X-Git-Url: https://harrygodden.com/git/?a=blobdiff_plain;f=rigidbody.h;h=7f7187daf7aab46e9fc353032b956a42043f6cb5;hb=b4c9550f206c476bb38b0bb2855d35e6b31bee83;hp=d911688beca8a5e6fc7e98399aa0739b029f02eb;hpb=98ecdd9f0377f1563566fe4d3d3b8185a055ec4d;p=carveJwlIkooP6JGAAIwe30JlM.git diff --git a/rigidbody.h b/rigidbody.h index d911688..7f7187d 100644 --- a/rigidbody.h +++ b/rigidbody.h @@ -5,6 +5,7 @@ #include "common.h" #include "bvh.h" +#include "scene.h" static void rb_tangent_basis( v3f n, v3f tx, v3f ty ); static bh_system bh_system_rigidbodies; @@ -12,11 +13,13 @@ static bh_system bh_system_rigidbodies; #ifndef RIGIDBODY_H #define RIGIDBODY_H -#define RB_DEPR +//#define RB_DEPR #define k_rb_rate 60.0f #define k_rb_delta (1.0f/k_rb_rate) typedef struct rigidbody rigidbody; +typedef struct contact rb_ct; + struct rigidbody { v3f co, v, w; @@ -24,9 +27,10 @@ struct rigidbody enum rb_shape { - k_rb_shape_box, - k_rb_shape_sphere, - k_rb_shape_capsule + k_rb_shape_box = 0, + k_rb_shape_sphere = 1, + k_rb_shape_capsule = 2, + k_rb_shape_scene = 3 } type; @@ -43,30 +47,65 @@ struct rigidbody float height, radius; } capsule; + + struct rb_scene + { + scene *pscene; + } + scene; } inf; v3f right, up, forward; + int is_world; + boxf bbx, bbx_world; float inv_mass; - v3f delta; /* where is the origin of this in relation to a parent body */ + /* inertia model and inverse world tensor */ + v3f I; + m3x3f iI, iIw; + m4x3f to_world, to_local; }; +#ifdef RB_DEPR +/* + * Impulses on static objects get re-routed here + */ +static rigidbody rb_static_null = +{ + .co={0.0f,0.0f,0.0f}, + .q={0.0f,0.0f,0.0f,1.0f}, + .v={0.0f,0.0f,0.0f}, + .w={0.0f,0.0f,0.0f}, + .is_world = 1, + .inv_mass = 0.0f +}; +#endif + static void rb_debug( rigidbody *rb, u32 colour ); static struct contact { - rigidbody *rba; - v3f co, n, delta; + rigidbody *rba, *rbb; + v3f co, n; v3f t[2]; - float bias, norm_impulse, tangent_impulse[2]; + float p, bias, norm_impulse, tangent_impulse[2], + normal_mass, tangent_mass[2]; + + u32 element_id; } rb_contact_buffer[256]; static int rb_contact_count = 0; +static void rb_update_bounds( rigidbody *rb ) +{ + box_copy( rb->bbx, rb->bbx_world ); + m4x3_transform_aabb( rb->to_world, rb->bbx_world ); +} + static void rb_update_transform( rigidbody *rb ) { q_normalize( rb->q ); @@ -75,12 +114,14 @@ static void rb_update_transform( rigidbody *rb ) m4x3_invert_affine( rb->to_world, rb->to_local ); - box_copy( rb->bbx, rb->bbx_world ); - m4x3_transform_aabb( rb->to_world, rb->bbx_world ); - m3x3_mulv( rb->to_world, (v3f){1.0f,0.0f, 0.0f}, rb->right ); m3x3_mulv( rb->to_world, (v3f){0.0f,1.0f, 0.0f}, rb->up ); m3x3_mulv( rb->to_world, (v3f){0.0f,0.0f,-1.0f}, rb->forward ); + + m3x3_mul( rb->iI, rb->to_local, rb->iIw ); + m3x3_mul( rb->to_world, rb->iIw, rb->iIw ); + + rb_update_bounds( rb ); } static float sphere_volume( float radius ) @@ -98,12 +139,17 @@ static void rb_init( rigidbody *rb ) v3f dims; v3_sub( rb->bbx[1], rb->bbx[0], dims ); volume = dims[0]*dims[1]*dims[2]; + + if( !rb->is_world ) + vg_info( "Box volume: %f\n", volume ); } else if( rb->type == k_rb_shape_sphere ) { volume = sphere_volume( rb->inf.sphere.radius ); v3_fill( rb->bbx[0], -rb->inf.sphere.radius ); v3_fill( rb->bbx[1], rb->inf.sphere.radius ); + + vg_info( "Sphere volume: %f\n", volume ); } else if( rb->type == k_rb_shape_capsule ) { @@ -116,8 +162,43 @@ static void rb_init( rigidbody *rb ) rb->bbx[0][1] = -h; rb->bbx[1][1] = h; } + else if( rb->type == k_rb_shape_scene ) + { + rb->is_world = 1; + box_copy( rb->inf.scene.pscene->bbx, rb->bbx ); + } - rb->inv_mass = 1.0f/(8.0f*volume); + if( rb->is_world ) + { + rb->inv_mass = 0.0f; + v3_zero( rb->I ); + m3x3_zero(rb->iI); + } + else + { + float mass = 2.0f*volume; + rb->inv_mass = 1.0f/mass; + + v3f extent; + v3_sub( rb->bbx[1], rb->bbx[0], extent ); + v3_muls( extent, 0.5f, extent ); + + /* local intertia tensor */ + float scale = 4.0f; + float ex2 = scale*extent[0]*extent[0], + ey2 = scale*extent[1]*extent[1], + ez2 = scale*extent[2]*extent[2]; + + rb->I[0] = ((1.0f/12.0f) * mass * (ey2+ez2)); + rb->I[1] = ((1.0f/12.0f) * mass * (ex2+ez2)); + rb->I[2] = ((1.0f/12.0f) * mass * (ex2+ey2)); + + m3x3_identity( rb->iI ); + rb->iI[0][0] = rb->I[0]; + rb->iI[1][1] = rb->I[1]; + rb->iI[2][2] = rb->I[2]; + m3x3_inv( rb->iI, rb->iI ); + } v3_zero( rb->v ); v3_zero( rb->w ); @@ -127,7 +208,7 @@ static void rb_init( rigidbody *rb ) static void rb_iter( rigidbody *rb ) { - v3f gravity = { 0.0f, -9.6f, 0.0f }; + v3f gravity = { 0.0f, -9.8f, 0.0f }; v3_muladds( rb->v, gravity, k_rb_delta, rb->v ); /* intergrate velocity */ @@ -174,10 +255,17 @@ static void rb_tangent_basis( v3f n, v3f tx, v3f ty ) } static void rb_solver_reset(void); +#ifdef RB_DEPR static void rb_build_manifold_terrain( rigidbody *rb ); static void rb_build_manifold_terrain_sphere( rigidbody *rb ); -static void rb_solve_contacts(void); +#endif +static void rb_solve_contacts( rb_ct *buf, int len ); +static void rb_presolve_contacts( rb_ct *buffer, int len ); +/* + * These closest point tests were learned from Real-Time Collision Detection by + * Christer Ericson + */ static float closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2, float *s, float *t, v3f c1, v3f c2) { @@ -255,17 +343,32 @@ static float closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2, return v3_length2( v0 ); } -static void closest_point_segment( v3f a, v3f b, v3f point, v3f dest ) +static void closest_point_aabb( v3f p, boxf box, v3f dest ) +{ + v3_maxv( p, box[0], dest ); + v3_minv( dest, box[1], dest ); +} + +static void closest_point_obb( v3f p, rigidbody *rb, v3f dest ) +{ + v3f local; + m4x3_mulv( rb->to_local, p, local ); + closest_point_aabb( local, rb->bbx, local ); + m4x3_mulv( rb->to_world, local, dest ); +} + +static float closest_point_segment( v3f a, v3f b, v3f point, v3f dest ) { v3f v0, v1; v3_sub( b, a, v0 ); v3_sub( point, a, v1 ); float t = v3_dot( v1, v0 ) / v3_length2(v0); - v3_muladds( a, v0, vg_clampf(t,0.0f,1.0f), dest ); + t = vg_clampf(t,0.0f,1.0f); + v3_muladds( a, v0, t, dest ); + return t; } -/* Real-Time Collision Detection */ static void closest_on_triangle( v3f p, v3f tri[3], v3f dest ) { v3f