pre-velocity-change
[carveJwlIkooP6JGAAIwe30JlM.git] / player_skate.c
1 #ifndef PLAYER_SKATE_C
2 #define PLAYER_SKATE_C
3
4 #include "player.h"
5
6 VG_STATIC void player__skate_bind( player_instance *player )
7 {
8 struct player_skate *s = &player->_skate;
9 struct player_avatar *av = player->playeravatar;
10 struct skeleton *sk = &av->sk;
11
12 rb_update_transform( &player->rb );
13 s->anim_stand = skeleton_get_anim( sk, "pose_stand" );
14 s->anim_highg = skeleton_get_anim( sk, "pose_highg" );
15 s->anim_air = skeleton_get_anim( sk, "pose_air" );
16 s->anim_slide = skeleton_get_anim( sk, "pose_slide" );
17 s->anim_push = skeleton_get_anim( sk, "push" );
18 s->anim_push_reverse = skeleton_get_anim( sk, "push_reverse" );
19 s->anim_ollie = skeleton_get_anim( sk, "ollie" );
20 s->anim_ollie_reverse = skeleton_get_anim( sk, "ollie_reverse" );
21 s->anim_grabs = skeleton_get_anim( sk, "grabs" );
22 }
23
24 /*
25 * Collision detection routines
26 *
27 *
28 */
29
30 /*
31 * Does collision detection on a sphere vs world, and applies some smoothing
32 * filters to the manifold afterwards
33 */
34 VG_STATIC int skate_collide_smooth( player_instance *player,
35 m4x3f mtx, rb_sphere *sphere,
36 rb_ct *man )
37 {
38 int len = 0;
39 len = rb_sphere__scene( mtx, sphere, NULL, &world.rb_geo.inf.scene, man );
40
41 for( int i=0; i<len; i++ )
42 {
43 man[i].rba = &player->rb;
44 man[i].rbb = NULL;
45 }
46
47 rb_manifold_filter_coplanar( man, len, 0.03f );
48
49 if( len > 1 )
50 {
51 rb_manifold_filter_backface( man, len );
52 rb_manifold_filter_joint_edges( man, len, 0.03f );
53 rb_manifold_filter_pairs( man, len, 0.03f );
54 }
55 int new_len = rb_manifold_apply_filtered( man, len );
56 if( len && !new_len )
57 len = 1;
58 else
59 len = new_len;
60
61 return len;
62 }
63 /*
64 * Gets the closest grindable edge to the player within max_dist
65 */
66 VG_STATIC struct grind_edge *skate_collect_grind_edge( v3f p0, v3f p1,
67 v3f c0, v3f c1,
68 float max_dist )
69 {
70 bh_iter it;
71 bh_iter_init( 0, &it );
72
73 boxf region;
74
75 box_init_inf( region );
76 box_addpt( region, p0 );
77 box_addpt( region, p1 );
78
79 float k_r = max_dist;
80 v3_add( (v3f){ k_r, k_r, k_r}, region[1], region[1] );
81 v3_add( (v3f){-k_r,-k_r,-k_r}, region[0], region[0] );
82
83 float closest = k_r*k_r;
84 struct grind_edge *closest_edge = NULL;
85
86 int idx;
87 while( bh_next( world.grind_bh, &it, region, &idx ) )
88 {
89 struct grind_edge *edge = &world.grind_edges[ idx ];
90
91 float s,t;
92 v3f pa, pb;
93
94 float d2 =
95 closest_segment_segment( p0, p1, edge->p0, edge->p1, &s,&t, pa, pb );
96
97 if( d2 < closest )
98 {
99 closest = d2;
100 closest_edge = edge;
101 v3_copy( pa, c0 );
102 v3_copy( pb, c1 );
103 }
104 }
105
106 return closest_edge;
107 }
108
109 VG_STATIC int skate_grind_collide( player_instance *player, rb_ct *contact )
110 {
111 v3f p0, p1, c0, c1;
112 v3_muladds( player->rb.co, player->rb.to_world[2], 0.5f, p0 );
113 v3_muladds( player->rb.co, player->rb.to_world[2], -0.5f, p1 );
114 v3_muladds( p0, player->rb.to_world[1], 0.08f, p0 );
115 v3_muladds( p1, player->rb.to_world[1], 0.08f, p1 );
116
117 float const k_r = 0.25f;
118 struct grind_edge *closest_edge = skate_collect_grind_edge( p0, p1,
119 c0, c1, k_r );
120
121 if( closest_edge )
122 {
123 v3f delta;
124 v3_sub( c1, c0, delta );
125
126 if( v3_dot( delta, player->rb.to_world[1] ) > 0.0001f )
127 {
128 contact->p = v3_length( delta );
129 contact->type = k_contact_type_edge;
130 contact->element_id = 0;
131 v3_copy( c1, contact->co );
132 contact->rba = NULL;
133 contact->rbb = NULL;
134
135 v3f edge_dir, axis_dir;
136 v3_sub( closest_edge->p1, closest_edge->p0, edge_dir );
137 v3_normalize( edge_dir );
138 v3_cross( (v3f){0.0f,1.0f,0.0f}, edge_dir, axis_dir );
139 v3_cross( edge_dir, axis_dir, contact->n );
140
141 return 1;
142 }
143 else
144 return 0;
145 }
146
147 return 0;
148 }
149
150 struct grind_info
151 {
152 v3f co, dir, n;
153 };
154
155 VG_STATIC int skate_grind_scansq( v3f pos, v3f dir, float r,
156 struct grind_info *inf )
157 {
158 v4f plane;
159 v3_copy( dir, plane );
160 v3_normalize( plane );
161 plane[3] = v3_dot( plane, pos );
162
163 boxf box;
164 v3_add( pos, (v3f){ r, r, r }, box[1] );
165 v3_sub( pos, (v3f){ r, r, r }, box[0] );
166
167 bh_iter it;
168 bh_iter_init( 0, &it );
169 int idx;
170
171 struct grind_sample
172 {
173 v2f co;
174 v2f normal;
175 v3f normal3,
176 centroid;
177 }
178 samples[48];
179 int sample_count = 0;
180
181 v2f support_min,
182 support_max;
183
184 v3f support_axis;
185 v3_cross( plane, (v3f){0.0f,1.0f,0.0f}, support_axis );
186 v3_normalize( support_axis );
187
188 while( bh_next( world.geo_bh, &it, box, &idx ) )
189 {
190 u32 *ptri = &world.scene_geo->arrindices[ idx*3 ];
191 v3f tri[3];
192
193 for( int j=0; j<3; j++ )
194 v3_copy( world.scene_geo->arrvertices[ptri[j]].co, tri[j] );
195
196 for( int j=0; j<3; j++ )
197 {
198 int i0 = j,
199 i1 = (j+1) % 3;
200
201 struct grind_sample *sample = &samples[ sample_count ];
202 v3f co;
203
204 if( plane_segment( plane, tri[i0], tri[i1], co ) )
205 {
206 v3f d;
207 v3_sub( co, pos, d );
208 if( v3_length2( d ) > r*r )
209 continue;
210
211 v3f va, vb, normal;
212 v3_sub( tri[1], tri[0], va );
213 v3_sub( tri[2], tri[0], vb );
214 v3_cross( va, vb, normal );
215
216 sample->normal[0] = v3_dot( support_axis, normal );
217 sample->normal[1] = normal[1];
218 sample->co[0] = v3_dot( support_axis, d );
219 sample->co[1] = d[1];
220
221 v3_copy( normal, sample->normal3 ); /* normalize later
222 if we want to us it */
223
224 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
225 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
226 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
227
228 v2_normalize( sample->normal );
229 sample_count ++;
230
231 if( sample_count == vg_list_size( samples ) )
232 goto too_many_samples;
233 }
234 }
235 }
236
237 too_many_samples:
238
239 if( sample_count < 2 )
240 return 0;
241
242 v3f
243 average_direction,
244 average_normal;
245
246 v2f min_co, max_co;
247 v2_fill( min_co, INFINITY );
248 v2_fill( max_co, -INFINITY );
249
250 v3_zero( average_direction );
251 v3_zero( average_normal );
252
253 int passed_samples = 0;
254
255 for( int i=0; i<sample_count-1; i++ )
256 {
257 struct grind_sample *si, *sj;
258
259 si = &samples[i];
260
261 for( int j=i+1; j<sample_count; j++ )
262 {
263 if( i == j )
264 continue;
265
266 sj = &samples[j];
267
268 /* non overlapping */
269 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
270 continue;
271
272 /* not sharp angle */
273 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
274 continue;
275
276 /* not convex */
277 v3f v0;
278 v3_sub( sj->centroid, si->centroid, v0 );
279 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
280 v3_dot( v0, sj->normal3 ) <= 0.0f )
281 continue;
282
283 v2_minv( sj->co, min_co, min_co );
284 v2_maxv( sj->co, max_co, max_co );
285
286 v3f n0, n1, dir;
287 v3_copy( si->normal3, n0 );
288 v3_copy( sj->normal3, n1 );
289 v3_cross( n0, n1, dir );
290 v3_normalize( dir );
291
292 /* make sure the directions all face a common hemisphere */
293 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
294 v3_add( average_direction, dir, average_direction );
295
296 if( si->normal3[1] > sj->normal3[1] )
297 v3_add( si->normal3, average_normal, average_normal );
298 else
299 v3_add( sj->normal3, average_normal, average_normal );
300
301 passed_samples ++;
302 }
303 }
304
305 if( !passed_samples )
306 return 0;
307
308 if( (v3_length2( average_direction ) <= 0.001f) ||
309 (v3_length2( average_normal ) <= 0.001f ) )
310 return 0;
311
312 float div = 1.0f/(float)passed_samples;
313 v3_normalize( average_direction );
314 v3_normalize( average_normal );
315
316 v2f average_coord;
317 v2_add( min_co, max_co, average_coord );
318 v2_muls( average_coord, 0.5f, average_coord );
319
320 v3_muls( support_axis, average_coord[0], inf->co );
321 inf->co[1] += average_coord[1];
322 v3_add( pos, inf->co, inf->co );
323 v3_copy( average_normal, inf->n );
324 v3_copy( average_direction, inf->dir );
325
326 vg_line_pt3( inf->co, 0.02f, VG__GREEN );
327 vg_line_arrow( inf->co, average_direction, 0.3f, VG__GREEN );
328 vg_line_arrow( inf->co, inf->n, 0.2f, VG__CYAN );
329
330 return passed_samples;
331 }
332
333 #if 0
334 static inline void skate_grind_coordv2i( v2f co, v2i d )
335 {
336 const float k_inv_res = 1.0f/0.01f;
337 d[0] = floorf( co[0] * k_inv_res );
338 d[1] = floorf( co[1] * k_inv_res );
339 }
340
341 static inline u32 skate_grind_hashv2i( v2i d )
342 {
343 return (d[0] * 92837111) ^ (d[1] * 689287499);
344 }
345
346 static inline u32 skate_grind_hashv2f( v2f co )
347 {
348 v2i d;
349 skate_grind_coordv2i( co, d );
350 return skate_grind_hashv2i( d );
351 }
352
353 VG_STATIC int skate_grind_scansq( player_instance *player, v3f pos,
354 v3f result_co, v3f result_dir, v3f result_n )
355 {
356 v4f plane;
357 v3_copy( player->rb.v, plane );
358 v3_normalize( plane );
359 plane[3] = v3_dot( plane, pos );
360
361 boxf box;
362 float r = k_board_length;
363 v3_add( pos, (v3f){ r, r, r }, box[1] );
364 v3_sub( pos, (v3f){ r, r, r }, box[0] );
365
366 vg_line_boxf( box, VG__BLACK );
367
368 m4x3f mtx;
369 m3x3_copy( player->rb.to_world, mtx );
370 v3_copy( pos, mtx[3] );
371
372 bh_iter it;
373 bh_iter_init( 0, &it );
374 int idx;
375
376 struct grind_sample
377 {
378 v2f co;
379 v2f normal;
380 v3f normal3,
381 centroid;
382 }
383 samples[48];
384
385 int sample_count = 0;
386
387 v2f support_min,
388 support_max;
389
390 v3f support_axis;
391 v3_cross( plane, (v3f){0.0f,1.0f,0.0f}, support_axis );
392 v3_normalize( support_axis );
393
394 while( bh_next( world.geo_bh, &it, box, &idx ) )
395 {
396 u32 *ptri = &world.scene_geo->arrindices[ idx*3 ];
397 v3f tri[3];
398
399 for( int j=0; j<3; j++ )
400 v3_copy( world.scene_geo->arrvertices[ptri[j]].co, tri[j] );
401
402 for( int j=0; j<3; j++ )
403 {
404 int i0 = j,
405 i1 = (j+1) % 3;
406
407 struct grind_sample *sample = &samples[ sample_count ];
408 v3f co;
409
410 if( plane_segment( plane, tri[i0], tri[i1], co ) )
411 {
412 v3f d;
413 v3_sub( co, pos, d );
414 if( v3_length2( d ) > r*r )
415 continue;
416
417 v3f va, vb, normal;
418 v3_sub( tri[1], tri[0], va );
419 v3_sub( tri[2], tri[0], vb );
420 v3_cross( va, vb, normal );
421
