freds suggestion
[carveJwlIkooP6JGAAIwe30JlM.git] / player_skate.c
1 #ifndef PLAYER_SKATE_C
2 #define PLAYER_SKATE_C
3
4 #include "player.h"
5
6 VG_STATIC void player__skate_bind( player_instance *player )
7 {
8 struct player_skate *s = &player->_skate;
9 struct player_avatar *av = player->playeravatar;
10 struct skeleton *sk = &av->sk;
11
12 rb_update_transform( &player->rb );
13 s->anim_stand = skeleton_get_anim( sk, "pose_stand" );
14 s->anim_highg = skeleton_get_anim( sk, "pose_highg" );
15 s->anim_air = skeleton_get_anim( sk, "pose_air" );
16 s->anim_slide = skeleton_get_anim( sk, "pose_slide" );
17 s->anim_push = skeleton_get_anim( sk, "push" );
18 s->anim_push_reverse = skeleton_get_anim( sk, "push_reverse" );
19 s->anim_ollie = skeleton_get_anim( sk, "ollie" );
20 s->anim_ollie_reverse = skeleton_get_anim( sk, "ollie_reverse" );
21 s->anim_grabs = skeleton_get_anim( sk, "grabs" );
22 }
23
24 /*
25 * Collision detection routines
26 *
27 *
28 */
29
30 /*
31 * Does collision detection on a sphere vs world, and applies some smoothing
32 * filters to the manifold afterwards
33 */
34 VG_STATIC int skate_collide_smooth( player_instance *player,
35 m4x3f mtx, rb_sphere *sphere,
36 rb_ct *man )
37 {
38 int len = 0;
39 len = rb_sphere__scene( mtx, sphere, NULL, &world.rb_geo.inf.scene, man );
40
41 for( int i=0; i<len; i++ )
42 {
43 man[i].rba = &player->rb;
44 man[i].rbb = NULL;
45 }
46
47 rb_manifold_filter_coplanar( man, len, 0.03f );
48
49 if( len > 1 )
50 {
51 rb_manifold_filter_backface( man, len );
52 rb_manifold_filter_joint_edges( man, len, 0.03f );
53 rb_manifold_filter_pairs( man, len, 0.03f );
54 }
55 int new_len = rb_manifold_apply_filtered( man, len );
56 if( len && !new_len )
57 len = 1;
58 else
59 len = new_len;
60
61 return len;
62 }
63
64 struct grind_info
65 {
66 v3f co, dir, n;
67 };
68
69 VG_STATIC int skate_grind_scansq( v3f pos, v3f dir, float r,
70 struct grind_info *inf )
71 {
72 v4f plane;
73 v3_copy( dir, plane );
74 v3_normalize( plane );
75 plane[3] = v3_dot( plane, pos );
76
77 boxf box;
78 v3_add( pos, (v3f){ r, r, r }, box[1] );
79 v3_sub( pos, (v3f){ r, r, r }, box[0] );
80
81 bh_iter it;
82 bh_iter_init( 0, &it );
83 int idx;
84
85 struct grind_sample
86 {
87 v2f co;
88 v2f normal;
89 v3f normal3,
90 centroid;
91 }
92 samples[48];
93 int sample_count = 0;
94
95 v2f support_min,
96 support_max;
97
98 v3f support_axis;
99 v3_cross( plane, (v3f){0.0f,1.0f,0.0f}, support_axis );
100 v3_normalize( support_axis );
101
102 while( bh_next( world.geo_bh, &it, box, &idx ) )
103 {
104 u32 *ptri = &world.scene_geo->arrindices[ idx*3 ];
105 v3f tri[3];
106
107 for( int j=0; j<3; j++ )
108 v3_copy( world.scene_geo->arrvertices[ptri[j]].co, tri[j] );
109
110 for( int j=0; j<3; j++ )
111 {
112 int i0 = j,
113 i1 = (j+1) % 3;
114
115 struct grind_sample *sample = &samples[ sample_count ];
116 v3f co;
117
118 if( plane_segment( plane, tri[i0], tri[i1], co ) )
119 {
120 v3f d;
121 v3_sub( co, pos, d );
122 if( v3_length2( d ) > r*r )
123 continue;
124
125 v3f va, vb, normal;
126 v3_sub( tri[1], tri[0], va );
127 v3_sub( tri[2], tri[0], vb );
128 v3_cross( va, vb, normal );
129
130 sample->normal[0] = v3_dot( support_axis, normal );
131 sample->normal[1] = normal[1];
132 sample->co[0] = v3_dot( support_axis, d );
133 sample->co[1] = d[1];
134
135 v3_copy( normal, sample->normal3 ); /* normalize later
136 if we want to us it */
137
138 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
139 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
140 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
141
142 v2_normalize( sample->normal );
143 sample_count ++;
144
145 if( sample_count == vg_list_size( samples ) )
146 goto too_many_samples;
147 }
148 }
149 }
150
151 too_many_samples:
152
153 if( sample_count < 2 )
154 return 0;
155
156 v3f
157 average_direction,
158 average_normal;
159
160 v2f min_co, max_co;
161 v2_fill( min_co, INFINITY );
162 v2_fill( max_co, -INFINITY );
163
164 v3_zero( average_direction );
165 v3_zero( average_normal );
166
167 int passed_samples = 0;
168
169 for( int i=0; i<sample_count-1; i++ )
170 {
171 struct grind_sample *si, *sj;
172
173 si = &samples[i];
174
175 for( int j=i+1; j<sample_count; j++ )
176 {
177 if( i == j )
178 continue;
179
180 sj = &samples[j];
181
182 /* non overlapping */
183 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
184 continue;
185
186 /* not sharp angle */
187 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
188 continue;
189
190 /* not convex */
191 v3f v0;
192 v3_sub( sj->centroid, si->centroid, v0 );
193 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
194 v3_dot( v0, sj->normal3 ) <= 0.0f )
195 continue;
196
197 v2_minv( sj->co, min_co, min_co );
198 v2_maxv( sj->co, max_co, max_co );
199
200 v3f n0, n1, dir;
201 v3_copy( si->normal3, n0 );
202 v3_copy( sj->normal3, n1 );
203 v3_cross( n0, n1, dir );
204 v3_normalize( dir );
205
206 /* make sure the directions all face a common hemisphere */
207 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
208 v3_add( average_direction, dir, average_direction );
209
210 if( si->normal3[1] > sj->normal3[1] )
211 v3_add( si->normal3, average_normal, average_normal );
212 else
213 v3_add( sj->normal3, average_normal, average_normal );
214
215 passed_samples ++;
216 }
217 }
218
219 if( !passed_samples )
220 return 0;
221
222 if( (v3_length2( average_direction ) <= 0.001f) ||
223 (v3_length2( average_normal ) <= 0.001f ) )
224 return 0;
225
226 float div = 1.0f/(float)passed_samples;
227 v3_normalize( average_direction );
228 v3_normalize( average_normal );
229
230 v2f average_coord;
231 v2_add( min_co, max_co, average_coord );
232 v2_muls( average_coord, 0.5f, average_coord );
233
234 v3_muls( support_axis, average_coord[0], inf->co );
235 inf->co[1] += average_coord[1];
236 v3_add( pos, inf->co, inf->co );
237 v3_copy( average_normal, inf->n );
238 v3_copy( average_direction, inf->dir );
239
240 vg_line_pt3( inf->co, 0.02f, VG__GREEN );
241 vg_line_arrow( inf->co, average_direction, 0.3f, VG__GREEN );
242 vg_line_arrow( inf->co, inf->n, 0.2f, VG__CYAN );
243
244 return passed_samples;
245 }
246
247 VG_STATIC int solve_prediction_for_target( player_instance *player,
248 v3f target, float max_angle,
249 struct land_prediction *p )
250 {
251 /* calculate the exact solution(s) to jump onto that grind spot */
252
253 v3f v0;
254 v3_sub( target, player->rb.co, v0 );
255
256 v3f ax;
257 v3_copy( v0, ax );
258 ax[1] = 0.0f;
259 v3_normalize( ax );
260
261 v2f d = { v3_dot( v0, ax ), v0[1] },
262 v = { v3_dot( player->rb.v, ax ), player->rb.v[1] };
263
264 float a = atan2f( v[1], v[0] ),
265 m = v2_length( v ),
266 root = m*m*m*m - k_gravity*(k_gravity*d[0]*d[0] + 2.0f*d[1]*m*m);
267
268 if( root > 0.0f )
269 {
270 root = sqrtf( root );
271 float a0 = atanf( (m*m + root) / (k_gravity * d[0]) ),
272 a1 = atanf( (m*m - root) / (k_gravity * d[0]) );
273
274 if( fabsf(a0-a) > fabsf(a1-a) )
275 a0 = a1;
276
277 if( fabsf(a0-a) > max_angle )
278 return 0;
279
280 /* TODO: sweep the path before chosing the smallest dist */
281
282 p->log_length = 0;
283 p->land_dist = 0.0f;
284 v3_zero( p->apex );
285 p->type = k_prediction_grind;
286
287 v3_muls( ax, cosf( a0 ) * m, p->v );
288 p->v[1] += sinf( a0 ) * m;
289 p->land_dist = d[0] / (cosf(a0)*m);
290
291 /* add a trace */
292 for( int i=0; i<=20; i++ )
293 {
294 float t = (float)i * (1.0f/20.0f) * p->land_dist;
295
296 v3f p0;
297 v3_muls( p->v, t, p0 );
298 p0[1] += -0.5f * k_gravity * t*t;
299
300 v3_add( player->rb.co, p0, p->log[ p->log_length ++ ] );
301 }
302
303 return 1;
304 }
305 else
306 return 0;
307 }
308
309 VG_STATIC
310 void player__approximate_best_trajectory( player_instance *player )
311 {
312 struct player_skate *s = &player->_skate;
313 float k_trace_delta = k_rb_delta * 10.0f;
314
315 s->state.air_start = vg.time;
316 v3_copy( player->rb.v, s->state.air_init_v );
317 v3_copy( player->rb.co, s->state.air_init_co );
318
319 s->prediction_count = 0;
320
321 v3f axis;
322 v3_cross( player->rb.v, player->rb.to_world[1], axis );
323 v3_normalize( axis );
324
325 /* at high slopes, Y component is low */
326 float angle_begin = -(1.0f-fabsf( player->rb.to_world[1][1] )),
327 angle_end = 1.0f;
328
329 struct grind_info grind;
330 int grind_located = 0;
331
332 for( int m=0;m<=15; m++ )
333 {
334 struct land_prediction *p = &s->predictions[ s->prediction_count ++ ];
335
336 p->log_length = 0;
337 p->land_dist = 0.0f;
338 v3_zero( p->apex );
339 p->type = k_prediction_none;
340
341 v3f launch_co, launch_v, co0, co1;
342 v3_copy( player->rb.co, launch_co );
343 v3_copy( player->rb.v, launch_v );
344 v3_copy( launch_co, co0 );
345
346 float vt = (float)m * (1.0f/15.0f),
347 ang = vg_lerpf( angle_begin, angle_end, vt ) * 0.15f;
348
349 v4f qbias;
350 q_axis_angle( qbias, axis, ang );
351 q_mulv( qbias, launch_v, launch_v );
352 v3_copy( launch_v, p->v );
353
354 for( int i=1; i<=50; i++ )
355 {
356 float t = (float)i * k_trace_delta;
357
358 v3_muls( launch_v, t, co1 );
359 co1[1] += -0.5f * k_gravity * t*t;
360 v3_add( launch_co, co1, co1 );
361
362 if( !grind_located && (launch_v[1] - k_gravity*t < 0.0f) )
363 {
364 v3f closest;
365 if( bh_closest_point( world.geo_bh, co1, closest, 1.0f ) != -1 )
366 {
367 v3f ve;
368 v3_copy( launch_v, ve );
369 ve[1] -= k_gravity * t;
370
371 if( skate_grind_scansq( closest, ve, 0.5f, &grind ) )
372 {
373 v2f v0 = { ve[0], ve[2] },
374 v1 = { grind.dir[0], grind.dir[2] };
375
376 v2_normalize( v0 );
377 v2_normalize( v1 );
378
379 float a = v2_dot( v0, v1 );
380
381 if( a >= cosf( VG_PIf * 0.125f ) )
382 {
383 grind_located = 1;
384 }
385 }
386 }
387 }
388
389 float t1;
390 v3f n;
391
392 int idx = spherecast_world( co0, co1, k_board_radius, &t1, n );
393 if( idx != -1 )
394 {
395 v3f co;
396 v3_lerp( co0, co1, t1, co );
397 v3_copy( co, p->log[ p->log_length ++ ] );
398
399 v3_copy( n, p->n );
