prelim tricks
[carveJwlIkooP6JGAAIwe30JlM.git] / player_skate.c
1 #ifndef PLAYER_SKATE_C
2 #define PLAYER_SKATE_C
3
4 #include "player.h"
5
6 VG_STATIC void player__skate_bind( player_instance *player )
7 {
8 struct player_skate *s = &player->_skate;
9 struct player_avatar *av = player->playeravatar;
10 struct skeleton *sk = &av->sk;
11
12 rb_update_transform( &player->rb );
13 s->anim_stand = skeleton_get_anim( sk, "pose_stand" );
14 s->anim_highg = skeleton_get_anim( sk, "pose_highg" );
15 s->anim_air = skeleton_get_anim( sk, "pose_air" );
16 s->anim_slide = skeleton_get_anim( sk, "pose_slide" );
17 s->anim_push = skeleton_get_anim( sk, "push" );
18 s->anim_push_reverse = skeleton_get_anim( sk, "push_reverse" );
19 s->anim_ollie = skeleton_get_anim( sk, "ollie" );
20 s->anim_ollie_reverse = skeleton_get_anim( sk, "ollie_reverse" );
21 s->anim_grabs = skeleton_get_anim( sk, "grabs" );
22 }
23
24 /*
25 * Collision detection routines
26 *
27 *
28 */
29
30 /*
31 * Does collision detection on a sphere vs world, and applies some smoothing
32 * filters to the manifold afterwards
33 */
34 VG_STATIC int skate_collide_smooth( player_instance *player,
35 m4x3f mtx, rb_sphere *sphere,
36 rb_ct *man )
37 {
38 debug_sphere( mtx, sphere->radius, VG__BLACK );
39
40 int len = 0;
41 len = rb_sphere__scene( mtx, sphere, NULL, &world.rb_geo.inf.scene, man );
42
43 for( int i=0; i<len; i++ )
44 {
45 man[i].rba = &player->rb;
46 man[i].rbb = NULL;
47 }
48
49 rb_manifold_filter_coplanar( man, len, 0.05f );
50
51 if( len > 1 )
52 {
53 rb_manifold_filter_backface( man, len );
54 rb_manifold_filter_joint_edges( man, len, 0.05f );
55 rb_manifold_filter_pairs( man, len, 0.05f );
56 }
57 int new_len = rb_manifold_apply_filtered( man, len );
58 if( len && !new_len )
59 len = 1;
60 else
61 len = new_len;
62
63 return len;
64 }
65 /*
66 * Gets the closest grindable edge to the player within max_dist
67 */
68 VG_STATIC struct grind_edge *skate_collect_grind_edge( v3f p0, v3f p1,
69 v3f c0, v3f c1,
70 float max_dist )
71 {
72 bh_iter it;
73 bh_iter_init( 0, &it );
74
75 boxf region;
76
77 box_init_inf( region );
78 box_addpt( region, p0 );
79 box_addpt( region, p1 );
80
81 float k_r = max_dist;
82 v3_add( (v3f){ k_r, k_r, k_r}, region[1], region[1] );
83 v3_add( (v3f){-k_r,-k_r,-k_r}, region[0], region[0] );
84
85 float closest = k_r*k_r;
86 struct grind_edge *closest_edge = NULL;
87
88 int idx;
89 while( bh_next( world.grind_bh, &it, region, &idx ) )
90 {
91 struct grind_edge *edge = &world.grind_edges[ idx ];
92
93 float s,t;
94 v3f pa, pb;
95
96 float d2 =
97 closest_segment_segment( p0, p1, edge->p0, edge->p1, &s,&t, pa, pb );
98
99 if( d2 < closest )
100 {
101 closest = d2;
102 closest_edge = edge;
103 v3_copy( pa, c0 );
104 v3_copy( pb, c1 );
105 }
106 }
107
108 return closest_edge;
109 }
110
111 VG_STATIC int skate_grind_collide( player_instance *player, rb_ct *contact )
112 {
113 v3f p0, p1, c0, c1;
114 v3_muladds( player->rb.co, player->rb.to_world[2], 0.5f, p0 );
115 v3_muladds( player->rb.co, player->rb.to_world[2], -0.5f, p1 );
116 v3_muladds( p0, player->rb.to_world[1], 0.125f-0.15f, p0 );
117 v3_muladds( p1, player->rb.to_world[1], 0.125f-0.15f, p1 );
118
119 float const k_r = 0.25f;
120 struct grind_edge *closest_edge = skate_collect_grind_edge( p0, p1,
121 c0, c1, k_r );
122
123 if( closest_edge )
124 {
125 v3f delta;
126 v3_sub( c1, c0, delta );
127
128 if( v3_dot( delta, player->rb.to_world[1] ) > 0.0001f )
129 {
130 contact->p = v3_length( delta );
131 contact->type = k_contact_type_edge;
132 contact->element_id = 0;
133 v3_copy( c1, contact->co );
134 contact->rba = NULL;
135 contact->rbb = NULL;
136
137 v3f edge_dir, axis_dir;
138 v3_sub( closest_edge->p1, closest_edge->p0, edge_dir );
139 v3_normalize( edge_dir );
140 v3_cross( (v3f){0.0f,1.0f,0.0f}, edge_dir, axis_dir );
141 v3_cross( edge_dir, axis_dir, contact->n );
142
143 return 1;
144 }
145 else
146 return 0;
147 }
148
149 return 0;
150 }
151
152 /*
153 *
154 * Prediction system
155 *
156 *
157 */
158
159 /*
160 * Trace a path given a velocity rotation.
161 *
162 * TODO: this MIGHT be worth doing RK4 on the gravity field.