422 sample->normal[0] = v3_dot( support_axis, normal );
423 sample->normal[1] = normal[1];
424 sample->co[0] = v3_dot( support_axis, d );
425 sample->co[1] = d[1];
426
427 v3_copy( normal, sample->normal3 ); /* normalize later
428 if we want to us it */
429
430 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
431 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
432 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
433
434 v2_normalize( sample->normal );
435 sample_count ++;
436
437 if( sample_count == vg_list_size( samples ) )
438 {
439 break;
440 }
441 }
442 }
443 }
444
445 if( sample_count < 2 )
446 return 0;
447
448
449
450 /* spacial hashing */
451
452 const int k_hashmap_size = 128;
453 u32 hashmap[k_hashmap_size+1];
454 u32 entries[48];
455
456 for( int i=0; i<k_hashmap_size+1; i++ )
457 hashmap[i] = 0;
458
459 for( int i=0; i<sample_count; i++ )
460 {
461 u32 h = skate_grind_hashv2f( samples[i].co ) % k_hashmap_size;
462 hashmap[ h ] ++;
463 }
464
465 /* partial sums */
466 for( int i=0; i<k_hashmap_size; i++ )
467 {
468 hashmap[i+1] += hashmap[i];
469 }
470
471 /* trash compactor */
472 for( int i=0; i<sample_count; i++ )
473 {
474 u32 h = skate_grind_hashv2f( samples[i].co ) % k_hashmap_size;
475 hashmap[ h ] --;
476
477 entries[ hashmap[h] ] = i;
478 }
479
480
481 v3f
482 average_direction,
483 average_normal;
484
485 v2f min_co, max_co;
486 v2_fill( min_co, INFINITY );
487 v2_fill( max_co, -INFINITY );
488
489 v3_zero( average_direction );
490 v3_zero( average_normal );
491
492 int passed_samples = 0;
493
494 for( int i=0; i<sample_count; i++ )
495 {
496 struct grind_sample *si, *sj;
497 si = &samples[i];
498
499 v2i start;
500 skate_grind_coordv2i( si->co, start );
501
502 v2i offsets[] = { {-1,-1},{ 0,-1},{ 1,-1},
503 {-1, 0},{ 0, 0},{ 1, 0},
504 {-1, 1},{ 0, 1},{ 1, 1} };
505
506 for( int j=0; j<vg_list_size(offsets); j++ )
507 {
508 v2i cell;
509 v2i_add( start, offsets[j], cell );
510
511 u32 h = skate_grind_hashv2i( cell ) % k_hashmap_size;
512
513 int start = hashmap[ h ],
514 end = hashmap[ h+1 ];
515
516 for( int k=start; k<end; k++ )
517 {
518 int idx = entries[ k ];
519 if( idx <= i )
520 continue;
521
522 sj = &samples[idx];
523
524 /* non overlapping */
525 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
526 continue;
527
528 /* not sharp angle */
529 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
530 continue;
531
532 /* not convex */
533 v3f v0;
534 v3_sub( sj->centroid, si->centroid, v0 );
535 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
536 v3_dot( v0, sj->normal3 ) <= 0.0f )
537 continue;
538
539 v2_minv( sj->co, min_co, min_co );
540 v2_maxv( sj->co, max_co, max_co );
541
542 v3f n0, n1, dir;
543 v3_copy( si->normal3, n0 );
544 v3_copy( sj->normal3, n1 );
545 v3_cross( n0, n1, dir );
546 v3_normalize( dir );
547
548 /* make sure the directions all face a common hemisphere */
549 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
550 v3_add( average_direction, dir, average_direction );
551
552 if( si->normal3[1] > sj->normal3[1] )
553 v3_add( si->normal3, average_normal, average_normal );
554 else
555 v3_add( sj->normal3, average_normal, average_normal );
556
557 passed_samples ++;
558 }
559 }
560 }
561
562 if( !passed_samples )
563 return 0;
564
565 if( (v3_length2( average_direction ) <= 0.001f) ||
566 (v3_length2( average_normal ) <= 0.001f ) )
567 return 0;
568
569 float div = 1.0f/(float)passed_samples;
570 v3_normalize( average_direction );
571 v3_normalize( average_normal );
572
573 v2f average_coord;
574 v2_add( min_co, max_co, average_coord );
575 v2_muls( average_coord, 0.5f, average_coord );
576
577
578 v3_muls( support_axis, average_coord[0], result_co );
579 result_co[1] += average_coord[1];
580 v3_add( pos, result_co, result_co );
581
582 #if 0
583 vg_line_pt3( result_co, 0.02f, VG__GREEN );
584
585 v3f p0, p1;
586 v3_muladds( result_co, average_direction, 0.35f, p0 );
587 v3_muladds( result_co, average_direction, -0.35f, p1 );
588 vg_line( p0, p1, VG__PINK );
589 #endif
590
591 v3_copy( average_normal, result_n );
592 v3_copy( average_direction, result_dir );
593
594 return passed_samples;
595 }
596
597 #endif
598
599 /*
600 *
601 * Prediction system
602 *
603 *
604 */
605
606 /*
607 * Trace a path given a velocity rotation.
608 *
609 * TODO: this MIGHT be worth doing RK4 on the gravity field.
610 */
611 VG_STATIC void skate_score_biased_path( v3f co, v3f v, m3x3f vr,
612 struct land_prediction *prediction )
613 {
614 float pstep = VG_TIMESTEP_FIXED * 10.0f;
615 float k_bias = 0.96f;
616
617 v3f pco, pco1, pv;
618 v3_copy( co, pco );
619 v3_muls( v, k_bias, pv );
620
621 m3x3_mulv( vr, pv, pv );
622 v3_muladds( pco, pv, pstep, pco );
623
624 struct grind_edge *best_grind = NULL;
625 float closest_grind = INFINITY;
626
627 float grind_score = INFINITY,
628 air_score = INFINITY,
629 time_to_impact = 0.0f;
630
631 v3f ground_normal,
632 grind_normal;
633
634 v3_copy( (v3f){0.0f,1.0f,0.0f}, ground_normal );
635 v3_copy( (v3f){0.0f,1.0f,0.0f}, grind_normal );
636
637 prediction->log_length = 0;
638 v3_copy( pco, prediction->apex );
639
640 for( int i=0; i<vg_list_size(prediction->log); i++ )
641 {
642 v3_copy( pco, pco1 );
643
644 pv[1] += -k_gravity * pstep;
645
646 m3x3_mulv( vr, pv, pv );
647 v3_muladds( pco, pv, pstep, pco );
648
649 if( pco[1] > prediction->apex[1] )
650 v3_copy( pco, prediction->apex );
651
652 v3f vdir;
653
654 v3_sub( pco, pco1, vdir );
655
656 float l = v3_length( vdir );
657 v3_muls( vdir, 1.0f/l, vdir );
658
659 #if 0
660 v3f c0, c1;
661 struct grind_edge *ge = skate_collect_grind_edge( pco, pco1,
662 c0, c1, 0.4f );
663
664 if( ge && (v3_dot((v3f){0.0f,1.0f,0.0f},vdir) < -0.2f ) )
665 {
666 float d2 = v3_dist2( c0, c1 );
667 if( d2 < closest_grind )
668 {
669 closest_grind = d2;
670 best_grind = ge;
671 grind_score = closest_grind * 0.05f;
672 }
673 }
674 #endif
675
676 /* TODO: binary search grind once we find it, do not need to
677 * recompute scansq, or collision. only distance
678 */
679
680 v3f closest;
681 if( bh_closest_point( world.geo_bh, pco, closest, k_board_length ) != -1 )
682 {
683 struct grind_info inf;
684 if( skate_grind_scansq( closest, vdir, 0.5f, &inf ) )
685 {
686 float score = -v3_dot( pv, inf.n ) * 0.06f;
687
688 if( (score > 0.0f) && (score < grind_score) )
689 {
690 grind_score = score;
691 }
692 }
693 }
694
695 v3f n1;
696
697 float t1;
698 int idx = spherecast_world( pco1, pco, 0.4f, &t1, n1 );
699 if( idx != -1 )
700 {
701 v3_copy( n1, ground_normal );
702 air_score = -v3_dot( pv, n1 );
703
704 u32 vert_index = world.scene_geo->arrindices[ idx*3 ];
705 struct world_material *mat = world_tri_index_material( vert_index );
706
707 /* Bias prediction towords ramps */
708 if( mat->info.flags & k_material_flag_skate_surface )
709 air_score *= 0.1f;
710
711 v3_lerp( pco1, pco, t1, prediction->log[ prediction->log_length ++ ] );
712 time_to_impact += t1 * pstep;
713 break;
714 }
715
716 time_to_impact += pstep;
717 v3_copy( pco, prediction->log[ prediction->log_length ++ ] );
718 }
719
720 if( grind_score < air_score )
721 {
722 prediction->score = grind_score;
723 prediction->type = k_prediction_grind;
724 v3_copy( grind_normal, prediction->n );
725 }
726 else if( air_score < INFINITY )
727 {
728 prediction->score = air_score;
729 prediction->type = k_prediction_land;
730 v3_copy( ground_normal, prediction->n );
731 }
732 else
733 {
734 prediction->score = INFINITY;
735 prediction->type = k_prediction_none;
736 }
737
738 prediction->land_dist = time_to_impact;
739 }
740
741 VG_STATIC
742 void player__approximate_best_trajectory( player_instance *player )
743 {
744 struct player_skate *s = &player->_skate;
745
746 float pstep = VG_TIMESTEP_FIXED * 10.0f;
747 float best_velocity_delta = -9999.9f;
748
749 v3f axis;
750 v3_cross( player->rb.to_world[1], player->rb.v, axis );
751 v3_normalize( axis );
752
753 s->prediction_count = 0;
754 m3x3_identity( s->state.velocity_bias );
755
756 float best_vmod = 0.0f,
757 min_score = INFINITY,
758 max_score = -INFINITY;
759
760 v3_zero( s->state.apex );
761 v3_copy( (v3f){0.0f,1.0f,0.0f}, s->land_normal );
762 /* TODO: Make part of state */
763
764 s->land_dist = 0.0f;
765
766 /*
767 * Search a broad selection of futures
768 */
769 for( int m=-3;m<=12; m++ )
770 {
771 struct land_prediction *p = &s->predictions[ s->prediction_count ++ ];
772
773 float vmod = ((float)m / 15.0f)*0.09f;
774
775 m3x3f bias;
776 v4f bias_q;
777
778 q_axis_angle( bias_q, axis, vmod );
779 q_m3x3( bias_q, bias );
780
781 skate_score_biased_path( player->rb.co, player->rb.v, bias, p );
782
783 if( p->type != k_prediction_none )
784 {
785 if( p->score < min_score )
786 {
787 min_score = p->score;
788 best_vmod = vmod;
789 s->land_dist = p->land_dist;
790 v3_copy( p->apex, s->state.apex );
791 v3_copy( p->n, s->land_normal );
792
793 /* TODO: Store this as pointer? */
794 }
795
796 if( p->score > max_score )
797 max_score = p->score;
798 }
799 }
800
801 v4f vr_q;
802 q_axis_angle( vr_q, axis, best_vmod*0.1f );
803 q_m3x3( vr_q, s->state.velocity_bias );
804
805 q_axis_angle( vr_q, axis, best_vmod );
806 q_m3x3( vr_q, s->state.velocity_bias_pstep );
807
808 /*
809 * Logging
810 */
811 for( int i=0; i<s->prediction_count; i ++ )
812 {
813 struct land_prediction *p = &s->predictions[i];
814
815 float l = p->score;
816
817 if( l < 0.0f )
818 {
819 vg_error( "negative score! (%f)\n", l );
820 }
821
822 l -= min_score;
823 l /= (max_score-min_score);
824 l = 1.0f - l;
825
826 p->score = l;
827 p->colour = l * 255.0f;
828
829 if( p->type == k_prediction_land )
830 p->colour <<= 8;
831
832 p->colour |= 0xff000000;
833 }
834
835
836 v2f steer = { player->input_js1h->axis.value,
837 player->input_js1v->axis.value };
838 v2_normalize_clamp( steer );
839
840 if( (fabsf(steer[1]) > 0.5f) && (s->land_dist >= 1.0f) )
841 {
842 s->state.flip_rate = (1.0f/s->land_dist) * vg_signf(steer[1]) *
843 s->state.reverse ;
844 s->state.flip_time = 0.0f;
845 v3_copy( player->rb.to_world[0], s->state.flip_axis );
846 }
847 else
848 {
849 s->state.flip_rate = 0.0f;
850 v3_zero( s->state.flip_axis );
851 }
852 }
853
854 /*
855 *
856 * Varius physics models
857 * ------------------------------------------------
858 */
859
860 /*
861 * Air control, no real physics
862 */
863 VG_STATIC void skate_apply_air_model( player_instance *player )