400 p->type = k_prediction_land;
401
402 v3f ve;
403 v3_copy( launch_v, ve );
404 ve[1] -= k_gravity * t;
405
406 struct grind_info replace_grind;
407 if( skate_grind_scansq( co, ve, 0.3f, &replace_grind ) )
408 {
409 v3_copy( replace_grind.n, p->n );
410 p->type = k_prediction_grind;
411 }
412
413 p->score = -v3_dot( ve, p->n );
414 p->land_dist = t + k_trace_delta * t1;
415
416 u32 vert_index = world.scene_geo->arrindices[ idx*3 ];
417 struct world_material *mat = world_tri_index_material( vert_index );
418
419 /* Bias prediction towords ramps */
420 if( !(mat->info.flags & k_material_flag_skate_surface) )
421 p->score *= 10.0f;
422
423 break;
424 }
425
426 v3_copy( co1, p->log[ p->log_length ++ ] );
427 v3_copy( co1, co0 );
428 }
429
430 if( p->type == k_prediction_none )
431 s->prediction_count --;
432 }
433
434
435
436 if( grind_located )
437 {
438 /* calculate the exact solution(s) to jump onto that grind spot */
439 struct land_prediction *p = &s->predictions[ s->prediction_count ];
440
441 if( solve_prediction_for_target( player, grind.co, 0.125f*VG_PIf, p ) )
442 {
443 v3_copy( grind.n, p->n );
444
445 /* determine score */
446 v3f ve;
447 v3_copy( p->v, ve );
448 ve[1] -= k_gravity * p->land_dist;
449 p->score = -v3_dot( ve, grind.n ) * 0.85f;
450
451 s->prediction_count ++;
452 }
453 }
454
455
456 float score_min = INFINITY,
457 score_max = -INFINITY;
458
459 struct land_prediction *best = NULL;
460
461 for( int i=0; i<s->prediction_count; i ++ )
462 {
463 struct land_prediction *p = &s->predictions[i];
464
465 if( p->score < score_min )
466 best = p;
467
468 score_min = vg_minf( score_min, p->score );
469 score_max = vg_maxf( score_max, p->score );
470 }
471
472 for( int i=0; i<s->prediction_count; i ++ )
473 {
474 struct land_prediction *p = &s->predictions[i];
475 float s = p->score;
476
477 s -= score_min;
478 s /= (score_max-score_min);
479 s = 1.0f - s;
480
481 p->score = s;
482 p->colour = s * 255.0f;
483
484 if( p == best )
485 p->colour <<= 16;
486 else if( p->type == k_prediction_land )
487 p->colour <<= 8;
488
489 p->colour |= 0xff000000;
490 }
491
492 if( best )
493 {
494 v3_copy( best->n, s->land_normal );
495 v3_copy( best->v, player->rb.v );
496 s->land_dist = best->land_dist;
497
498 v2f steer = { player->input_js1h->axis.value,
499 player->input_js1v->axis.value };
500 v2_normalize_clamp( steer );
501
502 if( (fabsf(steer[1]) > 0.5f) && (s->land_dist >= 1.5f) )
503 {
504 s->state.flip_rate = (1.0f/s->land_dist) * vg_signf(steer[1]) *
505 s->state.reverse ;
506 s->state.flip_time = 0.0f;
507 v3_copy( player->rb.to_world[0], s->state.flip_axis );
508 }
509 else
510 {
511 s->state.flip_rate = 0.0f;
512 v3_zero( s->state.flip_axis );
513 }
514 }
515 else
516 {
517 v3_copy( (v3f){0.0f,1.0f,0.0f}, s->land_normal );
518 }
519 }
520
521 /*
522 *
523 * Varius physics models
524 * ------------------------------------------------
525 */
526
527 /*
528 * Air control, no real physics
529 */
530 VG_STATIC void skate_apply_air_model( player_instance *player )
531 {
532 struct player_skate *s = &player->_skate;
533
534 if( s->state.activity_prev != k_skate_activity_air )
535 player__approximate_best_trajectory( player );
536
537 float angle = v3_dot( player->rb.to_world[1], s->land_normal );
538 angle = vg_clampf( angle, -1.0f, 1.0f );
539 v3f axis;
540 v3_cross( player->rb.to_world[1], s->land_normal, axis );
541
542 v4f correction;
543 q_axis_angle( correction, axis,
544 acosf(angle)*2.0f*VG_TIMESTEP_FIXED );
545 q_mul( correction, player->rb.q, player->rb.q );
546
547 v2f steer = { player->input_js1h->axis.value,
548 player->input_js1v->axis.value };
549 v2_normalize_clamp( steer );
550 s->land_dist = 1.0f;
551 }
552
553 VG_STATIC int player_skate_trick_input( player_instance *player );
554 VG_STATIC void skate_apply_trick_model( player_instance *player )
555 {
556 struct player_skate *s = &player->_skate;
557
558 v3f Fd, Fs, F;
559 v3f strength = { 3.7f, 3.6f, 8.0f };
560
561 v3_muls( s->board_trick_residualv, -4.0f , Fd );
562 v3_muls( s->board_trick_residuald, -10.0f, Fs );
563 v3_add( Fd, Fs, F );
564 v3_mul( strength, F, F );
565
566 v3_muladds( s->board_trick_residualv, F, k_rb_delta,
567 s->board_trick_residualv );
568 v3_muladds( s->board_trick_residuald, s->board_trick_residualv,
569 k_rb_delta, s->board_trick_residuald );
570
571 if( s->state.activity == k_skate_activity_air )
572 {
573 if( v3_length2( s->state.trick_vel ) < 0.0001f )
574 return;
575
576 int carry_on = player_skate_trick_input( player );
577
578 /* we assume velocities share a common divisor, in which case the
579 * interval is the minimum value (if not zero) */
580
581 float min_rate = 99999.0f;
582
583 for( int i=0; i<3; i++ )
584 {
585 float v = s->state.trick_vel[i];
586 if( (v > 0.0f) && (v < min_rate) )
587 min_rate = v;
588 }
589
590 float interval = 1.0f / min_rate,
591 current = floorf( s->state.trick_time / interval ),
592 next_end = (current+1.0f) * interval;
593
594
595 /* integrate trick velocities */
596 v3_muladds( s->state.trick_euler, s->state.trick_vel, k_rb_delta,
597 s->state.trick_euler );
598
599 if( !carry_on && (s->state.trick_time + k_rb_delta >= next_end) )
600 {
601 s->state.trick_time = 0.0f;
602 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
603 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
604 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
605 v3_copy( s->state.trick_vel, s->board_trick_residualv );
606 v3_zero( s->state.trick_vel );
607 }
608
609 s->state.trick_time += k_rb_delta;
610 }
611 else
612 {
613 if( (v3_length2(s->state.trick_vel) >= 0.0001f ) &&
614 s->state.trick_time > 0.2f)
615 {
616 player__dead_transition( player );
617 }
618
619 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
620 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
621 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
622 s->state.trick_time = 0.0f;
623 v3_zero( s->state.trick_vel );
624 }
625 }
626
627 VG_STATIC void skate_apply_grab_model( player_instance *player )
628 {
629 struct player_skate *s = &player->_skate;
630
631 float grabt = player->input_grab->axis.value;
632
633 if( grabt > 0.5f )
634 {
635 v2_muladds( s->state.grab_mouse_delta, vg.mouse_delta, 0.02f,
636 s->state.grab_mouse_delta );
637
638 v2_normalize_clamp( s->state.grab_mouse_delta );
639 }
640 else
641 v2_zero( s->state.grab_mouse_delta );
642
643 s->state.grabbing = vg_lerpf( s->state.grabbing, grabt, 8.4f*k_rb_delta );
644 }
645
646 VG_STATIC void skate_apply_steering_model( player_instance *player )
647 {
648 struct player_skate *s = &player->_skate;
649
650 /* Steering */
651 float steer = player->input_js1h->axis.value,
652 grab = player->input_grab->axis.value;
653
654 steer = vg_signf( steer ) * steer*steer * k_steer_ground;
655
656 v3f steer_axis;
657 v3_muls( player->rb.to_world[1], -vg_signf( steer ), steer_axis );
658
659 float rate = 26.0f,
660 top = 1.0f;
661
662 if( s->state.activity == k_skate_activity_air )
663 {
664 rate = 6.0f * fabsf(steer);
665 top = 1.5f;
666 }
667 else
668 {
669 /* rotate slower when grabbing on ground */
670 steer *= (1.0f-(s->state.jump_charge+grab)*0.4f);
671
672 if( s->state.activity == k_skate_activity_grind_5050 )
673 {
674 rate = 0.0f;
675 top = 0.0f;
676 }
677
678 else if( s->state.activity >= k_skate_activity_grind_any )
679 {
680 rate *= fabsf(steer);
681
682 float a = 0.8f * -steer * k_rb_delta;
683
684 v4f q;
685 q_axis_angle( q, player->rb.to_world[1], a );
686 q_mulv( q, s->grind_vec, s->grind_vec );
687
688 v3_normalize( s->grind_vec );
689 }
690
691 else if( s->state.manual_direction )
692 {
693 rate = 35.0f;
694 top = 1.5f;
695 }
696 }
697
698 float current = v3_dot( player->rb.to_world[1], player->rb.w ),
699 addspeed = (steer * -top) - current,
700 maxaccel = rate * k_rb_delta,
701 accel = vg_clampf( addspeed, -maxaccel, maxaccel );
702
703 v3_muladds( player->rb.w, player->rb.to_world[1], accel, player->rb.w );
704 }
705
706 /*
707 * Computes friction and surface interface model
708 */
709 VG_STATIC void skate_apply_friction_model( player_instance *player )
710 {
711 struct player_skate *s = &player->_skate;
712
713 /*
714 * Computing localized friction forces for controlling the character
715 * Friction across X is significantly more than Z
716 */
717
718 v3f vel;
719 m3x3_mulv( player->rb.to_local, player->rb.v, vel );
720 float slip = 0.0f;
721
722 if( fabsf(vel[2]) > 0.01f )
723 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
724
725 if( fabsf( slip ) > 1.2f )
726 slip = vg_signf( slip ) * 1.2f;
727
728 s->state.slip = slip;
729 s->state.reverse = -vg_signf(vel[2]);
730
731 vel[0] += vg_cfrictf( vel[0], k_friction_lat * k_rb_delta );
732 vel[2] += vg_cfrictf( vel[2], k_friction_resistance * k_rb_delta );
733
734 /* Pushing additive force */
735
736 if( !player->input_jump->button.value )
737 {
738 if( player->input_push->button.value ||
739 (vg.time-s->state.start_push<0.75) )
740 {
741 if( (vg.time - s->state.cur_push) > 0.25 )
742 s->state.start_push = vg.time;
743
744 s->state.cur_push = vg.time;
745
746 double push_time = vg.time - s->state.start_push;
747
748 float cycle_time = push_time*k_push_cycle_rate,
749 accel = k_push_accel * (sinf(cycle_time)*0.5f+0.5f),
750 amt = accel * VG_TIMESTEP_FIXED,
751 current = v3_length( vel ),
752 new_vel = vg_minf( current + amt, k_max_push_speed ),
753 delta = new_vel - vg_minf( current, k_max_push_speed );
754
755 vel[2] += delta * -s->state.reverse;
756 }
757 }
758
759 /* Send back to velocity */
760 m3x3_mulv( player->rb.to_world, vel, player->rb.v );
761 }
762
763 VG_STATIC void skate_apply_jump_model( player_instance *player )
764 {
765 struct player_skate *s = &player->_skate;
766 int charging_jump_prev = s->state.charging_jump;
767 s->state.charging_jump = player->input_jump->button.value;
768
769 /* Cannot charge this in air */