163 */
164 VG_STATIC void skate_score_biased_path( v3f co, v3f v, m3x3f vr,
165 struct land_prediction *prediction )
166 {
167 float pstep = VG_TIMESTEP_FIXED * 10.0f;
168 float k_bias = 0.96f;
169
170 v3f pco, pco1, pv;
171 v3_copy( co, pco );
172 v3_muls( v, k_bias, pv );
173
174 m3x3_mulv( vr, pv, pv );
175 v3_muladds( pco, pv, pstep, pco );
176
177 struct grind_edge *best_grind = NULL;
178 float closest_grind = INFINITY;
179
180 float grind_score = INFINITY,
181 air_score = INFINITY,
182 time_to_impact = 0.0f;
183
184 prediction->log_length = 0;
185 v3_copy( pco, prediction->apex );
186
187 for( int i=0; i<vg_list_size(prediction->log); i++ )
188 {
189 v3_copy( pco, pco1 );
190
191 pv[1] += -k_gravity * pstep;
192
193 m3x3_mulv( vr, pv, pv );
194 v3_muladds( pco, pv, pstep, pco );
195
196 if( pco[1] > prediction->apex[1] )
197 v3_copy( pco, prediction->apex );
198
199 v3f vdir;
200
201 v3_sub( pco, pco1, vdir );
202
203 float l = v3_length( vdir );
204 v3_muls( vdir, 1.0f/l, vdir );
205
206 v3f c0, c1;
207 struct grind_edge *ge = skate_collect_grind_edge( pco, pco1,
208 c0, c1, 0.4f );
209
210 if( ge && (v3_dot((v3f){0.0f,1.0f,0.0f},vdir) < -0.2f ) )
211 {
212 float d2 = v3_dist2( c0, c1 );
213 if( d2 < closest_grind )
214 {
215 closest_grind = d2;
216 best_grind = ge;
217 grind_score = closest_grind * 0.05f;
218 }
219 }
220
221 v3f n1;
222
223 float t1;
224 int idx = spherecast_world( pco1, pco, 0.4f, &t1, n1 );
225 if( idx != -1 )
226 {
227 v3_copy( n1, prediction->n );
228 air_score = -v3_dot( pv, n1 );
229
230 u32 vert_index = world.scene_geo->arrindices[ idx*3 ];
231 struct world_material *mat = world_tri_index_material( vert_index );
232
233 /* Bias prediction towords ramps */
234 if( mat->info.flags & k_material_flag_skate_surface )
235 air_score *= 0.1f;
236
237 v3_lerp( pco1, pco, t1, prediction->log[ prediction->log_length ++ ] );
238 time_to_impact += t1 * pstep;
239 break;
240 }
241
242 time_to_impact += pstep;
243 v3_copy( pco, prediction->log[ prediction->log_length ++ ] );
244 }
245
246 if( grind_score < air_score )
247 {
248 prediction->score = grind_score;
249 prediction->type = k_prediction_grind;
250 }
251 else if( air_score < INFINITY )
252 {
253 prediction->score = air_score;
254 prediction->type = k_prediction_land;
255 }
256 else
257 {
258 prediction->score = INFINITY;
259 prediction->type = k_prediction_none;
260 }
261
262 prediction->land_dist = time_to_impact;
263 }
264
265 VG_STATIC
266 void player__approximate_best_trajectory( player_instance *player )
267 {
268 struct player_skate *s = &player->_skate;
269
270 float pstep = VG_TIMESTEP_FIXED * 10.0f;
271 float best_velocity_delta = -9999.9f;
272
273 v3f axis;
274 v3_cross( player->rb.to_world[1], player->rb.v, axis );
275 v3_normalize( axis );
276
277 s->prediction_count = 0;
278 m3x3_identity( s->state.velocity_bias );
279
280 float best_vmod = 0.0f,
281 min_score = INFINITY,
282 max_score = -INFINITY;
283
284 v3_zero( s->state.apex );
285 s->land_dist = 0.0f;
286
287 /*
288 * Search a broad selection of futures
289 */
290 for( int m=-3;m<=12; m++ )
291 {
292 struct land_prediction *p = &s->predictions[ s->prediction_count ++ ];
293
294 float vmod = ((float)m / 15.0f)*0.09f;
295
296 m3x3f bias;
297 v4f bias_q;
298
299 q_axis_angle( bias_q, axis, vmod );
300 q_m3x3( bias_q, bias );
301
302 skate_score_biased_path( player->rb.co, player->rb.v, bias, p );
303
304 if( p->type != k_prediction_none )
305 {
306 if( p->score < min_score )
307 {
308 min_score = p->score;
309 best_vmod = vmod;
310 s->land_dist = p->land_dist;
311 v3_copy( p->apex, s->state.apex );
312 }
313
314 if( p->score > max_score )
315 max_score = p->score;
316 }
317 }
318
319 v4f vr_q;
320 q_axis_angle( vr_q, axis, best_vmod*0.1f );
321 q_m3x3( vr_q, s->state.velocity_bias );
322
323 q_axis_angle( vr_q, axis, best_vmod );
324 q_m3x3( vr_q, s->state.velocity_bias_pstep );
325
326 /*
327 * Logging
328 */
329 for( int i=0; i<s->prediction_count; i ++ )
330 {
331 struct land_prediction *p = &s->predictions[i];
332
333 float l = p->score;
334
335 if( l < 0.0f )
336 {
337 vg_error( "negative score! (%f)\n", l );
338 }
339
340 l -= min_score;
341 l /= (max_score-min_score);
342 l = 1.0f - l;
343 l *= 255.0f;
344
345 p->colour = l;
346 p->colour <<= 8;
347 p->colour |= 0xff000000;
348 }
349
350
351 v2f steer = { player->input_js1h->axis.value,
352 player->input_js1v->axis.value };
353 v2_normalize_clamp( steer );
354
355 if( (fabsf(steer[1]) > 0.5f) && (s->land_dist >= 1.0f) )
356 {
357 s->state.flip_rate = (1.0f/s->land_dist) * vg_signf(steer[1]) *
358 s->state.reverse ;
359 s->state.flip_time = 0.0f;
360 v3_copy( player->rb.to_world[0], s->state.flip_axis );
361 }
362 else
363 {
364 s->state.flip_rate = 0.0f;
365 v3_zero( s->state.flip_axis );
366 }
367 }
368
369 /*
370 *
371 * Varius physics models
372 * ------------------------------------------------
373 */
374
375 VG_STATIC void skate_apply_grind_model( player_instance *player,
376 rb_ct *manifold, int len )
377 {
378 struct player_skate *s = &player->_skate;
379
380 /* FIXME: Queue audio events instead */
381 if( len == 0 )
382 {
383 if( s->state.activity == k_skate_activity_grind )
384 {
385 #if 0
386 audio_lock();
387 audio_player_set_flags( &audio_player_extra,
388 AUDIO_FLAG_SPACIAL_3D );
389 audio_player_set_position( &audio_player_extra, player.rb.co );
390 audio_player_set_vol( &audio_player_extra, 20.0f );
391 audio_player_playclip( &audio_player_extra, &audio_board[6] );
392 audio_unlock();
393 #endif
394
395 s->state.activity = k_skate_activity_air;
396 }
397 return;
398 }
399
400 v2f steer = { player->input_js1h->axis.value,
401 player->input_js1v->axis.value };
402 v2_normalize_clamp( steer );
403
404 s->state.steery -= steer[0] * k_steer_air * k_rb_delta;
405 s->state.steerx += steer[1] * s->state.reverse * k_steer_air * k_rb_delta;
406
407 #if 0
408 v4f rotate;
409 q_axis_angle( rotate, player->rb.to_world[0], siX );
410 q_mul( rotate, player.rb.q, player.rb.q );
411 #endif
412
413 s->state.slip = 0.0f;
414 s->state.activity = k_skate_activity_grind;
415
416 /* TODO: Compression */
