medium sized dollop
[carveJwlIkooP6JGAAIwe30JlM.git] / skeleton.h
1 /*
2 * Copyright (C) Mount0 Software, Harry Godden - All Rights Reserved
3 */
4
5 #ifndef SKELETON_H
6 #define SKELETON_H
7
8 #include "model.h"
9
10 struct skeleton
11 {
12 struct skeleton_bone
13 {
14 v3f co, end;
15 u32 parent;
16
17 int deform, ik;
18 int defer;
19
20 mdl_keyframe kf;
21
22 u32 orig_node;
23
24 int collider;
25 boxf hitbox;
26
27 char name[16];
28 }
29 *bones;
30 m4x3f *final_mtx;
31
32 struct skeleton_ik
33 {
34 u32 lower, upper, target, pole;
35 m3x3f ia, ib;
36 }
37 *ik;
38
39 struct skeleton_anim
40 {
41 float rate;
42 u32 length;
43 struct mdl_keyframe *anim_data;
44 char name[32];
45 }
46 *anims;
47
48 u32 bone_count,
49 ik_count,
50 collider_count,
51 anim_count,
52 bindable_count; /* TODO: try to place IK last in the rig from export
53 so that we dont always upload transforms for
54 useless cpu IK bones. */
55 };
56
57 static u32 skeleton_bone_id( struct skeleton *skele, const char *name )
58 {
59 for( u32 i=0; i<skele->bone_count; i++ )
60 {
61 if( !strcmp( skele->bones[i].name, name ))
62 return i;
63 }
64
65 return 0;
66 }
67
68 static void keyframe_copy_pose( mdl_keyframe *kfa, mdl_keyframe *kfb, int num )
69 {
70 for( int i=0; i<num; i++ )
71 kfb[i] = kfa[i];
72 }
73
74 /*
75 * Lerp between two sets of keyframes and store in dest. Rotations use Nlerp.
76 */
77 static void keyframe_lerp_pose( mdl_keyframe *kfa, mdl_keyframe *kfb, float t,
78 mdl_keyframe *kfd, int count )
79 {
80 if( t <= 0.01f )
81 {
82 keyframe_copy_pose( kfa, kfd, count );
83 return;
84 }
85 else if( t >= 0.99f )
86 {
87 keyframe_copy_pose( kfb, kfd, count );
88 return;
89 }
90
91 for( int i=0; i<count; i++ )
92 {
93 v3_lerp( kfa[i].co, kfb[i].co, t, kfd[i].co );
94 q_nlerp( kfa[i].q, kfb[i].q, t, kfd[i].q );
95 v3_lerp( kfa[i].s, kfb[i].s, t, kfd[i].s );
96 }
97 }
98
99 static void skeleton_lerp_pose( struct skeleton *skele,
100 mdl_keyframe *kfa, mdl_keyframe *kfb, float t,
101 mdl_keyframe *kfd )
102 {
103 keyframe_lerp_pose( kfa, kfb, t, kfd, skele->bone_count-1 );
104 }
105
106 /*
107 * Sample animation between 2 closest frames using time value. Output is a
108 * keyframe buffer that is allocated with an appropriate size
109 */
110 static void skeleton_sample_anim( struct skeleton *skele,
111 struct skeleton_anim *anim,
112 float time,
113 mdl_keyframe *output )
114 {
115 float animtime = time*anim->rate;
116
117 u32 frame = ((u32)animtime) % anim->length,
118 next = (frame+1) % anim->length;
119
120 float t = vg_fractf( animtime );
121
122 mdl_keyframe *base = anim->anim_data + (skele->bone_count-1)*frame,
