X-Git-Url: https://harrygodden.com/git/?a=blobdiff_plain;f=rigidbody.h;h=b140cbb724068c8c65e3b1f6465afd344d9225ea;hb=344f0153cf1907da87dd041db3ec517325b1c429;hp=d911688beca8a5e6fc7e98399aa0739b029f02eb;hpb=98ecdd9f0377f1563566fe4d3d3b8185a055ec4d;p=carveJwlIkooP6JGAAIwe30JlM.git diff --git a/rigidbody.h b/rigidbody.h index d911688..b140cbb 100644 --- a/rigidbody.h +++ b/rigidbody.h @@ -17,6 +17,8 @@ static bh_system bh_system_rigidbodies; #define k_rb_delta (1.0f/k_rb_rate) typedef struct rigidbody rigidbody; +typedef struct contact rb_ct; + struct rigidbody { v3f co, v, w; @@ -48,6 +50,8 @@ struct rigidbody v3f right, up, forward; + int is_world; + boxf bbx, bbx_world; float inv_mass; @@ -55,14 +59,24 @@ struct rigidbody m4x3f to_world, to_local; }; +static rigidbody rb_static_null = +{ + .co={0.0f,0.0f,0.0f}, + .q={0.0f,0.0f,0.0f,1.0f}, + .v={0.0f,0.0f,0.0f}, + .w={0.0f,0.0f,0.0f}, + .is_world = 1, + .inv_mass = 0.0f +}; + static void rb_debug( rigidbody *rb, u32 colour ); static struct contact { - rigidbody *rba; - v3f co, n, delta; + rigidbody *rba, *rbb; + v3f co, n; v3f t[2]; - float bias, norm_impulse, tangent_impulse[2]; + float mass_total, p, bias, norm_impulse, tangent_impulse[2]; } rb_contact_buffer[256]; static int rb_contact_count = 0; @@ -117,7 +131,14 @@ static void rb_init( rigidbody *rb ) rb->bbx[1][1] = h; } - rb->inv_mass = 1.0f/(8.0f*volume); + if( rb->is_world ) + { + rb->inv_mass = 0.0f; + } + else + { + rb->inv_mass = 1.0f/(8.0f*volume); + } v3_zero( rb->v ); v3_zero( rb->w ); @@ -176,8 +197,13 @@ static void rb_tangent_basis( v3f n, v3f tx, v3f ty ) static void rb_solver_reset(void); static void rb_build_manifold_terrain( rigidbody *rb ); static void rb_build_manifold_terrain_sphere( rigidbody *rb ); -static void rb_solve_contacts(void); +static void rb_solve_contacts( rb_ct *buf, int len ); +static void rb_presolve_contacts( rb_ct *buffer, int len ); +/* + * These closest point tests were learned from Real-Time Collision Detection by + * Christer Ericson + */ static float closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2, float *s, float *t, v3f c1, v3f c2) { @@ -255,17 +281,32 @@ static float closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2, return v3_length2( v0 ); } -static void closest_point_segment( v3f a, v3f b, v3f point, v3f dest ) +static void closest_point_aabb( v3f p, boxf box, v3f dest ) +{ + v3_maxv( p, box[0], dest ); + v3_minv( dest, box[1], dest ); +} + +static void closest_point_obb( v3f p, rigidbody *rb, v3f dest ) +{ + v3f local; + m4x3_mulv( rb->to_local, p, local ); + closest_point_aabb( local, rb->bbx, local ); + m4x3_mulv( rb->to_world, local, dest ); +} + +static float closest_point_segment( v3f a, v3f b, v3f point, v3f dest ) { v3f v0, v1; v3_sub( b, a, v0 ); v3_sub( point, a, v1 ); float t = v3_dot( v1, v0 ) / v3_length2(v0); - v3_muladds( a, v0, vg_clampf(t,0.0f,1.0f), dest ); + t = vg_clampf(t,0.0f,1.0f); + v3_muladds( a, v0, t, dest ); + return t; } -/* Real-Time Collision Detection */ static void closest_on_triangle( v3f p, v3f