X-Git-Url: https://harrygodden.com/git/?a=blobdiff_plain;f=rigidbody.h;h=16d38ea0df86d5003039acc09d2a4563e9151995;hb=777083e1f715a26d3f68be4ba5bdf2cbcaa84a05;hp=c00b0f04f75817ad21072755ed983ce098094bfb;hpb=84a7ae83a25966e0004a1a4b409dbb3d49fae286;p=carveJwlIkooP6JGAAIwe30JlM.git diff --git a/rigidbody.h b/rigidbody.h index c00b0f0..16d38ea 100644 --- a/rigidbody.h +++ b/rigidbody.h @@ -1,3 +1,7 @@ +/* + * Copyright (C) 2021-2022 Mt.ZERO Software, Harry Godden - All Rights Reserved + */ + /* * Resources: Box2D - Erin Catto * qu3e - Randy Gaul @@ -5,16 +9,38 @@ #include "common.h" #include "bvh.h" +#include "scene.h" +#include "distq.h" -static void rb_tangent_basis( v3f n, v3f tx, v3f ty ); -static bh_system bh_system_rigidbodies; +VG_STATIC void rb_tangent_basis( v3f n, v3f tx, v3f ty ); +VG_STATIC bh_system bh_system_rigidbodies; #ifndef RIGIDBODY_H #define RIGIDBODY_H -#define RB_DEPR -#define k_rb_rate 60.0f -#define k_rb_delta (1.0f/k_rb_rate) +/* + * ----------------------------------------------------------------------------- + * (K)onstants + * ----------------------------------------------------------------------------- + */ + +VG_STATIC const float + k_rb_rate = (1.0/VG_TIMESTEP_FIXED), + k_rb_delta = (1.0/k_rb_rate), + k_friction = 0.6f, + k_damp_linear = 0.05f, /* scale velocity 1/(1+x) */ + k_damp_angular = 0.1f, /* scale angular 1/(1+x) */ + k_limit_bias = 0.02f, + k_joint_bias = 0.08f, /* positional joints */ + k_joint_correction = 0.01f, + k_penetration_slop = 0.01f, + k_inertia_scale = 4.0f; + +/* + * ----------------------------------------------------------------------------- + * structure definitions + * ----------------------------------------------------------------------------- + */ typedef struct rigidbody rigidbody; typedef struct contact rb_ct; @@ -26,9 +52,10 @@ struct rigidbody enum rb_shape { - k_rb_shape_box, - k_rb_shape_sphere, - k_rb_shape_capsule + k_rb_shape_box = 0, + k_rb_shape_sphere = 1, + k_rb_shape_capsule = 2, + k_rb_shape_scene = 3 } type; @@ -45,6 +72,12 @@ struct rigidbody float height, radius; } capsule; + + struct rb_scene + { + bh_tree *bh_scene; + } + scene; } inf; @@ -55,33 +88,237 @@ struct rigidbody boxf bbx, bbx_world; float inv_mass; - v3f delta; /* where is the origin of this in relation to a parent body */ - m4x3f to_world, to_local; -}; + /* inertia model and inverse world tensor */ + v3f I; + m3x3f iI, iIw; -static rigidbody rb_static_null = -{ - .co={0.0f,0.0f,0.0f}, - .q={0.0f,0.0f,0.0f,1.0f}, - .v={0.0f,0.0f,0.0f}, - .w={0.0f,0.0f,0.0f}, - .is_world = 1, - .inv_mass = 0.0f + m4x3f to_world, to_local; }; -static void rb_debug( rigidbody *rb, u32 colour ); - -static struct contact +VG_STATIC struct contact { rigidbody *rba, *rbb; v3f co, n; v3f t[2]; - float mass_total, p, bias, norm_impulse, tangent_impulse[2]; + float p, bias, norm_impulse, tangent_impulse[2], + normal_mass, tangent_mass[2]; + + u32 element_id; + + enum contact_type type; } rb_contact_buffer[256]; -static int rb_contact_count = 0; +VG_STATIC int rb_contact_count = 0; + +/* + * ----------------------------------------------------------------------------- + * Math Utils + * ----------------------------------------------------------------------------- + */ + +VG_STATIC float sphere_volume( float radius ) +{ + float r3 = radius*radius*radius; + return (4.0f/3.0f) * VG_PIf * r3; +} + +VG_STATIC void rb_tangent_basis( v3f n, v3f tx, v3f ty ) +{ + /* Compute tangent basis (box2d) */ + if( fabsf( n[0] ) >= 0.57735027f ) + { + tx[0] = n[1]; + tx[1] = -n[0]; + tx[2] = 0.0f; + } + else + { + tx[0] = 0.0f; + tx[1] = n[2]; + tx[2] = -n[1]; + } + + v3_normalize( tx ); + v3_cross( n, tx, ty ); +} + +/* + * ----------------------------------------------------------------------------- + * Debugging + * ----------------------------------------------------------------------------- + */ + +VG_STATIC void rb_debug_contact( rb_ct *ct ) +{ + if( ct->type != k_contact_type_disabled ) + { + v3f p1; + v3_muladds( ct->co, ct->n, 0.1f, p1 ); + vg_line_pt3( ct->co, 0.025f, 0xff0000ff ); + vg_line( ct->co, p1, 0xffffffff ); + } +} + +VG_STATIC void debug_sphere( m4x3f m, float radius, u32 colour ) +{ + v3f ly = { 0.0f, 0.0f, radius }, + lx = { 0.0f, radius, 0.0f }, + lz = { 0.0f, 0.0f, radius }; + + for( int i=0; i<16; i++ ) + { + float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f, + s = sinf(t), + c = cosf(t); + + v3f py = { s*radius, 0.0f, c*radius }, + px = { s*radius, c*radius, 0.0f }, + pz = { 0.0f, s*radius, c*radius }; + + v3f p0, p1, p2, p3, p4, p5; + m4x3_mulv( m, py, p0 ); + m4x3_mulv( m, ly, p1 ); + m4x3_mulv( m, px, p2 ); + m4x3_mulv( m, lx, p3 ); + m4x3_mulv( m, pz, p4 ); + m4x3_mulv( m, lz, p5 ); + + vg_line( p0, p1, colour == 0x00? 0xff00ff00: colour ); + vg_line( p2, p3, colour == 0x00? 0xff0000ff: colour ); + vg_line( p4, p5, colour == 0x00? 0xffff0000: colour ); + + v3_copy( py, ly ); + v3_copy( px, lx ); + v3_copy( pz, lz ); + } +} + +VG_STATIC void debug_capsule( m4x3f m, float radius, float h, u32 colour ) +{ + v3f ly = { 0.0f, 0.0f, radius }, + lx = { 0.0f, radius, 0.0f }, + lz = { 0.0f, 0.0f, radius }; + + float s0 = sinf(0.0f)*radius, + c0 = cosf(0.0f)*radius; + + v3f p0, p1, up, right, forward; + m3x3_mulv( m, (v3f){0.0f,1.0f,0.0f}, up ); + m3x3_mulv( m, (v3f){1.0f,0.0f,0.0f}, right ); + m3x3_mulv( m, (v3f){0.0f,0.0f,-1.0f}, forward ); + v3_muladds( m[3], up, -h*0.5f+radius, p0 ); + v3_muladds( m[3], up, h*0.5f-radius, p1 ); + + v3f a0, a1, b0, b1; + v3_muladds( p0, right, radius, a0 ); + v3_muladds( p1, right, radius, a1 ); + v3_muladds( p0, forward, radius, b0 ); + v3_muladds( p1, forward, radius, b1 ); + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + v3_muladds( p0, right, -radius, a0 ); + v3_muladds( p1, right, -radius, a1 ); + v3_muladds( p0, forward, -radius, b0 ); + v3_muladds( p1, forward, -radius, b1 ); + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + for( int i=0; i<16; i++ ) + { + float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f, + s1 = sinf(t)*radius, + c1 = cosf(t)*radius; + + v3f e0 = { s0, 0.0f, c0 }, + e1 = { s1, 0.0f, c1 }, + e2 = { s0, c0, 0.0f }, + e3 = { s1, c1, 0.0f }, + e4 = { 0.0f, c0, s0 }, + e5 = { 0.0f, c1, s1 }; + + m3x3_mulv( m, e0, e0 ); + m3x3_mulv( m, e1, e1 ); + m3x3_mulv( m, e2, e2 ); + m3x3_mulv( m, e3, e3 ); + m3x3_mulv( m, e4, e4 ); + m3x3_mulv( m, e5, e5 ); + + v3_add( p0, e0, a0 ); + v3_add( p0, e1, a1 ); + v3_add( p1, e0, b0 ); + v3_add( p1, e1, b1 ); + + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + if( c0 < 0.0f ) + { + v3_add( p0, e2, a0 ); + v3_add( p0, e3, a1 ); + v3_add( p0, e4, b0 ); + v3_add( p0, e5, b1 ); + } + else + { + v3_add( p1, e2, a0 ); + v3_add( p1, e3, a1 ); + v3_add( p1, e4, b0 ); + v3_add( p1, e5, b1 ); + } + + vg_line( a0, a1, colour ); + vg_line( b0, b1, colour ); + + s0 = s1; + c0 = c1; + } +} + +VG_STATIC void rb_debug( rigidbody *rb, u32 colour ) +{ + if( rb->type == k_rb_shape_box ) + { + v3f *box = rb->bbx; + vg_line_boxf_transformed( rb->to_world, rb->bbx, colour ); + } + else if( rb->type == k_rb_shape_sphere ) + { + debug_sphere( rb->to_world, rb->inf.sphere.radius, colour ); + } + else if( rb->type == k_rb_shape_capsule ) + { + m4x3f m0, m1; + float h = rb->inf.capsule.height, + r = rb->inf.capsule.radius; + + debug_capsule( rb->to_world, r, h, colour ); + } + else if( rb->type == k_rb_shape_scene ) + { + vg_line_boxf( rb->bbx, colour ); + } +} + +/* + * ----------------------------------------------------------------------------- + * Integration + * ----------------------------------------------------------------------------- + */ + +/* + * Update world space bounding box based on local one + */ +VG_STATIC void rb_update_bounds( rigidbody *rb ) +{ + box_copy( rb->bbx, rb->bbx_world ); + m4x3_transform_aabb( rb->to_world, rb->bbx_world ); +} -static void rb_update_transform( rigidbody *rb ) +/* + * Commit transform to rigidbody. Updates matrices + */ +VG_STATIC void rb_update_transform( rigidbody *rb ) { q_normalize( rb->q ); q_m3x3( rb->q, rb->to_world ); @@ -89,21 +326,54 @@ static void rb_update_transform( rigidbody *rb ) m4x3_invert_affine( rb->to_world, rb->to_local ); - box_copy( rb->bbx, rb->bbx_world ); - m4x3_transform_aabb( rb->to_world, rb->bbx_world ); - m3x3_mulv( rb->to_world, (v3f){1.0f,0.0f, 0.0f}, rb->right ); m3x3_mulv( rb->to_world, (v3f){0.0f,1.0f, 0.0f}, rb->up ); m3x3_mulv( rb->to_world, (v3f){0.0f,0.0f,-1.0f}, rb->forward ); + + m3x3_mul( rb->iI, rb->to_local, rb->iIw ); + m3x3_mul( rb->to_world, rb->iIw, rb->iIw ); + + rb_update_bounds( rb ); } -static float sphere_volume( float radius ) +/* + * Extrapolate rigidbody into a transform based on vg accumulator. + * Useful for rendering + */ +VG_STATIC void rb_extrapolate_transform( rigidbody *rb, m4x3f transform ) { - float r3 = radius*radius*radius; - return (4.0f/3.0f) * VG_PIf * r3; + float substep = vg_clampf( vg.accumulator / k_rb_delta, 0.0f, 1.0f ); + + v3f co; + v4f q; + + v3_muladds( rb->co, rb->v, k_rb_delta*substep, co ); + + if( v3_length2( rb->w ) > 0.0f ) + { + v4f rotation; + v3f axis; + v3_copy( rb->w, axis ); + + float mag = v3_length( axis ); + v3_divs( axis, mag, axis ); + q_axis_angle( rotation, axis, mag*k_rb_delta*substep ); + q_mul( rotation, rb->q, q ); + q_normalize( q ); + } + else + { + v4_copy( rb->q, q ); + } + + q_m3x3( q, transform ); + v3_copy( co, transform[3] ); } -static void rb_init( rigidbody *rb ) +/* + * Initialize rigidbody and calculate masses, inertia + */ +VG_STATIC void rb_init( rigidbody *rb ) { float volume = 1.0f; @@ -130,14 +400,42 @@ static void rb_init( rigidbody *rb ) rb->bbx[0][1] = -h; rb->bbx[1][1] = h; } + else if( rb->type == k_rb_shape_scene ) + { + rb->is_world = 1; + box_copy( rb->inf.scene.bh_scene->nodes[0].bbx, rb->bbx ); + } if( rb->is_world ) { rb->inv_mass = 0.0f; + v3_zero( rb->I ); + m3x3_zero(rb->iI); } else { - rb->inv_mass = 1.0f/(8.0f*volume); + float mass = 2.0f*volume; + rb->inv_mass = 1.0f/mass; + + v3f extent; + v3_sub( rb->bbx[1], rb->bbx[0], extent ); + v3_muls( extent, 0.5f, extent ); + + /* local intertia tensor */ + float scale = k_inertia_scale; + float ex2 = scale*extent[0]*extent[0], + ey2 = scale*extent[1]*extent[1], + ez2 = scale*extent[2]*extent[2]; + + rb->I[0] = ((1.0f/12.0f) * mass * (ey2+ez2)); + rb->I[1] = ((1.0f/12.0f) * mass * (ex2+ez2)); + rb->I[2] = ((1.0f/12.0f) * mass * (ex2+ey2)); + + m3x3_identity( rb->iI ); + rb->iI[0][0] = rb->I[0]; + rb->iI[1][1] = rb->I[1]; + rb->iI[2][2] = rb->I[2]; + m3x3_inv( rb->iI, rb->iI ); } v3_zero( rb->v ); @@ -146,9 +444,9 @@ static void rb_init( rigidbody *rb ) rb_update_transform( rb ); } -static void rb_iter( rigidbody *rb ) +VG_STATIC void rb_iter( rigidbody *rb ) { - v3f gravity = { 0.0f, -9.6f, 0.0f }; + v3f gravity = { 0.0f, -9.8f, 0.0f }; v3_muladds( rb->v, gravity, k_rb_delta, rb->v ); /* intergrate velocity */ @@ -167,255 +465,595 @@ static void rb_iter( rigidbody *rb ) q_axis_angle( rotation, axis, mag*k_rb_delta ); q_mul( rotation, rb->q, rb->q ); } + + /* damping */ + v3_muls( rb->v, 1.0f/(1.0f+k_rb_delta*k_damp_linear), rb->v ); + v3_muls( rb->w, 1.0f/(1.0f+k_rb_delta*k_damp_angular), rb->w ); } -static void rb_torque( rigidbody *rb, v3f axis, float mag ) + +/* + * ----------------------------------------------------------------------------- + * Boolean shape overlap functions + * ----------------------------------------------------------------------------- + */ + +/* + * Project AABB, and triangle interval onto axis to check if they overlap + */ +VG_STATIC int rb_box_triangle_interval( v3f extent, v3f axis, v3f tri[3] ) { - v3_muladds( rb->w, axis, mag*k_rb_delta, rb->w ); + float + + r = extent[0] * fabsf(axis[0]) + + extent[1] * fabsf(axis[1]) + + extent[2] * fabsf(axis[2]), + + p0 = v3_dot( axis, tri[0] ), + p1 = v3_dot( axis, tri[1] ), + p2 = v3_dot( axis, tri[2] ), + + e = vg_maxf(-vg_maxf(p0,vg_maxf(p1,p2)), vg_minf(p0,vg_minf(p1,p2))); + + if( e > r ) return 0; + else return 1; } -static void rb_tangent_basis( v3f n, v3f tx, v3f ty ) +/* + * Seperating axis test box vs triangle + */ +VG_STATIC int rb_box_triangle_sat( rigidbody *rba, v3f tri_src[3] ) { - /* Compute tangent basis (box2d) */ - if( fabsf( n[0] ) >= 0.57735027f ) - { - tx[0] = n[1]; - tx[1] = -n[0]; - tx[2] = 0.0f; - } - else + v3f tri[3]; + + v3f extent, c; + v3_sub( rba->bbx[1], rba->bbx[0], extent ); + v3_muls( extent, 0.5f, extent ); + v3_add( rba->bbx[0], extent, c ); + + for( int i=0; i<3; i++ ) { - tx[0] = 0.0f; - tx[1] = n[2]; - tx[2] = -n[1]; + m4x3_mulv( rba->to_local, tri_src[i], tri[i] ); + v3_sub( tri[i], c, tri[i] ); } - v3_normalize( tx ); - v3_cross( n, tx, ty ); -} + /* u0, u1, u2 */ + if(!rb_box_triangle_interval( extent, (v3f){1.0f,0.0f,0.0f}, tri )) return 0; + if(!rb_box_triangle_interval( extent, (v3f){0.0f,1.0f,0.0f}, tri )) return 0; + if(!rb_box_triangle_interval( extent, (v3f){0.0f,0.0f,1.0f}, tri )) return 0; + + v3f v0,v1,v2,n, e0,e1,e2; + v3_sub( tri[1], tri[0], v0 ); + v3_sub( tri[2], tri[0], v1 ); + v3_sub( tri[2], tri[1], v2 ); + v3_normalize( v0 ); + v3_normalize( v1 ); + v3_normalize( v2 ); + v3_cross( v0, v1, n ); + v3_cross( v0, n, e0 ); + v3_cross( n, v1, e1 ); + v3_cross( v2, n, e2 ); + + /* normal */ + if(!rb_box_triangle_interval( extent, n, tri )) return 0; + + v3f axis[9]; + v3_cross( e0, (v3f){1.0f,0.0f,0.0f}, axis[0] ); + v3_cross( e0, (v3f){0.0f,1.0f,0.0f}, axis[1] ); + v3_cross( e0, (v3f){0.0f,0.0f,1.0f}, axis[2] ); + v3_cross( e1, (v3f){1.0f,0.0f,0.0f}, axis[3] ); + v3_cross( e1, (v3f){0.0f,1.0f,0.0f}, axis[4] ); + v3_cross( e1, (v3f){0.0f,0.0f,1.0f}, axis[5] ); + v3_cross( e2, (v3f){1.0f,0.0f,0.0f}, axis[6] ); + v3_cross( e2, (v3f){0.0f,1.0f,0.0f}, axis[7] ); + v3_cross( e2, (v3f){0.0f,0.0f,1.0f}, axis[8] ); + + for( int i=0; i<9; i++ ) + if(!rb_box_triangle_interval( extent, axis[i], tri )) return 0; -static void rb_solver_reset(void); -static void rb_build_manifold_terrain( rigidbody *rb ); -static void rb_build_manifold_terrain_sphere( rigidbody *rb ); -static void rb_solve_contacts(void); + return 1; +} -/* - * These closest point tests were learned from Real-Time Collision Detection by - * Christer Ericson +/* + * ----------------------------------------------------------------------------- + * Manifold + * ----------------------------------------------------------------------------- */ -static float closest_segment_segment( v3f p1, v3f q1, v3f p2, v3f q2, - float *s, float *t, v3f c1, v3f c2) -{ - v3f d1,d2,r; - v3_sub( q1, p1, d1 ); - v3_sub( q2, p2, d2 ); - v3_sub( p1, p2, r ); - - float a = v3_length2( d1 ), - e = v3_length2( d2 ), - f = v3_dot( d2, r ); - const float kEpsilon = 0.0001f; +VG_STATIC int rb_manifold_apply_filtered( rb_ct *man, int len ) +{ + int k = 0; - if( a <= kEpsilon && e <= kEpsilon ) + for( int i=0; itype == k_contact_type_disabled ) + continue; - return v3_length2( v0 ); - } - - if( a<= kEpsilon ) - { - *s = 0.0f; - *t = vg_clampf( f / e, 0.0f, 1.0f ); + man[k ++] = man[i]; } - else + + return k; +} + +VG_STATIC void rb_manifold_filter_joint_edges( rb_ct *man, int len, float r ) +{ + for( int i=0; itype != k_contact_type_edge ) + continue; + + for( int j=i+1; jtype != k_contact_type_edge ) + continue; - if( d != 0.0f ) - { - *s = vg_clampf((b*f - c*e)/d, 0.0f, 1.0f); - } - else + if( v3_dist2( ci->co, cj->co ) < r*r ) { - *s = 0.0f; + cj->type = k_contact_type_disabled; + ci->p = (ci->p + cj->p) * 0.5f; + + v3_add( ci->co, cj->co, ci->co ); + v3_muls( ci->co, 0.5f, ci->co ); + + v3f delta; + v3_sub( ci->rba->co, ci->co, delta ); + + float c0 = v3_dot( ci->n, delta ), + c1 = v3_dot( cj->n, delta ); + + if( c0 < 0.0f || c1 < 0.0f ) + { + /* error */ + ci->type = k_contact_type_disabled; + } + else + { + v3f n; + v3_muls( ci->n, c0, n ); + v3_muladds( n, cj->n, c1, n ); + v3_normalize( n ); + v3_copy( n, ci->n ); + } } + } + } +} - *t = (b*(*s)+f) / e; +/* + * Resolve overlapping pairs + */ +VG_STATIC void rb_manifold_filter_pairs( rb_ct *man, int len, float r ) +{ + for( int i=0; i 1.0f ) + if( ci->type == k_contact_type_disabled ) continue; + + for( int j=i+1; jtype == k_contact_type_disabled ) continue; + + if( v3_dist2( ci->co, cj->co ) < r*r ) { - *t = 1.0f; - *s = vg_clampf((b-c)/a,0.0f,1.0f); + cj->type = k_contact_type_disabled; + v3_add( cj->n, ci->n, ci->n ); + ci->p += cj->p; + similar ++; } } - } - v3_muladds( p1, d1, *s, c1 ); - v3_muladds( p2, d2, *t, c2 ); + if( similar ) + { + float n = 1.0f/((float)similar+1.0f); + v3_muls( ci->n, n, ci->n ); + ci->p *= n; - v3f v0; - v3_sub( c1, c2, v0 ); - return v3_length2( v0 ); + if( v3_length2(ci->n) < 0.1f*0.1f ) + ci->type = k_contact_type_disabled; + else + v3_normalize( ci->n ); + } + } } -static void closest_point_aabb( v3f p, boxf box, v3f dest ) +/* + * Remove contacts that are facing away from A + */ +VG_STATIC void rb_manifold_filter_backface( rb_ct *man, int len ) { - v3_maxv( p, box[0], dest ); - v3_minv( dest, box[1], dest ); -} + for( int i=0; itype == k_contact_type_disabled ) + continue; -static void closest_point_obb( v3f p, rigidbody *rb, v3f dest ) -{ - v3f local; - m4x3_mulv( rb->to_local, p, local ); - closest_point_aabb( local, rb->bbx, local ); - m4x3_mulv( rb->to_world, local, dest ); + v3f delta; + v3_sub( ct->co, ct->rba->co, delta ); + + if( v3_dot( delta, ct->n ) > -0.001f ) + ct->type = k_contact_type_disabled; + } } -static void closest_point_segment( v3f a, v3f b, v3f point, v3f dest ) +/* + * Filter out duplicate coplanar results. Good for spheres. + */ +VG_STATIC void rb_manifold_filter_coplanar( rb_ct *man, int len, float w ) { - v3f v0, v1; - v3_sub( b, a, v0 ); - v3_sub( point, a, v1 ); + for( int i=0; itype == k_contact_type_disabled || + ci->type == k_contact_type_edge ) + continue; - float t = v3_dot( v1, v0 ) / v3_length2(v0); - v3_muladds( a, v0, vg_clampf(t,0.0f,1.0f), dest ); -} + float d1 = v3_dot( ci->co, ci->n ); -static void closest_on_triangle( v3f p, v3f tri[3], v3f dest ) -{ - v3f ab, ac, ap; - float d1, d2; + for( int j=0; jtype == k_contact_type_disabled ) + continue; + + float d2 = v3_dot( cj->co, ci->n ), + d = d2-d1; + + if( fabsf( d ) <= w ) + { + cj->type = k_contact_type_disabled; + } + } } +} - /* Region outside B */ - v3f bp; - float d3, d4; +/* + * ----------------------------------------------------------------------------- + * Collision matrix + * ----------------------------------------------------------------------------- + */ + +/* + * Contact generators + * + * These do not automatically allocate contacts, an appropriately sized + * buffer must be supplied. The function returns the size of the manifold + * which was generated. + * + * The values set on the contacts are: n, co, p, rba, rbb + */ - v3_sub( p, tri[1], bp ); - d3 = v3_dot( ab, bp ); - d4 = v3_dot( ac, bp ); +/* + * By collecting the minimum(time) and maximum(time) pairs of points, we + * build a reduced and stable exact manifold. + * + * tx: time at point + * rx: minimum distance of these points + * dx: the delta between the two points + * + * pairs will only ammend these if they are creating a collision + */ +typedef struct capsule_manifold capsule_manifold; +struct capsule_manifold +{ + float t0, t1; + float r0, r1; + v3f d0, d1; +}; - if( d3 >= 0.0f && d4 <= d3 ) - { - v3_copy( tri[1], dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; - } - - /* Edge region of AB */ - float vc = d1*d4 - d3*d2; - if( vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f ) +/* + * Expand a line manifold with a new pair. t value is the time along segment + * on the oriented object which created this pair. + */ +VG_STATIC void rb_capsule_manifold( v3f pa, v3f pb, float t, float r, + capsule_manifold *manifold ) +{ + v3f delta; + v3_sub( pa, pb, delta ); + + if( v3_length2(delta) < r*r ) { - float v = d1 / (d1-d3); - v3_muladds( tri[0], ab, v, dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; + if( t < manifold->t0 ) + { + v3_copy( delta, manifold->d0 ); + manifold->t0 = t; + manifold->r0 = r; + } + + if( t > manifold->t1 ) + { + v3_copy( delta, manifold->d1 ); + manifold->t1 = t; + manifold->r1 = r; + } } +} - /* Region outside C */ - v3f cp; - float d5, d6; - v3_sub( p, tri[2], cp ); - d5 = v3_dot(ab, cp); - d6 = v3_dot(ac, cp); - - if( d6 >= 0.0f && d5 <= d6 ) +VG_STATIC void rb_capsule_manifold_init( capsule_manifold *manifold ) +{ + manifold->t0 = INFINITY; + manifold->t1 = -INFINITY; +} + +VG_STATIC int rb_capsule_manifold_done( rigidbody *rba, rigidbody *rbb, + capsule_manifold *manifold, rb_ct *buf ) +{ + float h = rba->inf.capsule.height, + ra = rba->inf.capsule.radius; + + v3f p0, p1; + v3_muladds( rba->co, rba->up, -h*0.5f+ra, p0 ); + v3_muladds( rba->co, rba->up, h*0.5f-ra, p1 ); + + int count = 0; + if( manifold->t0 <= 1.0f ) { - v3_copy( tri[2], dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; + rb_ct *ct = buf; + + v3f pa; + v3_muls( p0, 1.0f-manifold->t0, pa ); + v3_muladds( pa, p1, manifold->t0, pa ); + + float d = v3_length( manifold->d0 ); + v3_muls( manifold->d0, 1.0f/d, ct->n ); + v3_muladds( pa, ct->n, -ra, ct->co ); + + ct->p = manifold->r0 - d; + ct->rba = rba; + ct->rbb = rbb; + ct->type = k_contact_type_default; + + count ++; } - /* Region of AC */ - float vb = d5*d2 - d1*d6; - if( vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f ) + if( (manifold->t1 >= 0.0f) && (manifold->t0 != manifold->t1) ) { - float w = d2 / (d2-d6); - v3_muladds( tri[0], ac, w, dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; + rb_ct *ct = buf+count; + + v3f pa; + v3_muls( p0, 1.0f-manifold->t1, pa ); + v3_muladds( pa, p1, manifold->t1, pa ); + + float d = v3_length( manifold->d1 ); + v3_muls( manifold->d1, 1.0f/d, ct->n ); + v3_muladds( pa, ct->n, -ra, ct->co ); + + ct->p = manifold->r1 - d; + ct->rba = rba; + ct->rbb = rbb; + ct->type = k_contact_type_default; + + count ++; } - /* Region of BC */ - float va = d3*d6 - d5*d4; - if( va <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f ) + /* + * Debugging + */ + + if( count == 2 ) + vg_line( buf[0].co, buf[1].co, 0xff0000ff ); + + return count; +} + +VG_STATIC int rb_capsule_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + float h = rba->inf.capsule.height, + ra = rba->inf.capsule.radius, + rb = rbb->inf.sphere.radius; + + v3f p0, p1; + v3_muladds( rba->co, rba->up, -h*0.5f+ra, p0 ); + v3_muladds( rba->co, rba->up, h*0.5f-ra, p1 ); + + v3f c, delta; + closest_point_segment( p0, p1, rbb->co, c ); + v3_sub( c, rbb->co, delta ); + + float d2 = v3_length2(delta), + r = ra + rb; + + if( d2 < r*r ) { - float w = (d4-d3) / ((d4-d3) + (d5-d6)); - v3f bc; - v3_sub( tri[2], tri[1], bc ); - v3_muladds( tri[1], bc, w, dest ); - v3_copy( (v3f){INFINITY,INFINITY,INFINITY}, dest ); - return; + float d = sqrtf(d2); + + rb_ct *ct = buf; + v3_muls( delta, 1.0f/d, ct->n ); + ct->p = r-d; + + v3f p0, p1; + v3_muladds( c, ct->n, -ra, p0 ); + v3_muladds( rbb->co, ct->n, rb, p1 ); + v3_add( p0, p1, ct->co ); + v3_muls( ct->co, 0.5f, ct->co ); + + ct->rba = rba; + ct->rbb = rbb; + ct->type = k_contact_type_default; + + return 1; } - /* P inside region, Q via barycentric coordinates uvw */ - float d = 1.0f/(va+vb+vc), - v = vb*d, - w = vc*d; + return 0; +} - v3_muladds( tri[0], ab, v, dest ); - v3_muladds( dest, ac, w, dest ); +VG_STATIC int rb_capsule_capsule( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + float ha = rba->inf.capsule.height, + hb = rbb->inf.capsule.height, + ra = rba->inf.capsule.radius, + rb = rbb->inf.capsule.radius, + r = ra+rb; + + v3f p0, p1, p2, p3; + v3_muladds( rba->co, rba->up, -ha*0.5f+ra, p0 ); + v3_muladds( rba->co, rba->up, ha*0.5f-ra, p1 ); + v3_muladds( rbb->co, rbb->up, -hb*0.5f+rb, p2 ); + v3_muladds( rbb->co, rbb->up, hb*0.5f-rb, p3 ); + + capsule_manifold manifold; + rb_capsule_manifold_init( &manifold ); + + v3f pa, pb; + float ta, tb; + closest_segment_segment( p0, p1, p2, p3, &ta, &tb, pa, pb ); + rb_capsule_manifold( pa, pb, ta, r, &manifold ); + + ta = closest_point_segment( p0, p1, p2, pa ); + tb = closest_point_segment( p0, p1, p3, pb ); + rb_capsule_manifold( pa, p2, ta, r, &manifold ); + rb_capsule_manifold( pb, p3, tb, r, &manifold ); + + closest_point_segment( p2, p3, p0, pa ); + closest_point_segment( p2, p3, p1, pb ); + rb_capsule_manifold( p0, pa, 