770 if( s->state.activity == k_skate_activity_air )
771 {
772 s->state.charging_jump = 0;
773 return;
774 }
775
776 if( s->state.charging_jump )
777 {
778 s->state.jump_charge += k_rb_delta * k_jump_charge_speed;
779
780 if( !charging_jump_prev )
781 s->state.jump_dir = s->state.reverse>0.0f? 1: 0;
782 }
783 else
784 {
785 s->state.jump_charge -= k_jump_charge_speed * k_rb_delta;
786 }
787
788 s->state.jump_charge = vg_clampf( s->state.jump_charge, 0.0f, 1.0f );
789
790 /* player let go after charging past 0.2: trigger jump */
791 if( (!s->state.charging_jump) && (s->state.jump_charge > 0.2f) )
792 {
793 v3f jumpdir;
794
795 /* Launch more up if alignment is up else improve velocity */
796 float aup = v3_dot( (v3f){0.0f,1.0f,0.0f}, player->rb.to_world[1] ),
797 mod = 0.5f,
798 dir = mod + fabsf(aup)*(1.0f-mod);
799
800 v3_copy( player->rb.v, jumpdir );
801 v3_normalize( jumpdir );
802 v3_muls( jumpdir, 1.0f-dir, jumpdir );
803 v3_muladds( jumpdir, player->rb.to_world[1], dir, jumpdir );
804 v3_normalize( jumpdir );
805
806 float force = k_jump_force*s->state.jump_charge;
807 v3_muladds( player->rb.v, jumpdir, force, player->rb.v );
808 s->state.jump_charge = 0.0f;
809 s->state.jump_time = vg.time;
810 s->state.activity = k_skate_activity_air;
811
812 v2f steer = { player->input_js1h->axis.value,
813 player->input_js1v->axis.value };
814 v2_normalize_clamp( steer );
815
816
817 #if 0
818 float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
819 s->state.steery_s = -steer[0] * maxspin;
820 s->state.steerx = s->state.steerx_s;
821 s->state.lift_frames ++;
822 #endif
823
824 /* FIXME audio events */
825 #if 0
826 audio_lock();
827 audio_player_set_flags( &audio_player_extra, AUDIO_FLAG_SPACIAL_3D );
828 audio_player_set_position( &audio_player_extra, player.rb.co );
829 audio_player_set_vol( &audio_player_extra, 20.0f );
830 audio_player_playclip( &audio_player_extra, &audio_jumps[rand()%2] );
831 audio_unlock();
832 #endif
833 }
834 }
835
836 VG_STATIC void skate_apply_pump_model( player_instance *player )
837 {
838 struct player_skate *s = &player->_skate;
839
840 /* Throw / collect routine
841 *
842 * TODO: Max speed boost
843 */
844 if( player->input_grab->axis.value > 0.5f )
845 {
846 if( s->state.activity == k_skate_activity_ground )
847 {
848 /* Throw */
849 v3_muls( player->rb.to_world[1], k_mmthrow_scale, s->state.throw_v );
850 }
851 }
852 else
853 {
854 /* Collect */
855 float doty = v3_dot( player->rb.to_world[1], s->state.throw_v );
856
857 v3f Fl, Fv;
858 v3_muladds( s->state.throw_v, player->rb.to_world[1], -doty, Fl);
859
860 if( s->state.activity == k_skate_activity_ground )
861 {
862 v3_muladds( player->rb.v, Fl, k_mmcollect_lat, player->rb.v );
863 v3_muladds( s->state.throw_v, Fl, -k_mmcollect_lat, s->state.throw_v );
864 }
865
866 v3_muls( player->rb.to_world[1], -doty, Fv );
867 v3_muladds( player->rb.v, Fv, k_mmcollect_vert, player->rb.v );
868 v3_muladds( s->state.throw_v, Fv, k_mmcollect_vert, s->state.throw_v );
869 }
870
871 /* Decay */
872 if( v3_length2( s->state.throw_v ) > 0.0001f )
873 {
874 v3f dir;
875 v3_copy( s->state.throw_v, dir );
876 v3_normalize( dir );
877
878 float max = v3_dot( dir, s->state.throw_v ),
879 amt = vg_minf( k_mmdecay * k_rb_delta, max );
880 v3_muladds( s->state.throw_v, dir, -amt, s->state.throw_v );
881 }
882 }
883
884 VG_STATIC void skate_apply_cog_model( player_instance *player )
885 {
886 struct player_skate *s = &player->_skate;
887
888 v3f ideal_cog, ideal_diff, ideal_dir;
889 v3_copy( s->state.up_dir, ideal_dir );
890 v3_normalize( ideal_dir );
891
892 v3_muladds( player->rb.co, ideal_dir,
893 1.0f-player->input_grab->axis.value, ideal_cog );
894 v3_sub( ideal_cog, s->state.cog, ideal_diff );
895
896 /* Apply velocities */
897 v3f rv;
898 v3_sub( player->rb.v, s->state.cog_v, rv );
899
900 v3f F;
901 v3_muls( ideal_diff, -k_cog_spring * k_rb_rate, F );
902 v3_muladds( F, rv, -k_cog_damp * k_rb_rate, F );
903
904 float ra = k_cog_mass_ratio,
905 rb = 1.0f-k_cog_mass_ratio;
906
907 /* Apply forces & intergrate */
908 v3_muladds( s->state.cog_v, F, -rb, s->state.cog_v );
909 s->state.cog_v[1] += -9.8f * k_rb_delta;
910 v3_muladds( s->state.cog, s->state.cog_v, k_rb_delta, s->state.cog );
911 }
912
913
914 VG_STATIC void skate_integrate( player_instance *player )
915 {
916 struct player_skate *s = &player->_skate;
917
918 float decay_rate = 1.0f - (k_rb_delta * 3.0f),
919 decay_rate_y = 1.0f;
920
921 if( s->state.activity >= k_skate_activity_grind_any )
922 {
923 decay_rate = 1.0f-vg_lerpf( 3.0f, 20.0f, s->grind_strength ) * k_rb_delta;
924 decay_rate_y = decay_rate;
925 }
926
927 float wx = v3_dot( player->rb.w, player->rb.to_world[0] ) * decay_rate,
928 wy = v3_dot( player->rb.w, player->rb.to_world[1] ) * decay_rate_y,
929 wz = v3_dot( player->rb.w, player->rb.to_world[2] ) * decay_rate;
930
931 v3_muls( player->rb.to_world[0], wx, player->rb.w );
932 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
933 v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
934
935 s->state.flip_time += s->state.flip_rate * k_rb_delta;
936 rb_update_transform( &player->rb );
937 }
938
939 /*
940 * 1 2 or 3
941 */
942
943 VG_STATIC int player_skate_trick_input( player_instance *player )
944 {
945 return (player->input_trick0->button.value) |
946 (player->input_trick1->button.value << 1) |
947 (player->input_trick2->button.value << 1) |
948 (player->input_trick2->button.value);
949 }
950
951 VG_STATIC void player__skate_pre_update( player_instance *player )
952 {
953 struct player_skate *s = &player->_skate;
954
955 if( vg_input_button_down( player->input_use ) )
956 {
957 player->subsystem = k_player_subsystem_walk;
958
959 v3f angles;
960 v3_copy( player->cam.angles, angles );
961 angles[2] = 0.0f;
962
963 player->holdout_time = 0.25f;
964 player__walk_transition( player, angles );
965 return;
966 }
967
968 if( vg_input_button_down( player->input_reset ) )
969 {
970 player->rb.co[1] += 2.0f;
971 s->state.cog[1] += 2.0f;
972 q_axis_angle( player->rb.q, (v3f){1.0f,0.0f,0.0f}, VG_PIf * 0.25f );
973 v3_zero( player->rb.w );
974 v3_zero( player->rb.v );
975
976 rb_update_transform( &player->rb );
977 }
978
979 int trick_id;
980 if( (s->state.activity == k_skate_activity_air) &&
981 (trick_id = player_skate_trick_input( player )) )
982 {
983 if( (vg.time - s->state.jump_time) < 0.1f )
984 {
985 v3_zero( s->state.trick_vel );
986 s->state.trick_time = 0.0f;
987
988 if( trick_id == 1 )
989 {
990 s->state.trick_vel[0] = 3.0f;
991 }
992 else if( trick_id == 2 )
993 {
994 s->state.trick_vel[2] = 3.0f;
995 }
996 else if( trick_id == 3 )
997 {
998 s->state.trick_vel[0] = 2.0f;
999 s->state.trick_vel[2] = 2.0f;
1000 }
1001 }
1002 }
1003 }
1004
1005 VG_STATIC void player__skate_post_update( player_instance *player )
1006 {
1007 struct player_skate *s = &player->_skate;
1008
1009 for( int i=0; i<s->prediction_count; i++ )
1010 {
1011 struct land_prediction *p = &s->predictions[i];
1012
1013 for( int j=0; j<p->log_length - 1; j ++ )
1014 {
1015 float brightness = p->score*p->score*p->score;
1016 v3f p1;
1017 v3_lerp( p->log[j], p->log[j+1], brightness, p1 );
1018 vg_line( p->log[j], p1, p->colour );
1019 }
1020
1021 vg_line_cross( p->log[p->log_length-1], p->colour, 0.25f );
1022
1023 v3f p1;
1024 v3_add( p->log[p->log_length-1], p->n, p1 );
1025 vg_line( p->log[p->log_length-1], p1, 0xffffffff );
1026
1027 vg_line_pt3( p->apex, 0.02f, 0xffffffff );
1028 }
1029
1030 #if 0
1031 vg_line_pt3( s->state.apex, 0.030f, 0xff0000ff );
1032 #endif
1033 }
1034
1035 /*
1036 * truck alignment model at ra(local)
1037 * returns 1 if valid surface:
1038 * surface_normal will be filled out with an averaged normal vector
1039 * axel_dir will be the direction from left to right wheels
1040 *
1041 * returns 0 if no good surface found
1042 */
1043 VG_STATIC
1044 int skate_compute_surface_alignment( player_instance *player,
1045 v3f ra, u32 colour,
1046 v3f surface_normal, v3f axel_dir )
1047 {
1048 struct player_skate *s = &player->_skate;
1049
1050 v3f truck, left, right;
1051 m4x3_mulv( player->rb.to_world, ra, truck );
1052
1053 v3_muladds( truck, player->rb.to_world[0], -k_board_width, left );
1054 v3_muladds( truck, player->rb.to_world[0], k_board_width, right );
1055 vg_line( left, right, colour );
1056
1057 float k_max_truck_flex = VG_PIf * 0.25f;
1058
1059 ray_hit ray_l, ray_r;
1060
1061 v3f dir;
1062 v3_muls( player->rb.to_world[1], -1.0f, dir );
1063
1064 int res_l = 0, res_r = 0;
1065
1066 for( int i=0; i<8; i++ )
1067 {
1068 float t = 1.0f - (float)i * (1.0f/8.0f);
1069 v3_muladds( truck, player->rb.to_world[0], -k_board_radius*t, left );
1070 v3_muladds( left, player->rb.to_world[1], k_board_radius, left );
1071 ray_l.dist = 2.1f * k_board_radius;
1072
1073 res_l = ray_world( left, dir, &ray_l );
1074
1075 if( res_l )
1076 break;
1077 }
1078
1079 for( int i=0; i<8; i++ )
1080 {
1081 float t = 1.0f - (float)i * (1.0f/8.0f);
1082 v3_muladds( truck, player->rb.to_world[0], k_board_radius*t, right );
1083 v3_muladds( right, player->rb.to_world[1], k_board_radius, right );
1084 ray_r.dist = 2.1f * k_board_radius;
1085
1086 res_r = ray_world( right, dir, &ray_r );
1087
1088 if( res_r )
1089 break;
1090 }
1091
1092 v3f v0;
1093 v3f midpoint;
1094 v3f tangent_average;
1095 v3_muladds( truck, player->rb.to_world[1], -k_board_radius, midpoint );
1096 v3_zero( tangent_average );
1097
1098 if( res_l || res_r )
1099 {
1100 v3f p0, p1, t;
1101 v3_copy( midpoint, p0 );
1102 v3_copy( midpoint, p1 );
1103
1104 if( res_l )
1105 {
1106 v3_copy( ray_l.pos, p0 );
1107 v3_cross( ray_l.normal, player->rb.to_world[0], t );
1108 v3_add( t, tangent_average, tangent_average );
1109 }
1110 if( res_r )
1111 {
1112 v3_copy( ray_r.pos, p1 );
1113 v3_cross( ray_r.normal, player->rb.to_world[0], t );
1114 v3_add( t, tangent_average, tangent_average );
1115 }
1116
1117 v3_sub( p1, p0, v0 );
1118 v3_normalize( v0 );
1119 }