864 {
865 struct player_skate *s = &player->_skate;
866
867 if( s->state.activity_prev != k_skate_activity_air )
868 player__approximate_best_trajectory( player );
869
870 m3x3_mulv( s->state.velocity_bias, player->rb.v, player->rb.v );
871
872 #if 0
873 ray_hit hit;
874 /*
875 * Prediction
876 */
877 float pstep = VG_TIMESTEP_FIXED * 1.0f;
878 float k_bias = 0.98f;
879
880 v3f pco, pco1, pv;
881 v3_copy( player->rb.co, pco );
882 v3_muls( player->rb.v, 1.0f, pv );
883
884 float time_to_impact = 0.0f;
885 float limiter = 1.0f;
886
887 struct grind_edge *best_grind = NULL;
888 float closest_grind = INFINITY;
889
890 v3f target_normal = { 0.0f, 1.0f, 0.0f };
891 int has_target = 0;
892
893 for( int i=0; i<250; i++ )
894 {
895 v3_copy( pco, pco1 );
896 m3x3_mulv( s->state.velocity_bias, pv, pv );
897
898 pv[1] += -k_gravity * pstep;
899 v3_muladds( pco, pv, pstep, pco );
900
901 ray_hit contact;
902 v3f vdir;
903
904 v3_sub( pco, pco1, vdir );
905 contact.dist = v3_length( vdir );
906 v3_divs( vdir, contact.dist, vdir);
907
908 v3f c0, c1;
909 struct grind_edge *ge = skate_collect_grind_edge( pco, pco1,
910 c0, c1, 0.4f );
911
912 if( ge && (v3_dot((v3f){0.0f,1.0f,0.0f},vdir) < -0.2f ) )
913 {
914 vg_line( ge->p0, ge->p1, 0xff0000ff );
915 vg_line_cross( pco, 0xff0000ff, 0.25f );
916 has_target = 1;
917 break;
918 }
919
920 float orig_dist = contact.dist;
921 if( ray_world( pco1, vdir, &contact ) )
922 {
923 v3_copy( contact.normal, target_normal );
924 has_target = 1;
925 time_to_impact += (contact.dist/orig_dist)*pstep;
926 vg_line_cross( contact.pos, 0xffff0000, 0.25f );
927 break;
928 }
929 time_to_impact += pstep;
930 }
931 #endif
932
933 float angle = v3_dot( player->rb.to_world[1], s->land_normal );
934 angle = vg_clampf( angle, -1.0f, 1.0f );
935 v3f axis;
936 v3_cross( player->rb.to_world[1], s->land_normal, axis );
937
938 v4f correction;
939 q_axis_angle( correction, axis,
940 acosf(angle)*2.0f*VG_TIMESTEP_FIXED );
941 q_mul( correction, player->rb.q, player->rb.q );
942
943 v2f steer = { player->input_js1h->axis.value,
944 player->input_js1v->axis.value };
945 v2_normalize_clamp( steer );
946
947 //s->land_dist = time_to_impact;
948 s->land_dist = 1.0f;
949 }
950
951 VG_STATIC int player_skate_trick_input( player_instance *player );
952 VG_STATIC void skate_apply_trick_model( player_instance *player )
953 {
954 struct player_skate *s = &player->_skate;
955
956 v3f Fd, Fs, F;
957 v3f strength = { 3.7f, 3.6f, 8.0f };
958
959 v3_muls( s->board_trick_residualv, -4.0f , Fd );
960 v3_muls( s->board_trick_residuald, -10.0f, Fs );
961 v3_add( Fd, Fs, F );
962 v3_mul( strength, F, F );
963
964 v3_muladds( s->board_trick_residualv, F, k_rb_delta,
965 s->board_trick_residualv );
966 v3_muladds( s->board_trick_residuald, s->board_trick_residualv,
967 k_rb_delta, s->board_trick_residuald );
968
969 if( s->state.activity == k_skate_activity_air )
970 {
971 if( v3_length2( s->state.trick_vel ) < 0.0001f )
972 return;
973
974 int carry_on = player_skate_trick_input( player );
975
976 /* we assume velocities share a common divisor, in which case the
977 * interval is the minimum value (if not zero) */
978
979 float min_rate = 99999.0f;
980
981 for( int i=0; i<3; i++ )
982 {
983 float v = s->state.trick_vel[i];
984 if( (v > 0.0f) && (v < min_rate) )
985 min_rate = v;
986 }
987
988 float interval = 1.0f / min_rate,
989 current = floorf( s->state.trick_time / interval ),
990 next_end = (current+1.0f) * interval;
991
992
993 /* integrate trick velocities */
994 v3_muladds( s->state.trick_euler, s->state.trick_vel, k_rb_delta,
995 s->state.trick_euler );
996
997 if( !carry_on && (s->state.trick_time + k_rb_delta >= next_end) )
998 {
999 s->state.trick_time = 0.0f;
1000 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
1001 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
1002 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
1003 v3_copy( s->state.trick_vel, s->board_trick_residualv );
1004 v3_zero( s->state.trick_vel );
1005 }
1006
1007 s->state.trick_time += k_rb_delta;
1008 }
1009 else
1010 {
1011 if( (v3_length2(s->state.trick_vel) >= 0.0001f ) &&
1012 s->state.trick_time > 0.2f)
1013 {
1014 player__dead_transition( player );
1015 }
1016
1017 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
1018 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
1019 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
1020 s->state.trick_time = 0.0f;
1021 v3_zero( s->state.trick_vel );
1022 }
1023 }
1024
1025 VG_STATIC void skate_apply_grab_model( player_instance *player )
1026 {
1027 struct player_skate *s = &player->_skate;
1028
1029 float grabt = player->input_grab->axis.value;
1030
1031 if( grabt > 0.5f )
1032 {
1033 v2_muladds( s->state.grab_mouse_delta, vg.mouse_delta, 0.02f,
1034 s->state.grab_mouse_delta );
1035
1036 v2_normalize_clamp( s->state.grab_mouse_delta );
1037 }
1038 else
1039 v2_zero( s->state.grab_mouse_delta );
1040
1041 s->state.grabbing = vg_lerpf( s->state.grabbing, grabt, 8.4f*k_rb_delta );
1042 }
1043
1044 VG_STATIC void skate_apply_steering_model( player_instance *player )
1045 {
1046 struct player_skate *s = &player->_skate;
1047
1048 /* Steering */
1049 float input = player->input_js1h->axis.value,
1050 grab = player->input_grab->axis.value,
1051 steer = input * (1.0f-(s->state.jump_charge+grab)*0.4f),
1052 steer_scaled = vg_signf(steer) * powf(steer,2.0f) * k_steer_ground;
1053
1054 v3f steer_axis;
1055 v3_muls( player->rb.to_world[1], -vg_signf( steer_scaled ), steer_axis );
1056
1057 float rate = 26.0f,
1058 top = 1.0f;
1059
1060 if( s->state.activity == k_skate_activity_air )
1061 {
1062 rate = 6.0f * fabsf(steer_scaled);
1063 top = 1.5f;
1064 }
1065
1066 else if( s->state.activity >= k_skate_activity_grind_any )
1067 {
1068 rate *= fabsf(steer_scaled);
1069
1070 float a = 0.8f * -steer_scaled * k_rb_delta;
1071
1072 v4f q;
1073 q_axis_angle( q, player->rb.to_world[1], a );
1074 q_mulv( q, s->grind_vec, s->grind_vec );
1075
1076 #if 0
1077 float tilt = player->input_js1v->axis.value;
1078 tilt *= tilt * 0.8f * k_rb_delta;
1079
1080 q_axis_angle( q, player->rb.to_world[0], tilt );
1081 q_mulv( q, s->grind_vec, s->grind_vec );
1082 #endif
1083
1084 v3_normalize( s->grind_vec );
1085 }
1086
1087 float current = v3_dot( player->rb.to_world[1], player->rb.w ),
1088 addspeed = (steer_scaled * -top) - current,
1089 maxaccel = rate * k_rb_delta,
1090 accel = vg_clampf( addspeed, -maxaccel, maxaccel );
1091
1092 v3_muladds( player->rb.w, player->rb.to_world[1], accel, player->rb.w );
1093 }
1094
1095 /*
1096 * Computes friction and surface interface model
1097 */
1098 VG_STATIC void skate_apply_friction_model( player_instance *player )
1099 {
1100 struct player_skate *s = &player->_skate;
1101
1102 /*
1103 * Computing localized friction forces for controlling the character
1104 * Friction across X is significantly more than Z
1105 */
1106
1107 v3f vel;
1108 m3x3_mulv( player->rb.to_local, player->rb.v, vel );
1109 float slip = 0.0f;
1110
1111 if( fabsf(vel[2]) > 0.01f )
1112 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
1113
1114 if( fabsf( slip ) > 1.2f )
1115 slip = vg_signf( slip ) * 1.2f;
1116
1117 s->state.slip = slip;
1118 s->state.reverse = -vg_signf(vel[2]);
1119
1120 vel[0] += vg_cfrictf( vel[0], k_friction_lat * k_rb_delta );
1121 vel[2] += vg_cfrictf( vel[2], k_friction_resistance * k_rb_delta );
1122
1123 /* Pushing additive force */
1124
1125 if( !player->input_jump->button.value )
1126 {
1127 if( player->input_push->button.value )
1128 {
1129 if( (vg.time - s->state.cur_push) > 0.25 )
1130 s->state.start_push = vg.time;
1131
1132 s->state.cur_push = vg.time;
1133
1134 double push_time = vg.time - s->state.start_push;
1135
1136 float cycle_time = push_time*k_push_cycle_rate,
1137 accel = k_push_accel * (sinf(cycle_time)*0.5f+0.5f),
1138 amt = accel * VG_TIMESTEP_FIXED,
1139 current = v3_length( vel ),
1140 new_vel = vg_minf( current + amt, k_max_push_speed ),
1141 delta = new_vel - vg_minf( current, k_max_push_speed );
1142
1143 vel[2] += delta * -s->state.reverse;
1144 }
1145 }
1146
1147 /* Send back to velocity */
1148 m3x3_mulv( player->rb.to_world, vel, player->rb.v );
1149 }
1150
1151 VG_STATIC void skate_apply_jump_model( player_instance *player )
1152 {
1153 struct player_skate *s = &player->_skate;
1154 int charging_jump_prev = s->state.charging_jump;
1155 s->state.charging_jump = player->input_jump->button.value;
1156
1157 /* Cannot charge this in air */
1158 if( s->state.activity == k_skate_activity_air )
1159 {
1160 s->state.charging_jump = 0;
1161 return;
1162 }
1163
1164 if( s->state.charging_jump )
1165 {
1166 s->state.jump_charge += k_rb_delta * k_jump_charge_speed;
1167
1168 if( !charging_jump_prev )
1169 s->state.jump_dir = s->state.reverse>0.0f? 1: 0;
1170 }
1171 else
1172 {
1173 s->state.jump_charge -= k_jump_charge_speed * k_rb_delta;
1174 }
1175
1176 s->state.jump_charge = vg_clampf( s->state.jump_charge, 0.0f, 1.0f );
1177
1178 /* player let go after charging past 0.2: trigger jump */
1179 if( (!s->state.charging_jump) && (s->state.jump_charge > 0.2f) )
1180 {
1181 v3f jumpdir;
1182
1183 /* Launch more up if alignment is up else improve velocity */
1184 float aup = v3_dot( (v3f){0.0f,1.0f,0.0f}, player->rb.to_world[1] ),
1185 mod = 0.5f,
1186 dir = mod + fabsf(aup)*(1.0f-mod);
1187
1188 v3_copy( player->rb.v, jumpdir );
1189 v3_normalize( jumpdir );
1190 v3_muls( jumpdir, 1.0f-dir, jumpdir );
1191 v3_muladds( jumpdir, player->rb.to_world[1], dir, jumpdir );
1192 v3_normalize( jumpdir );
1193
1194 float force = k_jump_force*s->state.jump_charge;
1195 v3_muladds( player->rb.v, jumpdir, force, player->rb.v );
1196 s->state.jump_charge = 0.0f;
1197 s->state.jump_time = vg.time;
1198 s->state.activity = k_skate_activity_air;
1199
1200 v2f steer = { player->input_js1h->axis.value,
1201 player->input_js1v->axis.value };
1202 v2_normalize_clamp( steer );
1203
1204
1205 #if 0
1206 float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
1207 s->state.steery_s = -steer[0] * maxspin;
1208 s->state.steerx = s->state.steerx_s;
1209 s->state.lift_frames ++;
1210 #endif
1211
1212 /* FIXME audio events */
1213 #if 0
1214 audio_lock();
1215 audio_player_set_flags( &audio_player_extra, AUDIO_FLAG_SPACIAL_3D );
1216 audio_player_set_position( &audio_player_extra, player.rb.co );