417 v3f up = { 0.0f, 1.0f, 0.0f };
418 float angle = v3_dot( player->rb.to_world[1], up );
419
420 if( fabsf(angle) < 0.99f )
421 {
422 v3f axis;
423 v3_cross( player->rb.to_world[1], up, axis );
424
425 v4f correction;
426 q_axis_angle( correction, axis, k_rb_delta * 10.0f * acosf(angle) );
427 q_mul( correction, player->rb.q, player->rb.q );
428 }
429
430 float const DOWNFORCE = -k_downforce*1.2f*VG_TIMESTEP_FIXED;
431 v3_muladds( player->rb.v, manifold->n, DOWNFORCE, player->rb.v );
432 m3x3_identity( s->state.velocity_bias );
433 m3x3_identity( s->state.velocity_bias_pstep );
434
435 if( s->state.activity_prev != k_skate_activity_grind )
436 {
437 /* FIXME: Queue audio events instead */
438 #if 0
439 audio_lock();
440 audio_player_set_flags( &audio_player_extra,
441 AUDIO_FLAG_SPACIAL_3D );
442 audio_player_set_position( &audio_player_extra, player.rb.co );
443 audio_player_set_vol( &audio_player_extra, 20.0f );
444 audio_player_playclip( &audio_player_extra, &audio_board[5] );
445 audio_unlock();
446 #endif
447 }
448 }
449
450 /*
451 * Air control, no real physics
452 */
453 VG_STATIC void skate_apply_air_model( player_instance *player )
454 {
455 struct player_skate *s = &player->_skate;
456
457 if( s->state.activity != k_skate_activity_air )
458 return;
459
460 if( s->state.activity_prev != k_skate_activity_air )
461 player__approximate_best_trajectory( player );
462
463 m3x3_mulv( s->state.velocity_bias, player->rb.v, player->rb.v );
464 ray_hit hit;
465
466 /*
467 * Prediction
468 */
469 float pstep = VG_TIMESTEP_FIXED * 1.0f;
470 float k_bias = 0.98f;
471
472 v3f pco, pco1, pv;
473 v3_copy( player->rb.co, pco );
474 v3_muls( player->rb.v, 1.0f, pv );
475
476 float time_to_impact = 0.0f;
477 float limiter = 1.0f;
478
479 struct grind_edge *best_grind = NULL;
480 float closest_grind = INFINITY;
481
482 v3f target_normal = { 0.0f, 1.0f, 0.0f };
483 int has_target = 0;
484
485 for( int i=0; i<250; i++ )
486 {
487 v3_copy( pco, pco1 );
488 m3x3_mulv( s->state.velocity_bias, pv, pv );
489
490 pv[1] += -k_gravity * pstep;
491 v3_muladds( pco, pv, pstep, pco );
492
493 ray_hit contact;
494 v3f vdir;
495
496 v3_sub( pco, pco1, vdir );
497 contact.dist = v3_length( vdir );
498 v3_divs( vdir, contact.dist, vdir);
499
500 v3f c0, c1;
501 struct grind_edge *ge = skate_collect_grind_edge( pco, pco1,
502 c0, c1, 0.4f );
503
504 if( ge && (v3_dot((v3f){0.0f,1.0f,0.0f},vdir) < -0.2f ) )
505 {
506 vg_line( ge->p0, ge->p1, 0xff0000ff );
507 vg_line_cross( pco, 0xff0000ff, 0.25f );
508 has_target = 1;
509 break;
510 }
511
512 float orig_dist = contact.dist;
513 if( ray_world( pco1, vdir, &contact ) )
514 {
515 v3_copy( contact.normal, target_normal );
516 has_target = 1;
517 time_to_impact += (contact.dist/orig_dist)*pstep;
518 vg_line_cross( contact.pos, 0xffff0000, 0.25f );
519 break;
520 }
521 time_to_impact += pstep;
522 }
523
524 if( has_target )
525 {
526 float angle = v3_dot( player->rb.to_world[1], target_normal );
527 v3f axis;
528 v3_cross( player->rb.to_world[1], target_normal, axis );
529
530 limiter = vg_minf( 5.0f, time_to_impact )/5.0f;
531 limiter = 1.0f-limiter;
532 limiter *= limiter;
533 limiter = 1.0f-limiter;
534
535 if( fabsf(angle) < 0.99f )
536 {
537 v4f correction;
538 q_axis_angle( correction, axis,
539 acosf(angle)*(1.0f-limiter)*2.0f*VG_TIMESTEP_FIXED );
540 q_mul( correction, player->rb.q, player->rb.q );
541 }
542 }
543
544 v2f steer = { player->input_js1h->axis.value,
545 player->input_js1v->axis.value };
546 v2_normalize_clamp( steer );
547
548 s->state.steery -= steer[0] * k_steer_air * VG_TIMESTEP_FIXED;
549 s->state.steerx += steer[1] * s->state.reverse * k_steer_air
550 * limiter * k_rb_delta;
551 s->land_dist = time_to_impact;
552 v3_copy( target_normal, s->land_normal );
553 }
554
555 VG_STATIC void skate_get_board_points( player_instance *player,
556 v3f front, v3f back )
557 {
558 v3f pos_front = {0.0f,0.0f,-k_board_length},
559 pos_back = {0.0f,0.0f, k_board_length};
560
561 m4x3_mulv( player->rb.to_world, pos_front, front );
562 m4x3_mulv( player->rb.to_world, pos_back, back );
563 }
564
565 /*
566 * Casts and pushes a sphere-spring model into the world
567 */
568 VG_STATIC int skate_simulate_spring( player_instance *player,
569 v3f pos )
570 {
571 struct player_skate *s = &player->_skate;
572
573 float mod = 0.7f * player->input_grab->axis.value + 0.3f,
574 spring_k = mod * k_spring_force,
575 damp_k = mod * k_spring_dampener,
576 disp_k = 0.4f;
577
578 v3f start, end;
579 v3_copy( pos, start );
580 v3_muladds( pos, player->rb.to_world[1], -disp_k, end );
581
582 float t;
583 v3f n;
584 int hit_info = spherecast_world( start, end, 0.2f, &t, n );
585
586 if( hit_info != -1 )
587 {
588 v3f F, delta;
589 v3_sub( start, player->rb.co, delta );
590
591 float displacement = vg_clampf( 1.0f-t, 0.0f, 1.0f ),
592 damp =
593 vg_maxf( 0.0f, v3_dot( player->rb.to_world[1], player->rb.v ) );
594
595 v3_muls( player->rb.to_world[1], displacement*spring_k*k_rb_delta -
596 damp*damp_k*k_rb_delta, F );
597
598 v3_muladds( player->rb.v, F, 1.0f, player->rb.v );
599
600 /* Angular velocity */
601 v3f wa;
602 v3_cross( delta, F, wa );
603 v3_muladds( player->rb.w, wa, k_spring_angular, player->rb.w );
604
605 v3_lerp( start, end, t, pos );
606 return 1;
607 }
608 else
609 {
610 v3_copy( end, pos );
611 return 0;
612 }
613 }
614
615
616 /*
617 * Handles connection between the player and the ground
618 */
619 VG_STATIC void skate_apply_interface_model( player_instance *player,
620 rb_ct *manifold, int len )
621 {
622 struct player_skate *s = &player->_skate;
623
624 if( !((s->state.activity == k_skate_activity_ground) ||
625 (s->state.activity == k_skate_activity_air )) )
626 return;
627
628 if( s->state.activity == k_skate_activity_air )
629 s->debug_normal_pressure = 0.0f;
630 else
631 s->debug_normal_pressure = v3_dot( player->rb.to_world[1], player->rb.v );
632
633 /* springs */
634 v3f spring0, spring1;
635
636 skate_get_board_points( player, spring1, spring0 );
637 int spring_hit0 = 0, //skate_simulate_spring( player, s, spring0 ),
638 spring_hit1 = 0; //skate_simulate_spring( player, s, spring1 );