1120 else
1121 {
1122 /* fallback: use the closes point to the trucks */
1123 v3f closest;
1124 int idx = bh_closest_point( world.geo_bh, midpoint, closest, 0.1f );
1125
1126 if( idx != -1 )
1127 {
1128 u32 *tri = &world.scene_geo->arrindices[ idx * 3 ];
1129 v3f verts[3];
1130
1131 for( int j=0; j<3; j++ )
1132 v3_copy( world.scene_geo->arrvertices[ tri[j] ].co, verts[j] );
1133
1134 v3f vert0, vert1, n;
1135 v3_sub( verts[1], verts[0], vert0 );
1136 v3_sub( verts[2], verts[0], vert1 );
1137 v3_cross( vert0, vert1, n );
1138 v3_normalize( n );
1139
1140 if( v3_dot( n, player->rb.to_world[1] ) < 0.3f )
1141 return 0;
1142
1143 v3_cross( n, player->rb.to_world[2], v0 );
1144 v3_muladds( v0, player->rb.to_world[2],
1145 -v3_dot( player->rb.to_world[2], v0 ), v0 );
1146 v3_normalize( v0 );
1147
1148 v3f t;
1149 v3_cross( n, player->rb.to_world[0], t );
1150 v3_add( t, tangent_average, tangent_average );
1151 }
1152 else
1153 return 0;
1154 }
1155
1156 v3_muladds( truck, v0, k_board_width, right );
1157 v3_muladds( truck, v0, -k_board_width, left );
1158
1159 vg_line( left, right, VG__WHITE );
1160
1161 v3_normalize( tangent_average );
1162 v3_cross( v0, tangent_average, surface_normal );
1163 v3_copy( v0, axel_dir );
1164
1165 return 1;
1166 }
1167
1168 VG_STATIC void skate_weight_distribute( player_instance *player )
1169 {
1170 struct player_skate *s = &player->_skate;
1171 v3_zero( s->weight_distribution );
1172
1173 int reverse_dir = v3_dot( player->rb.to_world[2], player->rb.v ) < 0.0f?1:-1;
1174
1175 if( s->state.manual_direction == 0 )
1176 {
1177 if( (player->input_js1v->axis.value > 0.7f) &&
1178 (s->state.activity == k_skate_activity_ground) &&
1179 (s->state.jump_charge <= 0.01f) )
1180 s->state.manual_direction = reverse_dir;
1181 }
1182 else
1183 {
1184 if( player->input_js1v->axis.value < 0.1f )
1185 {
1186 s->state.manual_direction = 0;
1187 }
1188 else
1189 {
1190 if( reverse_dir != s->state.manual_direction )
1191 {
1192 #if 0
1193 player__dead_transition( player );
1194 #endif
1195 return;
1196 }
1197 }
1198 }
1199
1200 if( s->state.manual_direction )
1201 {
1202 float amt = vg_minf( player->input_js1v->axis.value * 8.0f, 1.0f );
1203 s->weight_distribution[2] = k_board_length * amt *
1204 (float)s->state.manual_direction;
1205 }
1206
1207 /* TODO: Fall back on land normal */
1208 /* TODO: Lerp weight distribution */
1209 /* TODO: Can start manual only if not charge jump */
1210 if( s->state.manual_direction )
1211 {
1212 v3f plane_z;
1213
1214 m3x3_mulv( player->rb.to_world, s->weight_distribution, plane_z );
1215 v3_negate( plane_z, plane_z );
1216
1217 v3_muladds( plane_z, s->surface_picture,
1218 -v3_dot( plane_z, s->surface_picture ), plane_z );
1219 v3_normalize( plane_z );
1220
1221 v3_muladds( plane_z, s->surface_picture, 0.3f, plane_z );
1222 v3_normalize( plane_z );
1223
1224 v3f p1;
1225 v3_muladds( player->rb.co, plane_z, 1.5f, p1 );
1226 vg_line( player->rb.co, p1, VG__GREEN );
1227
1228 v3f refdir;
1229 v3_muls( player->rb.to_world[2], -(float)s->state.manual_direction,
1230 refdir );
1231
1232 rb_effect_spring_target_vector( &player->rb, refdir, plane_z,
1233 k_manul_spring, k_manul_dampener,
1234 s->substep_delta );
1235 }
1236 }
1237
1238 VG_STATIC void skate_adjust_up_direction( player_instance *player )
1239 {
1240 struct player_skate *s = &player->_skate;
1241
1242 if( s->state.activity == k_skate_activity_ground )
1243 {
1244 v3f target;
1245 v3_copy( s->surface_picture, target );
1246
1247 target[1] += 2.0f * s->surface_picture[1];
1248 v3_normalize( target );
1249
1250 v3_lerp( s->state.up_dir, target,
1251 8.0f * s->substep_delta, s->state.up_dir );
1252 }
1253 else if( s->state.activity == k_skate_activity_air )
1254 {
1255 v3_lerp( s->state.up_dir, player->rb.to_world[1],
1256 8.0f * s->substep_delta, s->state.up_dir );
1257 }
1258 else
1259 {
1260 /* FIXME UNDEFINED! */
1261 vg_warn( "Undefined up target!\n" );
1262
1263 v3_lerp( s->state.up_dir, (v3f){0.0f,1.0f,0.0f},
1264 12.0f * s->substep_delta, s->state.up_dir );
1265 }
1266 }
1267
1268 VG_STATIC int skate_point_visible( v3f origin, v3f target )
1269 {
1270 v3f dir;
1271 v3_sub( target, origin, dir );
1272
1273 ray_hit ray;
1274 ray.dist = v3_length( dir );
1275 v3_muls( dir, 1.0f/ray.dist, dir );
1276 ray.dist -= 0.025f;
1277
1278 if( ray_world( origin, dir, &ray ) )
1279 return 0;
1280
1281 return 1;
1282 }
1283
1284 VG_STATIC void skate_grind_orient( struct grind_info *inf, m3x3f mtx )
1285 {
1286 /* TODO: Is N and Dir really orthogonal? */
1287 v3_copy( inf->dir, mtx[0] );
1288 v3_copy( inf->n, mtx[1] );
1289 v3_cross( mtx[0], mtx[1], mtx[2] );
1290 }
1291
1292 VG_STATIC void skate_grind_friction( player_instance *player,
1293 struct grind_info *inf, float strength )
1294 {
1295 v3f v2;
1296 v3_muladds( player->rb.to_world[2], inf->n,
1297 -v3_dot( player->rb.to_world[2], inf->n ), v2 );
1298
1299 float a = 1.0f-fabsf( v3_dot( v2, inf->dir ) ),
1300 dir = vg_signf( v3_dot( player->rb.v, inf->dir ) ),
1301 F = a * -dir * k_grind_max_friction;
1302
1303 v3_muladds( player->rb.v, inf->dir, F*k_rb_delta*strength, player->rb.v );
1304 }
1305
1306 VG_STATIC void skate_grind_decay( player_instance *player,
1307 struct grind_info *inf, float strength )
1308 {
1309 m3x3f mtx, mtx_inv;
1310 skate_grind_orient( inf, mtx );
1311 m3x3_transpose( mtx, mtx_inv );
1312
1313 v3f v_grind;
1314 m3x3_mulv( mtx_inv, player->rb.v, v_grind );
1315
1316 float decay = 1.0f - ( k_rb_delta * k_grind_decayxy * strength );
1317 v3_mul( v_grind, (v3f){ 1.0f, decay, decay }, v_grind );
1318 m3x3_mulv( mtx, v_grind, player->rb.v );
1319 }
1320
1321 VG_STATIC void skate_grind_truck_apply( player_instance *player,
1322 float sign, struct grind_info *inf,
1323 float strength )
1324 {
1325 struct player_skate *s = &player->_skate;
1326
1327 /* TODO: Trash compactor this */
1328 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1329 v3f raw, wsp;
1330 m3x3_mulv( player->rb.to_world, ra, raw );
1331 v3_add( player->rb.co, raw, wsp );
1332
1333 v3_copy( ra, s->weight_distribution );
1334
1335 v3f delta;
1336 v3_sub( inf->co, wsp, delta );
1337
1338 /* spring force */
1339 v3_muladds( player->rb.v, delta, k_spring_force*strength*k_rb_delta,
1340 player->rb.v );
1341
1342 skate_grind_decay( player, inf, strength );
1343 skate_grind_friction( player, inf, strength );
1344
1345 /* yeah yeah yeah yeah */
1346 v3f raw_nplane, axis;
1347 v3_muladds( raw, inf->n, -v3_dot( inf->n, raw ), raw_nplane );
1348 v3_cross( raw_nplane, inf->n, axis );
1349 v3_normalize( axis );
1350
1351 /* orientation */
1352 m3x3f mtx;
1353 skate_grind_orient( inf, mtx );
1354 v3f target_fwd, fwd, up, target_up;
1355 m3x3_mulv( mtx, s->grind_vec, target_fwd );
1356 v3_copy( raw_nplane, fwd );
1357 v3_copy( player->rb.to_world[1], up );
1358 v3_copy( inf->n, target_up );
1359
1360 v3_muladds( target_fwd, inf->n, -v3_dot(inf->n,target_fwd), target_fwd );
1361 v3_muladds( fwd, inf->n, -v3_dot(inf->n,fwd), fwd );
1362
1363 v3_normalize( target_fwd );
1364 v3_normalize( fwd );
1365
1366
1367
1368
1369 float way = player->input_js1v->axis.value *
1370 vg_signf( v3_dot( raw_nplane, player->rb.v ) );
1371
1372 v4f q;
1373 q_axis_angle( q, axis, VG_PIf*0.125f * way );
1374 q_mulv( q, target_up, target_up );
1375 q_mulv( q, target_fwd, target_fwd );
1376
1377 rb_effect_spring_target_vector( &player->rb, up, target_up,
1378 k_grind_spring,
1379 k_grind_dampener,
1380 k_rb_delta );
1381
1382 rb_effect_spring_target_vector( &player->rb, fwd, target_fwd,
1383 k_grind_spring*strength,
1384 k_grind_dampener*strength,
1385 k_rb_delta );
1386
1387 vg_line_arrow( player->rb.co, target_up, 1.0f, VG__GREEN );
1388 vg_line_arrow( player->rb.co, fwd, 0.8f, VG__RED );
1389 vg_line_arrow( player->rb.co, target_fwd, 1.0f, VG__YELOW );
1390
1391 s->grind_strength = strength;
1392
1393 /* Fake contact */
1394 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1395 m4x3_mulv( player->rb.to_local, wsp, limit->ra );
1396 m3x3_mulv( player->rb.to_local, inf->n, limit->n );
1397 limit->p = 0.0f;
1398
1399 v3_copy( inf->dir, s->grind_dir );
1400 }
1401
1402 VG_STATIC void skate_5050_apply( player_instance *player,
1403 struct grind_info *inf_front,
1404 struct grind_info *inf_back )
1405 {
1406 struct player_skate *s = &player->_skate;
1407 struct grind_info inf_avg;
1408
1409 v3_sub( inf_front->co, inf_back->co, inf_avg.dir );
1410 v3_muladds( inf_back->co, inf_avg.dir, 0.5f, inf_avg.co );
1411 v3_normalize( inf_avg.dir );
1412
1413 /* FIXME */
1414 v3_copy( (v3f){0.0f,1.0f,0.0f}, inf_avg.n );
1415
1416 skate_grind_decay( player, &inf_avg, 1.0f );
1417
1418
1419 float way = player->input_js1v->axis.value *
1420 vg_signf( v3_dot( player->rb.to_world[2], player->rb.v ) );
1421 v4f q;
1422 v3f up, target_up;
1423 v3_copy( player->rb.to_world[1], up );
1424 v3_copy( inf_avg.n, target_up );
1425 q_axis_angle( q, player->rb.to_world[0], VG_PIf*0.25f * -way );
1426 q_mulv( q, target_up, target_up );
1427
1428 v3_zero( s->weight_distribution );
1429 s->weight_distribution[2] = k_board_length * -way;
1430
1431 rb_effect_spring_target_vector( &player->rb, up, target_up,
1432 k_grind_spring,
1433 k_grind_dampener,
1434 k_rb_delta );
1435
1436 v3f fwd_nplane, dir_nplane;
1437 v3_muladds( player->rb.to_world[2], inf_avg.n,
1438 -v3_dot( player->rb.to_world[2], inf_avg.n ), fwd_nplane );
1439
1440 v3f dir;
1441 v3_muls( inf_avg.dir, v3_dot( fwd_nplane, inf_avg.dir ), dir );
1442 v3_muladds( dir, inf_avg.n, -v3_dot( dir, inf_avg.n ), dir_nplane );
1443
1444 v3_normalize( fwd_nplane );
1445 v3_normalize( dir_nplane );
1446
1447 rb_effect_spring_target_vector( &player->rb, fwd_nplane, dir_nplane,
1448 1000.0f,
1449 k_grind_dampener,
1450 k_rb_delta );
1451
1452 v3f pos_front = { 0.0f, -k_board_radius, -1.0f * k_board_length },
1453 pos_back = { 0.0f, -k_board_radius, 1.0f * k_board_length },