0.0f, r, &manifold ); + rb_capsule_manifold( p1, pb, 1.0f, r, &manifold ); + + return rb_capsule_manifold_done( rba, rbb, &manifold, buf ); } /* - * Contact generators - * - * These do not automatically allocate contacts, an appropriately sized - * buffer must be supplied. The function returns the size of the manifold - * which was generated. - * - * The values set on the contacts are: n, co, p, rba, rbb + * Generates up to two contacts; optimised for the most stable manifold */ - -static void rb_debug_contact( rb_ct *ct ) +VG_STATIC int rb_capsule_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) { - v3f p1; - v3_muladds( ct->co, ct->n, 0.2f, p1 ); - vg_line_pt3( ct->co, 0.1f, 0xff0000ff ); - vg_line( ct->co, p1, 0xffffffff ); + float h = rba->inf.capsule.height, + r = rba->inf.capsule.radius; + + /* + * Solving this in symetric local space of the cube saves us some time and a + * couple branches when it comes to the quad stage. + */ + v3f centroid; + v3_add( rbb->bbx[0], rbb->bbx[1], centroid ); + v3_muls( centroid, 0.5f, centroid ); + + boxf bbx; + v3_sub( rbb->bbx[0], centroid, bbx[0] ); + v3_sub( rbb->bbx[1], centroid, bbx[1] ); + + v3f pc, p0w, p1w, p0, p1; + v3_muladds( rba->co, rba->up, -h*0.5f+r, p0w ); + v3_muladds( rba->co, rba->up, h*0.5f-r, p1w ); + + m4x3_mulv( rbb->to_local, p0w, p0 ); + m4x3_mulv( rbb->to_local, p1w, p1 ); + v3_sub( p0, centroid, p0 ); + v3_sub( p1, centroid, p1 ); + v3_add( p0, p1, pc ); + v3_muls( pc, 0.5f, pc ); + + /* + * Finding an appropriate quad to collide lines with + */ + v3f region; + v3_div( pc, bbx[1], region ); + + v3f quad[4]; + if( (fabsf(region[0]) > fabsf(region[1])) && + (fabsf(region[0]) > fabsf(region[2])) ) + { + float px = vg_signf(region[0]) * bbx[1][0]; + v3_copy( (v3f){ px, bbx[0][1], bbx[0][2] }, quad[0] ); + v3_copy( (v3f){ px, bbx[1][1], bbx[0][2] }, quad[1] ); + v3_copy( (v3f){ px, bbx[1][1], bbx[1][2] }, quad[2] ); + v3_copy( (v3f){ px, bbx[0][1], bbx[1][2] }, quad[3] ); + } + else if( fabsf(region[1]) > fabsf(region[2]) ) + { + float py = vg_signf(region[1]) * bbx[1][1]; + v3_copy( (v3f){ bbx[0][0], py, bbx[0][2] }, quad[0] ); + v3_copy( (v3f){ bbx[1][0], py, bbx[0][2] }, quad[1] ); + v3_copy( (v3f){ bbx[1][0], py, bbx[1][2] }, quad[2] ); + v3_copy( (v3f){ bbx[0][0], py, bbx[1][2] }, quad[3] ); + } + else + { + float pz = vg_signf(region[2]) * bbx[1][2]; + v3_copy( (v3f){ bbx[0][0], bbx[0][1], pz }, quad[0] ); + v3_copy( (v3f){ bbx[1][0], bbx[0][1], pz }, quad[1] ); + v3_copy( (v3f){ bbx[1][0], bbx[1][1], pz }, quad[2] ); + v3_copy( (v3f){ bbx[0][0], bbx[1][1], pz }, quad[3] ); + } + + capsule_manifold manifold; + rb_capsule_manifold_init( &manifold ); + + v3f c0, c1; + closest_point_aabb( p0, bbx, c0 ); + closest_point_aabb( p1, bbx, c1 ); + + v3f d0, d1, da; + v3_sub( c0, p0, d0 ); + v3_sub( c1, p1, d1 ); + v3_sub( p1, p0, da ); + + v3_normalize(d0); + v3_normalize(d1); + v3_normalize(da); + + if( v3_dot( da, d0 ) <= 0.01f ) + rb_capsule_manifold( p0, c0, 0.0f, r, &manifold ); + + if( v3_dot( da, d1 ) >= -0.01f ) + rb_capsule_manifold( p1, c1, 1.0f, r, &manifold ); + + for( int i=0; i<4; i++ ) + { + int i0 = i, + i1 = (i+1)%4; + + v3f ca, cb; + float ta, tb; + closest_segment_segment( p0, p1, quad[i0], quad[i1], &ta, &tb, ca, cb ); + rb_capsule_manifold( ca, cb, ta, r, &manifold ); + } + + /* + * Create final contacts based on line manifold + */ + m3x3_mulv( rbb->to_world, manifold.d0, manifold.d0 ); + m3x3_mulv( rbb->to_world, manifold.d1, manifold.d1 ); + + /* + * Debugging + */ + +#if 0 + for( int i=0; i<4; i++ ) + { + v3f q0, q1; + int i0 = i, + i1 = (i+1)%4; + + v3_add( quad[i0], centroid, q0 ); + v3_add( quad[i1], centroid, q1 ); + + m4x3_mulv( rbb->to_world, q0, q0 ); + m4x3_mulv( rbb->to_world, q1, q1 ); + + vg_line( q0, q1, 0xffffffff ); + } +#endif + + return rb_capsule_manifold_done( rba, rbb, &manifold, buf ); } -static int rb_sphere_vs_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +VG_STATIC int rb_sphere_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) { v3f co, delta; - closest_point_obb( rba->co, rbb, co ); + closest_point_obb( rba->co, rbb->bbx, rbb->to_world, rbb->to_local, co ); v3_sub( rba->co, co, delta ); float d2 = v3_length2(delta), @@ -424,27 +1062,52 @@ static int rb_sphere_vs_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) if( d2 <= r*r ) { float d; + + rb_ct *ct = buf; if( d2 <= 0.0001f ) { - v3_sub( rbb->co, rba->co, delta ); - d2 = v3_length2(delta); - } + v3_sub( rba->co, rbb->co, delta ); + + /* + * some extra testing is required to find the best axis to push the + * object back outside the box. Since there isnt a clear seperating + * vector already, especially on really high aspect boxes. + */ + float lx = v3_dot( rbb->right, delta ), + ly = v3_dot( rbb->up, delta ), + lz = v3_dot( rbb->forward, delta ), + px = rbb->bbx[1][0] - fabsf(lx), + py = rbb->bbx[1][1] - fabsf(ly), + pz = rbb->bbx[1][2] - fabsf(lz); + + if( px < py && px < pz ) + v3_muls( rbb->right, vg_signf(lx), ct->n ); + else if( py < pz ) + v3_muls( rbb->up, vg_signf(ly), ct->n ); + else + v3_muls( rbb->forward, vg_signf(lz), ct->n ); - d = sqrtf(d2); + v3_muladds( rba->co, ct->n, -r, ct->co ); + ct->p = r; + } + else + { + d = sqrtf(d2); + v3_muls( delta, 1.0f/d, ct->n ); + ct->p = r-d; + v3_copy( co, ct->co ); + } - rb_ct *ct = buf; - v3_muls( delta, 1.0f/d, ct->n ); - v3_copy( co, ct->co ); - ct->p = r-d; ct->rba = rba; ct->rbb = rbb; + ct->type = k_contact_type_default; return 1; } return 0; } -static int rb_sphere_vs_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +VG_STATIC int rb_sphere_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) { v3f delta; v3_sub( rba->co, rbb->co, delta ); @@ -457,13 +1120,14 @@ static int rb_sphere_vs_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) float d = sqrtf(d2); rb_ct *ct = buf; - v3_muls( delta, -1.0f/d, ct->n ); + v3_muls( delta, 1.0f/d, ct->n ); v3f p0, p1; - v3_muladds( rba->co, ct->n, rba->inf.sphere.radius, p0 ); - v3_muladds( rbb->co, ct->n,-rbb->inf.sphere.radius, p1 ); + v3_muladds( rba->co, ct->n,-rba->inf.sphere.radius, p0 ); + v3_muladds( rbb->co, ct->n, rbb->inf.sphere.radius, p1 ); v3_add( p0, p1, ct->co ); v3_muls( ct->co, 0.5f, ct->co ); + ct->type = k_contact_type_default; ct->p = r-d; ct->rba = rba; ct->rbb = rbb; @@ -473,28 +1137,19 @@ static int rb_sphere_vs_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) return 0; } -static int rb_box_vs_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) -{ - return rb_sphere_vs_box( rbb, rba, buf ); -} +//#define RIGIDBODY_DYNAMIC_MESH_EDGES -static int rb_box_vs_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) -{ - /* TODO: Generating a stable quad manifold, lots of clipping */ - return 0; -} - -/* - * This function does not accept triangle as a dynamic object, it is assumed - * to always be static. - * - * The triangle is also assumed to be one sided for better detection - */ -static int rb_sphere_vs_triangle( rigidbody *rba, v3f tri[3], rb_ct *buf ) +VG_STATIC int rb_sphere_triangle( rigidbody *rba, rigidbody *rbb, + v3f tri[3], rb_ct *buf ) { v3f delta, co; - closest_on_triangle( rba->co, tri, co ); +#ifdef RIGIDBODY_DYNAMIC_MESH_EDGES + closest_on_triangle_1( rba->co, tri, co ); +#else + enum contact_type type = closest_on_triangle_1( rba->co, tri, co ); +#endif + v3_sub( rba->co, co, delta ); float d2 = v3_length2( delta ), @@ -502,22 +1157,22 @@ static int rb_sphere_vs_triangle( rigidbody *rba, v3f tri[3], rb_ct *buf ) if( d2 < r*r ) { + rb_ct *ct = buf; + v3f ab, ac, tn; - v3_sub( tri[1], tri[0], ab ); - v3_sub( tri[2], tri[0], ac ); + v3_sub( tri[2], tri[0], ab ); + v3_sub( tri[1], tri[0], ac ); v3_cross( ac, ab, tn ); - - if( v3_dot( delta, tn ) > 0.0f ) - v3_muls( delta, -1.0f, delta ); + v3_copy( tn, ct->n ); + v3_normalize( ct->n ); float d = sqrtf(d2); - rb_ct *ct = buf; - v3_muls( delta, 1.0f/d, ct->n ); v3_copy( co, ct->co ); + ct->type = type; ct->p = r-d; ct->rba = rba; - ct->rbb = &rb_static_null; + ct->rbb = rbb; return 1; } @@ -525,394 +1180,657 @@ static