639
640 v3f animavg, animdelta;
641 v3_add( spring0, spring1, animavg );
642 v3_muls( animavg, 0.5f, animavg );
643
644 v3_sub( spring1, spring0, animdelta );
645 v3_normalize( animdelta );
646
647 m4x3_mulv( player->rb.to_local, animavg, s->board_offset );
648
649 float dx = -v3_dot( animdelta, player->rb.to_world[2] ),
650 dy = v3_dot( animdelta, player->rb.to_world[1] );
651
652 float angle = -atan2f( dy, dx );
653 q_axis_angle( s->board_rotation, (v3f){1.0f,0.0f,0.0f}, angle );
654
655 int lift_frames_limit = 6;
656
657 /* Surface connection */
658 if( len == 0 && !(spring_hit0 && spring_hit1) )
659 {
660 s->state.lift_frames ++;
661
662 if( s->state.lift_frames >= lift_frames_limit )
663 s->state.activity = k_skate_activity_air;
664 }
665 else
666 {
667 v3f surface_avg;
668 v3_zero( surface_avg );
669
670 for( int i=0; i<len; i++ )
671 v3_add( surface_avg, manifold[i].n, surface_avg );
672 v3_normalize( surface_avg );
673
674 if( v3_dot( player->rb.v, surface_avg ) > 0.7f )
675 {
676 s->state.lift_frames ++;
677
678 if( s->state.lift_frames >= lift_frames_limit )
679 s->state.activity = k_skate_activity_air;
680 }
681 else
682 {
683 s->state.activity = k_skate_activity_ground;
684 s->state.lift_frames = 0;
685 v3f projected, axis;
686
687 if( s->state.activity_prev == k_skate_activity_air )
688 {
689 player->cam_land_punch_v += v3_dot( player->rb.v, surface_avg ) *
690 k_cam_punch;
691 }
692
693 float const DOWNFORCE = -k_downforce*VG_TIMESTEP_FIXED;
694 v3_muladds( player->rb.v, player->rb.to_world[1],
695 DOWNFORCE, player->rb.v );
696
697 float d = v3_dot( player->rb.to_world[2], surface_avg );
698 v3_muladds( surface_avg, player->rb.to_world[2], -d, projected );
699 v3_normalize( projected );
700
701 float angle = v3_dot( player->rb.to_world[1], projected );
702 v3_cross( player->rb.to_world[1], projected, axis );
703
704 if( fabsf(angle) < 0.9999f )
705 {
706 v4f correction;
707 q_axis_angle( correction, axis,
708 acosf(angle)*4.0f*VG_TIMESTEP_FIXED );
709 q_mul( correction, player->rb.q, player->rb.q );
710 }
711 }
712 }
713 }
714
715 VG_STATIC void skate_apply_trick_model( player_instance *player )
716 {
717 struct player_skate *s = &player->_skate;
718
719 v3f Fd, Fs, F;
720 v3f strength = { 3.7f, 3.6f, 8.0f };
721
722 v3_muls( s->board_trick_residualv, -4.0f , Fd );
723 v3_muls( s->board_trick_residuald, -10.0f, Fs );
724 v3_add( Fd, Fs, F );
725 v3_mul( strength, F, F );
726
727 v3_muladds( s->board_trick_residualv, F, k_rb_delta,
728 s->board_trick_residualv );
729 v3_muladds( s->board_trick_residuald, s->board_trick_residualv,
730 k_rb_delta, s->board_trick_residuald );
731
732 if( s->state.activity == k_skate_activity_air )
733 {
734 if( v3_length2( s->state.trick_vel ) < 0.0001f )
735 return;
736
737 int carry_on = player->input_jump->button.value;
738
739 /* we assume velocities share a common divisor, in which case the
740 * interval is the minimum value (if not zero) */
741
742 float min_rate = 99999.0f;
743
744 for( int i=0; i<3; i++ )
745 {
746 float v = s->state.trick_vel[i];
747 if( (v > 0.0f) && (v < min_rate) )
748 min_rate = v;
749 }
750
751 float interval = 1.0f / min_rate,
752 current = floorf( s->state.trick_time / interval ),
753 next_end = (current+1.0f) * interval;
754
755
756 /* integrate trick velocities */
757 v3_muladds( s->state.trick_euler, s->state.trick_vel, k_rb_delta,
758 s->state.trick_euler );
759
760 if( !carry_on && (s->state.trick_time + k_rb_delta >= next_end) )
761 {
762 s->state.trick_time = 0.0f;
763 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
764 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
765 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
766 v3_copy( s->state.trick_vel, s->board_trick_residualv );
767 v3_zero( s->state.trick_vel );
768 }
769
770 s->state.trick_time += k_rb_delta;
771 }
772 else
773 {
774 if( s->state.lift_frames == 0 )
775 {
776 }
777 }
778 }
779
780 VG_STATIC void skate_apply_grab_model( player_instance *player )
781 {
782 struct player_skate *s = &player->_skate;
783
784 float grabt = player->input_grab->axis.value;
785
786 if( grabt > 0.5f )
787 {
788 v2_muladds( s->state.grab_mouse_delta, vg.mouse_delta, 0.02f,
789 s->state.grab_mouse_delta );
790
791 v2_normalize_clamp( s->state.grab_mouse_delta );
792 }
793 else
794 v2_zero( s->state.grab_mouse_delta );
795
796 s->state.grabbing = vg_lerpf( s->state.grabbing, grabt, 8.4f*k_rb_delta );
797 }
798
799 /*
800 * Computes friction and surface interface model
801 */
802 VG_STATIC void skate_apply_friction_model( player_instance *player )
803 {
804 struct player_skate *s = &player->_skate;
805
806 if( s->state.activity != k_skate_activity_ground )
807 return;
808
809 /*
810 * Computing localized friction forces for controlling the character
811 * Friction across X is significantly more than Z
812 */
813
814 v3f vel;
815 m3x3_mulv( player->rb.to_local, player->rb.v, vel );
816 float slip = 0.0f;
817
818 if( fabsf(vel[2]) > 0.01f )
819 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
820
821 if( fabsf( slip ) > 1.2f )
822 slip = vg_signf( slip ) * 1.2f;
823
824 s->state.slip = slip;
825 s->state.reverse = -vg_signf(vel[2]);
826
827 vel[0] += vg_cfrictf( vel[0], k_friction_lat * k_rb_delta );
828 vel[2] += vg_cfrictf( vel[2], k_friction_resistance * k_rb_delta );
829
830 /* Pushing additive force */
831
832 if( !player->input_jump->button.value )
833 {
834 if( player->input_push->button.value )
835 {
836 if( (vg.time - s->state.cur_push) > 0.25 )
837 s->state.start_push = vg.time;
838
839 s->state.cur_push = vg.time;
840
841 double push_time = vg.time - s->state.start_push;
842
843 float cycle_time = push_time*k_push_cycle_rate,
844 accel = k_push_accel * (sinf(cycle_time)*0.5f+0.5f),
845 amt = accel * VG_TIMESTEP_FIXED,
846 current = v3_length( vel ),
847 new_vel = vg_minf( current + amt, k_max_push_speed ),
848 delta = new_vel - vg_minf( current, k_max_push_speed );
849
850 vel[2] += delta * -s->state.reverse;
851 }
852 }
853
854 /* Send back to velocity */
855 m3x3_mulv( player->rb.to_world, vel, player->rb.v );
856
857 /* Steering */