1454 delta_front, delta_back, delta_total;
1455
1456 m4x3_mulv( player->rb.to_world, pos_front, pos_front );
1457 m4x3_mulv( player->rb.to_world, pos_back, pos_back );
1458
1459 v3_sub( inf_front->co, pos_front, delta_front );
1460 v3_sub( inf_back->co, pos_back, delta_back );
1461 v3_add( delta_front, delta_back, delta_total );
1462
1463 v3_muladds( player->rb.v, delta_total, 50.0f * k_rb_delta, player->rb.v );
1464
1465 /* Fake contact */
1466 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1467 v3_zero( limit->ra );
1468 m3x3_mulv( player->rb.to_local, inf_avg.n, limit->n );
1469 limit->p = 0.0f;
1470
1471 v3_copy( inf_avg.dir, s->grind_dir );
1472 }
1473
1474 VG_STATIC int skate_grind_truck_renew( player_instance *player, float sign,
1475 struct grind_info *inf )
1476 {
1477 struct player_skate *s = &player->_skate;
1478
1479 v3f wheel_co = { 0.0f, 0.0f, sign * k_board_length },
1480 grind_co = { 0.0f, -k_board_radius, sign * k_board_length };
1481
1482 m4x3_mulv( player->rb.to_world, wheel_co, wheel_co );
1483 m4x3_mulv( player->rb.to_world, grind_co, grind_co );
1484
1485 /* Exit condition: lost grind tracking */
1486 if( !skate_grind_scansq( grind_co, player->rb.v, 0.3f, inf ) )
1487 return 0;
1488
1489 /* Exit condition: cant see grind target directly */
1490 if( !skate_point_visible( wheel_co, inf->co ) )
1491 return 0;
1492
1493 /* Exit condition: minimum velocity not reached, but allow a bit of error */
1494 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1495 minv = k_grind_axel_min_vel*0.8f;
1496
1497 if( dv < minv )
1498 return 0;
1499
1500 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1501 return 0;
1502
1503 v3_copy( inf->dir, s->grind_dir );
1504 return 1;
1505 }
1506
1507 VG_STATIC int skate_grind_truck_entry( player_instance *player, float sign,
1508 struct grind_info *inf )
1509 {
1510 struct player_skate *s = &player->_skate;
1511
1512 /* TODO: Trash compactor this */
1513 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1514
1515 v3f raw, wsp;
1516 m3x3_mulv( player->rb.to_world, ra, raw );
1517 v3_add( player->rb.co, raw, wsp );
1518
1519 if( skate_grind_scansq( wsp, player->rb.v, 0.3, inf ) )
1520 {
1521 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1522 return 0;
1523
1524 /* velocity should be at least 60% aligned */
1525 v3f pv, axis;
1526 v3_cross( inf->n, inf->dir, axis );
1527 v3_muladds( player->rb.v, inf->n, -v3_dot( player->rb.v, inf->n ), pv );
1528
1529 if( v3_length2( pv ) < 0.0001f )
1530 return 0;
1531 v3_normalize( pv );
1532
1533 if( fabsf(v3_dot( pv, inf->dir )) < k_grind_axel_max_angle )
1534 return 0;
1535
1536 if( v3_dot( player->rb.v, inf->n ) > 0.5f )
1537 return 0;
1538
1539 #if 0
1540 /* check for vertical alignment */
1541 if( v3_dot( player->rb.to_world[1], inf->n ) < k_grind_axel_max_vangle )
1542 return 0;
1543 #endif
1544
1545 v3f local_co, local_dir, local_n;
1546 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1547 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1548 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1549
1550 v2f delta = { local_co[0], local_co[2] - k_board_length*sign };
1551
1552 float truck_height = -(k_board_radius+0.03f);
1553
1554 v3f rv;
1555 v3_cross( player->rb.w, raw, rv );
1556 v3_add( player->rb.v, rv, rv );
1557
1558 if( (local_co[1] >= truck_height) &&
1559 (v2_length2( delta ) <= k_board_radius*k_board_radius) )
1560 {
1561 return 1;
1562 }
1563 }
1564
1565 return 0;
1566 }
1567
1568 VG_STATIC void skate_boardslide_apply( player_instance *player,
1569 struct grind_info *inf )
1570 {
1571 struct player_skate *s = &player->_skate;
1572
1573 v3f local_co, local_dir, local_n;
1574 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1575 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1576 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1577
1578 v3f intersection;
1579 v3_muladds( local_co, local_dir, local_co[0]/-local_dir[0],
1580 intersection );
1581 v3_copy( intersection, s->weight_distribution );
1582
1583 skate_grind_decay( player, inf, 0.1f );
1584 skate_grind_friction( player, inf, 0.25f );
1585
1586 /* direction alignment */
1587 v3f dir, perp;
1588 v3_cross( local_dir, local_n, perp );
1589 v3_muls( local_dir, vg_signf(local_dir[0]), dir );
1590 v3_muls( perp, vg_signf(perp[2]), perp );
1591
1592 m3x3_mulv( player->rb.to_world, dir, dir );
1593 m3x3_mulv( player->rb.to_world, perp, perp );
1594
1595 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1596 dir,
1597 k_grind_spring, k_grind_dampener,
1598 k_rb_delta );
1599
1600 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[2],
1601 perp,
1602 k_grind_spring, k_grind_dampener,
1603 k_rb_delta );
1604
1605 vg_line_arrow( player->rb.co, dir, 0.5f, VG__GREEN );
1606 vg_line_arrow( player->rb.co, perp, 0.5f, VG__BLUE );
1607
1608 v3_copy( inf->dir, s->grind_dir );
1609 }
1610
1611 VG_STATIC int skate_boardslide_entry( player_instance *player,
1612 struct grind_info *inf )
1613 {
1614 struct player_skate *s = &player->_skate;
1615
1616 if( skate_grind_scansq( player->rb.co,
1617 player->rb.to_world[0], k_board_length,
1618 inf ) )
1619 {
1620 v3f local_co, local_dir;
1621 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1622 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1623
1624 if( (fabsf(local_co[2]) <= k_board_length) && /* within wood area */
1625 (local_co[1] >= 0.0f) && /* at deck level */
1626 (fabsf(local_dir[0]) >= 0.5f) ) /* perpendicular to us */
1627 {
1628 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1629 return 0;
1630
1631 return 1;
1632 }
1633 }
1634
1635 return 0;
1636 }
1637
1638 VG_STATIC int skate_boardslide_renew( player_instance *player,
1639 struct grind_info *inf )
1640 {
1641 struct player_skate *s = &player->_skate;
1642
1643 if( !skate_grind_scansq( player->rb.co,
1644 player->rb.to_world[0], k_board_length,
1645 inf ) )
1646 return 0;
1647
1648 /* Exit condition: cant see grind target directly */
1649 v3f vis;
1650 v3_muladds( player->rb.co, player->rb.to_world[1], 0.2f, vis );
1651 if( !skate_point_visible( vis, inf->co ) )
1652 return 0;
1653
1654 /* Exit condition: minimum velocity not reached, but allow a bit of error
1655 * TODO: trash compactor */
1656 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1657 minv = k_grind_axel_min_vel*0.8f;
1658
1659 if( dv < minv )
1660 return 0;
1661
1662 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1663 return 0;
1664
1665 return 1;
1666 }
1667
1668 VG_STATIC void skate_store_grind_vec( player_instance *player,
1669 struct grind_info *inf )
1670 {
1671 struct player_skate *s = &player->_skate;
1672
1673 m3x3f mtx;
1674 skate_grind_orient( inf, mtx );
1675 m3x3_transpose( mtx, mtx );
1676
1677 v3f raw;
1678 v3_sub( inf->co, player->rb.co, raw );
1679
1680 m3x3_mulv( mtx, raw, s->grind_vec );
1681 v3_normalize( s->grind_vec );
1682 v3_copy( inf->dir, s->grind_dir );
1683 }
1684
1685 VG_STATIC enum skate_activity skate_availible_grind( player_instance *player )
1686 {
1687 struct player_skate *s = &player->_skate;
1688
1689 /* debounces this state manager a little bit */
1690 if( s->frames_since_activity_change < 10 )
1691 {
1692 s->frames_since_activity_change ++;
1693 return k_skate_activity_undefined;
1694 }
1695
1696 struct grind_info inf_back50,
1697 inf_front50,
1698 inf_slide;
1699
1700 int res_back50 = 0,
1701 res_front50 = 0,
1702 res_slide = 0;
1703
1704 if( s->state.activity == k_skate_activity_grind_boardslide )
1705 {
1706 res_slide = skate_boardslide_renew( player, &inf_slide );
1707 }
1708 else if( s->state.activity == k_skate_activity_grind_back50 )
1709 {
1710 res_back50 = skate_grind_truck_renew( player, 1.0f, &inf_back50 );
1711 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1712 }
1713 else if( s->state.activity == k_skate_activity_grind_front50 )
1714 {
1715 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1716 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1717 }
1718 else if( s->state.activity == k_skate_activity_grind_5050 )
1719 {
1720 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1721 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1722 }
1723 else
1724 {
1725 res_slide = skate_boardslide_entry( player, &inf_slide );
1726 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1727 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1728
1729 if( res_back50 != res_front50 )
1730 {
1731 int wants_to_do_that = fabsf(player->input_js1v->axis.value) >= 0.25f;
1732
1733 res_back50 &= wants_to_do_that;
1734 res_front50 &= wants_to_do_that;
1735 }
1736 }
1737
1738 const enum skate_activity table[] =
1739 { /* slide | back | front */
1740 k_skate_activity_undefined, /* 0 0 0 */
1741 k_skate_activity_grind_front50, /* 0 0 1 */
1742 k_skate_activity_grind_back50, /* 0 1 0 */
1743 k_skate_activity_grind_5050, /* 0 1 1 */
1744
1745 /* slide has priority always */
1746 k_skate_activity_grind_boardslide, /* 1 0 0 */
1747 k_skate_activity_grind_boardslide, /* 1 0 1 */
1748 k_skate_activity_grind_boardslide, /* 1 1 0 */
1749 k_skate_activity_grind_boardslide, /* 1 1 1 */
1750 }
1751 , new_activity = table[ res_slide << 2 | res_back50 << 1 | res_front50 ];
1752
1753 if( new_activity == k_skate_activity_undefined )
1754 {
1755 if( s->state.activity >= k_skate_activity_grind_any )
1756 s->frames_since_activity_change = 0;
1757 }
1758 else if( new_activity == k_skate_activity_grind_boardslide )
1759 {
1760 skate_boardslide_apply( player, &inf_slide );
1761 }
1762 else if( new_activity == k_skate_activity_grind_back50 )
1763 {
1764 if( s->state.activity != k_skate_activity_grind_back50 )
1765 skate_store_grind_vec( player, &inf_back50 );
1766
1767 skate_grind_truck_apply( player, 1.0f, &inf_back50, 1.0f );
1768 }
1769 else if( new_activity == k_skate_activity_grind_front50 )
1770 {
1771 if( s->state.activity != k_skate_activity_grind_front50 )
1772 skate_store_grind_vec( player, &inf_front50 );
