angle limit constraint
[carveJwlIkooP6JGAAIwe30JlM.git] / skeleton.h
1 /*
2 * Copyright (C) Mount0 Software, Harry Godden - All Rights Reserved
3 */
4
5 #ifndef SKELETON_H
6 #define SKELETON_H
7
8 #include "model.h"
9
10 struct skeleton
11 {
12 struct skeleton_bone
13 {
14 v3f co, end;
15 u32 parent;
16
17 int deform, ik;
18 int defer;
19
20 mdl_keyframe kf;
21
22 u32 orig_node;
23
24 int collider;
25 boxf hitbox;
26
27 char name[16];
28 }
29 *bones;
30 m4x3f *final_mtx;
31
32 struct skeleton_ik
33 {
34 u32 lower, upper, target, pole;
35 m3x3f ia, ib;
36 }
37 *ik;
38
39 struct skeleton_anim
40 {
41 float rate;
42 u32 length;
43 struct mdl_keyframe *anim_data;
44 char name[32];
45 }
46 *anims;
47
48 u32 bone_count,
49 ik_count,
50 collider_count,
51 anim_count,
52 bindable_count; /* TODO: try to place IK last in the rig from export
53 so that we dont always upload transforms for
54 useless cpu IK bones. */
55 };
56
57 static u32 skeleton_bone_id( struct skeleton *skele, const char *name )
58 {
59 for( u32 i=0; i<skele->bone_count; i++ )
60 {
61 if( !strcmp( skele->bones[i].name, name ))
62 return i;
63 }
64 return 0;
65 }
66
67 static void keyframe_copy_pose( mdl_keyframe *kfa, mdl_keyframe *kfb, int num )
68 {
69 for( int i=0; i<num; i++ )
70 kfb[i] = kfa[i];
71 }
72
73 /*
74 * Lerp between two sets of keyframes and store in dest. Rotations use Nlerp.
75 */
76 static void keyframe_lerp_pose( mdl_keyframe *kfa, mdl_keyframe *kfb, float t,
77 mdl_keyframe *kfd, int count )
78 {
79 if( t <= 0.01f )
80 {
81 keyframe_copy_pose( kfa, kfd, count );
82 return;
83 }
84 else if( t >= 0.99f )
85 {
86 keyframe_copy_pose( kfb, kfd, count );
87 return;
88 }
89
90 for( int i=0; i<count; i++ )
91 {
92 v3_lerp( kfa[i].co, kfb[i].co, t, kfd[i].co );
93 q_nlerp( kfa[i].q, kfb[i].q, t, kfd[i].q );
94 v3_lerp( kfa[i].s, kfb[i].s, t, kfd[i].s );
95 }
96 }
97
98 static void skeleton_lerp_pose( struct skeleton *skele,
99 mdl_keyframe *kfa, mdl_keyframe *kfb, float t,
100 mdl_keyframe *kfd )
101 {
102 keyframe_lerp_pose( kfa, kfb, t, kfd, skele->bone_count-1 );
103 }
104
105 /*
106 * Sample animation between 2 closest frames using time value. Output is a
107 * keyframe buffer that is allocated with an appropriate size
108 */
109 static void skeleton_sample_anim( struct skeleton *skele,
110 struct skeleton_anim *anim,
111 float time,
112 mdl_keyframe *output )
113 {
114 float animtime = time*anim->rate;
115
116 u32 frame = ((u32)animtime) % anim->length,
117 next = (frame+1) % anim->length;
118
119 float t = vg_fractf( animtime );
120
121 mdl_keyframe *base = anim->anim_data + (skele->bone_count-1)*frame,