int rb_sphere_vs_triangle( rigidbody *rba, v3f tri[3], rb_ct *buf ) } -/* - * Generic functions - */ - -RB_DEPR -static int sphere_vs_triangle( v3f c, float r, v3f tri[3], - v3f co, v3f norm, float *p ) +VG_STATIC void rb_debug_sharp_scene_edges( rigidbody *rbb, float sharp_ang, + boxf box, u32 colour ) { - v3f delta; - closest_on_triangle( c, tri, co ); + sharp_ang = cosf( sharp_ang ); - v3_sub( c, co, delta ); + scene *sc = rbb->inf.scene.bh_scene->user; + vg_line_boxf( box, 0xff00ff00 ); - - float d = v3_length2( delta ); - if( d < r*r ) + bh_iter it; + bh_iter_init( 0, &it ); + int idx; + + while( bh_next( rbb->inf.scene.bh_scene, &it, box, &idx ) ) { - v3f ab, ac, tn; - v3_sub( tri[1], tri[0], ab ); - v3_sub( tri[2], tri[0], ac ); - v3_cross( ac, ab, tn ); + u32 *ptri = &sc->arrindices[ idx*3 ]; + v3f tri[3]; - if( v3_dot( delta, tn ) > 0.0f ) - v3_muls( delta, -1.0f, delta ); - - vg_line_pt3( co, 0.05f, 0xff00ff00 ); + for( int j=0; j<3; j++ ) + v3_copy( sc->arrvertices[ptri[j]].co, tri[j] ); - d = sqrtf(d); - v3_muls( delta, 1.0f/d, norm ); + for( int j=0; j<3; j++ ) + { +#if 0 + v3f edir; + v3_sub( tri[(j+1)%3], tri[j], edir ); - *p = r-d; - return 1; - } + if( v3_dot( edir, (v3f){ 0.5184758473652127f, + 0.2073903389460850f, + -0.8295613557843402f } ) < 0.0f ) + continue; +#endif - return 0; -} + bh_iter jt; + bh_iter_init( 0, &jt ); -#include "world.h" + boxf region; + float const k_r = 0.02f; + v3_add( (v3f){ k_r, k_r, k_r }, tri[j], region[1] ); + v3_add( (v3f){ -k_r, -k_r, -k_r }, tri[j], region[0] ); -static void rb_solver_reset(void) -{ - rb_contact_count = 0; + int jdx; + while( bh_next( rbb->inf.scene.bh_scene, &jt, region, &jdx ) ) + { + if( idx <= jdx ) + continue; + + u32 *ptrj = &sc->arrindices[ jdx*3 ]; + v3f trj[3]; + + for( int k=0; k<3; k++ ) + v3_copy( sc->arrvertices[ptrj[k]].co, trj[k] ); + + for( int k=0; k<3; k++ ) + { + if( v3_dist2( tri[j], trj[k] ) <= k_r*k_r ) + { + int jp1 = (j+1)%3, + jp2 = (j+2)%3, + km1 = (k+3-1)%3, + km2 = (k+3-2)%3; + + if( v3_dist2( tri[jp1], trj[km1] ) <= k_r*k_r ) + { + v3f b0, b1, b2; + v3_sub( tri[jp1], tri[j], b0 ); + v3_sub( tri[jp2], tri[j], b1 ); + v3_sub( trj[km2], tri[j], b2 ); + + v3f cx0, cx1; + v3_cross( b0, b1, cx0 ); + v3_cross( b2, b0, cx1 ); + + float polarity = v3_dot( cx0, b2 ); + + if( polarity < 0.0f ) + { +#if 0 + vg_line( tri[j], tri[jp1], 0xff00ff00 ); + float ang = v3_dot(cx0,cx1) / + (v3_length(cx0)*v3_length(cx1)); + if( ang < sharp_ang ) + { + vg_line( tri[j], tri[jp1], 0xff00ff00 ); + } +#endif + } + } + } + } + } + } + } } -static rb_ct *rb_global_ct(void) +VG_STATIC int rb_sphere_scene( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) { - return rb_contact_buffer + rb_contact_count; -} + scene *sc = rbb->inf.scene.bh_scene->user; -static struct contact *rb_start_contact(void) -{ - if( rb_contact_count == vg_list_size(rb_contact_buffer) ) + bh_iter it; + bh_iter_init( 0, &it ); + int idx; + + int count = 0; + + while( bh_next( rbb->inf.scene.bh_scene, &it, rba->bbx_world, &idx ) ) { - vg_error( "rigidbody: too many contacts generated (%u)\n", - rb_contact_count ); - return NULL; - } + u32 *ptri = &sc->arrindices[ idx*3 ]; + v3f tri[3]; - return &rb_contact_buffer[ rb_contact_count ]; -} + for( int j=0; j<3; j++ ) + v3_copy( sc->arrvertices[ptri[j]].co, tri[j] ); + + buf[ count ].element_id = ptri[0]; -static void rb_commit_contact( struct contact *ct, float p ) -{ - ct->bias = -0.2f*k_rb_rate*vg_minf(0.0f,-p+0.04f); - rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); + vg_line( tri[0],tri[1],0x70ff6000 ); + vg_line( tri[1],tri[2],0x70ff6000 ); + vg_line( tri[2],tri[0],0x70ff6000 ); + + int contact = rb_sphere_triangle( rba, rbb, tri, buf+count ); + count += contact; - ct->norm_impulse = 0.0f; - ct->tangent_impulse[0] = 0.0f; - ct->tangent_impulse[1] = 0.0f; + if( count == 16 ) + { + vg_warn( "Exceeding sphere_vs_scene capacity. Geometry too dense!\n" ); + return count; + } + } - rb_contact_count ++; + return count; } -static void rb_build_manifold_terrain_sphere( rigidbody *rb ) +VG_STATIC int rb_box_scene( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) { - u32 geo[256]; + scene *sc = rbb->inf.scene.bh_scene->user; + v3f tri[3]; - int len = bh_select( &world.geo.bhtris, rb->bbx_world, geo, 256 ); + + bh_iter it; + bh_iter_init( 0, &it ); + int idx; + + int count = 0; - for( int i=0; iinf.scene.bh_scene, &it, rba->bbx_world, &idx ) ) { - u32 *ptri = &world.geo.indices[ geo[i]*3 ]; + u32 *ptri = &sc->arrindices[ idx*3 ]; for( int j=0; j<3; j++ ) - v3_copy( world.geo.verts[ptri[j]].co, tri[j] ); + v3_copy( sc->arrvertices[ptri[j]].co, tri[j] ); - vg_line(tri[0],tri[1],0xff00ff00 ); - vg_line(tri[1],tri[2],0xff00ff00 ); - vg_line(tri[2],tri[0],0xff00ff00 ); + if( rb_box_triangle_sat( rba, tri ) ) + { + vg_line(tri[0],tri[1],0xff50ff00 ); + vg_line(tri[1],tri[2],0xff50ff00 ); + vg_line(tri[2],tri[0],0xff50ff00 ); + } + else + { + vg_line(tri[0],tri[1],0xff0000ff ); + vg_line(tri[1],tri[2],0xff0000ff ); + vg_line(tri[2],tri[0],0xff0000ff ); - v3f co, norm; - float p; + continue; + } - for( int j=0; j<2; j++ ) + v3f v0,v1,n; + v3_sub( tri[1], tri[0], v0 ); + v3_sub( tri[2], tri[0], v1 ); + v3_cross( v0, v1, n ); + v3_normalize( n ); + + /* find best feature */ + float best = v3_dot( rba->right, n ); + int axis = 0; + + float cy = v3_dot( rba->up, n ); + if( fabsf(cy) > fabsf(best) ) { - if( sphere_vs_triangle( rb->co, rb->inf.sphere.radius, tri,co,norm,&p)) - { - struct contact *ct = rb_start_contact(); + best = cy; + axis = 1; + } + + float cz = -v3_dot( rba->forward, n ); + if( fabsf(cz) > fabsf(best) ) + { + best = cz; + axis = 2; + } - if( !ct ) - return; + v3f manifold[4]; - v3f p1; - v3_muladds( rb->co, norm, p, p1 ); - vg_line( rb->co, p1, 0xffffffff ); + if( axis == 0 ) + { + float px = best > 0.0f? rba->bbx[0][0]: rba->bbx[1][0]; + manifold[0][0] = px; + manifold[0][1] = rba->bbx[0][1]; + manifold[0][2] = rba->bbx[0][2]; + manifold[1][0] = px; + manifold[1][1] = rba->bbx[1][1]; + manifold[1][2] = rba->bbx[0][2]; + manifold[2][0] = px; + manifold[2][1] = rba->bbx[1][1]; + manifold[2][2] = rba->bbx[1][2]; + manifold[3][0] = px; + manifold[3][1] = rba->bbx[0][1]; + manifold[3][2] = rba->bbx[1][2]; + } + else if( axis == 1 ) + { + float py = best > 0.0f? rba->bbx[0][1]: rba->bbx[1][1]; + manifold[0][0] = rba->bbx[0][0]; + manifold[0][1] = py; + manifold[0][2] = rba->bbx[0][2]; + manifold[1][0] = rba->bbx[1][0]; + manifold[1][1] = py; + manifold[1][2] = rba->bbx[0][2]; + manifold[2][0] = rba->bbx[1][0]; + manifold[2][1] = py; + manifold[2][2] = rba->bbx[1][2]; + manifold[3][0] = rba->bbx[0][0]; + manifold[3][1] = py; + manifold[3][2] = rba->bbx[1][2]; + } + else + { + float pz = best > 0.0f? rba->bbx[0][2]: rba->bbx[1][2]; + manifold[0][0] = rba->bbx[0][0]; + manifold[0][1] = rba->bbx[0][1]; + manifold[0][2] = pz; + manifold[1][0] = rba->bbx[1][0]; + manifold[1][1] = rba->bbx[0][1]; + manifold[1][2] = pz; + manifold[2][0] = rba->bbx[1][0]; + manifold[2][1] = rba->bbx[1][1]; + manifold[2][2] = pz; + manifold[3][0] = rba->bbx[0][0]; + manifold[3][1] = rba->bbx[1][1]; + manifold[3][2] = pz; + } + + for( int j=0; j<4; j++ ) + m4x3_mulv( rba->to_world, manifold[j], manifold[j] ); - ct->rba = rb; - v3_copy( co, ct->co ); - v3_copy( norm, ct->n ); - rb_commit_contact( ct, p ); - } + vg_line( manifold[0], manifold[1], 0xffffffff ); + vg_line( manifold[1], manifold[2], 0xffffffff ); + vg_line( manifold[2], manifold[3], 0xffffffff ); + vg_line( manifold[3], manifold[0], 0xffffffff ); + + for( int j=0; j<4; j++ ) + { + rb_ct *ct = buf+count; + + v3_copy( manifold[j], ct->co ); + v3_copy( n, ct->n ); + + float l0 = v3_dot( tri[0], n ), + l1 = v3_dot( manifold[j], n ); + + ct->p = (l0-l1)*0.5f; + if( ct->p < 0.0f ) + continue; + + ct->type = k_contact_type_default; + ct->rba = rba; + ct->rbb = rbb; + count ++; + + if( count >= 12 ) + return count; } } - + return count; } -RB_DEPR -static void rb_build_manifold_terrain( rigidbody *rb ) +VG_STATIC int RB_MATRIX_ERROR( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) { - v3f *box = rb->bbx; - v3f pts[8]; - float *p000 = pts[0], *p001 = pts[1], *p010 = pts[2], *p011 = pts[3], - *p100 = pts[4], *p101 = pts[5], *p110 = pts[6], *p111 = pts[7]; - - p000[0]=box[0][0];p000[1]=box[0][1];p000[2]=box[0][2]; - p001[0]=box[0][0];p001[1]=box[0][1];p001[2]=box[1][2]; - p010[0]=box[0][0];p010[1]=box[1][1];p010[2]=box[0][2]; - p011[0]=box[0][0];p011[1]=box[1][1];p011[2]=box[1][2]; - - p100[0]=box[1][0];p100[1]=box[0][1];p100[2]=box[0][2]; - p101[0]=box[1][0];p101[1]=box[0][1];p101[2]=box[1][2]; - p110[0]=box[1][0];p110[1]=box[1][1];p110[2]=box[0][2]; - p111[0]=box[1][0];p111[1]=box[1][1];p111[2]=box[1][2]; - - m4x3_mulv( rb->to_world, p000, p000 ); - m4x3_mulv( rb->to_world, p001, p001 ); - m4x3_mulv( rb->to_world, p010, p010 ); - m4x3_mulv( rb->to_world, p011, p011 ); - m4x3_mulv( rb->to_world, p100, p100 ); - m4x3_mulv( rb->to_world, p101, p101 ); - m4x3_mulv( rb->to_world, p110, p110 ); - m4x3_mulv( rb->to_world, p111, p111 ); + vg_error( "Collision type is unimplemented between types %d and %d\n", + rba->type, rbb->type ); - int count = 0; + return 0; +} - for( int i=0; i<8; i++ ) - { - float *point = pts[i]; - struct contact *ct = rb_start_contact(); +VG_STATIC int rb_sphere_capsule( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + return rb_capsule_sphere( rbb, rba, buf ); +} - if( !ct ) - return; +VG_STATIC int rb_box_capsule( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + return rb_capsule_box( rbb, rba, buf ); +} - ct->rba = rb; - - v3f surface; - v3_copy( point, surface ); - surface[1] += 4.0f; +VG_STATIC int rb_box_sphere( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + return rb_sphere_box( rbb, rba, buf ); +} - ray_hit hit; - hit.dist = INFINITY; - if( !ray_world( surface, (v3f){0.0f,-1.0f,0.0f}, &hit )) - continue; +VG_STATIC int rb_scene_box( rigidbody *rba, rigidbody *rbb, rb_ct *buf ) +{ + return rb_box_scene( rbb, rba, buf ); +} - v3_copy( hit.pos, surface ); +VG_STATIC int (*rb_jump_table[4][4])( rigidbody *a, rigidbody *b, rb_ct *buf ) = +{ + /* box */ /* Sphere */ /* Capsule */ /* Mesh */ + { RB_MATRIX_ERROR, rb_box_sphere, rb_box_capsule, rb_box_scene }, + { rb_sphere_box, rb_sphere_sphere, rb_sphere_capsule, rb_sphere_scene }, + { rb_capsule_box, rb_capsule_sphere, rb_capsule_capsule, RB_MATRIX_ERROR }, + { rb_scene_box, RB_MATRIX_ERROR, RB_MATRIX_ERROR, RB_MATRIX_ERROR } +}; - float p = vg_minf( surface[1] - point[1], 1.0f ); +VG_STATIC int rb_collide( rigidbody *rba, rigidbody *rbb ) +{ + int (*collider_jump)(rigidbody *rba, rigidbody *rbb, rb_ct *buf ) + = rb_jump_table[rba->type][rbb->type]; - if( p > 0.0f ) - { - v3_copy( hit.normal, ct->n ); - v3_add( point, surface, ct->co ); - v3_muls( ct->co, 0.5f, ct->co ); + /* + * 12 is the maximum manifold size we can generate, so we are forced to abort + * potentially checking any more. + */ + if( rb_contact_count + 12 > vg_list_size(rb_contact_buffer) ) + { + vg_warn( "Too many contacts made in global collider buffer (%d of %d\n)", + rb_contact_count, vg_list_size(rb_contact_buffer) ); + return 0; + } - rb_commit_contact( ct, p ); - count ++; - if( count == 4 ) - break; - } + /* + * FUTURE: Replace this with a more dedicated broad phase pass + */ + if( box_overlap( rba->bbx_world, rbb->bbx_world ) ) + { + int count = collider_jump( rba, rbb, rb_contact_buffer+rb_contact_count); + rb_contact_count += count; + return count; } + else + return 0; +} + +/* + * ----------------------------------------------------------------------------- + * Dynamics + * ----------------------------------------------------------------------------- + */ + +VG_STATIC void rb_solver_reset(void) +{ + rb_contact_count = 0; +} + +VG_STATIC rb_ct *rb_global_ct(void) +{ + return rb_contact_buffer + rb_contact_count; } /* * Initializing things like tangent vectors */ -static void rb_presolve_contacts(void) +VG_STATIC void rb_presolve_contacts( rb_ct *buffer, int len ) { - for( int i=0; ibias = -0.2f * k_rb_rate * vg_minf(0.0f,-ct->p+0.04f); + ct->bias = -0.2f * k_rb_rate * vg_minf( 0.0f, -ct->p+k_penetration_slop ); rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); +#if 0 + ct->type = k_contact_type_default; +#endif ct->norm_impulse = 0.0f; ct->tangent_impulse[0] = 0.0f; ct->tangent_impulse[1] = 0.0f; - ct->mass_total = 1.0f/(ct->rba->inv_mass + ct->rbb->inv_mass); + + v3f ra, rb, raCn, rbCn, raCt, rbCt; + v3_sub( ct->co, ct->rba->co, ra ); + v3_sub( ct->co, ct->rbb->co, rb ); + v3_cross( ra, ct->n, raCn ); + v3_cross( rb, ct->n, rbCn ); + + /* orient inverse inertia tensors */ + v3f raCnI, rbCnI; + m3x3_mulv( ct->rba->iIw, raCn, raCnI ); + m3x3_mulv( ct->rbb->iIw, rbCn, rbCnI ); + + ct->normal_mass = ct->rba->inv_mass + ct->rbb->inv_mass; + ct->normal_mass += v3_dot( raCn, raCnI ); + ct->normal_mass += v3_dot( rbCn, rbCnI ); + ct->normal_mass = 1.0f/ct->normal_mass; + + for( int j=0; j<2; j++ ) + { + v3f raCtI, rbCtI; + v3_cross( ct->t[j], ra, raCt ); + v3_cross( ct->t[j], rb, rbCt ); + m3x3_mulv( ct->rba->iIw, raCt, raCtI ); + m3x3_mulv( ct->rbb->iIw, rbCt, rbCtI ); + + ct->tangent_mass[j] = ct->rba->inv_mass + ct->rbb->inv_mass; + ct->tangent_mass[j] += v3_dot( raCt, raCtI ); + ct->tangent_mass[j] += v3_dot( rbCt, rbCtI ); + ct->tangent_mass[j] = 1.0f/ct->tangent_mass[j]; + } rb_debug_contact( ct ); } } /* - * Creates relative contact velocity vector, and offsets between each body */ -static void rb_rcv( rb_ct *ct, v3f rv, v3f da, v3f db ) + * Creates relative contact velocity vector, and offsets between each body + */ +VG_STATIC void rb_rcv( rb_ct *ct, v3f rv, v3f da, v3f db ) { rigidbody *rba = ct->rba, *rbb = ct->rbb; - v3_sub( rba->co, ct->co, da ); - v3_sub( rbb->co, ct->co, db ); + v3_sub( ct->co, rba->co, da ); + v3_sub( ct->co, rbb->co, db ); v3f rva, rvb; v3_cross( rba->w, da, rva ); v3_add( rba->v, rva, rva ); - v3_cross( rbb->w, db, rvb ); v3_add( rbb->v, rvb, rvb ); - v3_add( rva, rvb, rv ); + + v3_sub( rva, rvb, rv ); } -static void rb_standard_impulse( rb_ct *ct, v3f da, v3f db, v3f impulse ) +/* + * Apply impulse to object + */ +VG_STATIC void rb_linear_impulse( rigidbody *rb, v3f delta, v3f impulse ) { - rigidbody *rba = ct->rba, - *rbb = ct->rbb; - - /* response */ - v3_muladds( rba->v, impulse, ct->mass_total * rba->inv_mass, rba->v ); - v3_muladds( rbb->v, impulse, ct->mass_total * rbb->inv_mass, rbb->v ); + /* linear */ + v3_muladds( rb->v, impulse, rb->inv_mass, rb->v ); /* Angular velocity */ - v3f wa, wb; - v3_cross( da, impulse, wa ); - v3_cross( db, impulse, wb ); - v3_muladds( rba->w, wa, ct->mass_total * rba->inv_mass, rba->w ); - v3_muladds( rbb->w, wb, ct->mass_total * rbb->inv_mass, rbb->w ); + v3f wa; + v3_cross( delta, impulse, wa ); + + m3x3_mulv( rb->iIw, wa, wa ); + v3_add( rb->w, wa, rb->w ); } -static void rb_solve_contacts(void) +/* + * One iteration to solve the contact constraint + */ +VG_STATIC void rb_solve_contacts( rb_ct *buf, int len ) { - float k_friction = 0.1f; - - /* TODO: second object - * Static objects route to static element */ - - /* Friction Impulse */ - for( int i=0; irba; v3f rv, da, db; rb_rcv( ct, rv, da, db ); + /* Friction */ for( int j=0; j<2; j++ ) { - float f = k_friction * ct->norm_impulse, - vt = -v3_dot( rv, ct->t[j] ); + float f = k_friction * ct->norm_impulse, + vt = v3_dot( rv, ct->t[j] ), + lambda = ct->tangent_mass[j] * -vt; float temp = ct->tangent_impulse[j]; - ct->tangent_impulse[j] = vg_clampf( temp+vt, -f, f ); - vt = ct->tangent_impulse[j] - temp; + ct->tangent_impulse[j] = vg_clampf( temp + lambda, -f, f ); + lambda = ct->tangent_impulse[j] - temp; v3f impulse; - v3_muls( ct->t[j], vt, impulse ); - rb_standard_impulse( ct, da, db, impulse ); + v3_muls( ct->t[j], lambda, impulse ); + rb_linear_impulse( ct->rba, da, impulse ); + + v3_muls( ct->t[j], -lambda, impulse ); + rb_linear_impulse( ct->rbb, db, impulse ); } - } - - /* Normal Impulse */ - for( int i=0; irba, - *rbb = ct->rbb; - v3f rv, da, db; + /* Normal */ rb_rcv( ct, rv, da, db ); - - float vn = -v3_dot( rv, ct->n ); - vn += ct->bias; + float vn = v3_dot( rv, ct->n ), + lambda = ct->normal_mass * (-vn + ct->bias); float temp = ct->norm_impulse; - ct->norm_impulse = vg_maxf( temp + vn, 0.0f ); - vn = ct->norm_impulse - temp; + ct->norm_impulse = vg_maxf( temp + lambda, 0.0f ); + lambda = ct->norm_impulse - temp; v3f impulse; - v3_muls( ct->n, vn, impulse ); - rb_standard_impulse( ct, da, db, impulse ); + v3_muls( ct->n, lambda, impulse ); + rb_linear_impulse( ct->rba, da, impulse ); + + v3_muls( ct->n, -lambda, impulse ); + rb_linear_impulse( ct->rbb, db, impulse ); } } -struct rb_angle_limit -{ - rigidbody *rba, *rbb; - v3f axis; - float impulse, bias; -}; +/* + * ----------------------------------------------------------------------------- + * Constraints + * ----------------------------------------------------------------------------- + */ -static int rb_angle_limit_force( rigidbody *rba, v3f va, - rigidbody *rbb, v3f vb, - float max ) +VG_STATIC void draw_angle_limit( v3f c, v3f major, v3f minor, + float amin, float amax, float measured, + u32 colour ) { - v3f wva, wvb; - m3x3_mulv( rba->to_world, va, wva ); - m3x3_mulv( rbb->to_world, vb, wvb ); - - float dt = v3_dot(wva,wvb)*0.999f, - ang = fabsf(dt); - ang = acosf( dt ); - if( ang > max ) + float f = 0.05f; + v3f ay, ax; + v3_muls( major, f, ay ); + v3_muls( minor, f, ax ); + + for( int x=0; x<16; x++ ) { - float correction = max-ang; + float t0 = (float)x / 16.0f, + t1 = (float)(x+1) / 16.0f, + a0 = vg_lerpf( amin, amax, t0 ), + a1 = vg_lerpf( amin, amax, t1 ); - v3f axis; - v3_cross( wva, wvb, axis ); + v3f p0, p1; + v3_muladds( c, ay, cosf(a0), p0 ); + v3_muladds( p0, ax, sinf(a0), p0 ); + v3_muladds( c, ay, cosf(a1), p1 ); + v3_muladds( p1, ax, sinf(a1), p1 ); - v4f rotation; - q_axis_angle( rotation, axis, -correction*0.25f ); - q_mul( rotation, rba->q, rba->q ); - - q_axis_angle( rotation, axis, correction*0.25f ); - q_mul( rotation, rbb->q, rbb->q ); + vg_line( p0, p1, colour ); - return 1; + if( x == 0 ) + vg_line( c, p0, colour ); + if( x == 15 ) + vg_line( c, p1, colour ); } - return 0; + v3f p2; + v3_muladds( c, ay, cosf(measured)*1.2f, p2 ); + v3_muladds( p2, ax, sinf(measured)*1.2f, p2 ); + vg_line( c, p2, colour ); } -static void rb_constraint_angle_limit( struct rb_angle_limit *limit ) +VG_STATIC void rb_debug_constraint_limits( rigidbody *ra, rigidbody *rb, v3f lca, + v3f limits[2] ) { - + v3f ax, ay, az, bx, by, bz; + m3x3_mulv( ra->to_world, (v3f){1.0f,0.0f,0.0f}, ax ); + m3x3_mulv( ra->to_world, (v3f){0.0f,1.0f,0.0f}, ay ); + m3x3_mulv( ra->to_world, (v3f){0.0f,0.0f,1.0f}, az ); + m3x3_mulv( rb->to_world, (v3f){1.0f,0.0f,0.0f}, bx ); + m3x3_mulv( rb->to_world, (v3f){0.0f,1.0f,0.0f}, by ); + m3x3_mulv( rb->to_world, (v3f){0.0f,0.0f,1.0f}, bz ); + + v2f px, py, pz; + px[0] = v3_dot( ay, by ); + px[1] = v3_dot( az, by ); + + py[0] = v3_dot( az, bz ); + py[1] = v3_dot( ax, bz ); + + pz[0] = v3_dot( ax, bx ); + pz[1] = v3_dot( ay, bx ); + + float r0 = atan2f( px[1], px[0] ), + r1 = atan2f( py[1], py[0] ), + r2 = atan2f( pz[1], pz[0] ); + + v3f c; + m4x3_mulv( ra->to_world, lca, c ); + draw_angle_limit( c, ay, az, limits[0][0], limits[1][0], r0, 0xff0000ff ); + draw_angle_limit( c, az, ax, limits[0][1], limits[1][1], r1, 0xff00ff00 ); + draw_angle_limit( c, ax, ay, limits[0][2], limits[1][2], r2, 0xffff0000 ); } -RB_DEPR -static void rb_constraint_angle( rigidbody *rba, v3f va, - rigidbody *rbb, v3f vb, - float max, float spring ) +VG_STATIC void rb_limit_cure( rigidbody *ra, rigidbody *rb, v3f axis, float d ) { - v3f wva, wvb; - m3x3_mulv( rba->to_world, va, wva ); - m3x3_mulv( rbb->to_world, vb, wvb ); + if( d != 0.0f ) + { + float avx = v3_dot( ra->w, axis ) - v3_dot( rb->w, axis ); + float joint_mass = rb->inv_mass + ra->inv_mass; + joint_mass = 1.0f/joint_mass; - float dt = v3_dot(wva,wvb)*0.999f, - ang = fabsf(dt); + float bias = (k_limit_bias * k_rb_rate) * d, + lambda = -(avx + bias) * joint_mass; - v3f axis; - v3_cross( wva, wvb, axis ); - v3_muladds( rba->w, axis, ang*spring*0.5f, rba->w ); - v3_muladds( rbb->w, axis, -ang*spring*0.5f, rbb->w ); + /* Angular velocity */ + v3f wa, wb; + v3_muls( axis, lambda * ra->inv_mass, wa ); + v3_muls( axis, -lambda * rb->inv_mass, wb ); - return; - - /* TODO: convert max into the dot product value so we dont have to always - * evaluate acosf, only if its greater than the angle specified */ - ang = acosf( dt ); - if( ang > max ) - { - float correction = max-ang; - - v4f rotation; - q_axis_angle( rotation, axis, -correction*0.125f ); - q_mul( rotation, rba->q, rba->q ); - - q_axis_angle( rotation, axis, correction*0.125f ); - q_mul( rotation, rbb->q, rbb->q ); + v3_add( ra->w, wa, ra->w ); + v3_add( rb->w, wb, rb->w ); } } -static void rb_relative_velocity( rigidbody *ra, v3f lca, - rigidbody *rb, v3f lcb, v3f rcv ) +VG_STATIC void rb_constraint_limits( rigidbody *ra, v3f lca, + rigidbody *rb, v3f lcb, v3f limits[2] ) { + v3f ax, ay, az, bx, by, bz; + m3x3_mulv( ra->to_world, (v3f){1.0f,0.0f,0.0f}, ax ); + m3x3_mulv( ra->to_world, (v3f){0.0f,1.0f,0.0f}, ay ); + m3x3_mulv( ra->to_world, (v3f){0.0f,0.0f,1.0f}, az ); + m3x3_mulv( rb->to_world, (v3f){1.0f,0.0f,0.0f}, bx ); + m3x3_mulv( rb->to_world, (v3f){0.0f,1.0f,0.0f}, by ); + m3x3_mulv( rb->to_world, (v3f){0.0f,0.0f,1.0f}, bz ); + + v2f px, py, pz; + px[0] = v3_dot( ay, by ); + px[1] = v3_dot( az, by ); + + py[0] = v3_dot( az, bz ); + py[1] = v3_dot( ax, bz ); + + pz[0] = v3_dot( ax, bx ); + pz[1] = v3_dot( ay, bx ); + + float r0 = atan2f( px[1], px[0] ), + r1 = atan2f( py[1], py[0] ), + r2 = atan2f( pz[1], pz[0] ); + + /* calculate angle deltas */ + float dx = 0.0f, dy = 0.0f, dz = 0.0f; + + if( r0 < limits[0][0] ) dx = limits[0][0] - r0; + if( r0 > limits[1][0] ) dx = limits[1][0] - r0; + if( r1 < limits[0][1] ) dy = limits[0][1] - r1; + if( r1 > limits[1][1] ) dy = limits[1][1] - r1; + if( r2 < limits[0][2] ) dz = limits[0][2] - r2; + if( r2 > limits[1][2] ) dz = limits[1][2] - r2; + v3f wca, wcb; m3x3_mulv( ra->to_world, lca, wca ); m3x3_mulv( rb->to_world, lcb, wcb ); - v3_sub( ra->v, rb->v, rcv ); + rb_limit_cure( ra, rb, ax, dx ); + rb_limit_cure( ra, rb, ay, dy ); + rb_limit_cure( ra, rb, az, dz ); +} - v3f rcv_Ra, rcv_Rb; - v3_cross( ra->w, wca, rcv_Ra ); - v3_cross( rb->w, wcb, rcv_Rb ); - v3_add( rcv_Ra, rcv, rcv ); - v3_sub( rcv, rcv_Rb, rcv ); +VG_STATIC void rb_debug_constraint_position( rigidbody *ra, v3f lca, + rigidbody *rb, v3f lcb ) +{ + v3f wca, wcb; + m3x3_mulv( ra->to_world, lca, wca ); + m3x3_mulv( rb->to_world, lcb, wcb ); + + v3f p0, p1; + v3_add( wca, ra->co, p0 ); + v3_add( wcb, rb->co, p1 ); + vg_line_pt3( p0, 0.005f, 0xffffff00 ); + vg_line_pt3( p1, 0.005f, 0xffffff00 ); + vg_line( p0, p1, 0xffffff00 ); } -static void rb_constraint_position( rigidbody *ra, v3f lca, +VG_STATIC void rb_constraint_position( rigidbody *ra, v3f lca, rigidbody *rb, v3f lcb ) { /* C = (COa + Ra*LCa) - (COb + Rb*LCb) = 0 */ @@ -920,14 +1838,6 @@ static void rb_constraint_position( rigidbody *ra, v3f lca, m3x3_mulv( ra->to_world, lca, wca ); m3x3_mulv( rb->to_world, lcb, wcb ); - v3f delta; - v3_add( wcb, rb->co, delta ); - v3_sub( delta, wca, delta ); - v3_sub( delta, ra->co, delta ); - - v3_muladds( ra->co, delta, 0.5f, ra->co ); - v3_muladds( rb->co, delta, -0.5f, rb->co ); - v3f rcv; v3_sub( ra->v, rb->v, rcv ); @@ -937,265 +1847,86 @@ static void rb_constraint_position( rigidbody *ra, v3f lca, v3_add( rcv_Ra, rcv, rcv ); v3_sub( rcv, rcv_Rb, rcv ); - float nm = 0.5f/(rb->inv_mass + ra->inv_mass); - - float mass_a = 1.0f/ra->inv_mass, - mass_b = 1.0f/rb->inv_mass, - total_mass = mass_a+mass_b; - - v3f impulse; - v3_muls( rcv, 1.0f, impulse ); - v3_muladds( rb->v, impulse, mass_b/total_mass, rb->v ); - v3_cross( wcb, impulse, impulse ); - v3_add( impulse, rb->w, rb->w ); - - v3_muls( rcv, -1.0f, impulse ); - v3_muladds( ra->v, impulse, mass_a/total_mass, ra->v ); - v3_cross( wca, impulse, impulse ); - v3_add( impulse, ra->w, ra->w ); - -#if 0 - /* - * this could be used for spring joints - * its not good for position constraint - */ - v3f impulse; - v3_muls( delta, 0.5f*spring, impulse ); - - v3_add( impulse, ra->v, ra->v ); - v3_cross( wca, impulse, impulse ); - v3_add( impulse, ra->w, ra->w ); - - v3_muls( delta, -0.5f*spring, impulse ); - - v3_add( impulse, rb->v, rb->v ); - v3_cross( wcb, impulse, impulse ); - v3_add( impulse, rb->w, rb->w ); -#endif -} - -static void debug_sphere( m4x3f m, float radius, u32 colour ) -{ - v3f ly = { 0.0f, 0.0f, radius }, - lx = { 0.0f, radius, 0.0f }, - lz = { 0.0f, 0.0f, radius }; - - for( int i=0; i<16; i++ ) - { - float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f, - s = sinf(t), - c = cosf(t); - - v3f py = { s*radius, 0.0f, c*radius }, - px = { s*radius, c*radius, 0.0f }, - pz = { 0.0f, s*radius, c*radius }; - - v3f p0, p1, p2, p3, p4, p5; - m4x3_mulv( m, py, p0 ); - m4x3_mulv( m, ly, p1 ); - m4x3_mulv( m, px, p2 ); - m4x3_mulv( m, lx, p3 ); - m4x3_mulv( m, pz, p4 ); - m4x3_mulv( m, lz, p5 ); - - vg_line( p0, p1, colour == 0x00? 