1773
1774 skate_grind_truck_apply( player, -1.0f, &inf_front50, 1.0f );
1775 }
1776 else if( new_activity == k_skate_activity_grind_5050 )
1777 skate_5050_apply( player, &inf_front50, &inf_back50 );
1778
1779 return new_activity;
1780 }
1781
1782 VG_STATIC void player__skate_update( player_instance *player )
1783 {
1784 struct player_skate *s = &player->_skate;
1785 v3_copy( player->rb.co, s->state.prev_pos );
1786 s->state.activity_prev = s->state.activity;
1787
1788 struct board_collider
1789 {
1790 v3f pos;
1791 float radius;
1792
1793 u32 colour;
1794
1795 enum board_collider_state
1796 {
1797 k_collider_state_default,
1798 k_collider_state_disabled,
1799 k_collider_state_colliding
1800 }
1801 state;
1802 }
1803 wheels[] =
1804 {
1805 {
1806 { 0.0f, 0.0f, -k_board_length },
1807 .radius = k_board_radius,
1808 .colour = VG__RED
1809 },
1810 {
1811 { 0.0f, 0.0f, k_board_length },
1812 .radius = k_board_radius,
1813 .colour = VG__GREEN
1814 }
1815 };
1816
1817 const int k_wheel_count = 2;
1818
1819 s->substep = k_rb_delta;
1820 s->substep_delta = s->substep;
1821 s->limit_count = 0;
1822
1823 int substep_count = 0;
1824
1825 v3_zero( s->surface_picture );
1826
1827 for( int i=0; i<k_wheel_count; i++ )
1828 wheels[i].state = k_collider_state_default;
1829
1830 /* check if we can enter or continue grind */
1831 enum skate_activity grindable_activity = skate_availible_grind( player );
1832 if( grindable_activity != k_skate_activity_undefined )
1833 {
1834 s->state.activity = grindable_activity;
1835 goto grinding;
1836 }
1837
1838 int contact_count = 0;
1839 for( int i=0; i<2; i++ )
1840 {
1841 v3f normal, axel;
1842 if( skate_compute_surface_alignment( player, wheels[i].pos,
1843 wheels[i].colour, normal, axel ) )
1844 {
1845 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1846 axel,
1847 k_board_spring, k_board_dampener,
1848 s->substep_delta );
1849
1850 v3_add( normal, s->surface_picture, s->surface_picture );
1851 contact_count ++;
1852 }
1853 }
1854
1855 if( contact_count )
1856 {
1857 s->state.activity = k_skate_activity_ground;
1858 v3_normalize( s->surface_picture );
1859
1860 skate_apply_friction_model( player );
1861 skate_weight_distribute( player );
1862 skate_apply_pump_model( player );
1863 }
1864 else
1865 {
1866 s->state.activity = k_skate_activity_air;
1867 v3_zero( s->weight_distribution );
1868 skate_apply_air_model( player );
1869 }
1870
1871 grinding:;
1872
1873 if( s->state.activity == k_skate_activity_grind_back50 )
1874 wheels[1].state = k_collider_state_disabled;
1875 if( s->state.activity == k_skate_activity_grind_front50 )
1876 wheels[0].state = k_collider_state_disabled;
1877 if( s->state.activity == k_skate_activity_grind_5050 )
1878 {
1879 wheels[0].state = k_collider_state_disabled;
1880 wheels[1].state = k_collider_state_disabled;
1881 }
1882
1883 /* all activities */
1884 skate_apply_steering_model( player );
1885 skate_adjust_up_direction( player );
1886 skate_apply_cog_model( player );
1887 skate_apply_jump_model( player );
1888 skate_apply_grab_model( player );
1889 skate_apply_trick_model( player );
1890
1891 begin_collision:;
1892
1893 /*
1894 * Phase 0: Continous collision detection
1895 * --------------------------------------------------------------------------
1896 */
1897
1898 v3f head_wp0, head_wp1, start_co;
1899 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp0 );
1900 v3_copy( player->rb.co, start_co );
1901
1902 /* calculate transform one step into future */
1903 v3f future_co;
1904 v4f future_q;
1905 v3_muladds( player->rb.co, player->rb.v, s->substep, future_co );
1906
1907 if( v3_length2( player->rb.w ) > 0.0f )
1908 {
1909 v4f rotation;
1910 v3f axis;
1911 v3_copy( player->rb.w, axis );
1912
1913 float mag = v3_length( axis );
1914 v3_divs( axis, mag, axis );
1915 q_axis_angle( rotation, axis, mag*s->substep );
1916 q_mul( rotation, player->rb.q, future_q );
1917 q_normalize( future_q );
1918 }
1919 else
1920 v4_copy( player->rb.q, future_q );
1921
1922 v3f future_cg, current_cg, cg_offset;
1923 q_mulv( player->rb.q, s->weight_distribution, current_cg );
1924 q_mulv( future_q, s->weight_distribution, future_cg );
1925 v3_sub( future_cg, current_cg, cg_offset );
1926
1927 /* calculate the minimum time we can move */
1928 float max_time = s->substep;
1929
1930 for( int i=0; i<k_wheel_count; i++ )
1931 {
1932 if( wheels[i].state == k_collider_state_disabled )
1933 continue;
1934
1935 v3f current, future, r_cg;
1936
1937 q_mulv( future_q, wheels[i].pos, future );
1938 v3_add( future, future_co, future );
1939 v3_add( cg_offset, future, future );
1940
1941 q_mulv( player->rb.q, wheels[i].pos, current );
1942 v3_add( current, player->rb.co, current );
1943
1944 float t;
1945 v3f n;
1946
1947 float cast_radius = wheels[i].radius - k_penetration_slop * 2.0f;
1948 if( spherecast_world( current, future, cast_radius, &t, n ) != -1)
1949 max_time = vg_minf( max_time, t * s->substep );
1950 }
1951
1952 /* clamp to a fraction of delta, to prevent locking */
1953 float rate_lock = substep_count;
1954 rate_lock *= k_rb_delta * 0.1f;
1955 rate_lock *= rate_lock;
1956
1957 max_time = vg_maxf( max_time, rate_lock );
1958 s->substep_delta = max_time;
1959
1960 /* integrate */
1961 v3_muladds( player->rb.co, player->rb.v, s->substep_delta, player->rb.co );
1962 if( v3_length2( player->rb.w ) > 0.0f )
1963 {
1964 v4f rotation;
1965 v3f axis;
1966 v3_copy( player->rb.w, axis );
1967
1968 float mag = v3_length( axis );
1969 v3_divs( axis, mag, axis );
1970 q_axis_angle( rotation, axis, mag*s->substep_delta );
1971 q_mul( rotation, player->rb.q, player->rb.q );
1972 q_normalize( player->rb.q );
1973
1974 q_mulv( player->rb.q, s->weight_distribution, future_cg );
1975 v3_sub( current_cg, future_cg, cg_offset );
1976 v3_add( player->rb.co, cg_offset, player->rb.co );
1977 }
1978
1979 rb_update_transform( &player->rb );
1980 player->rb.v[1] += -k_gravity * s->substep_delta;
1981
1982 s->substep -= s->substep_delta;
1983
1984 rb_ct manifold[128];
1985 int manifold_len = 0;
1986
1987 /*
1988 * Phase -1: head detection
1989 * --------------------------------------------------------------------------
1990 */
1991 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp1 );
1992
1993 float t;
1994 v3f n;
1995 if( (v3_dist2( head_wp0, head_wp1 ) > 0.001f) &&
1996 (spherecast_world( head_wp0, head_wp1, 0.2f, &t, n ) != -1) )
1997 {
1998 v3_lerp( start_co, player->rb.co, t, player->rb.co );
1999 rb_update_transform( &player->rb );
2000
2001 player__dead_transition( player );
2002 return;
2003 }
2004
2005 /*
2006 * Phase 1: Regular collision detection
2007 * --------------------------------------------------------------------------
2008 */
2009
2010 for( int i=0; i<k_wheel_count; i++ )
2011 {
2012 if( wheels[i].state == k_collider_state_disabled )
2013 continue;
2014
2015 m4x3f mtx;
2016 m3x3_identity( mtx );
2017 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2018
2019 rb_sphere collider = { .radius = wheels[i].radius };
2020
2021 rb_ct *man = &manifold[ manifold_len ];
2022
2023 int l = skate_collide_smooth( player, mtx, &collider, man );
2024 if( l )
2025 wheels[i].state = k_collider_state_colliding;
2026
2027 manifold_len += l;
2028 }
2029
2030 float grind_radius = k_board_radius * 0.75f;
2031 rb_capsule capsule = { .height = (k_board_length+0.2f)*2.0f,
2032 .radius=grind_radius };
2033 m4x3f mtx;
2034 v3_muls( player->rb.to_world[0], 1.0f, mtx[0] );
2035 v3_muls( player->rb.to_world[2], -1.0f, mtx[1] );
2036 v3_muls( player->rb.to_world[1], 1.0f, mtx[2] );
2037 v3_muladds( player->rb.to_world[3], player->rb.to_world[1],
2038 grind_radius + k_board_radius*0.25f, mtx[3] );
2039
2040 rb_ct *cman = &manifold[manifold_len];
2041
2042 int l = rb_capsule__scene( mtx, &capsule, NULL, &world.rb_geo.inf.scene,
2043 cman );
2044
2045 /* weld joints */
2046 for( int i=0; i<l; i ++ )
2047 cman[l].type = k_contact_type_edge;
2048 rb_manifold_filter_joint_edges( cman, l, 0.03f );
2049 l = rb_manifold_apply_filtered( cman, l );
2050
2051 manifold_len += l;
2052
2053 debug_capsule( mtx, capsule.radius, capsule.height, VG__WHITE );
2054
2055 /* add limits */
2056 for( int i=0; i<s->limit_count; i++ )
2057 {
2058 struct grind_limit *limit = &s->limits[i];
2059 rb_ct *ct = &manifold[ manifold_len ++ ];
2060 m4x3_mulv( player->rb.to_world, limit->ra, ct->co );
2061 m3x3_mulv( player->rb.to_world, limit->n, ct->n );
2062 ct->p = limit->p;
2063 ct->type = k_contact_type_default;
2064 }
2065
2066 /*
2067 * Phase 3: Dynamics
2068 * --------------------------------------------------------------------------
2069 */
2070
2071
2072 v3f world_cog;
2073 m4x3_mulv( player->rb.to_world, s->weight_distribution, world_cog );
2074 vg_line_pt3( world_cog, 0.02f, VG__BLACK );
2075
2076 for( int i=0; i<manifold_len; i ++ )
2077 {
2078 rb_prepare_contact( &manifold[i], s->substep_delta );
2079 rb_debug_contact( &manifold[i] );
2080 }
2081
2082 /* yes, we are currently rebuilding mass matrices every frame. too bad! */
2083 v3f extent = { k_board_width, 0.1f, k_board_length };
2084 float ex2 = k_board_interia*extent[0]*extent[0],
2085 ey2 = k_board_interia*extent[1]*extent[1],
2086 ez2 = k_board_interia*extent[2]*extent[2];
2087
2088 float mass = 2.0f * (extent[0]*extent[1]*extent[2]);
2089 float inv_mass = 1.0f/mass;
2090
2091 v3f I;
2092 I[0] = ((1.0f/12.0f) * mass * (ey2+ez2));
2093 I[1] = ((1.0f/12.0f) * mass * (ex2+ez2));
2094 I[2] = ((1.0f/12.0f) * mass * (ex2+ey2));
2095
2096 m3x3f iI;
2097 m3x3_identity( iI );
2098 iI[0][0] = I[0];
2099 iI[1][1] = I[1];
2100 iI[2][2] = I[2];
2101 m3x3_inv( iI, iI );
2102
2103 m3x3f iIw;
2104 m3x3_mul( iI, player->rb.to_local, iIw );
2105 m3x3_mul( player->rb.to_world, iIw, iIw );
2106
2107 for( int j=0; j<10; j++ )
2108 {
2109 for( int i=0; i<manifold_len; i++ )
2110 {
2111 /*
2112 * regular dance; calculate velocity & total mass, apply impulse.