tri[3], v3f dest ) { v3f ab, ac, ap; @@ -355,6 +396,503 @@ static void closest_on_triangle( v3f p, v3f tri[3], v3f dest ) v3_muladds( dest, ac, w, dest ); } +/* + * Contact generators + * + * These do not automatically allocate contacts, an appropriately sized + * buffer must be supplied. The function returns the size of the manifold + * which was generated. + * + * The values set on the contacts are: n, co, p, rba, rbb + */ + +static void rb_debug_contact( rb_ct *ct ) +{ + v3f p1; + v3_muladds( ct->co, ct->n, 0.2f, p1 ); + vg_line_pt3( ct->co, 0.1f, 0xff0000ff ); + vg_line( ct->co, p1, 0xffffffff ); +} + +/* + * By collecting the minimum(time) and maximum(time) pairs of points, we + * build a reduced and stable exact manifold. + * + * tx: time at point + * rx: minimum distance of these points + * dx: the delta between the two points + * + * pairs will only ammend these if they are creating a collision + */ +typedef struct capsule_manifold capsule_manifold; +struct capsule_manifold +{ + float t0, t1; + float r0, r1; + v3f d0, d1; +}; + +/* + * Expand a line manifold with a new pair. t value is the time along segment + * on the oriented object which created this pair. + */ +static void rb_capsule_manifold( v3f pa, v3f pb, float t, float r, + capsule_manifold *manifold ) +{ + v3f delta; + v3_sub( pa, pb, delta ); + + if( v3_length2(delta) < r*r ) + { + if( t < manifold->t0 ) + { + v3_copy( delta, manifold->d0 ); + manifold->t0 = t; + manifold->r0 = r; + } + + if( t > manifold->t1 ) + { + v3_copy( delta, manifold->d1 ); + manifold->t1 = t; + manifold->r1 = r; + } + } +} + +static void rb_capsule_manifold_init( capsule_manifold *manifold ) +{ + manifold->t0 = INFINITY; + manifold->t1 = -INFINITY; +} + +static int rb_capsule_manifold_done( rigidbody *rba, rigidbody *rbb, + capsule_manifold *manifold, rb_ct *buf ) +{ + float h = rba->inf.capsule.height, + ra = rba->inf.capsule.radius; + + v3f p0, p1; + v3_muladds( rba->co, rba->up, -h*0.5f+ra, p0 ); + v3_muladds( rba->co, rba->up, h*0.5f-ra, p1 ); + + int count = 0; + if( manifold->t0 <= 1.0f ) + { + rb_ct *ct = buf; + + v3f pa; + v3_muls( p0, 1.0f-manifold->t0, pa ); + v3_muladds( pa, p1, manifold->t0, pa ); + + float d = v3_length( manifold->d0 ); + v3_muls( manifold->d0, 1.0f/d, ct->n ); + v3_muladds( pa, ct->n, -ra, ct->co ); + + ct->p = manifold->r0 - d; + ct->rba = rba; + ct->rbb = rbb; + + count ++; + } + + if( (manifold->t1 >= 0.0f) && (manifold->t0 != manifold->t1) ) + { + rb_ct *ct = buf+count; + + v3f pa; + v3_muls( p0, 1.0f-manifold->t1, pa ); + v3_muladds( pa, p1, manifold->t1, pa ); + + float d = v3_length( manifold->d1 ); + v3_muls( manifold->d1, 1.0f/d, ct->n ); + v3_muladds( pa, ct->n, -ra, ct->co ); + + ct->p = manifold->r1 - d; + ct->rba = rba; + ct->rbb = rbb; + + count ++; + } + + /* + * Debugging + */ + + if( count == 2 ) + vg_line( buf[0].co, buf[1].co, 0xff0000ff ); + + return count; +} + +static int rb_capsule_vs_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + float h = rba->inf.capsule.height, + ra = rba->inf.capsule.radius, + rb = rbb->inf.sphere.radius; + + v3f p0, p1; + v3_muladds( rba->co, rba->up, -h*0.5f+ra, p0 ); + v3_muladds( rba->co, rba->up, h*0.5f-ra, p1 ); + + v3f c, delta; + closest_point_segment( p0, p1, rbb->co, c ); + v3_sub( c, rbb->co, delta ); + + float d2 = v3_length2(delta), + r = ra + rb; + + if( d2 < r*r ) + { + float d = sqrtf(d2); + + rb_ct *ct = buf; + v3_muls( delta, 1.0f/d, ct->n ); + ct->p = r-d; + + v3f p0, p1; + v3_muladds( c, ct->n, -ra, p0 ); + v3_muladds( rbb->co, ct->n, rb, p1 ); + v3_add( p0, p1, ct->co ); + v3_muls( ct->co, 0.5f, ct->co ); + + ct->rba = rba; + ct->rbb = rbb; + + return 1; + } + + return 0; +} + +static int rb_capsule_vs_capsule( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + float ha = rba->inf.capsule.height, + hb = rbb->inf.capsule.height, + ra = rba->inf.capsule.radius, + rb = rbb->inf.capsule.radius, + r = ra+rb; + + v3f p0, p1, p2, p3; + v3_muladds( rba->co, rba->up, -ha*0.5f+ra, p0 ); + v3_muladds( rba->co, rba->up, ha*0.5f-ra, p1 ); + v3_muladds( rbb->co, rbb->up, -hb*0.5f+rb, p2 ); + v3_muladds( rbb->co, rbb->up, hb*0.5f-rb, p3 ); + + capsule_manifold manifold; + rb_capsule_manifold_init( &manifold ); + + v3f pa, pb; + float ta, tb; + closest_segment_segment( p0, p1, p2, p3, &ta, &tb, pa, pb ); + rb_capsule_manifold( pa, pb, ta, r, &manifold ); + + ta = closest_point_segment( p0, p1, p2, pa ); + tb = closest_point_segment( p0, p1, p3, pb ); + rb_capsule_manifold( pa, p2, ta, r, &manifold ); + rb_capsule_manifold( pb, p3, tb, r, &manifold ); + + closest_point_segment( p2, p3, p0, pa ); + closest_point_segment( p2, p3, p1, pb ); + rb_capsule_manifold( p0, pa, 0.0f, r, &manifold ); + rb_capsule_manifold( p1, pb, 1.0f, r, &manifold ); + + return rb_capsule_manifold_done( rba, rbb, &manifold, buf ); +} + +/* + * Generates up to two contacts; optimised for the most stable manifold + */ +static int rb_capsule_vs_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + float h = rba->inf.capsule.height, + r = rba->inf.capsule.radius; + + /* + * Solving this in symetric local space of the cube saves us some time and a + * couple branches when it comes to the quad stage. + */ + v3f centroid; + v3_add( rbb->bbx[0], rbb->bbx[1], centroid ); + v3_muls( centroid, 0.5f, centroid ); + + boxf bbx; + v3_sub( rbb->bbx[0], centroid, bbx[0] ); + v3_sub( rbb->bbx[1], centroid, bbx[1] ); + + v3f pc, p0w, p1w, p0, p1; + v3_muladds( rba->co, rba->up, -h*0.5f+r, p0w ); + v3_muladds( rba->co, rba->up, h*0.5f-r, p1w ); + + m4x3_mulv( rbb->to_local, p0w, p0 ); + m4x3_mulv( rbb->to_local, p1w, p1 ); + v3_sub( p0, centroid, p0 ); + v3_sub( p1, centroid, p1 ); + v3_add( p0, p1, pc ); + v3_muls( pc, 0.5f, pc ); + + /* + * Finding an appropriate quad to collide lines with + */ + v3f region; + v3_div( pc, bbx[1], region ); + + v3f quad[4]; + if( (fabsf(region[0]) > fabsf(region[1])) && + (fabsf(region[0]) > fabsf(region[2])) ) + { + float px = vg_signf(region[0]) * bbx[1][0]; + v3_copy( (v3f){ px, bbx[0][1], bbx[0][2] }, quad[0] ); + v3_copy( (v3f){ px, bbx[1][1], bbx[0][2] }, quad[1] ); + v3_copy( (v3f){ px, bbx[1][1], bbx[1][2] }, quad[2] ); + v3_copy( (v3f){ px, bbx[0][1], bbx[1][2] }, quad[3] ); + } + else if( fabsf(region[1]) > fabsf(region[2]) ) + { + float py = vg_signf(region[1]) * bbx[1][1]; + v3_copy( (v3f){ bbx[0][0], py, bbx[0][2] }, quad[0] ); + v3_copy( (v3f){ bbx[1][0], py, bbx[0][2] }, quad[1] ); + v3_copy( (v3f){ bbx[1][0], py, bbx[1][2] }, quad[2] ); + v3_copy( (v3f){ bbx[0][0], py, bbx[1][2] }, quad[3] ); + } + else + { + float pz = vg_signf(region[2]) * bbx[1][2]; + v3_copy( (v3f){ bbx[0][0], bbx[0][1], pz }, quad[0] ); + v3_copy( (v3f){ bbx[1][0], bbx[0][1], pz }, quad[1] ); + v3_copy( (v3f){ bbx[1][0], bbx[1][1], pz }, quad[2] ); + v3_copy( (v3f){ bbx[0][0], bbx[1][1], pz }, quad[3] ); + } + + capsule_manifold manifold; + rb_capsule_manifold_init( &manifold ); + + v3f c0, c1; + closest_point_aabb( p0, bbx, c0 ); + closest_point_aabb( p1, bbx, c1 ); + + v3f d0, d1, da; + v3_sub( c0, p0, d0 ); + v3_sub( c1, p1, d1 ); + v3_sub( p1, p0, da ); + + /* TODO: ? */ + v3_normalize(d0); + v3_normalize(d1); + v3_normalize(da); + + if( v3_dot( da, d0 ) <= 0.01f ) + rb_capsule_manifold( p0, c0, 0.0f, r, &manifold ); + + if( v3_dot( da, d1 ) >= -0.01f ) + rb_capsule_manifold( p1, c1, 1.0f, r, &manifold ); + + for( int i=0; i<4; i++ ) + { + int i0 = i, + i1 = (i+1)%4; + + v3f ca, cb; + float ta, tb; + closest_segment_segment( p0, p1, quad[i0], quad[i1], &ta, &tb, ca, cb ); + rb_capsule_manifold( ca, cb, ta, r, &manifold ); + } + + /* + * Create final contacts based on line manifold + */ + m3x3_mulv( rbb->to_world, manifold.d0, manifold.d0 ); + m3x3_mulv( rbb->to_world, manifold.d1, manifold.d1 ); + + /* + * Debugging + */ + +#if 0 + for( int i=0; i<4; i++ ) + { + v3f q0, q1; + int i0 = i, + i1 = (i+1)%4; + + v3_add( quad[i0], centroid, q0 ); + v3_add( quad[i1], centroid, q1 ); + + m4x3_mulv( rbb->to_world, q0, q0 ); + m4x3_mulv( rbb->to_world, q1, q1 ); + + vg_line( q0, q1, 0xffffffff ); + } +#endif + + return rb_capsule_manifold_done( rba, rbb, &manifold, buf ); +} + +static int rb_sphere_vs_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + v3f co, delta; + + closest_point_obb( rba->co, rbb, co ); + v3_sub( rba->co, co, delta ); + + float d2 = v3_length2(delta), + r = rba->inf.sphere.radius; + + if( d2 <= r*r ) + { + float d; + + rb_ct *ct = buf; + if( d2 <= 0.0001f ) + { + v3_sub( rba->co, rbb->co, delta ); + + /* + * some extra testing is required to find the best axis to push the + * object back outside the box. Since there isnt a clear seperating + * vector already, especially on really high aspect boxes. + */ + float lx = v3_dot( rbb->right, delta ), + ly = v3_dot( rbb->up, delta ), + lz = v3_dot( rbb->forward, delta ), + px = rbb->bbx[1][0] - fabsf(lx), + py = rbb->bbx[1][1] - fabsf(ly), + pz = rbb->bbx[1][2] - fabsf(lz); + + if( px < py && px < pz ) + v3_muls( rbb->right, vg_signf(lx), ct->n ); + else if( py < pz ) + v3_muls( rbb->up, vg_signf(ly), ct->n ); + else + v3_muls( rbb->forward, vg_signf(lz), ct->n ); + + v3_muladds( rba->co, ct->n, -r, ct->co ); + ct->p = r; + } + else + { + d = sqrtf(d2); + v3_muls( delta, 1.0f/d, ct->n ); + ct->p = r-d; + v3_copy( co, ct->co ); + } + + ct->rba = rba; + ct->rbb = rbb; + return 1; + } + + return 0; +} + +static int rb_sphere_vs_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + v3f delta; + v3_sub( rba->co, rbb->co, delta ); + + float d2 = v3_length2(delta), + r = rba->inf.sphere.radius + rbb->inf.sphere.radius; + + if( d2 < r*r ) + { + float d = sqrtf(d2); + + rb_ct *ct = buf; + v3_muls( delta, 1.0f/d, ct->n ); + + v3f p0, p1; + v3_muladds( rba->co, ct->n,-rba->inf.sphere.radius, p0 ); + v3_muladds( rbb->co, ct->n, rbb->inf.sphere.radius, p1 ); + v3_add( p0, p1, ct->co ); + v3_muls( ct->co, 0.5f, ct->co ); + ct->p = r-d; + ct->rba = rba; + ct->rbb = rbb; + return 1; + } + + return 0; +} + +static int RB_MATRIX_ERROR( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + vg_error( "Collision type is unimplemented between types %d and %d\n", + rba->type, rbb->type ); + + return 0; +} + +static int rb_sphere_vs_capsule( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + return rb_capsule_vs_sphere( rbb, rba, buf ); +} + +static int rb_box_vs_capsule( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + return rb_capsule_vs_box( rbb, rba, buf ); +} + +static int rb_box_vs_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + return rb_sphere_vs_box( rbb, rba, buf ); +} + +static int (*rb_jump_table[4][4])( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) += { + /* box */ /* Sphere */ /* Capsule */ +/*box */ { RB_MATRIX_ERROR, rb_box_vs_sphere, rb_box_vs_capsule, RB_MATRIX_ERROR }, +/*sphere */ { rb_sphere_vs_box, rb_sphere_vs_sphere, rb_sphere_vs_capsule, RB_MATRIX_ERROR }, +/*capsule*/ { rb_capsule_vs_box,rb_capsule_vs_sphere,rb_capsule_vs_capsule,RB_MATRIX_ERROR }, +/*mesh */ { RB_MATRIX_ERROR, RB_MATRIX_ERROR, RB_MATRIX_ERROR, RB_MATRIX_ERROR } +}; + + +/* + * Generic functions + */ + +/* + * This function does not accept triangle as a dynamic object, it is assumed + * to always be static. + * + * The triangle is also assumed to be one sided for better detection + */ +static int rb_sphere_vs_triangle( rigidbody *rba, v3f tri[3], rb_ct *buf ) +{ + v3f delta, co; + + closest_on_triangle( rba->co, tri, co ); + v3_sub( rba->co, co, delta ); + + float d2 = v3_length2( delta ), + r = rba->inf.sphere.radius; + + if( d2 < r*r ) + { + v3f ab, ac, tn; + v3_sub( tri[1], tri[0], ab ); + v3_sub( tri[2], tri[0], ac ); + v3_cross( ac, ab, tn ); + + if( v3_dot( delta, tn ) > 0.0f ) + v3_muls( delta, -1.0f, delta ); + + float d = sqrtf(d2); + + rb_ct *ct = buf; + v3_muls( delta, 1.0f/d, ct->n ); + v3_copy( co, ct->co ); + ct->p = r-d; + ct->rba = rba; + ct->rbb = &rb_static_null; + return 1; + } + + return 0; +} + + +RB_DEPR static int sphere_vs_triangle( v3f c, float r, v3f tri[3], v3f co, v3f norm, float *p ) { @@ -394,6 +932,11 @@ static void rb_solver_reset(void) rb_contact_count = 0; } +static rb_ct *rb_global_ct(void) +{ + return rb_contact_buffer + rb_contact_count; +} + static struct contact *rb_start_contact(void) { if( rb_contact_count == vg_list_size(rb_contact_buffer) ) @@ -454,8 +997,6 @@ static void rb_build_manifold_terrain_sphere( rigidbody *rb ) ct->rba = rb; v3_copy( co, ct->co ); v3_copy( norm, ct->n ); - - v3_sub( co, rb->co, ct->delta ); rb_commit_contact( ct, p ); } } @@ -520,7 +1061,6 @@ static void rb_build_manifold_terrain( rigidbody *rb ) v3_copy( hit.normal, ct->n ); v3_add( point, surface, ct->co ); v3_muls( ct->co, 0.5f, ct->co ); - v3_sub( ct->co, rb->co, ct->delta ); rb_commit_contact( ct, p ); count ++; @@ -530,66 +1070,128 @@ static void rb_build_manifold_terrain( rigidbody *rb ) } } -static void rb_solve_contacts(void) +/* + * Initializing things like tangent vectors + */ + +static void rb_presolve_contacts( rb_ct *buffer, int len ) +{ + for( int i=0; ibias = -0.2f * k_rb_rate * vg_minf(0.0f,-ct->p+0.04f); + rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); + + ct->norm_impulse = 0.0f; + ct->tangent_impulse[0] = 0.0f; + ct->tangent_impulse[1] = 0.0f; + ct->mass_total = 1.0f/(ct->rba->inv_mass + ct->rbb->inv_mass); + + rb_debug_contact( ct ); + } +} + +/* + * Creates relative contact velocity vector, and offsets between each body + */ +static void rb_rcv( rb_ct *ct, v3f rv, v3f da, v3f db ) +{ + rigidbody *rba = ct->rba, + *rbb = ct->rbb; + + v3_sub( ct->co, rba->co, da ); + v3_sub( ct->co, rbb->co, db ); + + v3f rva, rvb; + v3_cross( rba->w, da, rva ); + v3_add( rba->v, rva, rva ); + v3_cross( rbb->w, db, rvb ); + v3_add( rbb->v, rvb, rvb ); + + v3_sub( rva, rvb, rv ); +} + +/* + * Apply regular and angular velocity impulses to objects involved in contact + */ +static void rb_standard_impulse( rb_ct *ct, v3f da, v3f db, v3f impulse ) +{ + rigidbody *rba = ct->rba, + *rbb = ct->rbb; + + v3f ia, ib; + v3_muls( impulse, ct->mass_total*rba->inv_mass, ia ); + v3_muls( impulse, -ct->mass_total*rbb->inv_mass, ib ); + + /* response */ + v3_add( rba->v, ia, rba->v ); + v3_add( rbb->v, ib, rbb->v ); + + /* Angular velocity */ + v3f wa, wb; + v3_cross( da, ia, wa ); + v3_cross( db, ib, wb ); + v3_add( rba->w, wa, rba->w ); + v3_add( rbb->w, wb, rbb->w ); +} + +/* + * One iteration to solve the contact constraint + */ +static void rb_solve_contacts( rb_ct *buf, int len ) { float k_friction = 0.1f; /* Friction Impulse */ - for( int i=0; irba; - v3f dv; - v3_cross( rb->w, ct->delta, dv ); - v3_add( rb->v, dv, dv ); + v3f rv, da, db; + rb_rcv( ct, rv, da, db ); for( int j=0; j<2; j++ ) { - float vt = vg_clampf( -v3_dot( dv, ct->t[j] ), - -k_friction, k_friction ); - - vt = -v3_dot( dv, ct->t[j] ); + float f = k_friction * ct->norm_impulse, + vt = -v3_dot( rv, ct->t[j] ); float temp = ct->tangent_impulse[j]; - ct->tangent_impulse[j] = vg_clampf( temp+vt, -k_friction, k_friction ); + ct->tangent_impulse[j] = vg_clampf( temp+vt, -f, f ); vt = ct->tangent_impulse[j] - temp; v3f impulse; - v3_muls( ct->t[j], vt, impulse ); - v3_add( impulse, rb->v, rb->v ); - v3_cross( ct->delta, impulse, impulse ); - v3_add( impulse, rb->w, rb->w ); + rb_standard_impulse( ct, da, db, impulse ); } } /* Normal Impulse */ - for( int