858 float input = player->input_js1h->axis.value,
859 grab = player->input_grab->axis.value,
860 steer = input * (1.0f-(s->state.jump_charge+grab)*0.4f),
861 steer_scaled = vg_signf(steer) * powf(steer,2.0f) * k_steer_ground;
862
863 s->state.steery -= steer_scaled * k_rb_delta;
864 }
865
866 VG_STATIC void skate_apply_jump_model( player_instance *player )
867 {
868 struct player_skate *s = &player->_skate;
869 int charging_jump_prev = s->state.charging_jump;
870 s->state.charging_jump = player->input_jump->button.value;
871
872 /* Cannot charge this in air */
873 if( s->state.activity != k_skate_activity_ground )
874 s->state.charging_jump = 0;
875
876 if( s->state.charging_jump )
877 {
878 s->state.jump_charge += k_rb_delta * k_jump_charge_speed;
879
880 if( !charging_jump_prev )
881 s->state.jump_dir = s->state.reverse>0.0f? 1: 0;
882 }
883 else
884 {
885 s->state.jump_charge -= k_jump_charge_speed * VG_TIMESTEP_FIXED;
886 }
887
888 s->state.jump_charge = vg_clampf( s->state.jump_charge, 0.0f, 1.0f );
889
890 if( s->state.activity == k_skate_activity_air )
891 return;
892
893 /* player let go after charging past 0.2: trigger jump */
894 if( (!s->state.charging_jump) && (s->state.jump_charge > 0.2f) )
895 {
896 v3f jumpdir;
897
898 /* Launch more up if alignment is up else improve velocity */
899 float aup = v3_dot( (v3f){0.0f,1.0f,0.0f}, player->rb.to_world[1] ),
900 mod = 0.5f,
901 dir = mod + fabsf(aup)*(1.0f-mod);
902
903 v3_copy( player->rb.v, jumpdir );
904 v3_normalize( jumpdir );
905 v3_muls( jumpdir, 1.0f-dir, jumpdir );
906 v3_muladds( jumpdir, player->rb.to_world[1], dir, jumpdir );
907 v3_normalize( jumpdir );
908
909 float force = k_jump_force*s->state.jump_charge;
910 v3_muladds( player->rb.v, jumpdir, force, player->rb.v );
911 s->state.jump_charge = 0.0f;
912
913 s->state.jump_time = vg.time;
914
915 v2f steer = { player->input_js1h->axis.value,
916 player->input_js1v->axis.value };
917 v2_normalize_clamp( steer );
918
919 float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
920 s->state.steery_s = -steer[0] * maxspin;
921 s->state.steerx = s->state.steerx_s;
922
923 v3_zero( s->state.trick_vel );
924 s->state.trick_vel[0] = 3.0f;
925 s->state.trick_vel[2] = 6.0f;
926 s->state.trick_time = 0.0f;
927 s->state.lift_frames ++;
928
929 /* FIXME audio events */
930 #if 0
931 audio_lock();
932 audio_player_set_flags( &audio_player_extra, AUDIO_FLAG_SPACIAL_3D );
933 audio_player_set_position( &audio_player_extra, player.rb.co );
934 audio_player_set_vol( &audio_player_extra, 20.0f );
935 audio_player_playclip( &audio_player_extra, &audio_jumps[rand()%2] );
936 audio_unlock();
937 #endif
938 }
939 }
940
941 VG_STATIC void skate_apply_pump_model( player_instance *player )
942 {
943 struct player_skate *s = &player->_skate;
944
945 /* Throw / collect routine
946 *
947 * TODO: Max speed boost
948 */
949 if( player->input_grab->axis.value > 0.5f )
950 {
951 if( s->state.activity == k_skate_activity_ground )
952 {
953 /* Throw */
954 v3_muls( player->rb.to_world[1], k_mmthrow_scale, s->state.throw_v );
955 }
956 }
957 else
958 {
959 /* Collect */
960 float doty = v3_dot( player->rb.to_world[1], s->state.throw_v );
961
962 v3f Fl, Fv;
963 v3_muladds( s->state.throw_v, player->rb.to_world[1], -doty, Fl);
964
965 if( s->state.activity == k_skate_activity_ground )
966 {
967 v3_muladds( player->rb.v, Fl, k_mmcollect_lat, player->rb.v );
968 v3_muladds( s->state.throw_v, Fl, -k_mmcollect_lat, s->state.throw_v );
969 }
970
971 v3_muls( player->rb.to_world[1], -doty, Fv );
972 v3_muladds( player->rb.v, Fv, k_mmcollect_vert, player->rb.v );
973 v3_muladds( s->state.throw_v, Fv, k_mmcollect_vert, s->state.throw_v );
974 }
975
976 /* Decay */
977 if( v3_length2( s->state.throw_v ) > 0.0001f )
978 {
979 v3f dir;
980 v3_copy( s->state.throw_v, dir );
981 v3_normalize( dir );
982
983 float max = v3_dot( dir, s->state.throw_v ),
984 amt = vg_minf( k_mmdecay * k_rb_delta, max );
985 v3_muladds( s->state.throw_v, dir, -amt, s->state.throw_v );
986 }
987 }
988
989 VG_STATIC void skate_apply_cog_model( player_instance *player )
990 {
991 struct player_skate *s = &player->_skate;
992
993 v3f ideal_cog, ideal_diff;
994 v3_muladds( player->rb.co, player->rb.to_world[1],
995 1.0f-player->input_grab->axis.value, ideal_cog );
996 v3_sub( ideal_cog, s->state.cog, ideal_diff );
997
998 /* Apply velocities */
999 v3f rv;
1000 v3_sub( player->rb.v, s->state.cog_v, rv );
1001
1002 v3f F;
1003 v3_muls( ideal_diff, -k_cog_spring * k_rb_rate, F );
1004 v3_muladds( F, rv, -k_cog_damp * k_rb_rate, F );
1005
1006 float ra = k_cog_mass_ratio,
1007 rb = 1.0f-k_cog_mass_ratio;
1008
1009 /* Apply forces & intergrate */
1010 v3_muladds( s->state.cog_v, F, -rb, s->state.cog_v );
1011 s->state.cog_v[1] += -9.8f * k_rb_delta;
1012 v3_muladds( s->state.cog, s->state.cog_v, k_rb_delta, s->state.cog );
1013 }
1014
1015 VG_STATIC void skate_collision_response( player_instance *player,
1016 rb_ct *manifold, int len )
1017 {
1018 struct player_skate *s = &player->_skate;
1019
1020 for( int j=0; j<10; j++ )
1021 {
1022 for( int i=0; i<len; i++ )
1023 {
1024 struct contact *ct = &manifold[i];
1025
1026 v3f dv, delta;
1027 v3_sub( ct->co, player->rb.co, delta );
1028 v3_cross( player->rb.w, delta, dv );
1029 v3_add( player->rb.v, dv, dv );
1030
1031 float vn = -v3_dot( dv, ct->n );
1032 vn += ct->bias;
1033
1034 float temp = ct->norm_impulse;
1035 ct->norm_impulse = vg_maxf( temp + vn, 0.0f );
1036 vn = ct->norm_impulse - temp;
1037
1038 v3f impulse;
1039 v3_muls( ct->n, vn, impulse );
1040
1041 if( fabsf(v3_dot( impulse, player->rb.to_world[2] )) > 10.0f ||
1042 fabsf(v3_dot( impulse, player->rb.to_world[1] )) > 50.0f )
1043 {
1044 /* FIXME */
1045 #if 0
1046 player_kill();
1047 return;
1048 #endif
1049 }
1050
1051 v3_add( impulse, player->rb.v, player->rb.v );
1052 v3_cross( delta, impulse, impulse );
1053
1054 /*
1055 * W Impulses are limited to the Y and X axises, we don't really want
1056 * roll angular velocities being included.
1057 *
1058 * Can also tweak the resistance of each axis here by scaling the wx,wy
1059 * components.