122 *nbase = anim->anim_data + (skele->bone_count-1)*next;
123
124 skeleton_lerp_pose( skele, base, nbase, t, output );
125 }
126
127 static int skeleton_sample_anim_clamped( struct skeleton *skele,
128 struct skeleton_anim *anim,
129 float time,
130 mdl_keyframe *output )
131 {
132 float end = (float)(anim->length-1) / anim->rate;
133 skeleton_sample_anim( skele, anim, vg_minf( end, time ), output );
134
135 if( time > end )
136 return 0;
137 else
138 return 1;
139 }
140
141 typedef enum anim_apply
142 {
143 k_anim_apply_always,
144 k_anim_apply_defer_ik,
145 k_anim_apply_deffered_only
146 }
147 anim_apply;
148
149 static int should_apply_bone( struct skeleton *skele, u32 id, anim_apply type )
150 {
151 struct skeleton_bone *sb = &skele->bones[ id ],
152 *sp = &skele->bones[ sb->parent ];
153
154 if( type == k_anim_apply_defer_ik )
155 {
156 if( (sp->ik && !sb->ik) || sp->defer )
157 {
158 sb->defer = 1;
159 return 0;
160 }
161 else
162 {
163 sb->defer = 0;
164 return 1;
165 }
166 }
167 else if( type == k_anim_apply_deffered_only )
168 {
169 if( sb->defer )
170 return 1;
171 else
172 return 0;
173 }
174
175 return 1;
176 }
177
178 /*
179 * Apply block of keyframes to skeletons final pose
180 */
181 static void skeleton_apply_pose( struct skeleton *skele, mdl_keyframe *pose,
182 anim_apply passtype )
183 {
184 m4x3_identity( skele->final_mtx[0] );
185 skele->bones[0].defer = 0;
186 skele->bones[0].ik = 0;
187
188 for( int i=1; i<skele->bone_count; i++ )
189 {
190 struct skeleton_bone *sb = &skele->bones[i],
191 *sp = &skele->bones[ sb->parent ];
192
193 if( !should_apply_bone( skele, i, passtype ) )
194 continue;
195
196 sb->defer = 0;
197
198 /* process pose */
199 m4x3f posemtx;
200
201 v3f temp_delta;
202 v3_sub( skele->bones[i].co, skele->bones[sb->parent].co, temp_delta );
203
204 /* pose matrix */
205 mdl_keyframe *kf = &pose[i-1];
206 q_m3x3( kf->q, posemtx );
207 v3_copy( kf->co, posemtx[3] );
208 v3_add( temp_delta, posemtx[3], posemtx[3] );
209
210 /* final matrix */
211 m4x3_mul( skele->final_mtx[ sb->parent ], posemtx, skele->final_mtx[i] );
212 }
213 }
214
215 /*
216 * creates the reference inverse matrix for an IK bone, as it has an initial
217 * intrisic rotation based on the direction that the IK is setup..
218 */
219 static void skeleton_inverse_for_ik( struct skeleton *skele,
220 v3f ivaxis,
221 u32 id, m3x3f inverse )
222 {
223 v3_copy( ivaxis, inverse[0] );
224 v3_copy( skele->bones[id].end, inverse[1] );
225 v3_normalize( inverse[1] );
226 v3_cross( inverse[0], inverse[1], inverse[2] );
227 m3x3_transpose( inverse, inverse );
228 }
229
230 /*
231 * Creates inverse rotation matrices which the IK system uses.