1217 audio_player_set_vol( &audio_player_extra, 20.0f );
1218 audio_player_playclip( &audio_player_extra, &audio_jumps[rand()%2] );
1219 audio_unlock();
1220 #endif
1221 }
1222 }
1223
1224 VG_STATIC void skate_apply_pump_model( player_instance *player )
1225 {
1226 struct player_skate *s = &player->_skate;
1227
1228 /* Throw / collect routine
1229 *
1230 * TODO: Max speed boost
1231 */
1232 if( player->input_grab->axis.value > 0.5f )
1233 {
1234 if( s->state.activity == k_skate_activity_ground )
1235 {
1236 /* Throw */
1237 v3_muls( player->rb.to_world[1], k_mmthrow_scale, s->state.throw_v );
1238 }
1239 }
1240 else
1241 {
1242 /* Collect */
1243 float doty = v3_dot( player->rb.to_world[1], s->state.throw_v );
1244
1245 v3f Fl, Fv;
1246 v3_muladds( s->state.throw_v, player->rb.to_world[1], -doty, Fl);
1247
1248 if( s->state.activity == k_skate_activity_ground )
1249 {
1250 v3_muladds( player->rb.v, Fl, k_mmcollect_lat, player->rb.v );
1251 v3_muladds( s->state.throw_v, Fl, -k_mmcollect_lat, s->state.throw_v );
1252 }
1253
1254 v3_muls( player->rb.to_world[1], -doty, Fv );
1255 v3_muladds( player->rb.v, Fv, k_mmcollect_vert, player->rb.v );
1256 v3_muladds( s->state.throw_v, Fv, k_mmcollect_vert, s->state.throw_v );
1257 }
1258
1259 /* Decay */
1260 if( v3_length2( s->state.throw_v ) > 0.0001f )
1261 {
1262 v3f dir;
1263 v3_copy( s->state.throw_v, dir );
1264 v3_normalize( dir );
1265
1266 float max = v3_dot( dir, s->state.throw_v ),
1267 amt = vg_minf( k_mmdecay * k_rb_delta, max );
1268 v3_muladds( s->state.throw_v, dir, -amt, s->state.throw_v );
1269 }
1270 }
1271
1272 VG_STATIC void skate_apply_cog_model( player_instance *player )
1273 {
1274 struct player_skate *s = &player->_skate;
1275
1276 v3f ideal_cog, ideal_diff, ideal_dir;
1277 v3_copy( s->state.up_dir, ideal_dir );
1278 v3_normalize( ideal_dir );
1279
1280 v3_muladds( player->rb.co, ideal_dir,
1281 1.0f-player->input_grab->axis.value, ideal_cog );
1282 v3_sub( ideal_cog, s->state.cog, ideal_diff );
1283
1284 /* Apply velocities */
1285 v3f rv;
1286 v3_sub( player->rb.v, s->state.cog_v, rv );
1287
1288 v3f F;
1289 v3_muls( ideal_diff, -k_cog_spring * k_rb_rate, F );
1290 v3_muladds( F, rv, -k_cog_damp * k_rb_rate, F );
1291
1292 float ra = k_cog_mass_ratio,
1293 rb = 1.0f-k_cog_mass_ratio;
1294
1295 /* Apply forces & intergrate */
1296 v3_muladds( s->state.cog_v, F, -rb, s->state.cog_v );
1297 s->state.cog_v[1] += -9.8f * k_rb_delta;
1298 v3_muladds( s->state.cog, s->state.cog_v, k_rb_delta, s->state.cog );
1299 }
1300
1301
1302 VG_STATIC void skate_integrate( player_instance *player )
1303 {
1304 struct player_skate *s = &player->_skate;
1305
1306 float decay_rate = 1.0f - (k_rb_delta * 3.0f),
1307 decay_rate_y = 1.0f;
1308
1309 if( s->state.activity >= k_skate_activity_grind_any )
1310 {
1311 decay_rate = 1.0f-vg_lerpf( 3.0f, 20.0f, s->grind_strength ) * k_rb_delta;
1312 decay_rate_y = decay_rate;
1313 }
1314
1315 float wx = v3_dot( player->rb.w, player->rb.to_world[0] ) * decay_rate,
1316 wy = v3_dot( player->rb.w, player->rb.to_world[1] ) * decay_rate_y,
1317 wz = v3_dot( player->rb.w, player->rb.to_world[2] ) * decay_rate;
1318
1319 v3_muls( player->rb.to_world[0], wx, player->rb.w );
1320 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
1321 v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
1322
1323 s->state.flip_time += s->state.flip_rate * k_rb_delta;
1324 rb_update_transform( &player->rb );
1325 }
1326
1327 /*
1328 * 1 2 or 3
1329 */
1330
1331 VG_STATIC int player_skate_trick_input( player_instance *player )
1332 {
1333 return (player->input_trick0->button.value) |
1334 (player->input_trick1->button.value << 1) |
1335 (player->input_trick2->button.value << 1) |
1336 (player->input_trick2->button.value);
1337 }
1338
1339 VG_STATIC void player__skate_pre_update( player_instance *player )
1340 {
1341 struct player_skate *s = &player->_skate;
1342
1343 if( vg_input_button_down( player->input_use ) )
1344 {
1345 player->subsystem = k_player_subsystem_walk;
1346
1347 v3f angles;
1348 v3_copy( player->cam.angles, angles );
1349 angles[2] = 0.0f;
1350
1351 player__walk_transition( player, angles );
1352 return;
1353 }
1354
1355 if( vg_input_button_down( player->input_reset ) )
1356 {
1357 player->rb.co[1] += 2.0f;
1358 s->state.cog[1] += 2.0f;
1359 q_axis_angle( player->rb.q, (v3f){1.0f,0.0f,0.0f}, VG_PIf * 0.25f );
1360 v3_zero( player->rb.w );
1361 v3_zero( player->rb.v );
1362
1363 rb_update_transform( &player->rb );
1364 }
1365
1366 int trick_id;
1367 if( (s->state.activity == k_skate_activity_air) &&
1368 (trick_id = player_skate_trick_input( player )) )
1369 {
1370 if( (vg.time - s->state.jump_time) < 0.1f )
1371 {
1372 v3_zero( s->state.trick_vel );
1373 s->state.trick_time = 0.0f;
1374
1375 if( trick_id == 1 )
1376 {
1377 s->state.trick_vel[0] = 3.0f;
1378 }
1379 else if( trick_id == 2 )
1380 {
1381 s->state.trick_vel[2] = 3.0f;
1382 }
1383 else if( trick_id == 3 )
1384 {
1385 s->state.trick_vel[0] = 2.0f;
1386 s->state.trick_vel[2] = 2.0f;
1387 }
1388 }
1389 }
1390 }
1391
1392 VG_STATIC void player__skate_post_update( player_instance *player )
1393 {
1394 struct player_skate *s = &player->_skate;
1395
1396 for( int i=0; i<s->prediction_count; i++ )
1397 {
1398 struct land_prediction *p = &s->predictions[i];
1399
1400 for( int j=0; j<p->log_length - 1; j ++ )
1401 {
1402 float brightness = p->score*p->score*p->score;
1403 v3f p1;
1404 v3_lerp( p->log[j], p->log[j+1], brightness, p1 );
1405 vg_line( p->log[j], p1, p->colour );
1406 }
1407
1408 vg_line_cross( p->log[p->log_length-1], p->colour, 0.25f );
1409
1410 v3f p1;
1411 v3_add( p->log[p->log_length-1], p->n, p1 );
1412 vg_line( p->log[p->log_length-1], p1, 0xffffffff );
1413
1414 vg_line_pt3( p->apex, 0.02f, 0xffffffff );
1415 }
1416
1417 vg_line_pt3( s->state.apex, 0.030f, 0xff0000ff );
1418 }
1419
1420 /*
1421 * truck alignment model at ra(local)
1422 * returns 1 if valid surface:
1423 * surface_normal will be filled out with an averaged normal vector
1424 * axel_dir will be the direction from left to right wheels
1425 *
1426 * returns 0 if no good surface found
1427 */
1428 VG_STATIC
1429 int skate_compute_surface_alignment( player_instance *player,
1430 v3f ra, u32 colour,
1431 v3f surface_normal, v3f axel_dir )
1432 {
1433 struct player_skate *s = &player->_skate;
1434
1435 v3f truck, left, right;
1436 m4x3_mulv( player->rb.to_world, ra, truck );
1437 v3_muladds( truck, player->rb.to_world[0], -k_board_width, left );
1438 v3_muladds( truck, player->rb.to_world[0], k_board_width, right );
1439
1440 vg_line( left, right, colour );
1441
1442 v3_muladds( left, player->rb.to_world[1], 0.1f, left );
1443 v3_muladds( right, player->rb.to_world[1], 0.1f, right );
1444
1445 float k_max_truck_flex = VG_PIf * 0.25f;
1446
1447 ray_hit ray_l, ray_r;
1448 ray_l.dist = 0.2f;
1449 ray_r.dist = 0.2f;
1450
1451 v3f dir;
1452 v3_muls( player->rb.to_world[1], -1.0f, dir );
1453
1454 int res_l = ray_world( left, dir, &ray_l ),
1455 res_r = ray_world( right, dir, &ray_r );
1456
1457 /* ignore bad normals */
1458 if( res_l )
1459 if( v3_dot( ray_l.normal, player->rb.to_world[1] ) < 0.7071f )
1460 res_l = 0;
1461
1462 if( res_r )
1463 if( v3_dot( ray_r.normal, player->rb.to_world[1] ) < 0.7071f )
1464 res_r = 0;
1465
1466 v3f v0;
1467 v3f midpoint;
1468 v3f tangent_average;
1469 v3_muladds( truck, player->rb.to_world[1], -k_board_radius, midpoint );
1470 v3_zero( tangent_average );
1471
1472 if( res_l || res_r )
1473 {
1474 v3f p0, p1, t;
1475 v3_copy( midpoint, p0 );
1476 v3_copy( midpoint, p1 );
1477
1478 if( res_l )
1479 {
1480 v3_copy( ray_l.pos, p0 );
1481 v3_cross( ray_l.normal, player->rb.to_world[0], t );
1482 v3_add( t, tangent_average, tangent_average );
1483 }
1484 if( res_r )
1485 {
1486 v3_copy( ray_r.pos, p1 );
1487 v3_cross( ray_r.normal, player->rb.to_world[0], t );
1488 v3_add( t, tangent_average, tangent_average );
1489 }
1490
1491 v3_sub( p1, p0, v0 );
1492 v3_normalize( v0 );
1493 }
1494 else
1495 {
1496 /* fallback: use the closes point to the trucks */
1497 v3f closest;
1498 int idx = bh_closest_point( world.geo_bh, midpoint, closest, 0.1f );
1499
1500 if( idx != -1 )
1501 {
1502 u32 *tri = &world.scene_geo->arrindices[ idx * 3 ];
1503 v3f verts[3];
1504
1505 for( int j=0; j<3; j++ )
1506 v3_copy( world.scene_geo->arrvertices[ tri[j] ].co, verts[j] );
1507
1508 v3f vert0, vert1, n;
1509 v3_sub( verts[1], verts[0], vert0 );
1510 v3_sub( verts[2], verts[0], vert1 );
1511 v3_cross( vert0, vert1, n );
1512 v3_normalize( n );
1513
1514 if( v3_dot( n, player->rb.to_world[1] ) < 0.3f )
1515 return 0;
1516
1517 v3_cross( n, player->rb.to_world[2], v0 );
1518 v3_muladds( v0, player->rb.to_world[2],
1519 -v3_dot( player->rb.to_world[2], v0 ), v0 );
1520 v3_normalize( v0 );
1521
1522 v3f t;
1523 v3_cross( n, player->rb.to_world[0], t );
1524 v3_add( t, tangent_average, tangent_average );
1525 }
1526 else
1527 return 0;
1528 }
1529
1530 v3_muladds( truck, v0, k_board_width, right );
1531 v3_muladds( truck, v0, -k_board_width, left );
1532
1533 vg_line( left, right, VG__WHITE );
1534
1535 v3_normalize( tangent_average );
1536 v3_cross( v0, tangent_average, surface_normal );
1537 v3_copy( v0, axel_dir );
1538
1539 return 1;
1540 }
1541
1542 VG_STATIC void skate_weight_distribute( player_instance *player )
1543 {
1544 struct player_skate *s = &player->_skate;
1545 v3_zero( s->weight_distribution );
1546
1547 int reverse_dir = v3_dot( player->rb.to_world[2], player->rb.v ) < 0.0f?1:-1;
1548
1549 if( s->state.manual_direction == 0 )
1550 {
1551 if( (player->input_js1v->axis.value > 0.7f) &&
1552 (s->state.activity == k_skate_activity_ground) &&
1553 (s->state.jump_charge <= 0.01f) )
1554 s->state.manual_direction = reverse_dir;
1555 }
1556 else
1557 {
1558 if( player->input_js1v->axis.value < 0.1f )
1559 {
1560 s->state.manual_direction = 0;
1561 }
1562 else
1563 {
1564 if( reverse_dir != s->state.manual_direction )
1565 {
1566 #if 0
1567 player__dead_transition( player );
1568 #endif
1569 return;
1570 }
1571 }
1572 }
1573
1574 if( s->state.manual_direction )
1575 {
1576 float amt = vg_minf( player->input_js1v->axis.value * 8.0f, 1.0f );
1577 s->weight_distribution[2] = k_board_length * amt *
1578 (float)s->state.manual_direction;
1579 }
1580
1581 /* TODO: Fall back on land normal */