1060 */
1061
1062 float wy = v3_dot( player->rb.to_world[1], impulse ) * 0.8f,
1063 wx = v3_dot( player->rb.to_world[0], impulse ) * 1.0f;
1064
1065 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
1066 v3_muladds( player->rb.w, player->rb.to_world[0], wx, player->rb.w );
1067 }
1068 }
1069 }
1070
1071 VG_STATIC void skate_integrate( player_instance *player )
1072 {
1073 struct player_skate *s = &player->_skate;
1074
1075 /* integrate rigidbody velocities */
1076 v3f gravity = { 0.0f, -9.6f, 0.0f };
1077 v3_muladds( player->rb.v, gravity, k_rb_delta, player->rb.v );
1078 v3_muladds( player->rb.co, player->rb.v, k_rb_delta, player->rb.co );
1079
1080 float decay_rate = 0.5f*0.125f;
1081
1082 if( s->state.activity == k_skate_activity_air )
1083 {
1084 float dist = 1.0f-(s->land_dist/4.0f);
1085 decay_rate = 0.5f * vg_maxf( dist*dist, 0.0f );
1086 }
1087
1088 v3_lerp( player->rb.w, (v3f){0.0f,0.0f,0.0f}, decay_rate, player->rb.w );
1089
1090 if( v3_length2( player->rb.w ) > 0.0f )
1091 {
1092 v4f rotation;
1093 v3f axis;
1094 v3_copy( player->rb.w, axis );
1095
1096 float mag = v3_length( axis );
1097 v3_divs( axis, mag, axis );
1098 q_axis_angle( rotation, axis, mag*k_rb_delta );
1099 q_mul( rotation, player->rb.q, player->rb.q );
1100 }
1101
1102 /* integrate steering velocities */
1103 v4f rotate;
1104 float l = (s->state.activity == k_skate_activity_air)? 0.04f: 0.24f;
1105
1106 s->state.steery_s = vg_lerpf( s->state.steery_s, s->state.steery, l );
1107 s->state.steerx_s = vg_lerpf( s->state.steerx_s, s->state.steerx, l );
1108
1109 q_axis_angle( rotate, player->rb.to_world[1], s->state.steery_s );
1110 q_mul( rotate, player->rb.q, player->rb.q );
1111
1112 q_axis_angle( rotate, player->rb.to_world[0], s->state.steerx_s );
1113 q_mul( rotate, player->rb.q, player->rb.q );
1114
1115 s->state.steerx = 0.0f;
1116 s->state.steery = 0.0f;
1117
1118 s->state.flip_time += s->state.flip_rate * k_rb_delta;
1119 rb_update_transform( &player->rb );
1120 }
1121
1122 VG_STATIC void player__skate_pre_update( player_instance *player )
1123 {
1124 if( vg_input_button_down( player->input_use ) )
1125 {
1126 player->subsystem = k_player_subsystem_walk;
1127
1128 v3f angles;
1129 v3_copy( player->cam.angles, angles );
1130 angles[2] = 0.0f;
1131
1132 player__walk_transition( player, angles );
1133 return;
1134 }
1135 }
1136
1137 VG_STATIC void player__skate_post_update( player_instance *player )
1138 {
1139 struct player_skate *s = &player->_skate;
1140 for( int i=0; i<s->prediction_count; i++ )
1141 {
1142 struct land_prediction *p = &s->predictions[i];
1143
1144 for( int j=0; j<p->log_length - 1; j ++ )
1145 vg_line( p->log[j], p->log[j+1], p->colour );
1146
1147 vg_line_cross( p->log[p->log_length-1], p->colour, 0.25f );
1148
1149 v3f p1;
1150 v3_add( p->log[p->log_length-1], p->n, p1 );
1151 vg_line( p->log[p->log_length-1], p1, 0xffffffff );
1152
1153 vg_line_pt3( p->apex, 0.02f, 0xffffffff );
1154 }
1155
1156 vg_line_pt3( s->state.apex, 0.200f, 0xff0000ff );
1157 vg_line_pt3( s->state.apex, 0.201f, 0xff00ffff );
1158 }
1159
1160 VG_STATIC void player__skate_update( player_instance *player )
1161 {
1162 struct player_skate *s = &player->_skate;
1163 v3_copy( player->rb.co, s->state.prev_pos );
1164 s->state.activity_prev = s->state.activity;
1165
1166 /* Setup colliders */
1167 m4x3f mtx_front, mtx_back;
1168 m3x3_identity( mtx_front );
1169 m3x3_identity( mtx_back );
1170
1171 skate_get_board_points( player, mtx_front[3], mtx_back[3] );
1172
1173 s->sphere_back.radius = 0.3f;
1174 s->sphere_front.radius = 0.3f;
1175
1176 /* create manifold(s) */
1177 rb_ct manifold[72],
1178 *interface_manifold = NULL,
1179 *grind_manifold = NULL;
1180
1181 int
1182 len_front = skate_collide_smooth( player, mtx_front,
1183 &s->sphere_front, manifold ),
1184 len_back = skate_collide_smooth( player, mtx_back,
1185 &s->sphere_back, &manifold[len_front] ),
1186 interface_len = len_front + len_back;
1187
1188 /* try to slap both wheels onto the ground when landing to prevent mega
1189 * angular velocities being added */
1190 if( (s->state.activity == k_skate_activity_air) && (len_front != len_back) )
1191 {
1192 v3f trace_from, trace_dir;
1193 v3_muls( player->rb.to_world[1], -1.0f, trace_dir );
1194
1195 if( len_front )
1196 v3_copy( mtx_back[3], trace_from );
1197 else
1198 v3_copy( mtx_front[3], trace_from );
1199
1200 ray_hit ray;
1201 ray.dist = 0.6f;
1202
1203 if( ray_world( trace_from, trace_dir, &ray ) )
1204 {
1205 rb_ct *ct = &manifold[ interface_len ];
1206
1207 v3_copy( ray.pos, ct->co );
1208 v3_copy( ray.normal, ct->n );
1209 ct->p = 0.0f;
1210
1211 interface_len ++;
1212 }
1213 }
1214
1215 interface_manifold = manifold;
1216 grind_manifold = manifold + interface_len;
1217
1218 int grind_len = skate_grind_collide( player, grind_manifold );
1219
1220 for( int i=0; i<interface_len+grind_len; i ++ )
1221 {
1222 rb_prepare_contact( &manifold[i] );
1223 rb_debug_contact( &manifold[i] );
1224 }
1225
1226 skate_apply_grind_model( player, grind_manifold, grind_len );
1227 skate_apply_interface_model( player, manifold, interface_len );
1228
1229 skate_apply_pump_model( player );
1230 skate_apply_cog_model( player );
1231 skate_collision_response( player, manifold, interface_len + grind_len );
1232
1233 skate_apply_grab_model( player );
1234 skate_apply_friction_model( player );
1235 skate_apply_jump_model( player );
1236 skate_apply_air_model( player );
1237 skate_apply_trick_model( player );
1238
1239 skate_integrate( player );
1240
1241 vg_line_pt3( s->state.cog, 0.1f, VG__WHITE );
1242 vg_line_pt3( s->state.cog, 0.11f, VG__WHITE );
1243 vg_line_pt3( s->state.cog, 0.12f, VG__WHITE );
1244 vg_line_pt3( s->state.cog, 0.13f, VG__WHITE );
1245 vg_line_pt3( s->state.cog, 0.14f, VG__WHITE );
1246
1247 vg_line( player->rb.co, s->state.cog, VG__RED );
1248
