layout (location = 0) out vec4 oColour; // OpenGL wiki: Recommends do not use vec3 because of drivers. hence the v4s... layout (std140) uniform ub_world_lighting { vec4 g_cube_min; vec4 g_cube_inv_range; vec4 g_water_plane; vec4 g_depth_bounds; vec4 g_daysky_colour; vec4 g_nightsky_colour; vec4 g_sunset_colour; vec4 g_ambient_colour; vec4 g_sunset_ambient; vec4 g_sun_colour; vec4 g_sun_dir; vec4 g_board_0; vec4 g_board_1; float g_water_fog; float g_time; float g_realtime; float g_shadow_length; float g_shadow_spread; float g_time_of_day; float g_day_phase; float g_sunset_phase; int g_light_preview; int g_shadow_samples; int g_debug_indices; int g_debug_complexity; }; uniform sampler2D g_world_depth; uniform samplerBuffer uLightsArray; uniform usampler3D uLightsIndex; #include "light_clearskies.glsl" float world_depth_sample( vec3 pos ) { vec2 depth_coord = (pos.xz - g_depth_bounds.xy) * g_depth_bounds.zw; return texture( g_world_depth, depth_coord ).r; } float world_water_depth( vec3 pos ) { float ref_depth = g_water_plane.y*g_water_plane.w; return world_depth_sample( pos ) - ref_depth; } float shadow_sample( vec3 vdir ) { vec3 sample_pos = aWorldCo + vdir; float height_sample = world_depth_sample( sample_pos ); float fdelta = height_sample - sample_pos.y; return clamp( fdelta, 0.2, 0.4 )-0.2; } float newlight_compute_sun_shadow( vec3 dir ) { if( g_shadow_samples == 0 ) { return 1.0; } float fspread = g_shadow_spread; float flength = g_shadow_length; float famt = 0.0; famt += shadow_sample((dir+vec3(-0.56,0.55, 0.30)*fspread)*flength*0.1); famt += shadow_sample((dir+vec3( 0.80,0.68, 0.34)*fspread)*flength*0.2); famt += shadow_sample((dir+vec3( 0.78,0.07,-0.06)*fspread)*flength*0.3); famt += shadow_sample((dir+vec3(-0.59,0.07,-0.42)*fspread)*flength*0.4); //famt+=shadow_sample((dir+vec3(-0.790,-0.933,-0.875)*fspread)*flength*0.5); //famt+=shadow_sample((dir+vec3( 0.807,-0.690, 0.472)*fspread)*flength*0.6); //famt+=shadow_sample((dir+vec3( 0.522,-0.379, 0.350)*fspread)*flength*0.7); //famt+=shadow_sample((dir+vec3( 0.483, 0.201, 0.306)*fspread)*flength*0.8); return 1.0 - famt; } float newlight_specular( vec3 wnormal, vec3 dir, vec3 halfview, float exponent ) { vec3 specdir = reflect( -dir, wnormal ); return pow(max(dot( halfview, specdir ), 0.0), exponent); } vec3 scene_apply_fog( vec3 vfrag, vec3 colour, float fdist ) { float dist = pow(fdist*0.0010,0.78); return mix( vfrag, colour, min( 1.0, dist ) ); } vec3 rand33(vec3 p3) { p3 = fract(p3 * vec3(.1031, .1030, .0973)); p3 += dot(p3, p3.yxz+33.33); return fract((p3.xxy + p3.yxx)*p3.zyx); } vec3 scene_calculate_light( int light_index, vec3 halfview, vec3 co, vec3 normal ) { vec4 light_colour = texelFetch( uLightsArray, light_index+0 ); vec4 light_co = texelFetch( uLightsArray, light_index+1 ); vec4 light_dir = texelFetch( uLightsArray, light_index+2 ); vec3 light_delta = light_co.xyz-co; float dist2 = dot(light_delta,light_delta); light_delta = normalize( light_delta ); float quadratic = dist2*100.0; float attenuation = 1.0/( 1.0 + quadratic ); attenuation *= max( dot( light_delta, normal ), 0.0 ); float falloff = max( 0.0, 1.0-(dist2*light_co.w) ); if( light_dir.w < 0.999999 ){ float spot_theta = max( 0.0, dot( light_delta, -light_dir.xyz ) ); falloff *= max( 0.0, (spot_theta - light_dir.w) / (1.0-light_dir.w) ); } return light_colour.rgb * attenuation * falloff * step( g_day_phase, light_colour.w ); } vec3 scene_calculate_packed_light_patch( uint packed_index, vec3 halfview, vec3 co, vec3 normal ) { uint light_count = packed_index & 0x3u; vec3 l = vec3(0.0); if( light_count >= 1u ){ int index_0 = int( ((packed_index >> 2u) & 0x3ffu) * 3u ); int index_1 = int( ((packed_index >> 12u) & 0x3ffu) * 3u ); int index_2 = int( ((packed_index >> 22u) & 0x3ffu) * 3u ); l += scene_calculate_light( index_0, halfview, co, normal ); if( light_count >= 2u ){ l += scene_calculate_light( index_1, halfview, co, normal ); if( light_count >= 3u ){ l += scene_calculate_light( index_2, halfview, co, normal ); } } } return l; } vec3 world_compute_lighting( vec3 diffuse, vec3 normal, vec3 co, float light_mask ) { if( g_light_preview == 1 ) diffuse = vec3(0.75); // Lighting vec3 halfview = uCamera - co; float fdist = length(halfview); halfview /= fdist; float world_shadow = newlight_compute_sun_shadow( g_sun_dir.xyz * (1.0/(max(g_sun_dir.y,0.0)+0.2)) ); vec3 total_light = clearskies_lighting( normal, min( light_mask, world_shadow ), halfview ); vec3 cube_coord = (co - g_cube_min.xyz) * g_cube_inv_range.xyz; cube_coord = floor( cube_coord ); if( g_debug_indices == 1 ) { return rand33(cube_coord); } if( g_debug_complexity == 1 ) { ivec3 coord = ivec3( cube_coord ); uvec4 index_sample = texelFetch( uLightsIndex, coord, 0 ); uint light_count = (index_sample.x & 0x3u) + (index_sample.y & 0x3u); return vec3( float(light_count)*(1.0/6.0), 0.0, 0.5 ); } // FIXME: this coord should absolutely must be clamped! ivec3 coord = ivec3( cube_coord ); uvec4 index_sample = texelFetch( uLightsIndex, coord, 0 ); total_light += scene_calculate_packed_light_patch( index_sample.x, halfview, co, normal ) * light_mask; total_light += scene_calculate_packed_light_patch( index_sample.y, halfview, co, normal ) * light_mask; // Take a section of the sky function to give us a matching fog colour vec3 fog_colour = clearskies_ambient( -halfview ); float sun_theta = dot( -halfview, g_sun_dir.xyz ); float sun_size = max( 0.0, sun_theta * 0.5 + 0.5 ); float sun_shape = sun_size * max(g_sun_dir.y,0.0) * 0.5; vec3 sun_colour = mix( vec3(1.0), g_sunset_colour.rgb, g_sunset_phase*0.5 ); sun_colour *= sun_shape; fog_colour += sun_colour; return scene_apply_fog( diffuse * total_light, fog_colour, fdist ); }