2113 */
2114
2115 struct contact *ct = &manifold[i];
2116
2117 v3f rv, delta;
2118 v3_sub( ct->co, world_cog, delta );
2119 v3_cross( player->rb.w, delta, rv );
2120 v3_add( player->rb.v, rv, rv );
2121
2122 v3f raCn;
2123 v3_cross( delta, ct->n, raCn );
2124
2125 v3f raCnI, rbCnI;
2126 m3x3_mulv( iIw, raCn, raCnI );
2127
2128 float normal_mass = 1.0f / (inv_mass + v3_dot(raCn,raCnI)),
2129 vn = v3_dot( rv, ct->n ),
2130 lambda = normal_mass * ( -vn );
2131
2132 float temp = ct->norm_impulse;
2133 ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
2134 lambda = ct->norm_impulse - temp;
2135
2136 v3f impulse;
2137 v3_muls( ct->n, lambda, impulse );
2138
2139 v3_muladds( player->rb.v, impulse, inv_mass, player->rb.v );
2140 v3_cross( delta, impulse, impulse );
2141 m3x3_mulv( iIw, impulse, impulse );
2142 v3_add( impulse, player->rb.w, player->rb.w );
2143
2144 v3_cross( player->rb.w, delta, rv );
2145 v3_add( player->rb.v, rv, rv );
2146 vn = v3_dot( rv, ct->n );
2147 }
2148 }
2149
2150 v3f dt;
2151 rb_depenetrate( manifold, manifold_len, dt );
2152 v3_add( dt, player->rb.co, player->rb.co );
2153 rb_update_transform( &player->rb );
2154
2155 substep_count ++;
2156
2157 if( s->substep >= 0.0001f )
2158 goto begin_collision; /* again! */
2159
2160 /*
2161 * End of collision and dynamics routine
2162 * --------------------------------------------------------------------------
2163 */
2164
2165 for( int i=0; i<k_wheel_count; i++ )
2166 {
2167 m4x3f mtx;
2168 m3x3_copy( player->rb.to_world, mtx );
2169 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2170 debug_sphere( mtx, wheels[i].radius,
2171 (u32[]){ VG__WHITE, VG__BLACK,
2172 wheels[i].colour }[ wheels[i].state ]);
2173 }
2174
2175 skate_integrate( player );
2176 vg_line_pt3( s->state.cog, 0.02f, VG__WHITE );
2177
2178 teleport_gate *gate;
2179 if( (gate = world_intersect_gates( player->rb.co, s->state.prev_pos )) )
2180 {
2181 m4x3_mulv( gate->transport, player->rb.co, player->rb.co );
2182 m3x3_mulv( gate->transport, player->rb.v, player->rb.v );
2183 m4x3_mulv( gate->transport, s->state.cog, s->state.cog );
2184 m3x3_mulv( gate->transport, s->state.cog_v, s->state.cog_v );
2185 m3x3_mulv( gate->transport, s->state.throw_v, s->state.throw_v );
2186 m3x3_mulv( gate->transport, s->state.head_position,
2187 s->state.head_position );
2188
2189 v4f transport_rotation;
2190 m3x3_q( gate->transport, transport_rotation );
2191 q_mul( transport_rotation, player->rb.q, player->rb.q );
2192 rb_update_transform( &player->rb );
2193
2194 s->state_gate_storage = s->state;
2195 player__pass_gate( player, gate );
2196 }
2197 }
2198
2199 VG_STATIC void player__skate_im_gui( player_instance *player )
2200 {
2201 struct player_skate *s = &player->_skate;
2202
2203 /* FIXME: Compression */
2204 player__debugtext( 1, "V: %5.2f %5.2f %5.2f",player->rb.v[0],
2205 player->rb.v[1],
2206 player->rb.v[2] );
2207 player__debugtext( 1, "CO: %5.2f %5.2f %5.2f",player->rb.co[0],
2208 player->rb.co[1],
2209 player->rb.co[2] );
2210 player__debugtext( 1, "W: %5.2f %5.2f %5.2f",player->rb.w[0],
2211 player->rb.w[1],
2212 player->rb.w[2] );
2213
2214 const char *activity_txt[] =
2215 {
2216 "air",
2217 "ground",
2218 "undefined (INVALID)",
2219 "grind_any (INVALID)",
2220 "grind_boardslide",
2221 "grind_noseslide",
2222 "grind_tailslide",
2223 "grind_back50",
2224 "grind_front50",
2225 "grind_5050"
2226 };
2227
2228 player__debugtext( 1, "activity: %s", activity_txt[s->state.activity] );
2229 #if 0
2230 player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
2231 s->state.steerx_s, s->state.steery_s,
2232 k_steer_ground, k_steer_air );
2233 #endif
2234 player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
2235 s->state.flip_time );
2236 player__debugtext( 1, "trickv: %.2f %.2f %.2f",
2237 s->state.trick_vel[0],
2238 s->state.trick_vel[1],
2239 s->state.trick_vel[2] );
2240 player__debugtext( 1, "tricke: %.2f %.2f %.2f",
2241 s->state.trick_euler[0],
2242 s->state.trick_euler[1],
2243 s->state.trick_euler[2] );
2244 }
2245
2246 VG_STATIC void player__skate_animate( player_instance *player,
2247 player_animation *dest )
2248 {
2249 struct player_skate *s = &player->_skate;
2250 struct player_avatar *av = player->playeravatar;
2251 struct skeleton *sk = &av->sk;
2252
2253 /* Head */
2254 float kheight = 2.0f,
2255 kleg = 0.6f;
2256
2257 v3f offset;
2258 v3_zero( offset );
2259
2260 v3f cog_local, cog_ideal;
2261 m4x3_mulv( player->rb.to_local, s->state.cog, cog_local );
2262
2263 v3_copy( s->state.up_dir, cog_ideal );
2264 v3_normalize( cog_ideal );
2265 m3x3_mulv( player->rb.to_local, cog_ideal, cog_ideal );
2266
2267 v3_sub( cog_ideal, cog_local, offset );
2268
2269
2270 v3_muls( offset, 4.0f, offset );
2271 offset[1] *= -1.0f;
2272
2273 float curspeed = v3_length( player->rb.v ),
2274 kickspeed = vg_clampf( curspeed*(1.0f/40.0f), 0.0f, 1.0f ),
2275 kicks = (vg_randf()-0.5f)*2.0f*kickspeed,
2276 sign = vg_signf( kicks );
2277
2278 s->wobble[0] = vg_lerpf( s->wobble[0], kicks*kicks*sign, 6.0f*vg.time_delta);
2279 s->wobble[1] = vg_lerpf( s->wobble[1], s->wobble[0], 2.4f*vg.time_delta);
2280
2281 offset[0] *= 0.26f;
2282 offset[0] += s->wobble[1]*3.0f;
2283
2284 offset[1] *= -0.3f;
2285 offset[2] *= 0.01f;
2286
2287 offset[0]=vg_clampf(offset[0],-0.8f,0.8f)*(1.0f-fabsf(s->blend_slide)*0.9f);
2288 offset[1]=vg_clampf(offset[1],-0.5f,0.0f);
2289
2290 /*
2291 * Animation blending
2292 * ===========================================
2293 */
2294
2295 /* sliding */
2296 {
2297 float desired = vg_clampf( fabsf( s->state.slip ), 0.0f, 1.0f );
2298 s->blend_slide = vg_lerpf( s->blend_slide, desired, 2.4f*vg.time_delta);
2299 }
2300
2301 /* movement information */
2302 {
2303 int iair = s->state.activity == k_skate_activity_air;
2304
2305 float dirz = s->state.reverse > 0.0f? 0.0f: 1.0f,
2306 dirx = s->state.slip < 0.0f? 0.0f: 1.0f,
2307 fly = iair? 1.0f: 0.0f,
2308 wdist= s->weight_distribution[2] / k_board_length;
2309
2310 s->blend_z = vg_lerpf( s->blend_z, dirz, 2.4f*vg.time_delta );
2311 s->blend_x = vg_lerpf( s->blend_x, dirx, 0.6f*vg.time_delta );
2312 s->blend_fly = vg_lerpf( s->blend_fly, fly, 2.4f*vg.time_delta );
2313 s->blend_weight= vg_lerpf( s->blend_weight, wdist, 9.0f*vg.time_delta );
2314 }
2315
2316 mdl_keyframe apose[32], bpose[32];
2317 mdl_keyframe ground_pose[32];
2318 {
2319 /* when the player is moving fast he will crouch down a little bit */
2320 float stand = 1.0f - vg_clampf( curspeed * 0.03f, 0.0f, 1.0f );
2321 s->blend_stand = vg_lerpf( s->blend_stand, stand, 6.0f*vg.time_delta );
2322
2323 /* stand/crouch */
2324 float dir_frame = s->blend_z * (15.0f/30.0f),
2325 stand_blend = offset[1]*-2.0f;
2326
2327 v3f local_cog;
2328 m4x3_mulv( player->rb.to_local, s->state.cog, local_cog );
2329
2330 stand_blend = vg_clampf( 1.0f-local_cog[1], 0, 1 );
2331
2332 skeleton_sample_anim( sk, s->anim_stand, dir_frame, apose );
2333 skeleton_sample_anim( sk, s->anim_highg, dir_frame, bpose );
2334 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
2335
2336 /* sliding */
2337 float slide_frame = s->blend_x * (15.0f/30.0f);
2338 skeleton_sample_anim( sk, s->anim_slide, slide_frame, bpose );
2339 skeleton_lerp_pose( sk, apose, bpose, s->blend_slide, apose );
2340
2341 /* pushing */
2342 double push_time = vg.time - s->state.start_push;
2343 s->blend_push = vg_lerpf( s->blend_push,
2344 (vg.time - s->state.cur_push) < 0.125,
2345 6.0f*vg.time_delta );
2346
2347 float pt = push_time + vg.accumulator;
2348 if( s->state.reverse > 0.0f )
2349 skeleton_sample_anim( sk, s->anim_push, pt, bpose );
2350 else
2351 skeleton_sample_anim( sk, s->anim_push_reverse, pt, bpose );
2352
2353 skeleton_lerp_pose( sk, apose, bpose, s->blend_push, apose );
2354
2355 /* trick setup */
2356 float jump_start_frame = 14.0f/30.0f;
2357
2358 float charge = s->state.jump_charge;
2359 s->blend_jump = vg_lerpf( s->blend_jump, charge, 8.4f*vg.time_delta );
2360
2361 float setup_frame = charge * jump_start_frame,
2362 setup_blend = vg_minf( s->blend_jump, 1.0f );
2363
2364 float jump_frame = (vg.time - s->state.jump_time) + jump_start_frame;
2365 if( jump_frame >= jump_start_frame && jump_frame <= (40.0f/30.0f) )
2366 setup_frame = jump_frame;
2367
2368 struct skeleton_anim *jump_anim = s->state.jump_dir?