1249 teleport_gate *gate;
1250 if( (gate = world_intersect_gates( player->rb.co, s->state.prev_pos )) )
1251 {
1252 m4x3_mulv( gate->transport, player->rb.co, player->rb.co );
1253 m3x3_mulv( gate->transport, player->rb.v, player->rb.v );
1254 m4x3_mulv( gate->transport, s->state.cog, s->state.cog );
1255 m3x3_mulv( gate->transport, s->state.cog_v, s->state.cog_v );
1256 m3x3_mulv( gate->transport, s->state.throw_v, s->state.throw_v );
1257
1258 v4f transport_rotation;
1259 m3x3_q( gate->transport, transport_rotation );
1260 q_mul( transport_rotation, player->rb.q, player->rb.q );
1261 rb_update_transform( &player->rb );
1262
1263 s->state_gate_storage = s->state;
1264 player__pass_gate( player, gate );
1265 }
1266 }
1267
1268 VG_STATIC void player__skate_im_gui( player_instance *player )
1269 {
1270 struct player_skate *s = &player->_skate;
1271
1272 /* FIXME: Compression */
1273 player__debugtext( 1, "V: %5.2f %5.2f %5.2f",player->rb.v[0],
1274 player->rb.v[1],
1275 player->rb.v[2] );
1276 player__debugtext( 1, "CO: %5.2f %5.2f %5.2f",player->rb.co[0],
1277 player->rb.co[1],
1278 player->rb.co[2] );
1279 player__debugtext( 1, "W: %5.2f %5.2f %5.2f",player->rb.w[0],
1280 player->rb.w[1],
1281 player->rb.w[2] );
1282
1283 player__debugtext( 1, "activity: %s",
1284 (const char *[]){ "k_skate_activity_air",
1285 "k_skate_activity_ground",
1286 "k_skate_activity_grind }" }
1287 [s->state.activity] );
1288 player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
1289 s->state.steerx_s, s->state.steery_s,
1290 k_steer_ground, k_steer_air );
1291 player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
1292 s->state.flip_time );
1293 player__debugtext( 1, "trickv: %.2f %.2f %.2f",
1294 s->state.trick_vel[0],
1295 s->state.trick_vel[1],
1296 s->state.trick_vel[2] );
1297 player__debugtext( 1, "tricke: %.2f %.2f %.2f",
1298 s->state.trick_euler[0],
1299 s->state.trick_euler[1],
1300 s->state.trick_euler[2] );
1301 }
1302
1303 VG_STATIC void player__skate_animate( player_instance *player,
1304 player_animation *dest )
1305 {
1306 struct player_skate *s = &player->_skate;
1307 struct player_avatar *av = player->playeravatar;
1308 struct skeleton *sk = &av->sk;
1309
1310 /* Head */
1311 float kheight = 2.0f,
1312 kleg = 0.6f;
1313
1314 v3f offset;
1315 v3_zero( offset );
1316
1317 m4x3_mulv( player->rb.to_local, s->state.cog, offset );
1318 v3_muls( offset, -4.0f, offset );
1319
1320 float curspeed = v3_length( player->rb.v ),
1321 kickspeed = vg_clampf( curspeed*(1.0f/40.0f), 0.0f, 1.0f ),
1322 kicks = (vg_randf()-0.5f)*2.0f*kickspeed,
1323 sign = vg_signf( kicks );
1324
1325 s->wobble[0] = vg_lerpf( s->wobble[0], kicks*kicks*sign, 6.0f*vg.time_delta);
1326 s->wobble[1] = vg_lerpf( s->wobble[1], s->wobble[0], 2.4f*vg.time_delta);
1327
1328 offset[0] *= 0.26f;
1329 offset[0] += s->wobble[1]*3.0f;
1330
1331 offset[1] *= -0.3f;
1332 offset[2] *= 0.01f;
1333
1334 offset[0]=vg_clampf(offset[0],-0.8f,0.8f)*(1.0f-fabsf(s->blend_slide)*0.9f);
1335 offset[1]=vg_clampf(offset[1],-0.5f,0.0f);
1336
1337 /*
1338 * Animation blending
1339 * ===========================================
1340 */
1341
1342 /* sliding */
1343 {
1344 float desired = vg_clampf( fabsf( s->state.slip ), 0.0f, 1.0f );
1345 s->blend_slide = vg_lerpf( s->blend_slide, desired, 2.4f*vg.time_delta);
1346 }
1347
1348 /* movement information */
1349 {
1350 int iair = (s->state.activity == k_skate_activity_air) ||
1351 (s->state.activity == k_skate_activity_grind );
1352
1353 float dirz = s->state.reverse > 0.0f? 0.0f: 1.0f,
1354 dirx = s->state.slip < 0.0f? 0.0f: 1.0f,
1355 fly = iair? 1.0f: 0.0f;
1356
1357 s->blend_z = vg_lerpf( s->blend_z, dirz, 2.4f*vg.time_delta );
1358 s->blend_x = vg_lerpf( s->blend_x, dirx, 0.6f*vg.time_delta );
1359 s->blend_fly = vg_lerpf( s->blend_fly, fly, 2.4f*vg.time_delta );
1360 }
1361
1362 mdl_keyframe apose[32], bpose[32];
1363 mdl_keyframe ground_pose[32];
1364 {
1365 /* when the player is moving fast he will crouch down a little bit */
1366 float stand = 1.0f - vg_clampf( curspeed * 0.03f, 0.0f, 1.0f );
1367 s->blend_stand = vg_lerpf( s->blend_stand, stand, 6.0f*vg.time_delta );
1368
1369 /* stand/crouch */
1370 float dir_frame = s->blend_z * (15.0f/30.0f),
1371 stand_blend = offset[1]*-2.0f;
1372
1373 v3f local_cog;
1374 m4x3_mulv( player->rb.to_local, s->state.cog, local_cog );
1375
1376 stand_blend = vg_clampf( 1.0f-local_cog[1], 0, 1 );
1377
1378 skeleton_sample_anim( sk, s->anim_stand, dir_frame, apose );
1379 skeleton_sample_anim( sk, s->anim_highg, dir_frame, bpose );
1380 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
1381
1382 /* sliding */
1383 float slide_frame = s->blend_x * (15.0f/30.0f);
1384 skeleton_sample_anim( sk, s->anim_slide, slide_frame, bpose );
1385 skeleton_lerp_pose( sk, apose, bpose, s->blend_slide, apose );
1386
1387 /* pushing */
1388 double push_time = vg.time - s->state.start_push;
1389 s->blend_push = vg_lerpf( s->blend_push,
1390 (vg.time - s->state.cur_push) < 0.125,
1391 6.0f*vg.time_delta );
1392
1393 float pt = push_time + vg.accumulator;
1394 if( s->state.reverse > 0.0f )
1395 skeleton_sample_anim( sk, s->anim_push, pt, bpose );
1396 else
1397 skeleton_sample_anim( sk, s->anim_push_reverse, pt, bpose );
1398
1399 skeleton_lerp_pose( sk, apose, bpose, s->blend_push, apose );
1400
1401 /* trick setup */
1402 float jump_start_frame = 14.0f/30.0f;
1403
1404 float charge = s->state.jump_charge;
1405 s->blend_jump = vg_lerpf( s->blend_jump, charge, 8.4f*vg.time_delta );
1406
1407 float setup_frame = charge * jump_start_frame,
1408 setup_blend = vg_minf( s->blend_jump, 1.0f );
1409
1410 float jump_frame = (vg.time - s->state.jump_time) + jump_start_frame;
1411 if( jump_frame >= jump_start_frame && jump_frame <= (40.0f/30.0f) )
1412 setup_frame = jump_frame;
1413
1414 struct skeleton_anim *jump_anim = s->state.jump_dir?
