3x3_transpose( ssrbt, ssrb ); - vg_line_boxf_transformed( rb_static->to_world, rb_static->bbx, 0xff0000ff ); + m3x3_mul( ssra, rba->iIw, cma ); + m3x3_mul( cma, ssrat, cma ); + m3x3_mul( ssrb, rbb->iIw, cmb ); + m3x3_mul( cmb, ssrbt, cmb ); - int count = 0; + m3x3f A, invA; + m3x3_add( cma, cmb, A ); + m3x3_inv( A, invA ); - for( int i=0; i<8; i++ ) - { - if( ra->manifold_count == vg_list_size(ra->manifold) ) - return; + v3f b_wa, b_wb, b; + m3x3_mulv( ssra, rba->w, b_wa ); + m3x3_mulv( ssrb, rbb->w, b_wb ); + v3_add( b_wa, b_wb, b ); + v3_negate( b, b ); - struct contact *ct = &ra->manifold[ ra->manifold_count ]; - - float p; - v3f normal; + v3f impulse; + m3x3_mulv( invA, b, impulse ); + + v3f delta_wa, delta_wb; + m3x3f iwa, iwb; + m3x3_mul( rba->iIw, ssrat, iwa ); + m3x3_mul( rbb->iIw, ssrbt, iwb ); + m3x3_mulv( iwa, impulse, delta_wa ); + m3x3_mulv( iwb, impulse, delta_wb ); + v3_add( rba->w, delta_wa, rba->w ); + v3_sub( rbb->w, delta_wb, rbb->w ); +} - if( rb_point_in_body( rb_static, verts[i], &p, normal )) - { - v3_copy( normal, ct->n ); - v3_muladds( verts[i], ct->n, p*0.5f, ct->co ); - v3_sub( ct->co, ra->co, ct->delta ); +/* + * Correct position constraint drift errors + * [ 0.0 <= amt <= 1.0 ]: the correction amount + */ +VG_STATIC void rb_correct_position_constraints( rb_constr_pos *buf, int len, + float amt ) +{ + for( int i=0; irba, *rbb = constr->rbb; + + v3f p0, p1, d; + m3x3_mulv( rba->to_world, constr->lca, p0 ); + m3x3_mulv( rbb->to_world, constr->lcb, p1 ); + v3_add( rba->co, p0, p0 ); + v3_add( rbb->co, p1, p1 ); + v3_sub( p1, p0, d ); + + v3_muladds( rbb->co, d, -1.0f * amt, rbb->co ); + rb_update_transform( rbb ); + } +} - vg_line_pt3( ct->co, 0.0125f, 0xffff00ff ); - - ct->bias = -0.2f * (1.0f/k_rb_delta) * vg_minf( 0.0f, -p+0.04f ); - rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); +VG_STATIC void rb_correct_swingtwist_constraints( rb_constr_swingtwist *buf, + int len, float amt ) +{ + for( int i=0; inorm_impulse = 0.0f; - ct->tangent_impulse[0] = 0.0f; - ct->tangent_impulse[1] = 0.0f; + if( !st->tangent_violation ) + continue; - ra->manifold_count ++; - count ++; - if( count == 4 ) - return; + v3f va; + m3x3_mulv( st->rbb->to_world, st->coneva, va ); + + float angle = v3_dot( va, st->tangent_target ); + + if( fabsf(angle) < 0.9999f ){ + v3f axis; + v3_cross( va, st->tangent_target, axis ); + + v4f correction; + q_axis_angle( correction, axis, acosf(angle) * amt ); + q_mul( correction, st->rbb->q, st->rbb->q ); + rb_update_transform( st->rbb ); } } -} -#endif -/* - * Capsule phyics - */ + for( int i=0; iaxis_violation ) + continue; - v3f p = { s*radius, 0.0f, c*radius }; + v3f vxb; + m3x3_mulv( st->rbb->to_world, st->conevxb, vxb ); - v3f p0, p1; - m4x3_mulv( lower, p, p0 ); - m4x3_mulv( lower, last, p1 ); - vg_line( p0, p1, colour ); + float angle = v3_dot( vxb, st->axis_target ); - m4x3_mulv( upper, p, p0 ); - m4x3_mulv( upper, last, p1 ); - vg_line( p0, p1, colour ); + if( fabsf(angle) < 0.9999f ){ + v3f axis; + v3_cross( vxb, st->axis_target, axis ); - v3_copy( p, last ); + v4f correction; + q_axis_angle( correction, axis, acosf(angle) * amt ); + q_mul( correction, st->rbb->q, st->rbb->q ); + rb_update_transform( st->rbb ); + } } +} - for( int i=0; i<4; i++ ) - { - float t = ((float)(i) * (1.0f/4.0f)) * VG_PIf * 2.0f, - s = sinf(t), - c = cosf(t); - - v3f p = { s*radius, 0.0f, c*radius }; +VG_STATIC void rb_correct_contact_constraints( rb_ct *buf, int len, float amt ) +{ + for( int i=0; irba, + *rbb = ct->rbb; - v3f p0, p1; - m4x3_mulv( lower, p, p0 ); - m4x3_mulv( upper, p, p1 ); - vg_line( p0, p1, colour ); + float mass_total = 1.0f / (rba->inv_mass + rbb->inv_mass); - m4x3_mulv( lower, (v3f){0.0f,-radius,0.0f}, p0 ); - m4x3_mulv( upper, (v3f){0.0f, radius,0.0f}, p1 ); - vg_line( p0, p1, colour ); + v3_muladds( rba->co, ct->n, -mass_total * rba->inv_mass, rba->co ); + v3_muladds( rbb->co, ct->n, mass_total * rbb->inv_mass, rbb->co ); } } -/* - * BVH implementation, this is ONLY for static rigidbodies, its to slow for - * realtime use. + +/* + * Effectors */ -static void rb_bh_expand_bound( void *user, boxf bound, u32 item_index ) +VG_STATIC void rb_effect_simple_bouyency( rigidbody *ra, v4f plane, + float amt, float drag ) { - rigidbody *rb = &((rigidbody *)user)[ item_index ]; - box_concat( bound, rb->bbx_world ); -} + /* float */ + float depth = v3_dot( plane, ra->co ) - plane[3], + lambda = vg_clampf( -depth, 0.0f, 1.0f ) * amt; -static float rb_bh_centroid( void *user, u32 item_index, int axis ) -{ - rigidbody *rb = &((rigidbody *)user)[ item_index ]; - return (rb->bbx_world[axis][0] + rb->bbx_world[1][axis]) * 0.5f; + v3_muladds( ra->v, plane, lambda * k_rb_delta, ra->v ); + + if( depth < 0.0f ) + v3_muls( ra->v, 1.0f-(drag*k_rb_delta), ra->v ); } -static void rb_bh_swap( void *user, u32 ia, u32 ib ) +/* apply a spring&dampener force to match ra(worldspace) on rigidbody, to + * rt(worldspace) + */ +VG_STATIC void rb_effect_spring_target_vector( rigidbody *rba, v3f ra, v3f rt, + float spring, float dampening, + float timestep ) { - rigidbody temp, *rba, *rbb; - rba = &((rigidbody *)user)[ ia ]; - rbb = &((rigidbody *)user)[ ib ]; + float d = v3_dot( rt, ra ); + float a = vg_signf( d ) * acosf( vg_clampf( d, -1.0f, 1.0f ) ); - temp = *rba; - *rba = *rbb; - *rbb = temp; -} + v3f axis; + v3_cross( rt, ra, axis ); -static void rb_bh_debug( void *user, u32 item_index ) -{ - rigidbody *rb = &((rigidbody *)user)[ item_index ]; - rb_debug( rb, 0xff00ffff ); -} + float Fs = -a * spring, + Fd = -v3_dot( rba->w, axis ) * dampening; -static bh_system bh_system_rigidbodies = -{ - .expand_bound = rb_bh_expand_bound, - .item_centroid = rb_bh_centroid, - .item_swap = rb_bh_swap, - .item_debug = rb_bh_debug, - .cast_ray = NULL -}; + v3_muladds( rba->w, axis, (Fs+Fd) * timestep, rba->w ); +} #endif /* RIGIDBODY_H */