0xff00ff00: colour ); - vg_line( p2, p3, colour == 0x00? 0xff0000ff: colour ); - vg_line( p4, p5, colour == 0x00? 0xffff0000: colour ); - - v3_copy( py, ly ); - v3_copy( px, lx ); - v3_copy( pz, lz ); - } -} - -static void rb_debug( rigidbody *rb, u32 colour ) -{ - if( rb->type == k_rb_shape_box ) - { - v3f *box = rb->bbx; - vg_line_boxf_transformed( rb->to_world, rb->bbx, colour ); - } - else if( rb->type == k_rb_shape_sphere ) - { - debug_sphere( rb->to_world, rb->inf.sphere.radius, colour ); - } -} + v3f delta; + v3f p0, p1; + v3_add( wca, ra->co, p0 ); + v3_add( wcb, rb->co, p1 ); + v3_sub( p1, p0, delta ); -/* - * out penetration distance, normal - */ -static int rb_point_in_body( rigidbody *rb, v3f pos, float *pen, v3f normal ) -{ - v3f local; - m4x3_mulv( rb->to_local, pos, local ); + float dist2 = v3_length2( delta ); - if( local[0] > rb->bbx[0][0] && local[0] < rb->bbx[1][0] && - local[1] > rb->bbx[0][1] && local[1] < rb->bbx[1][1] && - local[2] > rb->bbx[0][2] && local[2] < rb->bbx[1][2] ) + if( dist2 > 0.00001f ) { - v3f area, com, comrel; - v3_add( rb->bbx[0], rb->bbx[1], com ); - v3_muls( com, 0.5f, com ); + float dist = sqrtf(dist2); + v3_muls( delta, 1.0f/dist, delta ); - v3_sub( rb->bbx[1], rb->bbx[0], area ); - v3_sub( local, com, comrel ); - v3_div( comrel, area, comrel ); + float joint_mass = rb->inv_mass + ra->inv_mass; - int axis = 0; - float max_mag = fabsf(comrel[0]); + v3f raCn, rbCn, raCt, rbCt; + v3_cross( wca, delta, raCn ); + v3_cross( wcb, delta, rbCn ); - if( fabsf(comrel[1]) > max_mag ) - { - axis = 1; - max_mag = fabsf(comrel[1]); - } - if( fabsf(comrel[2]) > max_mag ) - { - axis = 2; - max_mag = fabsf(comrel[2]); - } - - v3_zero( normal ); - normal[axis] = vg_signf(comrel[axis]); - - if( normal[axis] < 0.0f ) - *pen = local[axis] - rb->bbx[0][axis]; - else - *pen = rb->bbx[1][axis] - local[axis]; - - m3x3_mulv( rb->to_world, normal, normal ); - return 1; - } - - return 0; -} - -#if 0 -static void rb_build_manifold_rb_static( rigidbody *ra, rigidbody *rb_static ) -{ - v3f verts[8]; - - v3f a, b; - v3_copy( ra->bbx[0], a ); - v3_copy( ra->bbx[1], b ); - - m4x3_mulv( ra->to_world, (v3f){ a[0], a[1], a[2] }, verts[0] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], b[1], a[2] }, verts[1] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], b[1], a[2] }, verts[2] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], a[1], a[2] }, verts[3] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], a[1], b[2] }, verts[4] ); - m4x3_mulv( ra->to_world, (v3f){ a[0], b[1], b[2] }, verts[5] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], b[1], b[2] }, verts[6] ); - m4x3_mulv( ra->to_world, (v3f){ b[0], a[1], b[2] }, verts[7] ); - - vg_line_boxf_transformed( rb_static->to_world, rb_static->bbx, 0xff0000ff ); - - int count = 0; - - for( int i=0; i<8; i++ ) - { - if( ra->manifold_count == vg_list_size(ra->manifold) ) - return; - - struct contact *ct = &ra->manifold[ ra->manifold_count ]; - - float p; - v3f normal; - - if( rb_point_in_body( rb_static, verts[i], &p, normal )) - { - v3_copy( normal, ct->n ); - v3_muladds( verts[i], ct->n, p*0.5f, ct->co ); - v3_sub( ct->co, ra->co, ct->delta ); - - vg_line_pt3( ct->co, 0.0125f, 0xffff00ff ); - - ct->bias = -0.2f * (1.0f/k_rb_delta) * vg_minf( 0.0f, -p+0.04f ); - rb_tangent_basis( ct->n, ct->t[0], ct->t[1] ); + /* orient inverse inertia tensors */ + v3f raCnI, rbCnI; + m3x3_mulv( ra->iIw, raCn, raCnI ); + m3x3_mulv( rb->iIw, rbCn, rbCnI ); + joint_mass += v3_dot( raCn, raCnI ); + joint_mass += v3_dot( rbCn, rbCnI ); + joint_mass = 1.0f/joint_mass; + + float vd = v3_dot( rcv, delta ), + bias = -(k_joint_bias * k_rb_rate) * dist, + lambda = -(vd + bias) * joint_mass; - ct->norm_impulse = 0.0f; - ct->tangent_impulse[0] = 0.0f; - ct->tangent_impulse[1] = 0.0f; - - ra->manifold_count ++; - count ++; - if( count == 4 ) - return; - } + v3f impulse; + v3_muls( delta, lambda, impulse ); + rb_linear_impulse( ra, wca, impulse ); + v3_muls( delta, -lambda, impulse ); + rb_linear_impulse( rb, wcb, impulse ); + + /* 'fake' snap */ + v3_muladds( ra->co, delta, dist * k_joint_correction, ra->co ); + v3_muladds( rb->co, delta, -dist * k_joint_correction, rb->co ); } } -#endif /* - * Capsule phyics + * Effectors */ -static void debug_capsule( m4x3f m, float height, float radius, u32 colour ) +VG_STATIC void rb_effect_simple_bouyency( rigidbody *ra, v4f plane, + float amt, float drag ) { - v3f last = { 0.0f, 0.0f, radius }; - m4x3f lower, upper; - m3x3_copy( m, lower ); - m3x3_copy( m, upper ); - m4x3_mulv( m, (v3f){0.0f,-height*0.5f+radius,0.0f}, lower[3] ); - m4x3_mulv( m, (v3f){0.0f, height*0.5f-radius,0.0f}, upper[3] ); - - for( int i=0; i<16; i++ ) - { - float t = ((float)(i+1) * (1.0f/16.0f)) * VG_PIf * 2.0f, - s = sinf(t), - c = cosf(t); + /* float */ + float depth = v3_dot( plane, ra->co ) - plane[3], + lambda = vg_clampf( -depth, 0.0f, 1.0f ) * amt; - v3f p = { s*radius, 0.0f, c*radius }; + v3_muladds( ra->v, plane, lambda * k_rb_delta, ra->v ); - v3f p0, p1; - m4x3_mulv( lower, p, p0 ); - m4x3_mulv( lower, last, p1 ); - vg_line( p0, p1, colour ); - - m4x3_mulv( upper, p, p0 ); - m4x3_mulv( upper, last, p1 ); - vg_line( p0, p1, colour ); - - v3_copy( p, last ); - } - - for( int i=0; i<4; i++ ) - { - float t = ((float)(i) * (1.0f/4.0f)) * VG_PIf * 2.0f, - s = sinf(t), - c = cosf(t); - - v3f p = { s*radius, 0.0f, c*radius }; - - v3f p0, p1; - m4x3_mulv( lower, p, p0 ); - m4x3_mulv( upper, p, p1 ); - vg_line( p0, p1, colour ); - - m4x3_mulv( lower, (v3f){0.0f,-radius,0.0f}, p0 ); - m4x3_mulv( upper, (v3f){0.0f, radius,0.0f}, p1 ); - vg_line( p0, p1, colour ); - } + if( depth < 0.0f ) + v3_muls( ra->v, 1.0f-(drag*k_rb_delta), ra->v ); } /* - * BVH implementation, this is ONLY for static rigidbodies, its to slow for + * ----------------------------------------------------------------------------- + * BVH implementation, this is ONLY for VG_STATIC rigidbodies, its to slow for * realtime use. + * ----------------------------------------------------------------------------- */ -static void rb_bh_expand_bound( void *user, boxf bound, u32 item_index ) +VG_STATIC void rb_bh_expand_bound( void *user, boxf bound, u32 item_index ) { rigidbody *rb = &((rigidbody *)user)[ item_index ]; box_concat( bound, rb->bbx_world ); } -static float rb_bh_centroid( void *user, u32 item_index, int axis ) +VG_STATIC float rb_bh_centroid( void *user, u32 item_index, int axis ) { rigidbody *rb = &((rigidbody *)user)[ item_index ]; return (rb->bbx_world[axis][0] + rb->bbx_world[1][axis]) * 0.5f; } -static void rb_bh_swap( void *user, u32 ia, u32 ib ) +VG_STATIC void rb_bh_swap( void *user, u32 ia, u32 ib ) { rigidbody temp, *rba, *rbb; rba = &((rigidbody *)user)[ ia ]; @@ -1206,13 +1937,13 @@ static void rb_bh_swap( void *user, u32 ia, u32 ib ) *rbb = temp; } -static void rb_bh_debug( void *user, u32 item_index ) +VG_STATIC void rb_bh_debug( void *user, u32 item_index ) { rigidbody *rb = &((rigidbody *)user)[ item_index ]; rb_debug( rb, 0xff00ffff ); } -static bh_system bh_system_rigidbodies = +VG_STATIC bh_system bh_system_rigidbodies = { .expand_bound = rb_bh_expand_bound, .item_centroid = rb_bh_centroid,