1415 s->anim_ollie:
1416 s->anim_ollie_reverse;
1417
1418 skeleton_sample_anim_clamped( sk, jump_anim, setup_frame, bpose );
1419 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
1420 }
1421
1422 mdl_keyframe air_pose[32];
1423 {
1424 float target = -player->input_js1h->axis.value;
1425 s->blend_airdir = vg_lerpf( s->blend_airdir, target, 2.4f*vg.time_delta );
1426
1427 float air_frame = (s->blend_airdir*0.5f+0.5f) * (15.0f/30.0f);
1428 skeleton_sample_anim( sk, s->anim_air, air_frame, apose );
1429
1430 static v2f grab_choice;
1431
1432 v2f grab_input = { player->input_js2h->axis.value,
1433 player->input_js2v->axis.value };
1434 v2_add( s->state.grab_mouse_delta, grab_input, grab_input );
1435 if( v2_length2( grab_input ) <= 0.001f )
1436 grab_input[0] = -1.0f;
1437 else
1438 v2_normalize_clamp( grab_input );
1439 v2_lerp( grab_choice, grab_input, 2.4f*vg.time_delta, grab_choice );
1440
1441 float ang = atan2f( grab_choice[0], grab_choice[1] ),
1442 ang_unit = (ang+VG_PIf) * (1.0f/VG_TAUf),
1443 grab_frame = ang_unit * (15.0f/30.0f);
1444
1445 skeleton_sample_anim( sk, s->anim_grabs, grab_frame, bpose );
1446 skeleton_lerp_pose( sk, apose, bpose, s->state.grabbing, air_pose );
1447 }
1448
1449 skeleton_lerp_pose( sk, ground_pose, air_pose, s->blend_fly, dest->pose );
1450
1451 float add_grab_mod = 1.0f - s->blend_fly;
1452
1453 /* additive effects */
1454 {
1455 u32 apply_to[] = { av->id_hip,
1456 av->id_ik_hand_l,
1457 av->id_ik_hand_r,
1458 av->id_ik_elbow_l,
1459 av->id_ik_elbow_r };
1460
1461 for( int i=0; i<vg_list_size(apply_to); i ++ )
1462 {
1463 dest->pose[apply_to[i]-1].co[0] += offset[0]*add_grab_mod;
1464 dest->pose[apply_to[i]-1].co[2] += offset[2]*add_grab_mod;
1465 }
1466
1467 mdl_keyframe *kf_board = &dest->pose[av->id_board-1],
1468 *kf_foot_l = &dest->pose[av->id_ik_foot_l-1],
1469 *kf_foot_r = &dest->pose[av->id_ik_foot_r-1];
1470
1471 v3f bo;
1472 v3_muls( s->board_offset, add_grab_mod, bo );
1473
1474 v3_add( bo, kf_board->co, kf_board->co );
1475 v3_add( bo, kf_foot_l->co, kf_foot_l->co );
1476 v3_add( bo, kf_foot_r->co, kf_foot_r->co );
1477
1478 #if 0
1479 m3x3f c;
1480 q_m3x3( s->board_rotation, c );
1481 #endif
1482
1483 v4f qtotal;
1484
1485 v4f qtrickr, qyawr, qpitchr, qrollr;
1486 v3f eulerr;
1487
1488
1489
1490 v3_muls( s->board_trick_residuald, VG_TAUf, eulerr );
1491
1492 q_axis_angle( qyawr, (v3f){0.0f,1.0f,0.0f}, eulerr[0] * 0.5f );
1493 q_axis_angle( qpitchr, (v3f){1.0f,0.0f,0.0f}, eulerr[1] );
1494 q_axis_angle( qrollr, (v3f){0.0f,0.0f,1.0f}, eulerr[2] );
1495
1496 q_mul( qpitchr, qrollr, qtrickr );
1497 q_mul( qyawr, qtrickr, qtrickr );
1498 q_mul( s->board_rotation, qtrickr, qtotal );
1499 q_normalize( qtotal );
1500
1501 q_mul( qtotal, kf_board->q, kf_board->q );
1502
1503
1504 v3f d;
1505 v3_sub( kf_foot_l->co, bo, d );
1506 q_mulv( qtotal, d, d );
1507 v3_add( bo, d, kf_foot_l->co );
1508
1509 v3_sub( kf_foot_r->co, bo, d );
1510 q_mulv( qtotal, d, d );
1511 v3_add( bo, d, kf_foot_r->co );
1512
1513 q_mul( s->board_rotation, kf_board->q, kf_board->q );
1514 q_normalize( kf_board->q );
1515
1516
1517 /* trick rotation */
1518 v4f qtrick, qyaw, qpitch, qroll;
1519 v3f euler;
1520 v3_muls( s->state.trick_euler, VG_TAUf, euler );
1521
1522 q_axis_angle( qyaw, (v3f){0.0f,1.0f,0.0f}, euler[0] * 0.5f );
1523 q_axis_angle( qpitch, (v3f){1.0f,0.0f,0.0f}, euler[1] );
1524 q_axis_angle( qroll, (v3f){0.0f,0.0f,1.0f}, euler[2] );
1525
1526 q_mul( qpitch, qroll, qtrick );
1527 q_mul( qyaw, qtrick, qtrick );
1528 q_mul( qtrick, kf_board->q, kf_board->q );
1529 q_normalize( kf_board->q );
1530 }
1531
1532 /* transform */
1533 rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
1534 v3_muladds( dest->root_co, player->rb.to_world[1], -0.28f, dest->root_co );
1535
1536 v4f qresy, qresx, qresidual;
1537 m3x3f mtx_residual;
1538 float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
1539 q_axis_angle( qresy, player->rb.to_world[1], s->state.steery_s*substep );
1540 q_axis_angle( qresx, player->rb.to_world[0], s->state.steerx_s*substep );
1541
1542 q_mul( qresy, qresx, qresidual );
1543 q_normalize( qresidual );
1544 q_mul( dest->root_q, qresidual, dest->root_q );
1545 q_normalize( dest->root_q );
1546
1547 v4f qflip;
1548 if( (s->state.activity == k_skate_activity_air) &&
1549 (fabsf(s->state.flip_rate) > 0.01f) )
1550 {
1551 float t = s->state.flip_time + s->state.flip_rate*substep*k_rb_delta,
1552 angle = vg_clampf( t, -1.0f, 1.0f ) * VG_TAUf,
1553 distm = s->land_dist * fabsf(s->state.flip_rate) * 3.0f,
1554 blend = vg_clampf( 1.0f-distm, 0.0f, 1.0f );
1555
1556 angle = vg_lerpf( angle, vg_signf(s->state.flip_rate) * VG_TAUf, blend );
1557
1558 q_axis_angle( qflip, s->state.flip_axis, angle );
1559 q_mul( qflip, dest->root_q, dest->root_q );
1560 q_normalize( dest->root_q );
1561
1562 v3f rotation_point, rco;
1563 v3_muladds( player->rb.co, player->rb.to_world[1], 0.5f, rotation_point );
1564 v3_sub( dest->root_co, rotation_point, rco );
1565
1566 q_mulv( qflip, rco, rco );
1567 v3_add( rco, rotation_point, dest->root_co );
1568 }
1569 }
1570
1571 VG_STATIC void player__skate_post_animate( player_instance *player )
1572 {
1573 struct player_skate *s = &player->_skate;
1574 struct player_avatar *av = player->playeravatar;
1575
1576 player->cam_velocity_influence = 1.0f;
1577 }
1578
1579 VG_STATIC void player__skate_reset_animator( player_instance *player )
1580 {
1581 struct player_skate *s = &player->_skate;
1582
1583 if( s->state.activity == k_skate_activity_air )
1584 s->blend_fly = 1.0f;
1585 else
1586 s->blend_fly = 0.0f;
1587
1588 s->blend_slide = 0.0f;
1589 s->blend_z = 0.0f;
1590 s->blend_x = 0.0f;
1591 s->blend_stand = 0.0f;
1592 s->blend_push = 0.0f;
1593 s->blend_jump = 0.0f;
1594 s->blend_airdir = 0.0f;
1595 }
1596
1597 VG_STATIC void player__skate_clear_mechanics( player_instance *player )
1598 {
1599 struct player_skate *s = &player->_skate;
1600 s->state.jump_charge = 0.0f;
1601 s->state.lift_frames = 0;
1602 s->state.flip_rate = 0.0f;
1603 s->state.steery = 0.0f;
1604 s->state.steerx = 0.0f;
1605 s->state.steery_s = 0.0f;
1606 s->state.steerx_s = 0.0f;
1607 s->state.reverse = 0.0f;
1608 s->state.slip = 0.0f;
1609 v3_copy( player->rb.co, s->state.prev_pos );
1610
1611 m3x3_identity( s->state.velocity_bias );
1612 m3x3_identity( s->state.velocity_bias_pstep );
1613 v3_zero( s->state.throw_v );
1614 }
1615
1616 VG_STATIC void player__skate_reset( player_instance *player,
1617 struct respawn_point *rp )
1618 {
1619 struct player_skate *s = &player->_skate;
1620 v3_muladds( player->rb.co, player->rb.to_world[1], 1.0f, s->state.cog );
1621 v3_zero( player->rb.v );
1622 v3_zero( s->state.cog_v );
1623 v4_copy( rp->q, player->rb.q );
1624
1625 s->state.activity = k_skate_activity_air;
1626 s->state.activity_prev = k_skate_activity_air;
1627
1628 player__skate_clear_mechanics( player );
1629 player__skate_reset_animator( player );
1630 }
1631
1632 #endif /* PLAYER_SKATE_C */