232 */
233 static void skeleton_create_inverses( struct skeleton *skele )
234 {
235 /* IK: inverse 'plane-bone space' axis '(^axis,^bone,...)[base] */
236 for( int i=0; i<skele->ik_count; i++ )
237 {
238 struct skeleton_ik *ik = &skele->ik[i];
239
240 m4x3f inverse;
241 v3f iv0, iv1, ivaxis;
242 v3_sub( skele->bones[ik->target].co, skele->bones[ik->lower].co, iv0 );
243 v3_sub( skele->bones[ik->pole].co, skele->bones[ik->lower].co, iv1 );
244 v3_cross( iv0, iv1, ivaxis );
245 v3_normalize( ivaxis );
246
247 skeleton_inverse_for_ik( skele, ivaxis, ik->lower, ik->ia );
248 skeleton_inverse_for_ik( skele, ivaxis, ik->upper, ik->ib );
249 }
250 }
251
252 /*
253 * Apply a model matrix to all bones, should be done last
254 */
255 static void skeleton_apply_transform( struct skeleton *skele, m4x3f transform )
256 {
257 for( int i=0; i<skele->bone_count; i++ )
258 {
259 struct skeleton_bone *sb = &skele->bones[i];
260 m4x3_mul( transform, skele->final_mtx[i], skele->final_mtx[i] );
261 }
262 }
263
264 /*
265 * Apply an inverse matrix to all bones which maps vertices from bind space into
266 * bone relative positions
267 */
268 static void skeleton_apply_inverses( struct skeleton *skele )
269 {
270 for( int i=0; i<skele->bone_count; i++ )
271 {
272 struct skeleton_bone *sb = &skele->bones[i];
273 m4x3f inverse;
274 m3x3_identity( inverse );
275 v3_negate( sb->co, inverse[3] );
276
277 m4x3_mul( skele->final_mtx[i], inverse, skele->final_mtx[i] );
278 }
279 }
280
281 /*
282 * Apply all IK modifiers (2 bone ik reference from blender is supported)
283 */
284 static void skeleton_apply_ik_pass( struct skeleton *skele )
285 {
286 for( int i=0; i<skele->ik_count; i++ )
287 {
288 struct skeleton_ik *ik = &skele->ik[i];
289
290 v3f v0, /* base -> target */
291 v1, /* base -> pole */
292 vaxis;
293
294 v3f co_base,
295 co_target,
296 co_pole;
297
298 v3_copy( skele->final_mtx[ik->lower][3], co_base );
299 v3_copy( skele->final_mtx[ik->target][3], co_target );
300 v3_copy( skele->final_mtx[ik->pole][3], co_pole );
301
302 v3_sub( co_target, co_base, v0 );
303 v3_sub( co_pole, co_base, v1 );
304 v3_cross( v0, v1, vaxis );
305 v3_normalize( vaxis );
306 v3_normalize( v0 );
307 v3_cross( vaxis, v0, v1 );
308
309 /* localize problem into [x:v0,y:v1] 2d plane */
310 v2f base = { v3_dot( v0, co_base ), v3_dot( v1, co_base ) },
311 end = { v3_dot( v0, co_target ), v3_dot( v1, co_target ) },
312 knee;
313
314 /* Compute angles (basic trig)*/
315 v2f delta;
316 v2_sub( end, base, delta );
317
318 float
319 l1 = v3_length( skele->bones[ik->lower].end ),
320 l2 = v3_length( skele->bones[ik->upper].end ),
321 d = vg_clampf( v2_length(delta), fabsf(l1 - l2), l1+l2-0.00001f ),
322 c = acosf( (l1*l1 + d*d - l2*l2) / (2.0f*l1*d) ),
323 rot = atan2f( delta[1], delta[0] ) + c - VG_PIf/2.0f;
324
325 knee[0] = sinf(-rot) * l1;
326 knee[1] = cosf(-rot) * l1;
327
328 m4x3_identity( skele->final_mtx[ik->lower] );
329 m4x3_identity( skele->final_mtx[ik->upper] );
330
331 /* create rotation matrix */
332 v3f co_knee;
333 v3_muladds( co_base, v0, knee[0], co_knee );
334 v3_muladds( co_knee, v1, knee[1], co_knee );
335 vg_line( co_base, co_knee, 0xff00ff00 );
336
337 m4x3f transform;
338 v3_copy( vaxis, transform[0] );
339 v3_muls( v0, knee[0], transform[1] );