123 *nbase = anim->anim_data + (skele->bone_count-1)*next;
124
125 skeleton_lerp_pose( skele, base, nbase, t, output );
126 }
127
128 static int skeleton_sample_anim_clamped( struct skeleton *skele,
129 struct skeleton_anim *anim,
130 float time,
131 mdl_keyframe *output )
132 {
133 float end = (float)(anim->length-1) / anim->rate;
134 skeleton_sample_anim( skele, anim, vg_minf( end, time ), output );
135
136 if( time > end )
137 return 0;
138 else
139 return 1;
140 }
141
142 typedef enum anim_apply
143 {
144 k_anim_apply_always,
145 k_anim_apply_defer_ik,
146 k_anim_apply_deffered_only
147 }
148 anim_apply;
149
150 static int should_apply_bone( struct skeleton *skele, u32 id, anim_apply type )
151 {
152 struct skeleton_bone *sb = &skele->bones[ id ],
153 *sp = &skele->bones[ sb->parent ];
154
155 if( type == k_anim_apply_defer_ik )
156 {
157 if( (sp->ik && !sb->ik) || sp->defer )
158 {
159 sb->defer = 1;
160 return 0;
161 }
162 else
163 {
164 sb->defer = 0;
165 return 1;
166 }
167 }
168 else if( type == k_anim_apply_deffered_only )
169 {
170 if( sb->defer )
171 return 1;
172 else
173 return 0;
174 }
175
176 return 1;
177 }
178
179 /*
180 * Apply block of keyframes to skeletons final pose
181 */
182 static void skeleton_apply_pose( struct skeleton *skele, mdl_keyframe *pose,
183 anim_apply passtype )
184 {
185 m4x3_identity( skele->final_mtx[0] );
186 skele->bones[0].defer = 0;
187 skele->bones[0].ik = 0;
188
189 for( int i=1; i<skele->bone_count; i++ )
190 {
191 struct skeleton_bone *sb = &skele->bones[i],
192 *sp = &skele->bones[ sb->parent ];
193
194 if( !should_apply_bone( skele, i, passtype ) )
195 continue;
196
197 sb->defer = 0;
198
199 /* process pose */
200 m4x3f posemtx;
201
202 v3f temp_delta;
203 v3_sub( skele->bones[i].co, skele->bones[sb->parent].co, temp_delta );
204
205 /* pose matrix */
206 mdl_keyframe *kf = &pose[i-1];
207 q_m3x3( kf->q, posemtx );
208 v3_copy( kf->co, posemtx[3] );
209 v3_add( temp_delta, posemtx[3], posemtx[3] );
210
211 /* final matrix */
212 m4x3_mul( skele->final_mtx[ sb->parent ], posemtx, skele->final_mtx[i] );
213 }
214 }
215
216 /*
217 * creates the reference inverse matrix for an IK bone, as it has an initial
218 * intrisic rotation based on the direction that the IK is setup..
219 */
220 static void skeleton_inverse_for_ik( struct skeleton *skele,
221 v3f ivaxis,
222 u32 id, m3x3f inverse )
223 {
224 v3_copy( ivaxis, inverse[0] );
225 v3_copy( skele->bones[id].end, inverse[1] );
226 v3_normalize( inverse[1] );
227 v3_cross( inverse[0], inverse[1], inverse[2] );
228 m3x3_transpose( inverse, inverse );
229 }
230
231 /*
232 * Creates inverse rotation matrices which the IK system uses.