i=0; irba; + struct contact *ct = &buf[i]; + rigidbody *rba = ct->rba, + *rbb = ct->rbb; - v3f dv; - v3_cross( rb->w, ct->delta, dv ); - v3_add( rb->v, dv, dv ); + v3f rv, da, db; + rb_rcv( ct, rv, da, db ); - float vn = -v3_dot( dv, ct->n ); - vn += ct->bias; + float vn = -v3_dot( rv, ct->n ) + ct->bias; float temp = ct->norm_impulse; ct->norm_impulse = vg_maxf( temp + vn, 0.0f ); vn = ct->norm_impulse - temp; v3f impulse; - v3_muls( ct->n, vn, impulse ); - v3_add( impulse, rb->v, rb->v ); - v3_cross( ct->delta, impulse, impulse ); - v3_add( impulse, rb->w, rb->w ); + rb_standard_impulse( ct, da, db, impulse ); } } +/* + * The following ventures into not really very sophisticated at all maths + */ + struct rb_angle_limit { rigidbody *rba, *rbb; @@ -780,6 +1382,88 @@ static void debug_sphere( m4x3f m, float radius, u32 colour ) } } +static void debug_capsule( m4x3f m, float radius, float h, u32 colour ) +{ + v3f ly = { 0.0f, 0.0f, radius }, + lx = { 0.0f, radius, 0.0f }, + lz = { 0.0f, 0.0f, radius }; + + float s0 = sinf(0.0f)*radius, + c0 = cosf(0.0f)*radius; + + v3f p0, p1, up, right, forward; + m3x3_mulv( m, (v3f){0.0f,1.0f,0.0f}, up ); + m3x3_mulv( m, (v3f){1.0f,0.0f,0.0f}, right ); + m3x3_mulv( m, (v3f){0.0f,0.0f,-1.0f}, forward ); + v3_muladds( m[3], up, -h*0.5f+radius, p0 ); + v3_muladds( m[3], up, h*0.5f-radius, p1 ); + + v3f a0, a1, b0, b1; + v3_muladds( p0, right, radius, a0 ); + v3_muladds( p1, right, radius, a1 ); + v3_muladds( p0, forward, radius, b0 ); + v3_muladds( p1, forward, radius, b1 ); + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + v3_muladds( p0, right, -radius, a0 ); + v3_muladds( p1, right, -radius, a1 ); + v3_muladds( p0, forward, -radius, b0 ); + v3_muladds( p1, forward, -radius, b1 ); + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + for( int i=0; i<16; i++ ) + { + float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f, + s1 = sinf(t)*radius, + c1 = cosf(t)*radius; + + v3f e0 = { s0, 0.0f, c0 }, + e1 = { s1, 0.0f, c1 }, + e2 = { s0, c0, 0.0f }, + e3 = { s1, c1, 0.0f }, + e4 = { 0.0f, c0, s0 }, + e5 = { 0.0f, c1, s1 }; + + m3x3_mulv( m, e0, e0 ); + m3x3_mulv( m, e1, e1 ); + m3x3_mulv( m, e2, e2 ); + m3x3_mulv( m, e3, e3 ); + m3x3_mulv( m, e4, e4 ); + m3x3_mulv( m, e5, e5 ); + + v3_add( p0, e0, a0 ); + v3_add( p0, e1, a1 ); + v3_add( p1, e0, b0 ); + v3_add( p1, e1, b1 ); + + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + if( c0 < 0.0f ) + { + v3_add( p0, e2, a0 ); + v3_add( p0, e3, a1 ); + v3_add( p0, e4, b0 ); + v3_add( p0, e5, b1 ); + } + else + { + v3_add( p1, e2, a0 ); + v3_add( p1, e3, a1 ); + v3_add( p1, e4, b0 ); + v3_add( p1, e5, b1 ); + } + + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + s0 = s1; + c0 = c1; + } +} + static void rb_debug( rigidbody *rb, u32 colour ) { if( rb->type == k_rb_shape_box ) @@ -791,6 +1475,14 @@ static void rb_debug( rigidbody *rb, u32 colour ) { debug_sphere( rb->to_world, rb->inf.sphere.radius, colour ); } + else if( rb->type == k_rb_shape_capsule ) + { + m4x3f m0, m1; + float h = rb->inf.capsule.height, + r = rb->inf.capsule.radius; + + debug_capsule( rb->to_world, r, h, colour ); + } } /* @@ -842,114 +1534,6 @@ static int rb_point_in_body( rigidbody *rb, v3f pos, float *pen, v3f normal ) return 0; } -#if 0 -static void rb_build_manifold_rb_static( rigidbody *ra, rigidbody *rb_static ) -{ - v3f verts[8]; - - v3f a, b; - v3_copy( ra->bbx[0], a ); - v3_copy( ra->bbx[1], b ); - - m4x3_mulv( ra->to_world, (v3f){ a[0], a[1], a[2] }, verts[0] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], b[1], a[2] }, verts[1] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], b[1], a[2] }, verts[2] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], a[1], a[2] }, verts[3] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], a[1], b[2] }, verts[4] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], b[1], b[2] }, verts[5] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], b[1], b[2] }, verts[6] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], a[1], b[2] }, verts[7] ); - - vg_line_boxf_transformed( rb_static->to_world, rb_static->bbx, 0xff0000ff ); - - int count = 0; - - for( int i=0; i<8; i++ ) - { - if( ra->manifold_count == vg_list_size(ra->manifold) ) - return; - - struct contact *ct = &ra->manifold[ ra->manifold_count ]; - - float p; - v3f normal; - - if( rb_point_in_body( rb_static, verts[i], &p, normal )) - { - v3_copy( normal, ct->n ); - v3_muladds( verts[i], ct->n, p*0.5f, ct->co ); - v3_sub( ct->co, ra->co, ct->delta ); - - vg_line_pt3( ct->co, 0.0125f, 0xffff00ff ); - - ct->bias = -0.2f * (1.0f/k_rb_delta) * vg_minf( 0.0f, -p+0.04f ); - rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); - - ct->norm_impulse = 0.0f; - ct->tangent_impulse[0] = 0.0f; - ct->tangent_impulse[1] = 0.0f; - - ra->manifold_count ++; - count ++; - if( count == 4 ) - return; - } - } -} -#endif - -/* - * Capsule phyics - */ - -static void debug_capsule( m4x3f m, float height, float radius, u32 colour ) -{ - v3f last = { 0.0f, 0.0f, radius }; - m4x3f lower, upper; - m3x3_copy( m, lower ); - m3x3_copy( m, upper ); - m4x3_mulv( m, (v3f){0.0f,-height*0.5f+radius,0.0f}, lower[3] ); - m4x3_mulv( m, (v3f){0.0f, height*0.5f-radius,0.0f}, upper[3] ); - - for( int i=0; i<16; i++ ) - { - float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f, - s = sinf(t), - c = cosf(t); - - v3f p = { s*radius, 0.0f, c*radius }; - - v3f p0, p1; - m4x3_mulv( lower, p, p0 ); - m4x3_mulv( lower, last, p1 ); - vg_line( p0, p1, colour ); - - m4x3_mulv( upper, p, p0 ); - m4x3_mulv( upper, last, p1 ); - vg_line( p0, p1, colour ); - - v3_copy( p, last ); - } - - for( int i=0; i<4; i++ ) - { - float t = ((float)(i) * (1.0f/4.0f)) * VG_PIf * 2.0f, - s = sinf(t), - c = cosf(t); - - v3f p = { s*radius, 0.0f, c*radius }; - - v3f p0, p1; - m4x3_mulv( lower, p, p0 ); - m4x3_mulv( upper, p, p1 ); - vg_line( p0, p1, colour ); - - m4x3_mulv( lower, (v3f){0.0f,-radius,0.0f}, p0 ); - m4x3_mulv( upper, (v3f){0.0f, radius,0.0f}, p1 ); - vg_line( p0, p1, colour ); - } -} - /* * BVH implementation, this is ONLY for static rigidbodies, its to slow for * realtime use.