1582 /* TODO: Lerp weight distribution */
1583 /* TODO: Can start manual only if not charge jump */
1584 if( s->state.manual_direction )
1585 {
1586 v3f plane_z;
1587
1588 m3x3_mulv( player->rb.to_world, s->weight_distribution, plane_z );
1589 v3_negate( plane_z, plane_z );
1590
1591 v3_muladds( plane_z, s->surface_picture,
1592 -v3_dot( plane_z, s->surface_picture ), plane_z );
1593 v3_normalize( plane_z );
1594
1595 v3_muladds( plane_z, s->surface_picture, 0.3f, plane_z );
1596 v3_normalize( plane_z );
1597
1598 v3f p1;
1599 v3_muladds( player->rb.co, plane_z, 1.5f, p1 );
1600 vg_line( player->rb.co, p1, VG__GREEN );
1601
1602 v3f refdir;
1603 v3_muls( player->rb.to_world[2], -(float)s->state.manual_direction,
1604 refdir );
1605
1606 rb_effect_spring_target_vector( &player->rb, refdir, plane_z,
1607 k_manul_spring, k_manul_dampener,
1608 s->substep_delta );
1609 }
1610 }
1611
1612 VG_STATIC void skate_adjust_up_direction( player_instance *player )
1613 {
1614 struct player_skate *s = &player->_skate;
1615
1616 if( s->state.activity == k_skate_activity_ground )
1617 {
1618 v3f target;
1619 v3_copy( s->surface_picture, target );
1620
1621 target[1] += 2.0f * s->surface_picture[1];
1622 v3_normalize( target );
1623
1624 v3_lerp( s->state.up_dir, target,
1625 8.0f * s->substep_delta, s->state.up_dir );
1626 }
1627 else if( s->state.activity == k_skate_activity_air )
1628 {
1629 v3_lerp( s->state.up_dir, player->rb.to_world[1],
1630 8.0f * s->substep_delta, s->state.up_dir );
1631 }
1632 else
1633 {
1634 /* FIXME UNDEFINED! */
1635 vg_warn( "Undefined up target!\n" );
1636
1637 v3_lerp( s->state.up_dir, (v3f){0.0f,1.0f,0.0f},
1638 12.0f * s->substep_delta, s->state.up_dir );
1639 }
1640 }
1641
1642 VG_STATIC int skate_point_visible( v3f origin, v3f target )
1643 {
1644 v3f dir;
1645 v3_sub( target, origin, dir );
1646
1647 ray_hit ray;
1648 ray.dist = v3_length( dir );
1649 v3_muls( dir, 1.0f/ray.dist, dir );
1650 ray.dist -= 0.025f;
1651
1652 if( ray_world( origin, dir, &ray ) )
1653 return 0;
1654
1655 return 1;
1656 }
1657
1658 VG_STATIC void skate_grind_orient( struct grind_info *inf, m3x3f mtx )
1659 {
1660 /* TODO: Is N and Dir really orthogonal? */
1661 v3_copy( inf->dir, mtx[0] );
1662 v3_copy( inf->n, mtx[1] );
1663 v3_cross( mtx[0], mtx[1], mtx[2] );
1664 }
1665
1666 VG_STATIC void skate_grind_friction( player_instance *player,
1667 struct grind_info *inf, float strength )
1668 {
1669 v3f v2;
1670 v3_muladds( player->rb.to_world[2], inf->n,
1671 -v3_dot( player->rb.to_world[2], inf->n ), v2 );
1672
1673 float a = 1.0f-fabsf( v3_dot( v2, inf->dir ) ),
1674 dir = vg_signf( v3_dot( player->rb.v, inf->dir ) ),
1675 F = a * -dir * k_grind_max_friction;
1676
1677 v3_muladds( player->rb.v, inf->dir, F*k_rb_delta*strength, player->rb.v );
1678 }
1679
1680 VG_STATIC void skate_grind_decay( player_instance *player,
1681 struct grind_info *inf, float strength )
1682 {
1683 m3x3f mtx, mtx_inv;
1684 skate_grind_orient( inf, mtx );
1685 m3x3_transpose( mtx, mtx_inv );
1686
1687 v3f v_grind;
1688 m3x3_mulv( mtx_inv, player->rb.v, v_grind );
1689
1690 float decay = 1.0f - ( k_rb_delta * k_grind_decayxy * strength );
1691 v3_mul( v_grind, (v3f){ 1.0f, decay, decay }, v_grind );
1692 m3x3_mulv( mtx, v_grind, player->rb.v );
1693 }
1694
1695 VG_STATIC void skate_grind_truck_apply( player_instance *player,
1696 v3f grind_co, struct grind_info *inf,
1697 float strength )
1698 {
1699 struct player_skate *s = &player->_skate;
1700
1701 v3f delta;
1702 v3_sub( inf->co, grind_co, delta );
1703
1704 /* spring force */
1705 v3_muladds( player->rb.v, delta, k_spring_force*strength*k_rb_delta,
1706 player->rb.v );
1707
1708 skate_grind_decay( player, inf, strength );
1709 skate_grind_friction( player, inf, strength );
1710
1711 /* yeah yeah yeah yeah */
1712 v3f raw, axis;
1713 v3_sub( grind_co, player->rb.co, raw );
1714 v3_muladds( raw, inf->n, -v3_dot( inf->n, raw ), raw );
1715 v3_cross( raw, inf->n, axis );
1716 v3_normalize( axis );
1717
1718 /* orientation */
1719 m3x3f mtx;
1720 skate_grind_orient( inf, mtx );
1721 v3f target_fwd, fwd, up, target_up;
1722 m3x3_mulv( mtx, s->grind_vec, target_fwd );
1723 v3_copy( raw, fwd );
1724 v3_copy( player->rb.to_world[1], up );
1725 v3_copy( inf->n, target_up );
1726
1727 v3_muladds( target_fwd, inf->n, -v3_dot(inf->n,target_fwd), target_fwd );
1728 v3_muladds( fwd, inf->n, -v3_dot(inf->n,fwd), fwd );
1729
1730 v3_normalize( target_fwd );
1731 v3_normalize( fwd );
1732
1733 float way = player->input_js1v->axis.value *
1734 vg_signf( v3_dot( raw, player->rb.v ) );
1735
1736 v4f q;
1737 q_axis_angle( q, axis, VG_PIf*0.125f * way );
1738 q_mulv( q, target_up, target_up );
1739 q_mulv( q, target_fwd, target_fwd );
1740
1741 rb_effect_spring_target_vector( &player->rb, up, target_up,
1742 k_grind_spring,
1743 k_grind_dampener,
1744 k_rb_delta );
1745
1746 rb_effect_spring_target_vector( &player->rb, fwd, target_fwd,
1747 k_grind_spring*strength,
1748 k_grind_dampener*strength,
1749 k_rb_delta );
1750
1751 vg_line_arrow( player->rb.co, target_up, 1.0f, VG__GREEN );
1752 vg_line_arrow( player->rb.co, fwd, 0.8f, VG__RED );
1753 vg_line_arrow( player->rb.co, target_fwd, 1.0f, VG__YELOW );
1754
1755 s->grind_strength = strength;
1756
1757 /* Fake contact */
1758 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1759 m4x3_mulv( player->rb.to_local, grind_co, limit->ra );
1760 m3x3_mulv( player->rb.to_local, inf->n, limit->n );
1761 limit->p = 0.0f;
1762 }
1763
1764 VG_STATIC int skate_grind_truck_singular( player_instance *player, float sign )
1765 {
1766 struct player_skate *s = &player->_skate;
1767 struct grind_info inf;
1768
1769 v3f wheel_co = { 0.0f, 0.0f, sign * k_board_length },
1770 grind_co = { 0.0f, -k_board_radius, sign * k_board_length };
1771
1772 m4x3_mulv( player->rb.to_world, wheel_co, wheel_co );
1773 m4x3_mulv( player->rb.to_world, grind_co, grind_co );
1774
1775 /* Exit condition: lost grind tracking */
1776 if( !skate_grind_scansq( grind_co, player->rb.v, 0.3f, &inf ) )
1777 return 0;
1778
1779 /* Exit condition: cant see grind target directly */
1780 if( !skate_point_visible( wheel_co, inf.co ) )
1781 return 0;
1782
1783 /* Exit condition: minimum velocity not reached, but allow a bit of error */
1784 float dv = fabsf(v3_dot( player->rb.v, inf.dir )),
1785 minv = k_grind_axel_min_vel*0.8f;
1786
1787 if( dv < minv )
1788 return 0;
1789
1790 if( fabsf(v3_dot( inf.dir, s->grind_dir )) < k_grind_max_edge_angle )
1791 return 0;
1792
1793 v3_copy( inf.dir, s->grind_dir );
1794
1795 float t = vg_clampf( (dv-minv)/(k_grind_axel_min_vel-minv), 0.0f, 1.0f );
1796 skate_grind_truck_apply( player, grind_co, &inf, t );
1797 return 1;
1798 }
1799
1800 VG_STATIC int skate_truck_entry_condition( player_instance *player, float sign )
1801 {
1802 struct player_skate *s = &player->_skate;
1803 struct grind_info inf;
1804
1805 /* TODO: Trash compactor this */
1806 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1807
1808 v3f raw, wsp;
1809 m3x3_mulv( player->rb.to_world, ra, raw );
1810 v3_add( player->rb.co, raw, wsp );
1811
1812 if( skate_grind_scansq( wsp, player->rb.v, 0.3, &inf ) )
1813 {
1814 if( fabsf(v3_dot( player->rb.v, inf.dir )) < k_grind_axel_min_vel )
1815 return 0;
1816
1817 /* velocity should be at least 60% aligned */
1818 v3f pv, axis;
1819 v3_cross( inf.n, inf.dir, axis );
1820 v3_muladds( player->rb.v, inf.n, -v3_dot( player->rb.v, inf.n ), pv );
1821
1822 if( v3_length2( pv ) < 0.0001f )
1823 return 0;
1824 v3_normalize( pv );
1825
1826 if( fabsf(v3_dot( pv, inf.dir )) < k_grind_axel_max_angle )
1827 return 0;
1828
1829 /* check for vertical alignment */
1830 if( v3_dot( player->rb.to_world[1], inf.n ) < k_grind_axel_max_vangle )
1831 return 0;
1832
1833 /* TODO: new condition, opposite wheel MUST be in-air or close to it */
1834
1835 v3f local_co, local_dir, local_n;
1836 m4x3_mulv( player->rb.to_local, inf.co, local_co );
1837 m3x3_mulv( player->rb.to_local, inf.dir, local_dir );
1838 m3x3_mulv( player->rb.to_local, inf.n, local_n );
1839
1840 v2f delta = { local_co[0], local_co[2] - k_board_length*sign };
1841
1842 float truck_height = -(k_board_radius+0.03f);
1843
1844 v3f rv;
1845 v3_cross( player->rb.w, raw, rv );
1846 v3_add( player->rb.v, rv, rv );
1847
1848 if( (local_co[1] >= truck_height) &&
1849 (v2_length2( delta ) <= k_board_radius*k_board_radius) &&
1850 (v3_dot( rv, inf.n ) < 0.1f) )
1851 {
1852 m3x3f mtx;
1853 skate_grind_orient( &inf, mtx );
1854 m3x3_transpose( mtx, mtx );
1855 m3x3_mulv( mtx, raw, s->grind_vec );
1856 v3_normalize( s->grind_vec );
1857 v3_copy( inf.dir, s->grind_dir );
1858
1859 skate_grind_truck_apply( player, wsp, &inf, 1.0f );
1860 return 1;
1861 }
1862 }
1863
1864 return 0;
1865 }
1866
1867 VG_STATIC void skate_boardslide_apply( player_instance *player,
1868 struct grind_info *inf )
1869 {
1870 struct player_skate *s = &player->_skate;
1871
1872 v3f local_co, local_dir, local_n;
1873 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1874 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1875 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1876
1877 v3f intersection;
1878 v3_muladds( local_co, local_dir, local_co[0]/-local_dir[0],
1879 intersection );
1880 v3_copy( intersection, s->weight_distribution );
1881
1882 skate_grind_decay( player, inf, 0.1f );
1883 skate_grind_friction( player, inf, 0.25f );
1884
1885 /* direction alignment */
1886 v3f dir, perp;
1887 v3_cross( local_dir, local_n, perp );
1888 v3_muls( local_dir, vg_signf(local_dir[0]), dir );
1889 v3_muls( perp, vg_signf(perp[2]), perp );
1890
1891 m3x3_mulv( player->rb.to_world, dir, dir );
1892 m3x3_mulv( player->rb.to_world, perp, perp );
1893
1894 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1895 dir,
1896 k_grind_spring, k_grind_dampener,
1897 k_rb_delta );
1898
1899 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[2],
1900 perp,
1901 k_grind_spring, k_grind_dampener,
1902 k_rb_delta );
1903
1904 vg_line_arrow( player->rb.co, dir, 0.5f, VG__GREEN );
1905 vg_line_arrow( player->rb.co, perp, 0.5f, VG__BLUE );
1906 }
1907
1908 VG_STATIC int skate_boardslide_entry_condition( player_instance *player )
1909 {
1910 struct player_skate *s = &player->_skate;
1911
1912 struct grind_info inf;
1913 if( skate_grind_scansq( player->rb.co,
1914 player->rb.to_world[0], k_board_length,