233 */
234 static void skeleton_create_inverses( struct skeleton *skele )
235 {
236 /* IK: inverse 'plane-bone space' axis '(^axis,^bone,...)[base] */
237 for( int i=0; i<skele->ik_count; i++ )
238 {
239 struct skeleton_ik *ik = &skele->ik[i];
240
241 m4x3f inverse;
242 v3f iv0, iv1, ivaxis;
243 v3_sub( skele->bones[ik->target].co, skele->bones[ik->lower].co, iv0 );
244 v3_sub( skele->bones[ik->pole].co, skele->bones[ik->lower].co, iv1 );
245 v3_cross( iv0, iv1, ivaxis );
246 v3_normalize( ivaxis );
247
248 skeleton_inverse_for_ik( skele, ivaxis, ik->lower, ik->ia );
249 skeleton_inverse_for_ik( skele, ivaxis, ik->upper, ik->ib );
250 }
251 }
252
253 /*
254 * Apply a model matrix to all bones, should be done last
255 */
256 static void skeleton_apply_transform( struct skeleton *skele, m4x3f transform )
257 {
258 for( int i=0; i<skele->bone_count; i++ )
259 {
260 struct skeleton_bone *sb = &skele->bones[i];
261 m4x3_mul( transform, skele->final_mtx[i], skele->final_mtx[i] );
262 }
263 }
264
265 /*
266 * Apply an inverse matrix to all bones which maps vertices from bind space into
267 * bone relative positions
268 */
269 static void skeleton_apply_inverses( struct skeleton *skele )
270 {
271 for( int i=0; i<skele->bone_count; i++ )
272 {
273 struct skeleton_bone *sb = &skele->bones[i];
274 m4x3f inverse;
275 m3x3_identity( inverse );
276 v3_negate( sb->co, inverse[3] );
277
278 m4x3_mul( skele->final_mtx[i], inverse, skele->final_mtx[i] );
279 }
280 }
281
282 /*
283 * Apply all IK modifiers (2 bone ik reference from blender is supported)
284 */
285 static void skeleton_apply_ik_pass( struct skeleton *skele )
286 {
287 for( int i=0; i<skele->ik_count; i++ )
288 {
289 struct skeleton_ik *ik = &skele->ik[i];
290
291 v3f v0, /* base -> target */
292 v1, /* base -> pole */
293 vaxis;
294
295 v3f co_base,
296 co_target,
297 co_pole;
298
299 v3_copy( skele->final_mtx[ik->lower][3], co_base );
300 v3_copy( skele->final_mtx[ik->target][3], co_target );
301 v3_copy( skele->final_mtx[ik->pole][3], co_pole );
302
303 v3_sub( co_target, co_base, v0 );
304 v3_sub( co_pole, co_base, v1 );
305 v3_cross( v0, v1, vaxis );
306 v3_normalize( vaxis );
307 v3_normalize( v0 );
308 v3_cross( vaxis, v0, v1 );
309
310 /* localize problem into [x:v0,y:v1] 2d plane */
311 v2f base = { v3_dot( v0, co_base ), v3_dot( v1, co_base ) },
312 end = { v3_dot( v0, co_target ), v3_dot( v1, co_target ) },
313 knee;
314
315 /* Compute angles (basic trig)*/
316 v2f delta;
317 v2_sub( end, base, delta );
318
319 float
320 l1 = v3_length( skele->bones[ik->lower].end ),
321 l2 = v3_length( skele->bones[ik->upper].end ),
322 d = vg_clampf( v2_length(delta), fabsf(l1 - l2), l1+l2-0.00001f ),
323 c = acosf( (l1*l1 + d*d - l2*l2) / (2.0f*l1*d) ),
324 rot = atan2f( delta[1], delta[0] ) + c - VG_PIf/2.0f;
325
326 knee[0] = sinf(-rot) * l1;
327 knee[1] = cosf(-rot) * l1;
328
329 m4x3_identity( skele->final_mtx[ik->lower] );
330 m4x3_identity( skele->final_mtx[ik->upper] );
331
332 /* create rotation matrix */
333 v3f co_knee;
334 v3_muladds( co_base, v0, knee[0], co_knee );
335 v3_muladds( co_knee, v1, knee[1], co_knee );
336 vg_line( co_base, co_knee, 0xff00ff00 );
337
338 m4x3f transform;
339 v3_copy( vaxis, transform[0] );
340 v3_muls( v0, knee[0], transform[1] );