ab, ac, ap; @@ -310,49 +413,1021 @@ static void closest_on_triangle( v3f p, v3f tri[3], v3f dest ) return; } - /* Region outside C */ - v3f cp; - float d5, d6; - v3_sub( p, tri[2], cp ); - d5 = v3_dot(ab, cp); - d6 = v3_dot(ac, cp); - - if( d6 >= 0.0f && d5 <= d6 ) + /* Region outside C */ + v3f cp; + float d5, d6; + v3_sub( p, tri[2], cp ); + d5 = v3_dot(ab, cp); + d6 = v3_dot(ac, cp); + + if( d6 >= 0.0f && d5 <= d6 ) + { + v3_copy( tri[2], dest ); + v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); + return; + } + + /* Region of AC */ + float vb = d5*d2 - d1*d6; + if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f ) + { + float w = d2 / (d2-d6); + v3_muladds( tri[0], ac, w, dest ); + v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); + return; + } + + /* Region of BC */ + float va = d3*d6 - d5*d4; + if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f ) + { + float w = (d4-d3) / ((d4-d3) + (d5-d6)); + v3f bc; + v3_sub( tri[2], tri[1], bc ); + v3_muladds( tri[1], bc, w, dest ); + v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); + return; + } + + /* P inside region, Q via barycentric coordinates uvw */ + float d = 1.0f/(va+vb+vc), + v = vb*d, + w = vc*d; + + v3_muladds( tri[0], ab, v, dest ); + v3_muladds( dest, ac, w, dest ); +} + +/* TODO */ +static void closest_on_triangle_1( v3f p, v3f tri[3], v3f dest ) +{ + v3f ab, ac, ap; + float d1, d2; + + /* Region outside A */ + v3_sub( tri[1], tri[0], ab ); + v3_sub( tri[2], tri[0], ac ); + v3_sub( p, tri[0], ap ); + + d1 = v3_dot(ab,ap); + d2 = v3_dot(ac,ap); + if( d1 <= 0.0f && d2 <= 0.0f ) + { + v3_copy( tri[0], dest ); + return; + } + + /* Region outside B */ + v3f bp; + float d3, d4; + + v3_sub( p, tri[1], bp ); + d3 = v3_dot( ab, bp ); + d4 = v3_dot( ac, bp ); + + if( d3 >= 0.0f && d4 <= d3 ) + { + v3_copy( tri[1], dest ); + return; + } + + /* Edge region of AB */ + float vc = d1*d4 - d3*d2; + if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f ) + { + float v = d1 / (d1-d3); + v3_muladds( tri[0], ab, v, dest ); + return; + } + + /* Region outside C */ + v3f cp; + float d5, d6; + v3_sub( p, tri[2], cp ); + d5 = v3_dot(ab, cp); + d6 = v3_dot(ac, cp); + + if( d6 >= 0.0f && d5 <= d6 ) + { + v3_copy( tri[2], dest ); + return; + } + + /* Region of AC */ + float vb = d5*d2 - d1*d6; + if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f ) + { + float w = d2 / (d2-d6); + v3_muladds( tri[0], ac, w, dest ); + return; + } + + /* Region of BC */ + float va = d3*d6 - d5*d4; + if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f ) + { + float w = (d4-d3) / ((d4-d3) + (d5-d6)); + v3f bc; + v3_sub( tri[2], tri[1], bc ); + v3_muladds( tri[1], bc, w, dest ); + return; + } + + /* P inside region, Q via barycentric coordinates uvw */ + float d = 1.0f/(va+vb+vc), + v = vb*d, + w = vc*d; + + v3_muladds( tri[0], ab, v, dest ); + v3_muladds( dest, ac, w, dest ); +} + +static int rb_intersect_planes( v4f p0, v4f p1, v4f p2, v3f p ) +{ + v3f u; + v3_cross( p1, p2, u ); + float d = v3_dot( p0, u ); + + if( fabsf(d) < 0.0001f ) + return 0; + + v3_muls( u, p0[3], p ); + + v3f v0, v1; + v3_muls( p1, p2[3], v0 ); + v3_muladds( v0, p2, -p1[3], v0 ); + v3_cross( p0, v0, v1 ); + v3_add( v1, p, p ); + v3_muls( p, 1.0f/d, p ); + + return 1; +} + +int rb_intersect_planes_1( v4f a, v4f b, v4f c, v3f p ) +{ + float const epsilon = 0.001; + + v3f x, bc, ca, ab; + float d; + + v3_cross( a, b, x ); + d = v3_dot( x, c ); + + if( d < epsilon && d > -epsilon ) return 0; + + v3_cross(b,c,bc); + v3_cross(c,a,ca); + v3_cross(a,b,ab); + + v3_muls( bc, -a[3], p ); + v3_muladds( p, ca, -b[3], p ); + v3_muladds( p, ab, -c[3], p ); + + v3_negate( p, p ); + v3_divs( p, d, p ); + + return 1; +} +/* + * Contact generators + * + * These do not automatically allocate contacts, an appropriately sized + * buffer must be supplied. The function returns the size of the manifold + * which was generated. + * + * The values set on the contacts are: n, co, p, rba, rbb + */ + +static void rb_debug_contact( rb_ct *ct ) +{ + v3f p1; + v3_muladds( ct->co, ct->n, 0.1f, p1 ); + vg_line_pt3( ct->co, 0.025f, 0xff0000ff ); + vg_line( ct->co, p1, 0xffffffff ); +} + +/* + * By collecting the minimum(time) and maximum(time) pairs of points, we + * build a reduced and stable exact manifold. + * + * tx: time at point + * rx: minimum distance of these points + * dx: the delta between the two points + * + * pairs will only ammend these if they are creating a collision + */ +typedef struct capsule_manifold capsule_manifold; +struct capsule_manifold +{ + float t0, t1; + float r0, r1; + v3f d0, d1; +}; + +/* + * Expand a line manifold with a new pair. t value is the time along segment + * on the oriented object which created this pair. + */ +static void rb_capsule_manifold( v3f pa, v3f pb, float t, float r, + capsule_manifold *manifold ) +{ + v3f delta; + v3_sub( pa, pb, delta ); + + if( v3_length2(delta) < r*r ) + { + if( t < manifold->t0 ) + { + v3_copy( delta, manifold->d0 ); + manifold->t0 = t; + manifold->r0 = r; + } + + if( t > manifold->t1 ) + { + v3_copy( delta, manifold->d1 ); + manifold->t1 = t; + manifold->r1 = r; + } + } +} + +static void rb_capsule_manifold_init( capsule_manifold *manifold ) +{ + manifold->t0 = INFINITY; + manifold->t1 = -INFINITY; +} + +static int rb_capsule_manifold_done( rigidbody *rba, rigidbody *rbb, + capsule_manifold *manifold, rb_ct *buf ) +{ + float h = rba->inf.capsule.height, + ra = rba->inf.capsule.radius; + + v3f p0, p1; + v3_muladds( rba->co, rba->up, -h*0.5f+ra, p0 ); + v3_muladds( rba->co, rba->up, h*0.5f-ra, p1 ); + + int count = 0; + if( manifold->t0 <= 1.0f ) + { + rb_ct *ct = buf; + + v3f pa; + v3_muls( p0, 1.0f-manifold->t0, pa ); + v3_muladds( pa, p1, manifold->t0, pa ); + + float d = v3_length( manifold->d0 ); + v3_muls( manifold->d0, 1.0f/d, ct->n ); + v3_muladds( pa, ct->n, -ra, ct->co ); + + ct->p = manifold->r0 - d; + ct->rba = rba; + ct->rbb = rbb; + + count ++; + } + + if( (manifold->t1 >= 0.0f) && (manifold->t0 != manifold->t1) ) + { + rb_ct *ct = buf+count; + + v3f pa; + v3_muls( p0, 1.0f-manifold->t1, pa ); + v3_muladds( pa, p1, manifold->t1, pa ); + + float d = v3_length( manifold->d1 ); + v3_muls( manifold->d1, 1.0f/d, ct->n ); + v3_muladds( pa, ct->n, -ra, ct->co ); + + ct->p = manifold->r1 - d; + ct->rba = rba; + ct->rbb = rbb; + + count ++; + } + + /* + * Debugging + */ + + if( count == 2 ) + vg_line( buf[0].co, buf[1].co, 0xff0000ff ); + + return count; +} + +static int rb_capsule_vs_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + float h = rba->inf.capsule.height, + ra = rba->inf.capsule.radius, + rb = rbb->inf.sphere.radius; + + v3f p0, p1; + v3_muladds( rba->co, rba->up, -h*0.5f+ra, p0 ); + v3_muladds( rba->co, rba->up, h*0.5f-ra, p1 ); + + v3f c, delta; + closest_point_segment( p0, p1, rbb->co, c ); + v3_sub( c, rbb->co, delta ); + + float d2 = v3_length2(delta), + r = ra + rb; + + if( d2 < r*r ) + { + float d = sqrtf(d2); + + rb_ct *ct = buf; + v3_muls( delta, 1.0f/d, ct->n ); + ct->p = r-d; + + v3f p0, p1; + v3_muladds( c, ct->n, -ra, p0 ); + v3_muladds( rbb->co, ct->n, rb, p1 ); + v3_add( p0, p1, ct->co ); + v3_muls( ct->co, 0.5f, ct->co ); + + ct->rba = rba; + ct->rbb = rbb; + + return 1; + } + + return 0; +} + +static int rb_capsule_vs_capsule( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + float ha = rba->inf.capsule.height, + hb = rbb->inf.capsule.height, + ra = rba->inf.capsule.radius, + rb = rbb->inf.capsule.radius, + r = ra+rb; + + v3f p0, p1, p2, p3; + v3_muladds( rba->co, rba->up, -ha*0.5f+ra, p0 ); + v3_muladds( rba->co, rba->up, ha*0.5f-ra, p1 ); + v3_muladds( rbb->co, rbb->up, -hb*0.5f+rb, p2 ); + v3_muladds( rbb->co, rbb->up, hb*0.5f-rb, p3 ); + + capsule_manifold manifold; + rb_capsule_manifold_init( &manifold ); + + v3f pa, pb; + float ta, tb; + closest_segment_segment( p0, p1, p2, p3, &ta, &tb, pa, pb ); + rb_capsule_manifold( pa, pb, ta, r, &manifold ); + + ta = closest_point_segment( p0, p1, p2, pa ); + tb = closest_point_segment( p0, p1, p3, pb ); + rb_capsule_manifold( pa, p2, ta, r, &manifold ); + rb_capsule_manifold( pb, p3, tb, r, &manifold ); + + closest_point_segment( p2, p3, p0, pa ); + closest_point_segment( p2, p3, p1, pb ); + rb_capsule_manifold( p0, pa, 0.0f, r, &manifold ); + rb_capsule_manifold( p1, pb, 1.0f, r, &manifold ); + + return rb_capsule_manifold_done( rba, rbb, &manifold, buf ); +} + +/* + * Generates up to two contacts; optimised for the most stable manifold + */ +static int rb_capsule_vs_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + float h = rba->inf.capsule.height, + r = rba->inf.capsule.radius; + + /* + * Solving this in symetric local space of the cube saves us some time and a + * couple branches when it comes to the quad stage. + */ + v3f centroid; + v3_add( rbb->bbx[0], rbb->bbx[1], centroid ); + v3_muls( centroid, 0.5f, centroid ); + + boxf bbx; + v3_sub( rbb->bbx[0], centroid, bbx[0] ); + v3_sub( rbb->bbx[1], centroid, bbx[1] ); + + v3f pc, p0w, p1w, p0, p1; + v3_muladds( rba->co, rba->up, -h*0.5f+r, p0w ); + v3_muladds( rba->co, rba->up, h*0.5f-r, p1w ); + + m4x3_mulv( rbb->to_local, p0w, p0 ); + m4x3_mulv( rbb->to_local, p1w, p1 ); + v3_sub( p0, centroid, p0 ); + v3_sub( p1, centroid, p1 ); + v3_add( p0, p1, pc ); + v3_muls( pc, 0.5f, pc ); + + /* + * Finding an appropriate quad to collide lines with + */ + v3f region; + v3_div( pc, bbx[1], region ); + + v3f quad[4]; + if( (fabsf(region[0]) > fabsf(region[1])) && + (fabsf(region[0]) > fabsf(region[2])) ) + { + float px = vg_signf(region[0]) * bbx[1][0]; + v3_copy( (v3f){ px, bbx[0][1], bbx[0][2] }, quad[0] ); + v3_copy( (v3f){ px, bbx[1][1], bbx[0][2] }, quad[1] ); + v3_copy( (v3f){ px, bbx[1][1], bbx[1][2] }, quad[2] ); + v3_copy( (v3f){ px, bbx[0][1], bbx[1][2] }, quad[3] ); + } + else if( fabsf(region[1]) > fabsf(region[2]) ) + { + float py = vg_signf(region[1]) * bbx[1][1]; + v3_copy( (v3f){ bbx[0][0], py, bbx[0][2] }, quad[0] ); + v3_copy( (v3f){ bbx[1][0], py, bbx[0][2] }, quad[1] ); + v3_copy( (v3f){ bbx[1][0], py, bbx[1][2] }, quad[2] ); + v3_copy( (v3f){ bbx[0][0], py, bbx[1][2] }, quad[3] ); + } + else + { + float pz = vg_signf(region[2]) * bbx[1][2]; + v3_copy( (v3f){ bbx[0][0], bbx[0][1], pz }, quad[0] ); + v3_copy( (v3f){ bbx[1][0], bbx[0][1], pz }, quad[1] ); + v3_copy( (v3f){ bbx[1][0], bbx[1][1], pz }, quad[2] ); + v3_copy( (v3f){ bbx[0][0], bbx[1][1], pz }, quad[3] ); + } + + capsule_manifold manifold; + rb_capsule_manifold_init( &manifold ); + + v3f c0, c1; + closest_point_aabb( p0, bbx, c0 ); + closest_point_aabb( p1, bbx, c1 ); + + v3f d0, d1, da; + v3_sub( c0, p0, d0 ); + v3_sub( c1, p1, d1 ); + v3_sub( p1, p0, da ); + + /* TODO: ? */ + v3_normalize(d0); + v3_normalize(d1); + v3_normalize(da); + + if( v3_dot( da, d0 ) <= 0.01f ) + rb_capsule_manifold( p0, c0, 0.0f, r, &manifold ); + + if( v3_dot( da, d1 ) >= -0.01f ) + rb_capsule_manifold( p1, c1, 1.0f, r, &manifold ); + + for( int i=0; i<4; i++ ) + { + int i0 = i, + i1 = (i+1)%4; + + v3f ca, cb; + float ta, tb; + closest_segment_segment( p0, p1, quad[i0], quad[i1], &ta, &tb, ca, cb ); + rb_capsule_manifold( ca, cb, ta, r, &manifold ); + } + + /* + * Create final contacts based on line manifold + */ + m3x3_mulv( rbb->to_world, manifold.d0, manifold.d0 ); + m3x3_mulv( rbb->to_world, manifold.d1, manifold.d1 ); + + /* + * Debugging + */ + +#if 0 + for( int i=0; i<4; i++ ) + { + v3f q0, q1; + int i0 = i, + i1 = (i+1)%4; + + v3_add( quad[i0], centroid, q0 ); + v3_add( quad[i1], centroid, q1 ); + + m4x3_mulv( rbb->to_world, q0, q0 ); + m4x3_mulv( rbb->to_world, q1, q1 ); + + vg_line( q0, q1, 0xffffffff ); + } +#endif + + return rb_capsule_manifold_done( rba, rbb, &manifold, buf ); +} + +static int rb_sphere_vs_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + v3f co, delta; + + closest_point_obb( rba->co, rbb, co ); + v3_sub( rba->co, co, delta ); + + float d2 = v3_length2(delta), + r = rba->inf.sphere.radius; + + if( d2 <= r*r ) + { + float d; + + rb_ct *ct = buf; + if( d2 <= 0.0001f ) + { + v3_sub( rba->co, rbb->co, delta ); + + /* + * some extra testing is required to find the best axis to push the + * object back outside the box. Since there isnt a clear seperating + * vector already, especially on really high aspect boxes. + */ + float lx = v3_dot( rbb->right, delta ), + ly = v3_dot( rbb->up, delta ), + lz = v3_dot( rbb->forward, delta ), + px = rbb->bbx[1][0] - fabsf(lx), + py = rbb->bbx[1][1] - fabsf(ly), + pz = rbb->bbx[1][2] - fabsf(lz); + + if( px < py && px < pz ) + v3_muls( rbb->right, vg_signf(lx), ct->n ); + else if( py < pz ) + v3_muls( rbb->up, vg_signf(ly), ct->n ); + else + v3_muls( rbb->forward, vg_signf(lz), ct->n ); + + v3_muladds( rba->co, ct->n, -r, ct->co ); + ct->p = r; + } + else + { + d = sqrtf(d2); + v3_muls( delta, 1.0f/d, ct->n ); + ct->p = r-d; + v3_copy( co, ct->co ); + } + + ct->rba = rba; + ct->rbb = rbb; + return 1; + } + + return 0; +} + +static int rb_sphere_vs_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + v3f delta; + v3_sub( rba->co, rbb->co, delta ); + + float d2 = v3_length2(delta), + r = rba->inf.sphere.radius + rbb->inf.sphere.radius; + + if( d2 < r*r ) + { + float d = sqrtf(d2); + + rb_ct *ct = buf; + v3_muls( delta, 1.0f/d, ct->n ); + + v3f p0, p1; + v3_muladds( rba->co, ct->n,-rba->inf.sphere.radius, p0 ); + v3_muladds( rbb->co, ct->n, rbb->inf.sphere.radius, p1 ); + v3_add( p0, p1, ct->co ); + v3_muls( ct->co, 0.5f, ct->co ); + ct->p = r-d; + ct->rba = rba; + ct->rbb = rbb; + return 1; + } + + return 0; +} + +/* TODO: these guys */ + +static int rb_capsule_vs_scene( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + u32 geo[128]; + v3f tri[3]; + int len = bh_select( &rbb->inf.scene.pscene->bhtris, + rba->bbx_world, geo, 128 ); + + return 0; +} + +static int rb_sphere_vs_triangle( rigidbody *rba, rigidbody *rbb, + v3f tri[3], rb_ct *buf ) +{ + v3f delta, co; + + closest_on_triangle( rba->co, tri, co ); + v3_sub( rba->co, co, delta ); + + vg_line( rba->co, co, 0xffff0000 ); + vg_line_pt3( rba->co, 0.1f, 0xff00ffff ); + + float d2 = v3_length2( delta ), + r = rba->inf.sphere.radius; + + if( d2 < r*r ) + { + rb_ct *ct = buf; + + v3f ab, ac, tn; + v3_sub( tri[2], tri[0], ab ); + v3_sub( tri[1], tri[0], ac ); + v3_cross( ac, ab, tn ); + v3_copy( tn, ct->n ); + v3_normalize( ct->n ); + + float d = sqrtf(d2); + + v3_copy( co, ct->co ); + ct->p = r-d; + ct->rba = rba; + ct->rbb = rbb; + return 1; + } + + return 0; +} + +static int rb_sphere_vs_scene( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + scene *sc = rbb->inf.scene.pscene; + + u32 geo[128]; + v3f tri[3]; + int len = bh_select( &sc->bhtris, rba->bbx_world, geo, 128 ); + + int count = 0; + + for( int i=0; iindices[ geo[i]*3 ]; + + for( int j=0; j<3; j++ ) + v3_copy( sc->verts[ptri[j]].co, tri[j] ); + + vg_line(tri[0],tri[1],0xff00ff00 ); + vg_line(tri[1],tri[2],0xff00ff00 ); + vg_line(tri[2],tri[0],0xff00ff00 ); + + buf[count].element_id = ptri[0]; + count += rb_sphere_vs_triangle( rba, rbb, tri, buf+count ); + + if( count == 12 ) + { + vg_warn( "Exceeding sphere_vs_scene capacity. Geometry too dense!\n" ); + return count; + } + } + + return count; +} + +static float rb_box_plane_interval( rigidbody *rba, v4f p ) +{ + /* TODO: Make boxes COG aligned as is every other shape. + * or create COG vector. + * TODO: Make forward actually point in the right fucking direction. */ + v3f e,c; + v3_sub( rba->bbx[1], rba->bbx[0], e ); + v3_muls( e, 0.5f, e ); + v3_add( rba->bbx[0], e, c ); + m4x3_mulv( rba->to_world, c, c ); + + float r = + e[0]*fabsf( v3_dot(p, rba->right)) + + e[1]*fabsf( v3_dot(p, rba->up)) + + e[2]*fabsf(-v3_dot(p, rba->forward)), + s = v3_dot( p, c ) - p[3]; + + return r-s; +} + +static int rb_box_triangle_interval( v3f extent, v3f axis, v3f tri[3] ) +{ + float + + r = extent[0] * fabsf(axis[0]) + + extent[1] * fabsf(axis[1]) + + extent[2] * fabsf(axis[2]), + + p0 = v3_dot( axis, tri[0] ), + p1 = v3_dot( axis, tri[1] ), + p2 = v3_dot( axis, tri[2] ), + + e = vg_maxf(-vg_maxf(p0,vg_maxf(p1,p2)), vg_minf(p0,vg_minf(p1,p2))); + + if( e > r ) return 0; + else return 1; +} + +static int rb_box_triangle_sat( rigidbody *rba, v3f tri_src[3] ) +{ + v3f tri[3]; + + v3f extent, c; + v3_sub( rba->bbx[1], rba->bbx[0], extent ); + v3_muls( extent, 0.5f, extent ); + v3_add( rba->bbx[0], extent, c ); + + for( int i=0; i<3; i++ ) + { + m4x3_mulv( rba->to_local, tri_src[i], tri[i] ); + v3_sub( tri[i], c, tri[i] ); + } + + /* u0, u1, u2 */ + if(!rb_box_triangle_interval( extent, (v3f){1.0f,0.0f,0.0f}, tri )) return 0; + if(!rb_box_triangle_interval( extent, (v3f){0.0f,1.0f,0.0f}, tri )) return 0; + if(!rb_box_triangle_interval( extent, (v3f){0.0f,0.0f,1.0f}, tri )) return 0; + + v3f v0,v1,v2,n, e0,e1,e2; + v3_sub( tri[1], tri[0], v0 ); + v3_sub( tri[2], tri[0], v1 ); + v3_sub( tri[2], tri[1], v2 ); + v3_normalize( v0 ); + v3_normalize( v1 ); + v3_normalize( v2 ); + v3_cross( v0, v1, n ); + v3_cross( v0, n, e0 ); + v3_cross( n, v1, e1 ); + v3_cross( v2, n, e2 ); + + /* normal */ + if(!rb_box_triangle_interval( extent, n, tri )) return 0; + + v3f axis[9]; + v3_cross( e0, (v3f){1.0f,0.0f,0.0f}, axis[0] ); + v3_cross( e0, (v3f){0.0f,1.0f,0.0f}, axis[1] ); + v3_cross( e0, (v3f){0.0f,0.0f,1.0f}, axis[2] ); + v3_cross( e1, (v3f){1.0f,0.0f,0.0f}, axis[3] ); + v3_cross( e1, (v3f){0.0f,1.0f,0.0f}, axis[4] ); + v3_cross( e1, (v3f){0.0f,0.0f,1.0f}, axis[5] ); + v3_cross( e2, (v3f){1.0f,0.0f,0.0f}, axis[6] ); + v3_cross( e2, (v3f){0.0f,1.0f,0.0f}, axis[7] ); + v3_cross( e2, (v3f){0.0f,0.0f,1.0f}, axis[8] ); + + for( int i=0; i<9; i++ ) + if(!rb_box_triangle_interval( extent, axis[i], tri )) return 0; + + return 1; +} + +static int rb_box_vs_scene( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + scene *sc = rbb->inf.scene.pscene; + + u32 geo[128]; + v3f tri[3]; + int len = bh_select( &sc->bhtris, rba->bbx_world, geo, 128 ); + + int count = 0; + + for( int i=0; iindices[ geo[i]*3 ]; + + for( int j=0; j<3; j++ ) + v3_copy( sc->verts[ptri[j]].co, tri[j] ); + + if( rb_box_triangle_sat( rba, tri ) ) + { + vg_line(tri[0],tri[1],0xff50ff00 ); + vg_line(tri[1],tri[2],0xff50ff00 ); + vg_line(tri[2],tri[0],0xff50ff00 ); + } + else + { + vg_line(tri[0],tri[1],0xff0000ff ); + vg_line(tri[1],tri[2],0xff0000ff ); + vg_line(tri[2],tri[0],0xff0000ff ); + + continue; + } + + v3f v0,v1,n; + v3_sub( tri[1], tri[0], v0 ); + v3_sub( tri[2], tri[0], v1 ); + v3_cross( v0, v1, n ); + v3_normalize( n ); + + /* find best feature */ + float best = v3_dot( rba->right, n ); + int axis = 0; + + float cy = v3_dot( rba->up, n ); + if( fabsf(cy) > fabsf(best) ) + { + best = cy; + axis = 1; + } + + /* TODO: THIS IS WRONG DIRECTION */ + float cz = -v3_dot( rba->forward, n ); + if( fabsf(cz) > fabsf(best) ) + { + best = cz; + axis = 2; + } + + v3f manifold[4]; + + if( axis == 0 ) + { + float px = best > 0.0f? rba->bbx[0][0]: rba->bbx[1][0]; + manifold[0][0] = px; + manifold[0][1] = rba->bbx[0][1]; + manifold[0][2] = rba->bbx[0][2]; + manifold[1][0] = px; + manifold[1][1] = rba->bbx[1][1]; + manifold[1][2] = rba->bbx[0][2]; + manifold[2][0] = px; + manifold[2][1] = rba->bbx[1][1]; + manifold[2][2] = rba->bbx[1][2]; + manifold[3][0] = px; + manifold[3][1] = rba->bbx[0][1]; + manifold[3][2] = rba->bbx[1][2]; + } + else if( axis == 1 ) + { + float py = best > 0.0f? rba->bbx[0][1]: rba->bbx[1][1]; + manifold[0][0] = rba->bbx[0][0]; + manifold[0][1] = py; + manifold[0][2] = rba->bbx[0][2]; + manifold[1][0] = rba->bbx[1][0]; + manifold[1][1] = py; + manifold[1][2] = rba->bbx[0][2]; + manifold[2][0] = rba->bbx[1][0]; + manifold[2][1] = py; + manifold[2][2] = rba->bbx[1][2]; + manifold[3][0] = rba->bbx[0][0]; + manifold[3][1] = py; + manifold[3][2] = rba->bbx[1][2]; + } + else + { + float pz = best > 0.0f? rba->bbx[0][2]: rba->bbx[1][2]; + manifold[0][0] = rba->bbx[0][0]; + manifold[0][1] = rba->bbx[0][1]; + manifold[0][2] = pz; + manifold[1][0] = rba->bbx[1][0]; + manifold[1][1] = rba->bbx[0][1]; + manifold[1][2] = pz; + manifold[2][0] = rba->bbx[1][0]; + manifold[2][1] = rba->bbx[1][1]; + manifold[2][2] = pz; + manifold[3][0] = rba->bbx[0][0]; + manifold[3][1] = rba->bbx[1][1]; + manifold[3][2] = pz; + } + + for( int j=0; j<4; j++ ) + m4x3_mulv( rba->to_world, manifold[j], manifold[j] ); + + vg_line( manifold[0], manifold[1], 0xffffffff ); + vg_line( manifold[1], manifold[2], 0xffffffff ); + vg_line( manifold[2], manifold[3], 0xffffffff ); + vg_line( manifold[3], manifold[0], 0xffffffff ); + + for( int j=0; j<4; j++ ) + { + rb_ct *ct = buf+count; + + v3_copy( manifold[j], ct->co ); + v3_copy( n, ct->n ); + + float l0 = v3_dot( tri[0], n ), + l1 = v3_dot( manifold[j], n ); + + ct->p = (l0-l1)*0.5f; + if( ct->p < 0.0f ) + continue; + + ct->rba = rba; + ct->rbb = rbb; + count ++; + + if( count >= 12 ) + return count; + } + } + return count; +} + +static int RB_MATRIX_ERROR( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + vg_error( "Collision type is unimplemented between types %d and %d\n", + rba->type, rbb->type ); + + return 0; +} + +static int rb_sphere_vs_capsule( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + return rb_capsule_vs_sphere( rbb, rba, buf ); +} + +static int rb_box_vs_capsule( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + return rb_capsule_vs_box( rbb, rba, buf ); +} + +static int rb_box_vs_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + return rb_sphere_vs_box( rbb, rba, buf ); +} + +static int rb_scene_vs_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + return rb_box_vs_scene( rbb, rba, buf ); +} + +static int (*rb_jump_table[4][4])( rigidbody *rba, rigidbody *rbb, rb_ct *buf )= +{ /* box */ /* Sphere */ /* Capsule */ /* Mesh */ +/*box */ { RB_MATRIX_ERROR, rb_box_vs_sphere, rb_box_vs_capsule, rb_box_vs_scene }, +/*sphere */ { rb_sphere_vs_box, rb_sphere_vs_sphere, rb_sphere_vs_capsule, rb_sphere_vs_scene }, +/*capsule*/ { rb_capsule_vs_box,rb_capsule_vs_sphere,rb_capsule_vs_capsule,RB_MATRIX_ERROR }, +/*mesh */ { rb_scene_vs_box, RB_MATRIX_ERROR, RB_MATRIX_ERROR, RB_MATRIX_ERROR } +}; + +static int rb_collide( rigidbody *rba, rigidbody *rbb ) +{ + int (*collider_jump)(rigidbody *rba, rigidbody *rbb, rb_ct *buf ) + = rb_jump_table[rba->type][rbb->type]; + + /* + * 12 is the maximum manifold size we can generate, so we are forced to abort + * potentially checking any more. + */ + if( rb_contact_count + 12 > vg_list_size(rb_contact_buffer) ) { - v3_copy( tri[2], dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; + vg_warn( "Too many contacts made in global collider buffer (%d of %d\n)", + rb_contact_count, vg_list_size(rb_contact_buffer) ); + return 0; } - /* Region of AC */ - float vb = d5*d2 - d1*d6; - if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f ) + /* + * TODO: Replace this with a more dedicated broad phase pass + */ + if( box_overlap( rba->bbx_world, rbb->bbx_world ) ) { - float w = d2 / (d2-d6); - v3_muladds( tri[0], ac, w, dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; + int count = collider_jump( rba, rbb, rb_contact_buffer+rb_contact_count); + rb_contact_count += count; + return count; } + else + return 0; +} - /* Region of BC */ - float va = d3*d6 - d5*d4; - if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f ) +/* + * Generic functions + */ + +#ifdef RB_DEPR +/* + * This function does not accept triangle as a dynamic object, it is assumed + * to always be static. + * + * The triangle is also assumed to be one sided for better detection + */ +static int rb_sphere_vs_triangle( rigidbody *rba, v3f tri[3], rb_ct *buf ) +{ + v3f delta, co; + + closest_on_triangle( rba->co, tri, co ); + v3_sub( rba->co, co, delta ); + + float d2 = v3_length2( delta ), + r = rba->inf.sphere.radius; + + if( d2 < r*r ) { - float w = (d4-d3) / ((d4-d3) + (d5-d6)); - v3f bc; - v3_sub( tri[2], tri[1], bc ); - v3_muladds( tri[1], bc, w, dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; - } + v3f ab, ac, tn; + v3_sub( tri[1], tri[0], ab ); + v3_sub( tri[2], tri[0], ac ); + v3_cross( ac, ab, tn ); - /* P inside region, Q via barycentric coordinates uvw */ - float d = 1.0f/(va+vb+vc), - v = vb*d, - w = vc*d; + if( v3_dot( delta, tn ) > 0.0f ) + v3_muls( delta, -1.0f, delta ); - v3_muladds( tri[0], ab, v, dest ); - v3_muladds( dest, ac, w, dest ); + float d = sqrtf(d2); + + rb_ct *ct = buf; + v3_muls( delta, 1.0f/d, ct->n ); + v3_copy( co, ct->co ); + ct->p = r-d; + ct->rba = rba; + ct->rbb = &rb_static_null; + return 1; + } + + return 0; } static int sphere_vs_triangle( v3f c, float r, v3f tri[3], @@ -388,12 +1463,19 @@ static int sphere_vs_triangle( v3f c, float r, v3f tri[3], } #include "world.h" +#endif static void rb_solver_reset(void) { rb_contact_count = 0; } +static rb_ct *rb_global_ct(void) +{ + return rb_contact_buffer + rb_contact_count; +} + +#ifdef RB_DEPR static struct