1915 &inf ) )
1916 {
1917 v3f local_co, local_dir;
1918 m4x3_mulv( player->rb.to_local, inf.co, local_co );
1919 m3x3_mulv( player->rb.to_local, inf.dir, local_dir );
1920
1921 if( (fabsf(local_co[2]) <= k_board_length) && /* within wood area */
1922 (local_co[1] >= 0.0f) && /* at deck level */
1923 (fabsf(local_dir[0]) >= 0.5f) ) /* perpendicular to us */
1924 {
1925 if( fabsf(v3_dot( player->rb.v, inf.dir )) < k_grind_axel_min_vel )
1926 return 0;
1927
1928 v3_copy( inf.dir, s->grind_dir );
1929
1930 skate_boardslide_apply( player, &inf );
1931 return 1;
1932 }
1933 }
1934
1935 return 0;
1936 }
1937
1938 VG_STATIC int skate_boardslide_singular( player_instance *player )
1939 {
1940 struct player_skate *s = &player->_skate;
1941
1942 struct grind_info inf;
1943 if( !skate_grind_scansq( player->rb.co,
1944 player->rb.to_world[0], k_board_length,
1945 &inf ) )
1946 return 0;
1947
1948 /* Exit condition: cant see grind target directly */
1949 v3f vis;
1950 v3_muladds( player->rb.co, player->rb.to_world[1], 0.2f, vis );
1951 if( !skate_point_visible( vis, inf.co ) )
1952 return 0;
1953
1954 /* Exit condition: minimum velocity not reached, but allow a bit of error
1955 * TODO: trash compactor */
1956 float dv = fabsf(v3_dot( player->rb.v, inf.dir )),
1957 minv = k_grind_axel_min_vel*0.8f;
1958
1959 if( dv < minv )
1960 return 0;
1961
1962 if( fabsf(v3_dot( inf.dir, s->grind_dir )) < k_grind_max_edge_angle )
1963 return 0;
1964 v3_copy( inf.dir, s->grind_dir );
1965
1966 float t = vg_clampf( (dv-minv)/(k_grind_axel_min_vel-minv), 0.0f, 1.0f );
1967
1968 skate_boardslide_apply( player, &inf );
1969 return 1;
1970 }
1971
1972 VG_STATIC enum skate_activity skate_availible_grind( player_instance *player )
1973 {
1974 struct player_skate *s = &player->_skate;
1975
1976 if( s->state.activity == k_skate_activity_grind_boardslide )
1977 {
1978 int result = skate_boardslide_singular( player );
1979
1980 const enum skate_activity table[] =
1981 {
1982 k_skate_activity_undefined,
1983 k_skate_activity_grind_boardslide
1984 };
1985
1986 return table[ result ];
1987 }
1988 if( s->state.activity == k_skate_activity_grind_back50 )
1989 {
1990 int result = skate_grind_truck_singular( player, 1.0f ),
1991 front = 0;//skate_truck_entry_condition( player, -1.0f );
1992
1993 const enum skate_activity table[] =
1994 { /* result | front */
1995 k_skate_activity_undefined, /* 0 0 */
1996 k_skate_activity_grind_front50, /* 0 1 */
1997 k_skate_activity_grind_back50, /* 1 0 */
1998 k_skate_activity_grind_5050 /* 1 1 */
1999 };
2000
2001 return table[ result<<1 | front ];
2002 }
2003 else if( s->state.activity == k_skate_activity_grind_front50 )
2004 {
2005 int result = skate_grind_truck_singular( player, -1.0f ),
2006 back = 0;//skate_truck_entry_condition( player, 1.0f );
2007
2008 const enum skate_activity table[] =
2009 { /* result | back */
2010 k_skate_activity_undefined, /* 0 0 */
2011 k_skate_activity_grind_back50, /* 0 1 */
2012 k_skate_activity_grind_front50, /* 1 0 */
2013 k_skate_activity_grind_5050 /* 1 1 */
2014 };
2015
2016 return table[ result<<1 | back ];
2017 }
2018 else if( s->state.activity == k_skate_activity_grind_5050 )
2019 {
2020 /* FIXME */
2021 return k_skate_activity_grind_back50;
2022 }
2023 else
2024 {
2025 int slide = skate_boardslide_entry_condition( player );
2026
2027 if( slide )
2028 return k_skate_activity_grind_boardslide;
2029
2030 int front = skate_truck_entry_condition( player, -1.0f ),
2031 back = skate_truck_entry_condition( player, 1.0f );
2032
2033 const enum skate_activity table[] =
2034 { /* front | back */
2035 k_skate_activity_undefined, /* 0 0 */
2036 k_skate_activity_grind_back50, /* 0 1 */
2037 k_skate_activity_grind_front50, /* 1 0 */
2038 k_skate_activity_grind_5050 /* 1 1 */
2039 };
2040
2041 return table[ front<<1 | back ];
2042 }
2043
2044 return 0;
2045 }
2046
2047 VG_STATIC void player__skate_update( player_instance *player )
2048 {
2049 struct player_skate *s = &player->_skate;
2050 v3_copy( player->rb.co, s->state.prev_pos );
2051 s->state.activity_prev = s->state.activity;
2052
2053 struct board_collider
2054 {
2055 v3f pos;
2056 float radius;
2057
2058 int apply_angular;
2059 u32 colour;
2060
2061 enum board_collider_state
2062 {
2063 k_collider_state_default,
2064 k_collider_state_disabled,
2065 k_collider_state_colliding
2066 }
2067 state;
2068 }
2069 wheels[] =
2070 {
2071 {
2072 { 0.0f, 0.0f, -k_board_length },
2073 .radius = k_board_radius,
2074 .apply_angular = 1,
2075 .colour = VG__RED
2076 },
2077 {
2078 { 0.0f, 0.0f, k_board_length },
2079 .radius = k_board_radius,
2080 .apply_angular = 1,
2081 .colour = VG__GREEN
2082 },
2083 {
2084 { 0.0f, 0.2f, -k_board_length - k_board_end_radius },
2085 .radius = k_board_end_radius,
2086 .apply_angular = 0,
2087 .colour = VG__YELOW
2088 },
2089 {
2090 { 0.0f, 0.2f, k_board_length + k_board_end_radius },
2091 .radius = k_board_end_radius,
2092 .apply_angular = 0,
2093 .colour = VG__YELOW
2094 },
2095 };
2096
2097 const int k_wheel_count = 2;
2098
2099 s->substep = k_rb_delta;
2100 s->substep_delta = s->substep;
2101 s->limit_count = 0;
2102
2103 int substep_count = 0;
2104
2105 v3_zero( s->surface_picture );
2106
2107 for( int i=0; i<k_wheel_count; i++ )
2108 wheels[i].state = k_collider_state_default;
2109
2110 /* check if we can enter or continue grind */
2111 enum skate_activity grindable_activity = skate_availible_grind( player );
2112 if( grindable_activity != k_skate_activity_undefined )
2113 {
2114 s->state.activity = grindable_activity;
2115 goto grinding;
2116 }
2117
2118 int contact_count = 0;
2119 for( int i=0; i<2; i++ )
2120 {
2121 v3f normal, axel;
2122 if( skate_compute_surface_alignment( player, wheels[i].pos,
2123 wheels[i].colour, normal, axel ) )
2124 {
2125 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
2126 axel,
2127 k_board_spring, k_board_dampener,
2128 s->substep_delta );
2129
2130 v3_add( normal, s->surface_picture, s->surface_picture );
2131 contact_count ++;
2132 }
2133 }
2134
2135 if( contact_count )
2136 {
2137 s->state.activity = k_skate_activity_ground;
2138 v3_normalize( s->surface_picture );
2139
2140 skate_apply_friction_model( player );
2141 skate_weight_distribute( player );
2142 skate_apply_pump_model( player );
2143 }
2144 else
2145 {
2146 s->state.activity = k_skate_activity_air;
2147 skate_apply_air_model( player );
2148 }
2149
2150 grinding:;
2151
2152 if( s->state.activity == k_skate_activity_grind_back50 )
2153 wheels[1].state = k_collider_state_disabled;
2154 if( s->state.activity == k_skate_activity_grind_front50 )
2155 wheels[0].state = k_collider_state_disabled;
2156 if( s->state.activity == k_skate_activity_grind_5050 )
2157 {
2158 wheels[0].state = k_collider_state_disabled;
2159 wheels[1].state = k_collider_state_disabled;
2160 }
2161
2162 /* all activities */
2163 skate_apply_steering_model( player );
2164 skate_adjust_up_direction( player );
2165 skate_apply_cog_model( player );
2166 skate_apply_jump_model( player );
2167 skate_apply_grab_model( player );
2168 skate_apply_trick_model( player );
2169
2170
2171 begin_collision:;
2172
2173 /*
2174 * Phase 0: Continous collision detection
2175 * --------------------------------------------------------------------------
2176 */
2177
2178 v3f head_wp0, head_wp1, start_co;
2179 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp0 );
2180 v3_copy( player->rb.co, start_co );
2181
2182 /* calculate transform one step into future */
2183 v3f future_co;
2184 v4f future_q;
2185 v3_muladds( player->rb.co, player->rb.v, s->substep, future_co );
2186
2187 if( v3_length2( player->rb.w ) > 0.0f )
2188 {
2189 v4f rotation;
2190 v3f axis;
2191 v3_copy( player->rb.w, axis );
2192
2193 float mag = v3_length( axis );
2194 v3_divs( axis, mag, axis );
2195 q_axis_angle( rotation, axis, mag*s->substep );
2196 q_mul( rotation, player->rb.q, future_q );
2197 q_normalize( future_q );
2198 }
2199
2200 /* calculate the minimum time we can move */
2201 float max_time = s->substep;
2202
2203 for( int i=0; i<k_wheel_count; i++ )
2204 {
2205 if( wheels[i].state == k_collider_state_disabled )
2206 continue;
2207
2208 v3f current, future;
2209 q_mulv( future_q, wheels[i].pos, future );
2210 v3_add( future, future_co, future );
2211
2212 q_mulv( player->rb.q, wheels[i].pos, current );
2213 v3_add( current, player->rb.co, current );
2214
2215 float t;
2216 v3f n;
2217
2218 float cast_radius = wheels[i].radius - k_penetration_slop * 2.0f;
2219 if( spherecast_world( current, future, cast_radius, &t, n ) != -1)
2220 max_time = vg_minf( max_time, t * s->substep );
2221 }
2222
2223 /* clamp to a fraction of delta, to prevent locking */
2224 float rate_lock = substep_count;
2225 rate_lock *= k_rb_delta * 0.1f;
2226 rate_lock *= rate_lock;
2227
2228 max_time = vg_maxf( max_time, rate_lock );
2229 s->substep_delta = max_time;
2230
2231 /* integrate */
2232 v3_muladds( player->rb.co, player->rb.v, s->substep_delta, player->rb.co );
2233 if( v3_length2( player->rb.w ) > 0.0f )
2234 {
2235 v4f rotation;
2236 v3f axis;
2237 v3_copy( player->rb.w, axis );
2238
2239 float mag = v3_length( axis );
2240 v3_divs( axis, mag, axis );
2241 q_axis_angle( rotation, axis, mag*s->substep_delta );
2242 q_mul( rotation, player->rb.q, player->rb.q );
2243 }
2244
2245 rb_update_transform( &player->rb );
2246
2247 v3f gravity = { 0.0f, -9.6f, 0.0f };
2248 v3_muladds( player->rb.v, gravity, s->substep_delta, player->rb.v );
2249
2250 s->substep -= s->substep_delta;
2251
2252
2253 rb_ct manifold[128];
2254 int manifold_len = 0;
2255
2256 /*
2257 * Phase -1: head detection
2258 * --------------------------------------------------------------------------
2259 */
2260 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp1 );
2261
2262 #if 0
2263 float t;
2264 v3f n;
2265 if( (v3_dist2( head_wp0, head_wp1 ) > 0.001f) &&
2266 (spherecast_world( head_wp0, head_wp1, 0.2f, &t, n ) != -1) )
2267 {
2268 v3_lerp( start_co, player->rb.co, t, player->rb.co );
2269 rb_update_transform( &player->rb );
2270
2271 player__dead_transition( player );
2272 return;
2273 }
2274 #endif
2275
2276 /*
2277 * Phase 1: Regular collision detection
2278 * TODO: Me might want to automatically add contacts from CCD,
2279 * since at high angular velocities, theres a small change
2280 * that discreet detection will miss.