341 v3_muladds( transform[1], v1, knee[1], transform[1] );
342 v3_normalize( transform[1] );
343 v3_cross( transform[0], transform[1], transform[2] );
344 v3_copy( co_base, transform[3] );
345
346 m3x3_mul( transform, ik->ia, transform );
347 m4x3_copy( transform, skele->final_mtx[ik->lower] );
348
349 /* upper/knee bone */
350 v3_copy( vaxis, transform[0] );
351 v3_sub( co_target, co_knee, transform[1] );
352 v3_normalize( transform[1] );
353 v3_cross( transform[0], transform[1], transform[2] );
354 v3_copy( co_knee, transform[3] );
355
356 m3x3_mul( transform, ik->ib, transform );
357 m4x3_copy( transform, skele->final_mtx[ik->upper] );
358 }
359 }
360
361 /*
362 * Applies the typical operations that you want for an IK rig:
363 * Pose, IK, Pose(deferred), Inverses, Transform
364 */
365 static void skeleton_apply_standard( struct skeleton *skele, mdl_keyframe *pose,
366 m4x3f transform )
367 {
368 skeleton_apply_pose( skele, pose, k_anim_apply_defer_ik );
369 skeleton_apply_ik_pass( skele );
370 skeleton_apply_pose( skele, pose, k_anim_apply_deffered_only );
371 skeleton_apply_inverses( skele );
372 skeleton_apply_transform( skele, transform );
373 }
374
375 /*
376 * Get an animation by name
377 */
378 static struct skeleton_anim *skeleton_get_anim( struct skeleton *skele,
379 const char *name )
380 {
381 for( int i=0; i<skele->anim_count; i++ )
382 {
383 struct skeleton_anim *anim = &skele->anims[i];
384
385 if( !strcmp( anim->name, name ) )
386 return anim;
387 }
388
389 return NULL;
390 }
391
392 /* Setup an animated skeleton from model */
393 static int skeleton_setup( struct skeleton *skele, mdl_header *mdl )
394 {
395 u32 bone_count = 1, skeleton_root = 0, ik_count = 0, collider_count = 0;
396 skele->bone_count = 0;
397 skele->bones = NULL;
398 skele->final_mtx = NULL;
399 skele->anims = NULL;
400
401 struct classtype_skeleton *inf = NULL;
402
403 for( u32 i=0; i<mdl->node_count; i++ )
404 {
405 mdl_node *pnode = mdl_node_from_id( mdl, i );
406
407 if( pnode->classtype == k_classtype_skeleton )
408 {
409 inf = mdl_get_entdata( mdl, pnode );
410 if( skele->bone_count )
411 {
412 vg_error( "Multiple skeletons in model file\n" );
413 goto error_dealloc;
414 }
415
416 skele->bone_count = inf->channels;
417 skele->ik_count = inf->ik_count;
418 skele->collider_count = inf->collider_count;
419 skele->bones = malloc(sizeof(struct skeleton_bone)*skele->bone_count);
420 skele->ik = malloc(sizeof(struct skeleton_ik)*skele->ik_count);
421 skeleton_root = i;
422 }
423 else if( skele->bone_count )
424 {
425 int is_bone = pnode->classtype == k_classtype_bone;
426
427 if( is_bone )
428 {
429 if( bone_count == skele->bone_count )
430 {
431 vg_error( "too many bones (%u/%u) @%s!\n",
432 bone_count, skele->bone_count,
433 mdl_pstr( mdl, pnode->pstr_name ));
434
435 goto error_dealloc;
436 }
437
438 struct skeleton_bone *sb = &skele->bones[bone_count];
439 struct classtype_bone *bone_inf = mdl_get_entdata( mdl, pnode );
440 int is_ik = bone_inf->ik_target;
441
442 v3_copy( pnode->co, sb->co );
443 v3_copy( pnode->s, sb->end );
444 sb->parent = pnode->parent-skeleton_root;
445 strncpy( sb->name, mdl_pstr(mdl,pnode->pstr_name), 15 );
446 sb->deform = bone_inf->deform;
447
448 if( is_ik )
449 {
450 sb->ik = 1; /* TODO: place into new IK array */