2369 s->anim_ollie:
2370 s->anim_ollie_reverse;
2371
2372 skeleton_sample_anim_clamped( sk, jump_anim, setup_frame, bpose );
2373 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
2374 }
2375
2376 mdl_keyframe air_pose[32];
2377 {
2378 float target = -player->input_js1h->axis.value;
2379 s->blend_airdir = vg_lerpf( s->blend_airdir, target, 2.4f*vg.time_delta );
2380
2381 float air_frame = (s->blend_airdir*0.5f+0.5f) * (15.0f/30.0f);
2382 skeleton_sample_anim( sk, s->anim_air, air_frame, apose );
2383
2384 static v2f grab_choice;
2385
2386 v2f grab_input = { player->input_js2h->axis.value,
2387 player->input_js2v->axis.value };
2388 v2_add( s->state.grab_mouse_delta, grab_input, grab_input );
2389 if( v2_length2( grab_input ) <= 0.001f )
2390 grab_input[0] = -1.0f;
2391 else
2392 v2_normalize_clamp( grab_input );
2393 v2_lerp( grab_choice, grab_input, 2.4f*vg.time_delta, grab_choice );
2394
2395 float ang = atan2f( grab_choice[0], grab_choice[1] ),
2396 ang_unit = (ang+VG_PIf) * (1.0f/VG_TAUf),
2397 grab_frame = ang_unit * (15.0f/30.0f);
2398
2399 skeleton_sample_anim( sk, s->anim_grabs, grab_frame, bpose );
2400 skeleton_lerp_pose( sk, apose, bpose, s->state.grabbing, air_pose );
2401 }
2402
2403 skeleton_lerp_pose( sk, ground_pose, air_pose, s->blend_fly, dest->pose );
2404
2405 float add_grab_mod = 1.0f - s->blend_fly;
2406
2407 /* additive effects */
2408 {
2409 u32 apply_to[] = { av->id_hip,
2410 av->id_ik_hand_l,
2411 av->id_ik_hand_r,
2412 av->id_ik_elbow_l,
2413 av->id_ik_elbow_r };
2414
2415 for( int i=0; i<vg_list_size(apply_to); i ++ )
2416 {
2417 dest->pose[apply_to[i]-1].co[0] += offset[0]*add_grab_mod;
2418 dest->pose[apply_to[i]-1].co[2] += offset[2]*add_grab_mod;
2419 }
2420
2421
2422
2423
2424 /* angle correction */
2425 if( v3_length2( s->state.up_dir ) > 0.001f )
2426 {
2427 v3f ndir;
2428 m3x3_mulv( player->rb.to_local, s->state.up_dir, ndir );
2429 v3_normalize( ndir );
2430
2431 v3f up = { 0.0f, 1.0f, 0.0f };
2432
2433 float a = v3_dot( ndir, up );
2434 a = acosf( vg_clampf( a, -1.0f, 1.0f ) );
2435
2436 v3f axis;
2437 v4f q;
2438
2439 v3_cross( up, ndir, axis );
2440 q_axis_angle( q, axis, a );
2441
2442 mdl_keyframe *kf_hip = &dest->pose[av->id_hip-1];
2443
2444 for( int i=0; i<vg_list_size(apply_to); i ++ )
2445 {
2446 mdl_keyframe *kf = &dest->pose[apply_to[i]-1];
2447
2448 v3f v0;
2449 v3_sub( kf->co, kf_hip->co, v0 );
2450 q_mulv( q, v0, v0 );
2451 v3_add( v0, kf_hip->co, kf->co );
2452
2453 q_mul( q, kf->q, kf->q );
2454 q_normalize( kf->q );
2455 }
2456
2457 v3f p1, p2;
2458 m3x3_mulv( player->rb.to_world, up, p1 );
2459 m3x3_mulv( player->rb.to_world, ndir, p2 );
2460
2461 vg_line_arrow( player->rb.co, p1, 0.25f, VG__PINK );
2462 vg_line_arrow( player->rb.co, p2, 0.25f, VG__PINK );
2463 }
2464
2465
2466
2467 mdl_keyframe *kf_board = &dest->pose[av->id_board-1],
2468 *kf_foot_l = &dest->pose[av->id_ik_foot_l-1],
2469 *kf_foot_r = &dest->pose[av->id_ik_foot_r-1];
2470
2471
2472 v4f qtotal;
2473 v4f qtrickr, qyawr, qpitchr, qrollr;
2474 v3f eulerr;
2475
2476
2477 v3_muls( s->board_trick_residuald, VG_TAUf, eulerr );
2478
2479 q_axis_angle( qyawr, (v3f){0.0f,1.0f,0.0f}, eulerr[0] * 0.5f );
2480 q_axis_angle( qpitchr, (v3f){1.0f,0.0f,0.0f}, eulerr[1] );
2481 q_axis_angle( qrollr, (v3f){0.0f,0.0f,1.0f}, eulerr[2] );
2482
2483 q_mul( qpitchr, qrollr, qtrickr );
2484 q_mul( qyawr, qtrickr, qtotal );
2485 q_normalize( qtotal );
2486
2487 q_mul( qtotal, kf_board->q, kf_board->q );
2488
2489
2490 /* trick rotation */
2491 v4f qtrick, qyaw, qpitch, qroll;
2492 v3f euler;
2493 v3_muls( s->state.trick_euler, VG_TAUf, euler );
2494
2495 q_axis_angle( qyaw, (v3f){0.0f,1.0f,0.0f}, euler[0] * 0.5f );
2496 q_axis_angle( qpitch, (v3f){1.0f,0.0f,0.0f}, euler[1] );
2497 q_axis_angle( qroll, (v3f){0.0f,0.0f,1.0f}, euler[2] );
2498
2499 q_mul( qpitch, qroll, qtrick );
2500 q_mul( qyaw, qtrick, qtrick );
2501 q_mul( kf_board->q, qtrick, kf_board->q );
2502 q_normalize( kf_board->q );
2503
2504 /* foot weight distribution */
2505 if( s->blend_weight > 0.0f )
2506 {
2507 kf_foot_l->co[2] += s->blend_weight * 0.2f;
2508 kf_foot_r->co[2] += s->blend_weight * 0.1f;
2509 }
2510 else
2511 {
2512 kf_foot_r->co[2] += s->blend_weight * 0.3f;
2513 kf_foot_l->co[2] += s->blend_weight * 0.1f;
2514 }
2515 }
2516
2517 /* transform */
2518 rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
2519 v3_muladds( dest->root_co, player->rb.to_world[1], -0.1f, dest->root_co );
2520
2521 float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
2522 #if 0
2523 v4f qresy, qresx, qresidual;
2524 m3x3f mtx_residual;
2525 q_axis_angle( qresy, player->rb.to_world[1], s->state.steery_s*substep );
2526 q_axis_angle( qresx, player->rb.to_world[0], s->state.steerx_s*substep );
2527
2528 q_mul( qresy, qresx, qresidual );
2529 q_normalize( qresidual );
2530 q_mul( dest->root_q, qresidual, dest->root_q );
2531 q_normalize( dest->root_q );
2532 #endif
2533
2534 v4f qflip;
2535 if( (s->state.activity == k_skate_activity_air) &&
2536 (fabsf(s->state.flip_rate) > 0.01f) )
2537 {
2538 float t = s->state.flip_time + s->state.flip_rate*substep*k_rb_delta,
2539 angle = vg_clampf( t, -1.0f, 1.0f ) * VG_TAUf,
2540 distm = s->land_dist * fabsf(s->state.flip_rate) * 3.0f,
2541 blend = vg_clampf( 1.0f-distm, 0.0f, 1.0f );
2542
2543 angle = vg_lerpf( angle, vg_signf(s->state.flip_rate) * VG_TAUf, blend );
2544
2545 q_axis_angle( qflip, s->state.flip_axis, angle );
2546 q_mul( qflip, dest->root_q, dest->root_q );
2547 q_normalize( dest->root_q );
2548
2549 v3f rotation_point, rco;
2550 v3_muladds( player->rb.co, player->rb.to_world[1], 0.5f, rotation_point );
2551 v3_sub( dest->root_co, rotation_point, rco );
2552
2553 q_mulv( qflip, rco, rco );
2554 v3_add( rco, rotation_point, dest->root_co );
2555 }
2556
2557 skeleton_copy_pose( sk, dest->pose, player->holdout_pose );
2558 }
2559
2560 VG_STATIC void player__skate_post_animate( player_instance *player )
2561 {
2562 struct player_skate *s = &player->_skate;
2563 struct player_avatar *av = player->playeravatar;
2564
2565 player->cam_velocity_influence = 1.0f;
2566
2567 v3f head = { 0.0f, 1.8f, 0.0f }; /* FIXME: Viewpoint entity */
2568 m4x3_mulv( av->sk.final_mtx[ av->id_head ], head, s->state.head_position );
2569 m4x3_mulv( player->rb.to_local, s->state.head_position,
2570 s->state.head_position );
2571 }
2572
2573 VG_STATIC void player__skate_reset_animator( player_instance *player )
2574 {
2575 struct player_skate *s = &player->_skate;
2576
2577 if( s->state.activity == k_skate_activity_air )
2578 s->blend_fly = 1.0f;
2579 else
2580 s->blend_fly = 0.0f;
2581
2582 s->blend_slide = 0.0f;
2583 s->blend_z = 0.0f;
2584 s->blend_x = 0.0f;
2585 s->blend_stand = 0.0f;
2586 s->blend_push = 0.0f;
2587 s->blend_jump = 0.0f;
2588 s->blend_airdir = 0.0f;
2589 }
2590
2591 VG_STATIC void player__skate_clear_mechanics( player_instance *player )
2592 {
2593 struct player_skate *s = &player->_skate;
2594 s->state.jump_charge = 0.0f;
2595 s->state.lift_frames = 0;
2596 s->state.flip_rate = 0.0f;
2597 #if 0
2598 s->state.steery = 0.0f;
2599 s->state.steerx = 0.0f;
2600 s->state.steery_s = 0.0f;
2601 s->state.steerx_s = 0.0f;
2602 #endif
2603 s->state.reverse = 0.0f;
2604 s->state.slip = 0.0f;
2605 v3_copy( player->rb.co, s->state.prev_pos );
2606
2607 #if 0
2608 m3x3_identity( s->state.velocity_bias );
2609 m3x3_identity( s->state.velocity_bias_pstep );
2610 #endif
2611
2612 v3_zero( s->state.throw_v );
2613 v3_zero( s->state.trick_vel );
2614 v3_zero( s->state.trick_euler );
2615 }
2616
2617 VG_STATIC void player__skate_reset( player_instance *player,
2618 struct respawn_point *rp )
2619 {
2620 struct player_skate *s = &player->_skate;
2621 v3_muladds( player->rb.co, player->rb.to_world[1], 1.0f, s->state.cog );
2622 v3_zero( player->rb.v );
2623 v3_zero( s->state.cog_v );
2624 v4_copy( rp->q, player->rb.q );
2625
2626 s->state.activity = k_skate_activity_air;
2627 s->state.activity_prev = k_skate_activity_air;
2628
2629 player__skate_clear_mechanics( player );
2630 player__skate_reset_animator( player );
2631
2632 v3_zero( s->state.head_position );
2633 s->state.head_position[1] = 1.8f;
2634 }
2635
2636 #endif /* PLAYER_SKATE_C */