340 v3_muladds( transform[1], v1, knee[1], transform[1] );
341 v3_normalize( transform[1] );
342 v3_cross( transform[0], transform[1], transform[2] );
343 v3_copy( co_base, transform[3] );
344
345 m3x3_mul( transform, ik->ia, transform );
346 m4x3_copy( transform, skele->final_mtx[ik->lower] );
347
348 /* upper/knee bone */
349 v3_copy( vaxis, transform[0] );
350 v3_sub( co_target, co_knee, transform[1] );
351 v3_normalize( transform[1] );
352 v3_cross( transform[0], transform[1], transform[2] );
353 v3_copy( co_knee, transform[3] );
354
355 m3x3_mul( transform, ik->ib, transform );
356 m4x3_copy( transform, skele->final_mtx[ik->upper] );
357 }
358 }
359
360 /*
361 * Applies the typical operations that you want for an IK rig:
362 * Pose, IK, Pose(deferred), Inverses, Transform
363 */
364 static void skeleton_apply_standard( struct skeleton *skele, mdl_keyframe *pose,
365 m4x3f transform )
366 {
367 skeleton_apply_pose( skele, pose, k_anim_apply_defer_ik );
368 skeleton_apply_ik_pass( skele );
369 skeleton_apply_pose( skele, pose, k_anim_apply_deffered_only );
370 skeleton_apply_inverses( skele );
371 skeleton_apply_transform( skele, transform );
372 }
373
374 /*
375 * Get an animation by name
376 */
377 static struct skeleton_anim *skeleton_get_anim( struct skeleton *skele,
378 const char *name )
379 {
380 for( int i=0; i<skele->anim_count; i++ )
381 {
382 struct skeleton_anim *anim = &skele->anims[i];
383
384 if( !strcmp( anim->name, name ) )
385 return anim;
386 }
387
388 return NULL;
389 }
390
391 /* Setup an animated skeleton from model */
392 static int skeleton_setup( struct skeleton *skele, mdl_header *mdl )
393 {
394 u32 bone_count = 1, skeleton_root = 0, ik_count = 0, collider_count = 0;
395 skele->bone_count = 0;
396 skele->bones = NULL;
397 skele->final_mtx = NULL;
398 skele->anims = NULL;
399
400 struct classtype_skeleton *inf = NULL;
401
402 for( u32 i=0; i<mdl->node_count; i++ )
403 {
404 mdl_node *pnode = mdl_node_from_id( mdl, i );
405
406 if( pnode->classtype == k_classtype_skeleton )
407 {
408 inf = mdl_get_entdata( mdl, pnode );
409 if( skele->bone_count )
410 {
411 vg_error( "Multiple skeletons in model file\n" );
412 goto error_dealloc;
413 }
414
415 skele->bone_count = inf->channels;
416 skele->ik_count = inf->ik_count;
417 skele->collider_count = inf->collider_count;
418 skele->bones = malloc(sizeof(struct skeleton_bone)*skele->bone_count);
419 skele->ik = malloc(sizeof(struct skeleton_ik)*skele->ik_count);
420 skeleton_root = i;
421 }
422 else if( skele->bone_count )
423 {
424 int is_bone = pnode->classtype == k_classtype_bone;
425
426 if( is_bone )
427 {
428 if( bone_count == skele->bone_count )
429 {
430 vg_error( "too many bones (%u/%u) @%s!\n",
431 bone_count, skele->bone_count,
432 mdl_pstr( mdl, pnode->pstr_name ));
433
434 goto error_dealloc;
435 }
436
437 struct skeleton_bone *sb = &skele->bones[bone_count];
438 struct classtype_bone *bone_inf = mdl_get_entdata( mdl, pnode );
439 int is_ik = bone_inf->ik_target;
440
441 v3_copy( pnode->co, sb->co );
442 v3_copy( pnode->s, sb->end );
443 sb->parent = pnode->parent-skeleton_root;
444 strncpy( sb->name, mdl_pstr(mdl,pnode->pstr_name), 15 );
445 sb->deform = bone_inf->deform;
446
447 if( is_ik )
448 {
449 sb->ik = 1; /* TODO: place into new IK array */