451 skele->bones[ sb->parent ].ik = 1;
452
453 if( ik_count == skele->ik_count )
454 {
455 vg_error( "Too many ik bones, corrupt model file\n" );
456 goto error_dealloc;
457 }
458
459 struct skeleton_ik *ik = &skele->ik[ ik_count ++ ];
460 ik->upper = bone_count;
461 ik->lower = sb->parent;
462 ik->target = bone_inf->ik_target;
463 ik->pole = bone_inf->ik_pole;
464 }
465 else
466 {
467 sb->ik = 0;
468 }
469
470 sb->collider = bone_inf->collider;
471 sb->orig_node = i;
472 box_copy( bone_inf->hitbox, sb->hitbox );
473
474 if( bone_inf->collider )
475 {
476 if( collider_count == skele->collider_count )
477 {
478 vg_error( "Too many collider bones\n" );
479 goto error_dealloc;
480 }
481
482 collider_count ++;
483 }
484
485 bone_count ++;
486 }
487 else
488 {
489 break;
490 }
491 }
492 }
493
494 if( !inf )
495 {
496 vg_error( "No skeleton in model\n" );
497 return 0;
498 }
499
500 if( collider_count != skele->collider_count )
501 {
502 vg_error( "Loaded %u colliders out of %u\n", collider_count,
503 skele->collider_count );
504 goto error_dealloc;
505 }
506
507 if( bone_count != skele->bone_count )
508 {
509 vg_error( "Loaded %u bones out of %u\n", bone_count, skele->bone_count );
510 goto error_dealloc;
511 }
512
513 if( ik_count != skele->ik_count )
514 {
515 vg_error( "Loaded %u ik bones out of %u\n", ik_count, skele->ik_count );
516 goto error_dealloc;
517 }
518
519 /* fill in implicit root bone */
520 v3_zero( skele->bones[0].co );
521 v3_copy( (v3f){0.0f,1.0f,0.0f}, skele->bones[0].end );
522 skele->bones[0].parent = 0xffffffff;
523 skele->bones[0].collider = 0;
524
525 skele->final_mtx = malloc( sizeof(m4x3f) * skele->bone_count );
526 skele->anim_count = inf->anim_count;
527 skele->anims = malloc( sizeof(struct skeleton_anim) * inf->anim_count);
528
529 for( int i=0; i<inf->anim_count; i++ )
530 {
531 mdl_animation *anim =
532 mdl_animation_from_id( mdl, inf->anim_start+i );
533
534 skele->anims[i].rate = anim->rate;
535 skele->anims[i].length = anim->length;
536 strncpy( skele->anims[i].name, mdl_pstr(mdl, anim->pstr_name), 31 );
537
538 u32 total_keyframes = (skele->bone_count-1)*anim->length;
539 size_t block_size = sizeof(mdl_keyframe) * total_keyframes;
540 mdl_keyframe *dst = malloc( block_size );
541
542 skele->anims[i].anim_data = dst;
543 memcpy( dst, mdl_get_animdata( mdl, anim ), block_size );
544 }
545
546 skeleton_create_inverses( skele );
547 vg_success( "Loaded skeleton with %u bones\n", skele->bone_count );
548 vg_success( " %u colliders\n", skele->collider_count );
549 return 1;
550
551 error_dealloc:
552 free( skele->bones );
553 free( skele->ik );
554 return 0;
555 }
556
557 static void skeleton_debug( struct skeleton *skele )
558 {
559 for( int i=0; i<skele->bone_count; i ++ )
560 {
561 struct skeleton_bone *sb = &skele->bones[i];
562
563 v3f p0, p1;
564 v3_copy( sb->co, p0 );
565 v3_add( p0, sb->end, p1 );
566 //vg_line( p0, p1, 0xffffffff );
567
568 m4x3_mulv( skele->final_mtx[i], p0, p0 );
569 m4x3_mulv( skele->final_mtx[i], p1, p1 );
570
571 if( sb->deform )
572 {
573 if( sb->ik )
574 {
575 vg_line( p0, p1, 0xff0000ff );
576 }
577 else
578 {
579 vg_line( p0, p1, 0xffcccccc );
580 }
581 }
582 else
583 vg_line( p0, p1, 0xff00ffff );
584 }
585 }
586
587 #endif /* SKELETON_H */