2281 * --------------------------------------------------------------------------
2282 */
2283
2284 for( int i=0; i<k_wheel_count; i++ )
2285 {
2286 if( wheels[i].state == k_collider_state_disabled )
2287 continue;
2288
2289 m4x3f mtx;
2290 m3x3_identity( mtx );
2291 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2292
2293 rb_sphere collider = { .radius = wheels[i].radius };
2294
2295 rb_ct *man = &manifold[ manifold_len ];
2296
2297 int l = skate_collide_smooth( player, mtx, &collider, man );
2298 if( l )
2299 wheels[i].state = k_collider_state_colliding;
2300
2301 /* for non-angular contacts we just want Y. contact positions are
2302 * snapped to the local xz plane */
2303 if( !wheels[i].apply_angular )
2304 {
2305 for( int j=0; j<l; j++ )
2306 {
2307 v3f ra;
2308 v3_sub( man[j].co, player->rb.co, ra );
2309
2310 float dy = v3_dot( player->rb.to_world[1], ra );
2311 v3_muladds( man[j].co, player->rb.to_world[1], -dy, man[j].co );
2312 }
2313 }
2314
2315 manifold_len += l;
2316 }
2317
2318 float grind_radius = k_board_radius * 0.75f;
2319 rb_capsule capsule = { .height = (k_board_length+0.2f)*2.0f,
2320 .radius=grind_radius };
2321 m4x3f mtx;
2322 v3_muls( player->rb.to_world[0], 1.0f, mtx[0] );
2323 v3_muls( player->rb.to_world[2], -1.0f, mtx[1] );
2324 v3_muls( player->rb.to_world[1], 1.0f, mtx[2] );
2325 v3_muladds( player->rb.to_world[3], player->rb.to_world[1],
2326 grind_radius + k_board_radius*0.25f, mtx[3] );
2327
2328 rb_ct *cman = &manifold[manifold_len];
2329
2330 int l = rb_capsule__scene( mtx, &capsule, NULL, &world.rb_geo.inf.scene,
2331 cman );
2332
2333 /* weld joints */
2334 for( int i=0; i<l; i ++ )
2335 cman[l].type = k_contact_type_edge;
2336 rb_manifold_filter_joint_edges( cman, l, 0.03f );
2337 l = rb_manifold_apply_filtered( cman, l );
2338
2339 manifold_len += l;
2340
2341 debug_capsule( mtx, capsule.radius, capsule.height, VG__WHITE );
2342
2343 /* add limits */
2344 for( int i=0; i<s->limit_count; i++ )
2345 {
2346 struct grind_limit *limit = &s->limits[i];
2347 rb_ct *ct = &manifold[ manifold_len ++ ];
2348 m4x3_mulv( player->rb.to_world, limit->ra, ct->co );
2349 m3x3_mulv( player->rb.to_world, limit->n, ct->n );
2350 ct->p = limit->p;
2351 ct->type = k_contact_type_default;
2352 }
2353
2354 /*
2355 * Phase 3: Dynamics
2356 * --------------------------------------------------------------------------
2357 */
2358
2359 for( int i=0; i<manifold_len; i ++ )
2360 {
2361 rb_prepare_contact( &manifold[i], s->substep_delta );
2362 rb_debug_contact( &manifold[i] );
2363 }
2364
2365 /* yes, we are currently rebuilding mass matrices every frame. too bad! */
2366 v3f extent = { k_board_width, 0.1f, k_board_length };
2367 float ex2 = k_board_interia*extent[0]*extent[0],
2368 ey2 = k_board_interia*extent[1]*extent[1],
2369 ez2 = k_board_interia*extent[2]*extent[2];
2370
2371 float mass = 2.0f * (extent[0]*extent[1]*extent[2]);
2372 float inv_mass = 1.0f/mass;
2373
2374 v3f I;
2375 I[0] = ((1.0f/12.0f) * mass * (ey2+ez2));
2376 I[1] = ((1.0f/12.0f) * mass * (ex2+ez2));
2377 I[2] = ((1.0f/12.0f) * mass * (ex2+ey2));
2378
2379 m3x3f iI;
2380 m3x3_identity( iI );
2381 iI[0][0] = I[0];
2382 iI[1][1] = I[1];
2383 iI[2][2] = I[2];
2384 m3x3_inv( iI, iI );
2385
2386 m3x3f iIw;
2387 m3x3_mul( iI, player->rb.to_local, iIw );
2388 m3x3_mul( player->rb.to_world, iIw, iIw );
2389
2390 v3f world_cog;
2391 m4x3_mulv( player->rb.to_world, s->weight_distribution, world_cog );
2392 vg_line_pt3( world_cog, 0.02f, VG__BLACK );
2393
2394 for( int j=0; j<10; j++ )
2395 {
2396 for( int i=0; i<manifold_len; i++ )
2397 {
2398 /*
2399 * regular dance; calculate velocity & total mass, apply impulse.
2400 */
2401
2402 struct contact *ct = &manifold[i];
2403
2404 v3f rv, delta;
2405 v3_sub( ct->co, world_cog, delta );
2406 v3_cross( player->rb.w, delta, rv );
2407 v3_add( player->rb.v, rv, rv );
2408
2409 v3f raCn;
2410 v3_cross( delta, ct->n, raCn );
2411
2412 v3f raCnI, rbCnI;
2413 m3x3_mulv( iIw, raCn, raCnI );
2414
2415 float normal_mass = 1.0f / (inv_mass + v3_dot(raCn,raCnI)),
2416 vn = v3_dot( rv, ct->n ),
2417 lambda = normal_mass * ( -vn );
2418
2419 float temp = ct->norm_impulse;
2420 ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
2421 lambda = ct->norm_impulse - temp;
2422
2423 v3f impulse;
2424 v3_muls( ct->n, lambda, impulse );
2425
2426 v3_muladds( player->rb.v, impulse, inv_mass, player->rb.v );
2427 v3_cross( delta, impulse, impulse );
2428 m3x3_mulv( iIw, impulse, impulse );
2429 v3_add( impulse, player->rb.w, player->rb.w );
2430
2431 v3_cross( player->rb.w, delta, rv );
2432 v3_add( player->rb.v, rv, rv );
2433 vn = v3_dot( rv, ct->n );
2434 }
2435 }
2436
2437 v3f dt;
2438 rb_depenetrate( manifold, manifold_len, dt );
2439 v3_add( dt, player->rb.co, player->rb.co );
2440 rb_update_transform( &player->rb );
2441
2442 substep_count ++;
2443
2444 if( s->substep >= 0.0001f )
2445 goto begin_collision; /* again! */
2446
2447 /*
2448 * End of collision and dynamics routine
2449 * --------------------------------------------------------------------------
2450 */
2451
2452 for( int i=0; i<k_wheel_count; i++ )
2453 {
2454 m4x3f mtx;
2455 m3x3_copy( player->rb.to_world, mtx );
2456 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2457 debug_sphere( mtx, wheels[i].radius,
2458 (u32[]){ VG__WHITE, VG__BLACK,
2459 wheels[i].colour }[ wheels[i].state ]);
2460 }
2461
2462 skate_integrate( player );
2463 vg_line_pt3( s->state.cog, 0.02f, VG__WHITE );
2464
2465 teleport_gate *gate;
2466 if( (gate = world_intersect_gates( player->rb.co, s->state.prev_pos )) )
2467 {
2468 m4x3_mulv( gate->transport, player->rb.co, player->rb.co );
2469 m3x3_mulv( gate->transport, player->rb.v, player->rb.v );
2470 m4x3_mulv( gate->transport, s->state.cog, s->state.cog );
2471 m3x3_mulv( gate->transport, s->state.cog_v, s->state.cog_v );
2472 m3x3_mulv( gate->transport, s->state.throw_v, s->state.throw_v );
2473 m3x3_mulv( gate->transport, s->state.head_position,
2474 s->state.head_position );
2475
2476 v4f transport_rotation;
2477 m3x3_q( gate->transport, transport_rotation );
2478 q_mul( transport_rotation, player->rb.q, player->rb.q );
2479 rb_update_transform( &player->rb );
2480
2481 s->state_gate_storage = s->state;
2482 player__pass_gate( player, gate );
2483 }
2484 }
2485
2486 VG_STATIC void player__skate_im_gui( player_instance *player )
2487 {
2488 struct player_skate *s = &player->_skate;
2489
2490 /* FIXME: Compression */
2491 player__debugtext( 1, "V: %5.2f %5.2f %5.2f",player->rb.v[0],
2492 player->rb.v[1],
2493 player->rb.v[2] );
2494 player__debugtext( 1, "CO: %5.2f %5.2f %5.2f",player->rb.co[0],
2495 player->rb.co[1],
2496 player->rb.co[2] );
2497 player__debugtext( 1, "W: %5.2f %5.2f %5.2f",player->rb.w[0],
2498 player->rb.w[1],
2499 player->rb.w[2] );
2500
2501 const char *activity_txt[] =
2502 {
2503 "air",
2504 "ground",
2505 "undefined (INVALID)",
2506 "grind_any (INVALID)",
2507 "grind_boardslide",
2508 "grind_noseslide",
2509 "grind_tailslide",
2510 "grind_back50",
2511 "grind_front50",
2512 "grind_5050"
2513 };
2514
2515 player__debugtext( 1, "activity: %s", activity_txt[s->state.activity] );
2516 #if 0
2517 player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
2518 s->state.steerx_s, s->state.steery_s,
2519 k_steer_ground, k_steer_air );
2520 #endif
2521 player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
2522 s->state.flip_time );
2523 player__debugtext( 1, "trickv: %.2f %.2f %.2f",
2524 s->state.trick_vel[0],
2525 s->state.trick_vel[1],
2526 s->state.trick_vel[2] );
2527 player__debugtext( 1, "tricke: %.2f %.2f %.2f",
2528 s->state.trick_euler[0],
2529 s->state.trick_euler[1],
2530 s->state.trick_euler[2] );
2531 }
2532
2533 VG_STATIC void player__skate_animate( player_instance *player,
2534 player_animation *dest )
2535 {
2536 struct player_skate *s = &player->_skate;
2537 struct player_avatar *av = player->playeravatar;
2538 struct skeleton *sk = &av->sk;
2539
2540 /* Head */
2541 float kheight = 2.0f,
2542 kleg = 0.6f;
2543
2544 v3f offset;
2545 v3_zero( offset );
2546
2547 v3f cog_local, cog_ideal;
2548 m4x3_mulv( player->rb.to_local, s->state.cog, cog_local );
2549
2550 v3_copy( s->state.up_dir, cog_ideal );
2551 v3_normalize( cog_ideal );
2552 m3x3_mulv( player->rb.to_local, cog_ideal, cog_ideal );
2553
2554 v3_sub( cog_ideal, cog_local, offset );
2555
2556
2557 v3_muls( offset, 4.0f, offset );
2558 offset[1] *= -1.0f;
2559
2560 float curspeed = v3_length( player->rb.v ),
2561 kickspeed = vg_clampf( curspeed*(1.0f/40.0f), 0.0f, 1.0f ),
2562 kicks = (vg_randf()-0.5f)*2.0f*kickspeed,
2563 sign = vg_signf( kicks );
2564
2565 s->wobble[0] = vg_lerpf( s->wobble[0], kicks*kicks*sign, 6.0f*vg.time_delta);
2566 s->wobble[1] = vg_lerpf( s->wobble[1], s->wobble[0], 2.4f*vg.time_delta);
2567
2568 offset[0] *= 0.26f;
2569 offset[0] += s->wobble[1]*3.0f;
2570
2571 offset[1] *= -0.3f;
2572 offset[2] *= 0.01f;
2573
2574 offset[0]=vg_clampf(offset[0],-0.8f,0.8f)*(1.0f-fabsf(s->blend_slide)*0.9f);
2575 offset[1]=vg_clampf(offset[1],-0.5f,0.0f);
2576
2577 /*
2578 * Animation blending
2579 * ===========================================
2580 */
2581
2582 /* sliding */
2583 {
2584 float desired = vg_clampf( fabsf( s->state.slip ), 0.0f, 1.0f );
2585 s->blend_slide = vg_lerpf( s->blend_slide, desired, 2.4f*vg.time_delta);
2586 }
2587
2588 /* movement information */
2589 {
2590 int iair = s->state.activity == k_skate_activity_air;
2591
2592 float dirz = s->state.reverse > 0.0f? 0.0f: 1.0f,
2593 dirx = s->state.slip < 0.0f? 0.0f: 1.0f,
2594 fly = iair? 1.0f: 0.0f;
2595
2596 s->blend_z = vg_lerpf( s->blend_z, dirz, 2.4f*vg.time_delta );
2597 s->blend_x = vg_lerpf( s->blend_x, dirx, 0.6f*vg.time_delta );
2598 s->blend_fly = vg_lerpf( s->blend_fly, fly, 2.4f*vg.time_delta );
2599 }
2600
2601 mdl_keyframe apose[32], bpose[32];
2602 mdl_keyframe ground_pose[32];
2603 {
2604 /* when the player is moving fast he will crouch down a little bit */
2605 float stand = 1.0f - vg_clampf( curspeed * 0.03f, 0.0f, 1.0f );
2606 s->blend_stand = vg_lerpf( s->blend_stand, stand, 6.0f*vg.time_delta );
2607
2608 /* stand/crouch */
2609 float dir_frame = s->blend_z * (15.0f/30.0f),
2610 stand_blend = offset[1]*-2.0f;
2611
2612 v3f local_cog;
2613 m4x3_mulv( player->rb.to_local, s->state.cog, local_cog );
2614
2615 stand_blend = vg_clampf( 1.0f-local_cog[1], 0, 1 );
2616
2617 skeleton_sample_anim( sk, s->anim_stand, dir_frame, apose );
2618 skeleton_sample_anim( sk, s->anim_highg, dir_frame, bpose );
2619 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
2620
2621 /* sliding */
2622 float slide_frame = s->blend_x * (15.0f/30.0f);
2623 skeleton_sample_anim( sk, s->anim_slide, slide_frame, bpose );
2624 skeleton_lerp_pose( sk, apose, bpose, s->blend_slide, apose );
2625
2626 /* pushing */
2627 double push_time = vg.time - s->state.start_push;
2628 s->blend_push = vg_lerpf( s->blend_push,
2629 (vg.time - s->state.cur_push) < 0.125,
2630 6.0f*vg.time_delta );
2631
2632 float pt = push_time + vg.accumulator;
2633 if( s->state.reverse > 0.0f )
2634 skeleton_sample_anim( sk, s->anim_push, pt, bpose );
2635 else
2636 skeleton_sample_anim( sk, s->anim_push_reverse, pt, bpose );
2637
2638 skeleton_lerp_pose( sk, apose, bpose, s->blend_push, apose );
2639
2640 /* trick setup */
2641 float jump_start_frame = 14.0f/30.0f;
2642
2643 float charge = s->state.jump_charge;
2644 s->blend_jump = vg_lerpf( s->blend_jump, charge, 8.4f*vg.time_delta );
2645
2646 float setup_frame = charge * jump_start_frame,
2647 setup_blend = vg_minf( s->blend_jump, 1.0f );
2648
2649 float jump_frame = (vg.time - s->state.jump_time) + jump_start_frame;
2650 if( jump_frame >= jump_start_frame && jump_frame <= (40.0f/30.0f) )
2651 setup_frame = jump_frame;
2652
2653 struct skeleton_anim *jump_anim = s->state.jump_dir?