450 skele->bones[ sb->parent ].ik = 1;
451
452 if( ik_count == skele->ik_count )
453 {
454 vg_error( "Too many ik bones, corrupt model file\n" );
455 goto error_dealloc;
456 }
457
458 struct skeleton_ik *ik = &skele->ik[ ik_count ++ ];
459 ik->upper = bone_count;
460 ik->lower = sb->parent;
461 ik->target = bone_inf->ik_target;
462 ik->pole = bone_inf->ik_pole;
463 }
464 else
465 {
466 sb->ik = 0;
467 }
468
469 sb->collider = bone_inf->collider;
470 sb->orig_node = i;
471 box_copy( bone_inf->hitbox, sb->hitbox );
472
473 if( bone_inf->collider )
474 {
475 if( collider_count == skele->collider_count )
476 {
477 vg_error( "Too many collider bones\n" );
478 goto error_dealloc;
479 }
480
481 collider_count ++;
482 }
483
484 bone_count ++;
485 }
486 else
487 {
488 break;
489 }
490 }
491 }
492
493 if( !inf )
494 {
495 vg_error( "No skeleton in model\n" );
496 return 0;
497 }
498
499 if( collider_count != skele->collider_count )
500 {
501 vg_error( "Loaded %u colliders out of %u\n", collider_count,
502 skele->collider_count );
503 goto error_dealloc;
504 }
505
506 if( bone_count != skele->bone_count )
507 {
508 vg_error( "Loaded %u bones out of %u\n", bone_count, skele->bone_count );
509 goto error_dealloc;
510 }
511
512 if( ik_count != skele->ik_count )
513 {
514 vg_error( "Loaded %u ik bones out of %u\n", ik_count, skele->ik_count );
515 goto error_dealloc;
516 }
517
518 /* fill in implicit root bone */
519 v3_zero( skele->bones[0].co );
520 v3_copy( (v3f){0.0f,1.0f,0.0f}, skele->bones[0].end );
521 skele->bones[0].parent = 0xffffffff;
522 skele->bones[0].collider = 0;
523
524 skele->final_mtx = malloc( sizeof(m4x3f) * skele->bone_count );
525 skele->anim_count = inf->anim_count;
526 skele->anims = malloc( sizeof(struct skeleton_anim) * inf->anim_count);
527
528 for( int i=0; i<inf->anim_count; i++ )
529 {
530 mdl_animation *anim =
531 mdl_animation_from_id( mdl, inf->anim_start+i );
532
533 skele->anims[i].rate = anim->rate;
534 skele->anims[i].length = anim->length;
535 strncpy( skele->anims[i].name, mdl_pstr(mdl, anim->pstr_name), 32 );
536
537 u32 total_keyframes = (skele->bone_count-1)*anim->length;
538 size_t block_size = sizeof(mdl_keyframe) * total_keyframes;
539 mdl_keyframe *dst = malloc( block_size );
540
541 skele->anims[i].anim_data = dst;
542 memcpy( dst, mdl_get_animdata( mdl, anim ), block_size );
543 }
544
545 skeleton_create_inverses( skele );
546 vg_success( "Loaded skeleton with %u bones\n", skele->bone_count );
547 vg_success( " %u colliders\n", skele->collider_count );
548 return 1;
549
550 error_dealloc:
551 free( skele->bones );
552 free( skele->ik );
553 return 0;
554 }
555
556 static void skeleton_debug( struct skeleton *skele )
557 {
558 for( int i=0; i<skele->bone_count; i ++ )
559 {
560 struct skeleton_bone *sb = &skele->bones[i];
561
562 v3f p0, p1;
563 v3_copy( sb->co, p0 );
564 v3_add( p0, sb->end, p1 );
565 //vg_line( p0, p1, 0xffffffff );
566
567 m4x3_mulv( skele->final_mtx[i], p0, p0 );
568 m4x3_mulv( skele->final_mtx[i], p1, p1 );
569
570 if( sb->deform )
571 {
572 if( sb->ik )
573 {
574 vg_line( p0, p1, 0xff0000ff );
575 }
576 else
577 {
578 vg_line( p0, p1, 0xffcccccc );
579 }
580 }
581 else
582 vg_line( p0, p1, 0xff00ffff );
583 }
584 }
585
586 #endif /* SKELETON_H */