contact *rb_start_contact(void) { if( rb_contact_count == vg_list_size(rb_contact_buffer) ) @@ -454,8 +1536,6 @@ static void rb_build_manifold_terrain_sphere( rigidbody *rb ) ct->rba = rb; v3_copy( co, ct->co ); v3_copy( norm, ct->n ); - - v3_sub( co, rb->co, ct->delta ); rb_commit_contact( ct, p ); } } @@ -463,7 +1543,6 @@ static void rb_build_manifold_terrain_sphere( rigidbody *rb ) } -RB_DEPR static void rb_build_manifold_terrain( rigidbody *rb ) { v3f *box = rb->bbx; @@ -520,7 +1599,6 @@ static void rb_build_manifold_terrain( rigidbody *rb ) v3_copy( hit.normal, ct->n ); v3_add( point, surface, ct->co ); v3_muls( ct->co, 0.5f, ct->co ); - v3_sub( ct->co, rb->co, ct->delta ); rb_commit_contact( ct, p ); count ++; @@ -529,67 +1607,167 @@ static void rb_build_manifold_terrain( rigidbody *rb ) } } } +#endif + +/* + * Initializing things like tangent vectors + */ + +static void rb_presolve_contacts( rb_ct *buffer, int len ) +{ + for( int i=0; ibias = -0.2f * k_rb_rate * vg_minf(0.0f,-ct->p+0.01f); + rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); + + ct->norm_impulse = 0.0f; + ct->tangent_impulse[0] = 0.0f; + ct->tangent_impulse[1] = 0.0f; + + v3f ra, rb, raCn, rbCn, raCt, rbCt; + v3_sub( ct->co, ct->rba->co, ra ); + v3_sub( ct->co, ct->rbb->co, rb ); + v3_cross( ra, ct->n, raCn ); + v3_cross( rb, ct->n, rbCn ); + + /* orient inverse inertia tensors */ + v3f raCnI, rbCnI; + m3x3_mulv( ct->rba->iIw, raCn, raCnI ); + m3x3_mulv( ct->rbb->iIw, rbCn, rbCnI ); + + ct->normal_mass = ct->rba->inv_mass + ct->rbb->inv_mass; + ct->normal_mass += v3_dot( raCn, raCnI ); + ct->normal_mass += v3_dot( rbCn, rbCnI ); + ct->normal_mass = 1.0f/ct->normal_mass; + + for( int j=0; j<2; j++ ) + { + v3f raCtI, rbCtI; + v3_cross( ct->t[j], ra, raCt ); + v3_cross( ct->t[j], rb, rbCt ); + m3x3_mulv( ct->rba->iIw, raCt, raCtI ); + m3x3_mulv( ct->rbb->iIw, rbCt, rbCtI ); + + ct->tangent_mass[j] = ct->rba->inv_mass + ct->rbb->inv_mass; + ct->tangent_mass[j] += v3_dot( raCt, raCtI ); + ct->tangent_mass[j] += v3_dot( rbCt, rbCtI ); + ct->tangent_mass[j] = 1.0f/ct->tangent_mass[j]; + } + + rb_debug_contact( ct ); + } +} + +/* + * Creates relative contact velocity vector, and offsets between each body + */ +static void rb_rcv( rb_ct *ct, v3f rv, v3f da, v3f db ) +{ + rigidbody *rba = ct->rba, + *rbb = ct->rbb; + + v3_sub( ct->co, rba->co, da ); + v3_sub( ct->co, rbb->co, db ); + + v3f rva, rvb; + v3_cross( rba->w, da, rva ); + v3_add( rba->v, rva, rva ); + v3_cross( rbb->w, db, rvb ); + v3_add( rbb->v, rvb, rvb ); + + v3_sub( rva, rvb, rv ); +} + +/* + * Apply regular and angular velocity impulses to objects involved in contact + */ + +/* TODO REMOVEEE................... */ +static void rb_standard_impulse( rb_ct *ct, v3f da, v3f db, v3f impulse ) +{ + rigidbody *rba = ct->rba, + *rbb = ct->rbb; + + v3_muladds( rba->v, impulse, rba->inv_mass, rba->v ); + v3_muladds( rbb->v, impulse, -rbb->inv_mass, rbb->v ); + + /* Angular velocity */ + v3f wa, wb, invim; + v3_cross( da, impulse, wa ); + v3_negate( impulse, invim ); + v3_cross( db, invim, wb ); + + m3x3_mulv( ct->rba->iIw, wa, wa ); + m3x3_mulv( ct->rbb->iIw, wb, wb ); + v3_add( rba->w, wa, rba->w ); + v3_add( rbb->w, wb, rbb->w ); +} + +/* ......... USE THIS */ +static void rb_linear_impulse( rigidbody *rb, v3f delta, v3f impulse ) +{ + /* linear */ + v3_muladds( rb->v, impulse, rb->inv_mass, rb->v ); + + /* Angular velocity */ + v3f wa; + v3_cross( delta, impulse, wa ); + + m3x3_mulv( rb->iIw, wa, wa ); + v3_add( rb->w, wa, rb->w ); +} -static void rb_solve_contacts(void) +/* + * One iteration to solve the contact constraint + */ +static void rb_solve_contacts( rb_ct *buf, int len ) { - float k_friction = 0.1f; + float k_friction = 0.2f; - /* Friction Impulse */ - for( int i=0; irba; - v3f dv; - v3_cross( rb->w, ct->delta, dv ); - v3_add( rb->v, dv, dv ); + v3f rv, da, db; + rb_rcv( ct, rv, da, db ); + /* Friction */ for( int j=0; j<2; j++ ) { - float vt = vg_clampf( -v3_dot( dv, ct->t[j] ), - -k_friction, k_friction ); - - vt = -v3_dot( dv, ct->t[j] ); + float f = k_friction * ct->norm_impulse, + vt = v3_dot( rv, ct->t[j] ), + lambda = ct->tangent_mass[j] * -vt; float temp = ct->tangent_impulse[j]; - ct->tangent_impulse[j] = vg_clampf( temp+vt, -k_friction, k_friction ); - vt = ct->tangent_impulse[j] - temp; + ct->tangent_impulse[j] = vg_clampf( temp + lambda, -f, f ); + lambda = ct->tangent_impulse[j] - temp; v3f impulse; - - v3_muls( ct->t[j], vt, impulse ); - v3_add( impulse, rb->v, rb->v ); - v3_cross( ct->delta, impulse, impulse ); - v3_add( impulse, rb->w, rb->w ); + v3_muls( ct->t[j], lambda, impulse ); + rb_standard_impulse( ct, da, db, impulse ); } - } - - /* Normal Impulse */ - for( int i=0; irba; - - v3f dv; - v3_cross( rb->w, ct->delta, dv ); - v3_add( rb->v, dv, dv ); - float vn = -v3_dot( dv, ct->n ); - vn += ct->bias; + /* Normal */ + rb_rcv( ct, rv, da, db ); + float vn = v3_dot( rv, ct->n ), + lambda = ct->normal_mass * (-vn + ct->bias); float temp = ct->norm_impulse; - ct->norm_impulse = vg_maxf( temp + vn, 0.0f ); - vn = ct->norm_impulse - temp; + ct->norm_impulse = vg_maxf( temp + lambda, 0.0f ); + lambda = ct->norm_impulse - temp; v3f impulse; - - v3_muls( ct->n, vn, impulse ); - v3_add( impulse, rb->v, rb->v ); - v3_cross( ct->delta, impulse, impulse ); - v3_add( impulse, rb->w, rb->w ); + v3_muls( ct->n, lambda, impulse ); + rb_standard_impulse( ct, da, db, impulse ); } } +/* + * The following ventures into not really very sophisticated at all maths + */ + struct rb_angle_limit { rigidbody *rba, *rbb; @@ -630,10 +1808,9 @@ static int rb_angle_limit_force( rigidbody *rba, v3f va, static void rb_constraint_angle_limit( struct rb_angle_limit *limit ) { - + } -RB_DEPR static void rb_constraint_angle( rigidbody *rba, v3f va, rigidbody *rbb, v3f vb, float max, float spring ) @@ -668,20 +1845,153 @@ static void rb_constraint_angle( rigidbody *rba, v3f va, } } -static void rb_relative_velocity( rigidbody *ra, v3f lca, - rigidbody *rb, v3f lcb, v3f rcv ) +static void draw_angle_limit( v3f c, v3f major, v3f minor, + float amin, float amax, float measured, + u32 colour ) +{ + float f = 0.05f; + v3f ay, ax; + v3_muls( major, f, ay ); + v3_muls( minor, f, ax ); + + for( int x=0; x<16; x++ ) + { + float t0 = (float)x / 16.0f, + t1 = (float)(x+1) / 16.0f, + a0 = vg_lerpf( amin, amax, t0 ), + a1 = vg_lerpf( amin, amax, t1 ); + + v3f p0, p1; + v3_muladds( c, ay, cosf(a0), p0 ); + v3_muladds( p0, ax, sinf(a0), p0 ); + v3_muladds( c, ay, cosf(a1), p1 ); + v3_muladds( p1, ax, sinf(a1), p1 ); + + vg_line( p0, p1, colour ); + + if( x == 0 ) + vg_line( c, p0, colour ); + if( x == 15 ) + vg_line( c, p1, colour ); + } + + v3f p2; + v3_muladds( c, ay, cosf(measured)*1.2f, p2 ); + v3_muladds( p2, ax, sinf(measured)*1.2f, p2 ); + vg_line( c, p2, colour ); +} + +static void rb_debug_constraint_limits( rigidbody *ra, rigidbody *rb, v3f lca, + v3f limits[2] ) +{ + v3f ax, ay, az, bx, by, bz; + m3x3_mulv( ra->to_world, (v3f){1.0f,0.0f,0.0f}, ax ); + m3x3_mulv( ra->to_world, (v3f){0.0f,1.0f,0.0f}, ay ); + m3x3_mulv( ra->to_world, (v3f){0.0f,0.0f,1.0f}, az ); + m3x3_mulv( rb->to_world, (v3f){1.0f,0.0f,0.0f}, bx ); + m3x3_mulv( rb->to_world, (v3f){0.0f,1.0f,0.0f}, by ); + m3x3_mulv( rb->to_world, (v3f){0.0f,0.0f,1.0f}, bz ); + + v2f px, py, pz; + px[0] = v3_dot( ay, by ); + px[1] = v3_dot( az, by ); + + py[0] = v3_dot( az, bz ); + py[1] = v3_dot( ax, bz ); + + pz[0] = v3_dot( ax, bx ); + pz[1] = v3_dot( ay, bx ); + + float r0 = atan2f( px[1], px[0] ), + r1 = atan2f( py[1], py[0] ), + r2 = atan2f( pz[1], pz[0] ); + + v3f c; + m4x3_mulv( ra->to_world, lca, c ); + draw_angle_limit( c, ay, az, limits[0][0], limits[1][0], r0, 0xff0000ff ); + draw_angle_limit( c, az, ax, limits[0][1], limits[1][1], r1, 0xff00ff00 ); + draw_angle_limit( c, ax, ay, limits[0][2], limits[1][2], r2, 0xffff0000 ); +} + +static void rb_limit_cure( rigidbody *ra, rigidbody *rb, v3f axis, float d ) +{ + if( d != 0.0f ) + { + float avx = v3_dot( ra->w, axis ) - v3_dot( rb->w, axis ); + float joint_mass = rb->inv_mass + ra->inv_mass; + joint_mass = 1.0f/joint_mass; + + float bias = (0.04f * k_rb_rate) * d, + lambda = -(avx + bias) * joint_mass; + + /* Angular velocity */ + v3f wa, wb; + v3_muls( axis, lambda * ra->inv_mass, wa ); + v3_muls( axis, -lambda * rb->inv_mass, wb ); + + v3_add( ra->w, wa, ra->w ); + v3_add( rb->w, wb, rb->w ); + } +} + +static void rb_constraint_limits( rigidbody *ra, v3f lca, + rigidbody *rb, v3f lcb, v3f limits[2] ) { + /* TODO: Code dupe remover */ + v3f ax, ay, az, bx, by, bz; + m3x3_mulv( ra->to_world, (v3f){1.0f,0.0f,0.0f}, ax ); + m3x3_mulv( ra->to_world, (v3f){0.0f,1.0f,0.0f}, ay ); + m3x3_mulv( ra->to_world, (v3f){0.0f,0.0f,1.0f}, az ); + m3x3_mulv( rb->to_world, (v3f){1.0f,0.0f,0.0f}, bx ); + m3x3_mulv( rb->to_world, (v3f){0.0f,1.0f,0.0f}, by ); + m3x3_mulv( rb->to_world, (v3f){0.0f,0.0f,1.0f}, bz ); + + v2f px, py, pz; + px[0] = v3_dot( ay, by ); + px[1] = v3_dot( az, by ); + + py[0] = v3_dot( az, bz ); + py[1] = v3_dot( ax, bz ); + + pz[0] = v3_dot( ax, bx ); + pz[1] = v3_dot( ay, bx ); + + float r0 = atan2f( px[1], px[0] ), + r1 = atan2f( py[1], py[0] ), + r2 = atan2f( pz[1], pz[0] ); + + /* calculate angle deltas */ + float dx = 0.0f, dy = 0.0f, dz = 0.0f; + + if( r0 < limits[0][0] ) dx = limits[0][0] - r0; + if( r0 > limits[1][0] ) dx = limits[1][0] - r0; + if( r1 < limits[0][1] ) dy = limits[0][1] - r1; + if( r1 > limits[1][1] ) dy = limits[1][1] - r1; + if( r2 < limits[0][2] ) dz = limits[0][2] - r2; + if( r2 > limits[1][2] ) dz = limits[1][2] - r2; + v3f wca, wcb; m3x3_mulv( ra->to_world, lca, wca ); m3x3_mulv( rb->to_world, lcb, wcb ); - v3_sub( ra->v, rb->v, rcv ); + rb_limit_cure( ra, rb, ax, dx ); + rb_limit_cure( ra, rb, ay, dy ); + rb_limit_cure( ra, rb, az, dz ); +} - v3f rcv_Ra, rcv_Rb; - v3_cross( ra->w, wca, rcv_Ra ); - v3_cross( rb->w, wcb, rcv_Rb ); - v3_add( rcv_Ra, rcv, rcv ); - v3_sub( rcv, rcv_Rb, rcv ); +static void rb_debug_constraint_position( rigidbody *ra, v3f lca, + rigidbody *rb, v3f lcb ) +{ + v3f wca, wcb; + m3x3_mulv( ra->to_world, lca, wca ); + m3x3_mulv( rb->to_world, lcb, wcb ); + + v3f p0, p1; + v3_add( wca, ra->co, p0 ); + v3_add( wcb, rb->co, p1 ); + vg_line_pt3( p0, 0.005f, 0xffffff00 ); + vg_line_pt3( p1, 0.005f, 0xffffff00 ); + vg_line( p0, p1, 0xffffff00 ); } static void rb_constraint_position( rigidbody *ra, v3f lca, @@ -692,14 +2002,6 @@ static void rb_constraint_position( rigidbody *ra, v3f lca, m3x3_mulv( ra->to_world, lca, wca ); m3x3_mulv( rb->to_world, lcb, wcb ); - v3f delta; - v3_add( wcb, rb->co, delta ); - v3_sub( delta, wca, delta ); - v3_sub( delta, ra->co, delta ); - - v3_muladds( ra->co, delta, 0.5f, ra->co ); - v3_muladds( rb->co, delta, -0.5f, rb->co ); - v3f rcv; v3_sub( ra->v, rb->v, rcv ); @@ -709,41 +2011,47 @@ static void rb_constraint_position( rigidbody *ra, v3f lca, v3_add( rcv_Ra, rcv, rcv ); v3_sub( rcv, rcv_Rb, rcv ); - float nm = 0.5f/(rb->inv_mass + ra->inv_mass); - - float mass_a = 1.0f/ra->inv_mass, - mass_b = 1.0f/rb->inv_mass, - total_mass = mass_a+mass_b; - - v3f impulse; - v3_muls( rcv, 1.0f, impulse ); - v3_muladds( rb->v, impulse, mass_b/total_mass, rb->v ); - v3_cross( wcb, impulse, impulse ); - v3_add( impulse, rb->w, rb->w ); + v3f delta; + v3f p0, p1; + v3_add( wca, ra->co, p0 ); + v3_add( wcb, rb->co, p1 ); + v3_sub( p1, p0, delta ); - v3_muls( rcv, -1.0f, impulse ); - v3_muladds( ra->v, impulse, mass_a/total_mass, ra->v ); - v3_cross( wca, impulse, impulse ); - v3_add( impulse, ra->w, ra->w ); + float dist2 = v3_length2( delta ); -#if 0 - /* - * this could be used for spring joints - * its not good for position constraint - */ - v3f impulse; - v3_muls( delta, 0.5f*spring, impulse ); + if( dist2 > 0.00001f ) + { + float dist = sqrtf(dist2); + v3_muls( delta, 1.0f/dist, delta ); - v3_add( impulse, ra->v, ra->v ); - v3_cross( wca, impulse, impulse ); - v3_add( impulse, ra->w, ra->w ); + float joint_mass = rb->inv_mass + ra->inv_mass; - v3_muls( delta, -0.5f*spring, impulse ); + v3f raCn, rbCn, raCt, rbCt; + v3_cross( wca, delta, raCn ); + v3_cross( wcb, delta, rbCn ); + + /* orient inverse inertia tensors */ + v3f raCnI, rbCnI; + m3x3_mulv( ra->iIw, raCn, raCnI ); + m3x3_mulv( rb->iIw, rbCn, rbCnI ); + joint_mass += v3_dot( raCn, raCnI ); + joint_mass += v3_dot( rbCn, rbCnI ); + joint_mass = 1.0f/joint_mass; + + float vd = v3_dot( rcv, delta ), + bias = -(0.08f * k_rb_rate) * dist, + lambda = -(vd + bias) * joint_mass; - v3_add( impulse, rb->v, rb->v ); - v3_cross( wcb, impulse, impulse ); - v3_add( impulse, rb->w, rb->w ); -#endif + v3f impulse; + v3_muls( delta, lambda, impulse ); + rb_linear_impulse( ra, wca, impulse ); + v3_muls( delta, -lambda, impulse ); + rb_linear_impulse( rb, wcb, impulse ); + + /* 'fake' snap */ + v3_muladds( ra->co, delta, dist * 0.01f, ra->co ); + v3_muladds( rb->co, delta, -dist * 0.01f, rb->co ); + } } static void debug_sphere( m4x3f m, float radius, u32 colour ) @@ -780,6 +2088,88 @@ static void debug_sphere( m4x3f m, float radius, u32 colour ) } } +static void debug_capsule( m4x3f m, float radius, float h, u32 colour ) +{ + v3f ly = { 0.0f, 0.0f, radius }, + lx = { 0.0f, radius, 0.0f }, + lz = { 0.0f, 0.0f, radius }; + + float s0 = sinf(0.0f)*radius, + c0 = cosf(0.0f)*radius; + + v3f p0, p1, up, right, forward; + m3x3_mulv( m, (v3f){0.0f,1.0f,0.0f}, up ); + m3x3_mulv( m, (v3f){1.0f,0.0f,0.0f}, right ); + m3x3_mulv( m, (v3f){0.0f,0.0f,-1.0f}, forward ); + v3_muladds( m[3], up, -h*0.5f+radius, p0 ); + v3_muladds( m[3], up, h*0.5f-radius, p1 ); + + v3f a0, a1, b0, b1; + v3_muladds( p0, right, radius, a0 ); + v3_muladds( p1, right, radius, a1 ); + v3_muladds( p0, forward, radius, b0 ); + v3_muladds( p1, forward, radius, b1 ); + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + v3_muladds( p0, right, -radius, a0 ); + v3_muladds( p1, right, -radius, a1 ); + v3_muladds( p0, forward, -radius, b0 ); + v3_muladds( p1, forward, -radius, b1 ); + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + for( int i=0; i<16; i++ ) + { + float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f, + s1 = sinf(t)*radius, + c1 = cosf(t)*radius; + + v3f e0 = { s0, 0.0f, c0 }, + e1 = { s1, 0.0f, c1 }, + e2 = { s0, c0, 0.0f }, + e3 = { s1, c1, 0.0f }, + e4 = { 0.0f, c0, s0 }, + e5 = { 0.0f, c1, s1 }; + + m3x3_mulv( m, e0, e0 ); + m3x3_mulv( m, e1, e1 ); + m3x3_mulv( m, e2, e2 ); + m3x3_mulv( m, e3, e3 ); + m3x3_mulv( m, e4, e4 ); + m3x3_mulv( m, e5, e5 ); + + v3_add( p0, e0, a0 ); + v3_add( p0, e1, a1 ); + v3_add( p1, e0, b0 ); + v3_add( p1, e1, b1 ); + + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + if( c0 < 0.0f ) + { + v3_add( p0, e2, a0 ); + v3_add( p0, e3, a1 ); + v3_add( p0, e4, b0 ); + v3_add( p0, e5, b1 ); + } + else + { + v3_add( p1, e2, a0 ); + v3_add( p1, e3, a1 ); + v3_add( p1, e4, b0 ); + v3_add( p1, e5, b1 ); + } + + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + s0 = s1; + c0 = c1; + } +} + static void rb_debug( rigidbody *rb, u32 colour ) { if( rb->type == k_rb_shape_box ) @@ -791,8 +2181,21 @@ static void rb_debug( rigidbody *rb, u32 colour ) { debug_sphere( rb->to_world, rb->inf.sphere.radius, colour ); } + else if( rb->type == k_rb_shape_capsule ) + { + m4x3f m0, m1; + float h = rb->inf.capsule.height, + r = rb->inf.capsule.radius; + + debug_capsule( rb->to_world, r, h, colour ); + } + else if( rb->type == k_rb_shape_scene ) + { + vg_line_boxf( rb->bbx, colour ); + } } +#ifdef RB_DEPR /* * out penetration distance, normal */ @@ -842,114 +2245,6 @@ static int rb_point_in_body( rigidbody *rb, v3f pos, float *pen, v3f normal ) return 0; } -#if 0 -static void rb_build_manifold_rb_static( rigidbody *ra, rigidbody *rb_static ) -{ - v3f verts[8]; - - v3f a, b; - v3_copy( ra->bbx[0], a ); - v3_copy( ra->bbx[1], b ); - - m4x3_mulv( ra->to_world, (v3f){ a[0], a[1], a[2] }, verts[0] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], b[1], a[2] }, verts[1] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], b[1], a[2] }, verts[2] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], a[1], a[2] }, verts[3] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], a[1], b[2] }, verts[4] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], b[1], b[2] }, verts[5] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], b[1], b[2] }, verts[6] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], a[1], b[2] }, verts[7] ); - - vg_line_boxf_transformed( rb_static->to_world, rb_static->bbx, 0xff0000ff ); - - int count = 0; - - for( int i=0; i<8; i++ ) - { - if( ra->manifold_count == vg_list_size(ra->manifold) ) - return; - - struct contact *ct = &ra->manifold[ ra->manifold_count ]; - - float p; - v3f normal; - - if( rb_point_in_body( rb_static, verts[i], &p, normal )) - { - v3_copy( normal, ct->n ); - v3_muladds( verts[i], ct->n, p*0.5f, ct->co ); - v3_sub( ct->co, ra->co, ct->delta ); - - vg_line_pt3( ct->co, 0.0125f, 0xffff00ff ); - - ct->bias = -0.2f * (1.0f/k_rb_delta) * vg_minf( 0.0f, -p+0.04f ); - rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); - - ct->norm_impulse = 0.0f; - ct->tangent_impulse[0] = 0.0f; - ct->tangent_impulse[1] = 0.0f; - - ra->manifold_count ++; - count ++; - if( count == 4 ) - return; - } - } -} -#endif - -/* - * Capsule phyics - */ - -static void debug_capsule( m4x3f m, float height, float radius, u32 colour ) -{ - v3f last = { 0.0f, 0.0f, radius }; - m4x3f lower, upper; - m3x3_copy( m, lower ); - m3x3_copy( m, upper ); - m4x3_mulv( m, (v3f){0.0f,-height*0.5f+radius,0.0f}, lower[3] ); - m4x3_mulv( m, (v3f){0.0f, height*0.5f-radius,0.0f}, upper[3] ); - - for( int i=0; i<16; i++ ) - { - float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f, - s = sinf(t), - c = cosf(t); - - v3f p = { s*radius, 0.0f, c*radius }; - - v3f p0, p1; - m4x3_mulv( lower, p, p0 ); - m4x3_mulv( lower, last, p1 ); - vg_line( p0, p1, colour ); - - m4x3_mulv( upper, p, p0 ); - m4x3_mulv( upper, last, p1 ); - vg_line( p0, p1, colour ); - - v3_copy( p, last ); - } - - for( int i=0; i<4; i++ ) - { - float t = ((float)(i) * (1.0f/4.0f)) * VG_PIf * 2.0f, - s = sinf(t), - c = cosf(t); - - v3f p = { s*radius, 0.0f, c*radius }; - - v3f p0, p1; - m4x3_mulv( lower, p, p0 ); - m4x3_mulv( upper, p, p1 ); - vg_line( p0, p1, colour ); - - m4x3_mulv( lower, (v3f){0.0f,-radius,0.0f}, p0 ); - m4x3_mulv( upper, (v3f){0.0f, radius,0.0f}, p1 ); - vg_line( p0, p1, colour ); - } -} - /* * BVH implementation, this is ONLY for static rigidbodies, its to slow for * realtime use. @@ -993,4 +2288,6 @@ static bh_system bh_system_rigidbodies = .cast_ray = NULL }; +#endif + #endif /* RIGIDBODY_H */