2654 s->anim_ollie:
2655 s->anim_ollie_reverse;
2656
2657 skeleton_sample_anim_clamped( sk, jump_anim, setup_frame, bpose );
2658 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
2659 }
2660
2661 mdl_keyframe air_pose[32];
2662 {
2663 float target = -player->input_js1h->axis.value;
2664 s->blend_airdir = vg_lerpf( s->blend_airdir, target, 2.4f*vg.time_delta );
2665
2666 float air_frame = (s->blend_airdir*0.5f+0.5f) * (15.0f/30.0f);
2667 skeleton_sample_anim( sk, s->anim_air, air_frame, apose );
2668
2669 static v2f grab_choice;
2670
2671 v2f grab_input = { player->input_js2h->axis.value,
2672 player->input_js2v->axis.value };
2673 v2_add( s->state.grab_mouse_delta, grab_input, grab_input );
2674 if( v2_length2( grab_input ) <= 0.001f )
2675 grab_input[0] = -1.0f;
2676 else
2677 v2_normalize_clamp( grab_input );
2678 v2_lerp( grab_choice, grab_input, 2.4f*vg.time_delta, grab_choice );
2679
2680 float ang = atan2f( grab_choice[0], grab_choice[1] ),
2681 ang_unit = (ang+VG_PIf) * (1.0f/VG_TAUf),
2682 grab_frame = ang_unit * (15.0f/30.0f);
2683
2684 skeleton_sample_anim( sk, s->anim_grabs, grab_frame, bpose );
2685 skeleton_lerp_pose( sk, apose, bpose, s->state.grabbing, air_pose );
2686 }
2687
2688 skeleton_lerp_pose( sk, ground_pose, air_pose, s->blend_fly, dest->pose );
2689
2690 float add_grab_mod = 1.0f - s->blend_fly;
2691
2692 /* additive effects */
2693 {
2694 u32 apply_to[] = { av->id_hip,
2695 av->id_ik_hand_l,
2696 av->id_ik_hand_r,
2697 av->id_ik_elbow_l,
2698 av->id_ik_elbow_r };
2699
2700 for( int i=0; i<vg_list_size(apply_to); i ++ )
2701 {
2702 dest->pose[apply_to[i]-1].co[0] += offset[0]*add_grab_mod;
2703 dest->pose[apply_to[i]-1].co[2] += offset[2]*add_grab_mod;
2704 }
2705
2706
2707
2708
2709 /* angle correction */
2710 if( v3_length2( s->state.up_dir ) > 0.001f )
2711 {
2712 v3f ndir;
2713 m3x3_mulv( player->rb.to_local, s->state.up_dir, ndir );
2714 v3_normalize( ndir );
2715
2716 v3f up = { 0.0f, 1.0f, 0.0f };
2717
2718 float a = v3_dot( ndir, up );
2719 a = acosf( vg_clampf( a, -1.0f, 1.0f ) );
2720
2721 v3f axis;
2722 v4f q;
2723
2724 v3_cross( up, ndir, axis );
2725 q_axis_angle( q, axis, a );
2726
2727 mdl_keyframe *kf_hip = &dest->pose[av->id_hip-1];
2728
2729 for( int i=0; i<vg_list_size(apply_to); i ++ )
2730 {
2731 mdl_keyframe *kf = &dest->pose[apply_to[i]-1];
2732
2733 v3f v0;
2734 v3_sub( kf->co, kf_hip->co, v0 );
2735 q_mulv( q, v0, v0 );
2736 v3_add( v0, kf_hip->co, kf->co );
2737
2738 q_mul( q, kf->q, kf->q );
2739 q_normalize( kf->q );
2740 }
2741
2742 v3f p1, p2;
2743 m3x3_mulv( player->rb.to_world, up, p1 );
2744 m3x3_mulv( player->rb.to_world, ndir, p2 );
2745
2746 vg_line_arrow( player->rb.co, p1, 0.25f, VG__PINK );
2747 vg_line_arrow( player->rb.co, p2, 0.25f, VG__PINK );
2748 }
2749
2750
2751
2752 mdl_keyframe *kf_board = &dest->pose[av->id_board-1],
2753 *kf_foot_l = &dest->pose[av->id_ik_foot_l-1],
2754 *kf_foot_r = &dest->pose[av->id_ik_foot_r-1];
2755
2756
2757 v4f qtotal;
2758 v4f qtrickr, qyawr, qpitchr, qrollr;
2759 v3f eulerr;
2760
2761
2762 v3_muls( s->board_trick_residuald, VG_TAUf, eulerr );
2763
2764 q_axis_angle( qyawr, (v3f){0.0f,1.0f,0.0f}, eulerr[0] * 0.5f );
2765 q_axis_angle( qpitchr, (v3f){1.0f,0.0f,0.0f}, eulerr[1] );
2766 q_axis_angle( qrollr, (v3f){0.0f,0.0f,1.0f}, eulerr[2] );
2767
2768 q_mul( qpitchr, qrollr, qtrickr );
2769 q_mul( qyawr, qtrickr, qtotal );
2770 q_normalize( qtotal );
2771
2772 q_mul( qtotal, kf_board->q, kf_board->q );
2773
2774
2775 /* trick rotation */
2776 v4f qtrick, qyaw, qpitch, qroll;
2777 v3f euler;
2778 v3_muls( s->state.trick_euler, VG_TAUf, euler );
2779
2780 q_axis_angle( qyaw, (v3f){0.0f,1.0f,0.0f}, euler[0] * 0.5f );
2781 q_axis_angle( qpitch, (v3f){1.0f,0.0f,0.0f}, euler[1] );
2782 q_axis_angle( qroll, (v3f){0.0f,0.0f,1.0f}, euler[2] );
2783
2784 q_mul( qpitch, qroll, qtrick );
2785 q_mul( qyaw, qtrick, qtrick );
2786 q_mul( kf_board->q, qtrick, kf_board->q );
2787 q_normalize( kf_board->q );
2788 }
2789
2790 /* transform */
2791 rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
2792 v3_muladds( dest->root_co, player->rb.to_world[1], -0.1f, dest->root_co );
2793
2794 float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
2795 #if 0
2796 v4f qresy, qresx, qresidual;
2797 m3x3f mtx_residual;
2798 q_axis_angle( qresy, player->rb.to_world[1], s->state.steery_s*substep );
2799 q_axis_angle( qresx, player->rb.to_world[0], s->state.steerx_s*substep );
2800
2801 q_mul( qresy, qresx, qresidual );
2802 q_normalize( qresidual );
2803 q_mul( dest->root_q, qresidual, dest->root_q );
2804 q_normalize( dest->root_q );
2805 #endif
2806
2807 v4f qflip;
2808 if( (s->state.activity == k_skate_activity_air) &&
2809 (fabsf(s->state.flip_rate) > 0.01f) )
2810 {
2811 float t = s->state.flip_time + s->state.flip_rate*substep*k_rb_delta,
2812 angle = vg_clampf( t, -1.0f, 1.0f ) * VG_TAUf,
2813 distm = s->land_dist * fabsf(s->state.flip_rate) * 3.0f,
2814 blend = vg_clampf( 1.0f-distm, 0.0f, 1.0f );
2815
2816 angle = vg_lerpf( angle, vg_signf(s->state.flip_rate) * VG_TAUf, blend );
2817
2818 q_axis_angle( qflip, s->state.flip_axis, angle );
2819 q_mul( qflip, dest->root_q, dest->root_q );
2820 q_normalize( dest->root_q );
2821
2822 v3f rotation_point, rco;
2823 v3_muladds( player->rb.co, player->rb.to_world[1], 0.5f, rotation_point );
2824 v3_sub( dest->root_co, rotation_point, rco );
2825
2826 q_mulv( qflip, rco, rco );
2827 v3_add( rco, rotation_point, dest->root_co );
2828 }
2829 }
2830
2831 VG_STATIC void player__skate_post_animate( player_instance *player )
2832 {
2833 struct player_skate *s = &player->_skate;
2834 struct player_avatar *av = player->playeravatar;
2835
2836 player->cam_velocity_influence = 1.0f;
2837
2838 v3f head = { 0.0f, 1.8f, 0.0f }; /* FIXME: Viewpoint entity */
2839 m4x3_mulv( av->sk.final_mtx[ av->id_head ], head, s->state.head_position );
2840 m4x3_mulv( player->rb.to_local, s->state.head_position,
2841 s->state.head_position );
2842 }
2843
2844 VG_STATIC void player__skate_reset_animator( player_instance *player )
2845 {
2846 struct player_skate *s = &player->_skate;
2847
2848 if( s->state.activity == k_skate_activity_air )
2849 s->blend_fly = 1.0f;
2850 else
2851 s->blend_fly = 0.0f;
2852
2853 s->blend_slide = 0.0f;
2854 s->blend_z = 0.0f;
2855 s->blend_x = 0.0f;
2856 s->blend_stand = 0.0f;
2857 s->blend_push = 0.0f;
2858 s->blend_jump = 0.0f;
2859 s->blend_airdir = 0.0f;
2860 }
2861
2862 VG_STATIC void player__skate_clear_mechanics( player_instance *player )
2863 {
2864 struct player_skate *s = &player->_skate;
2865 s->state.jump_charge = 0.0f;
2866 s->state.lift_frames = 0;
2867 s->state.flip_rate = 0.0f;
2868 #if 0
2869 s->state.steery = 0.0f;
2870 s->state.steerx = 0.0f;
2871 s->state.steery_s = 0.0f;
2872 s->state.steerx_s = 0.0f;
2873 #endif
2874 s->state.reverse = 0.0f;
2875 s->state.slip = 0.0f;
2876 v3_copy( player->rb.co, s->state.prev_pos );
2877
2878 m3x3_identity( s->state.velocity_bias );
2879 m3x3_identity( s->state.velocity_bias_pstep );
2880 v3_zero( s->state.throw_v );
2881 v3_zero( s->state.trick_vel );
2882 v3_zero( s->state.trick_euler );
2883 }
2884
2885 VG_STATIC void player__skate_reset( player_instance *player,
2886 struct respawn_point *rp )
2887 {
2888 struct player_skate *s = &player->_skate;
2889 v3_muladds( player->rb.co, player->rb.to_world[1], 1.0f, s->state.cog );
2890 v3_zero( player->rb.v );
2891 v3_zero( s->state.cog_v );
2892 v4_copy( rp->q, player->rb.q );
2893
2894 s->state.activity = k_skate_activity_air;
2895 s->state.activity_prev = k_skate_activity_air;
2896
2897 player__skate_clear_mechanics( player );
2898 player__skate_reset_animator( player );
2899
2900 v3_zero( s->state.head_position );
2901 s->state.head_position[1] = 1.8f;
2902 }
2903
2904 #endif /* PLAYER_SKATE_C */