logic
[carveJwlIkooP6JGAAIwe30JlM.git] / player_skate.c
1 #ifndef PLAYER_SKATE_C
2 #define PLAYER_SKATE_C
3
4 #include "player.h"
5 #include "audio.h"
6
7 VG_STATIC void player__skate_bind( player_instance *player )
8 {
9 struct player_skate *s = &player->_skate;
10 struct player_avatar *av = player->playeravatar;
11 struct skeleton *sk = &av->sk;
12
13 rb_update_transform( &player->rb );
14 s->anim_stand = skeleton_get_anim( sk, "pose_stand" );
15 s->anim_highg = skeleton_get_anim( sk, "pose_highg" );
16 s->anim_air = skeleton_get_anim( sk, "pose_air" );
17 s->anim_slide = skeleton_get_anim( sk, "pose_slide" );
18 s->anim_push = skeleton_get_anim( sk, "push" );
19 s->anim_push_reverse = skeleton_get_anim( sk, "push_reverse" );
20 s->anim_ollie = skeleton_get_anim( sk, "ollie" );
21 s->anim_ollie_reverse = skeleton_get_anim( sk, "ollie_reverse" );
22 s->anim_grabs = skeleton_get_anim( sk, "grabs" );
23 }
24
25 /*
26 * Collision detection routines
27 *
28 *
29 */
30
31 /*
32 * Does collision detection on a sphere vs world, and applies some smoothing
33 * filters to the manifold afterwards
34 */
35 VG_STATIC int skate_collide_smooth( player_instance *player,
36 m4x3f mtx, rb_sphere *sphere,
37 rb_ct *man )
38 {
39 world_instance *world = get_active_world();
40
41 int len = 0;
42 len = rb_sphere__scene( mtx, sphere, NULL, &world->rb_geo.inf.scene, man );
43
44 for( int i=0; i<len; i++ )
45 {
46 man[i].rba = &player->rb;
47 man[i].rbb = NULL;
48 }
49
50 rb_manifold_filter_coplanar( man, len, 0.03f );
51
52 if( len > 1 )
53 {
54 rb_manifold_filter_backface( man, len );
55 rb_manifold_filter_joint_edges( man, len, 0.03f );
56 rb_manifold_filter_pairs( man, len, 0.03f );
57 }
58 int new_len = rb_manifold_apply_filtered( man, len );
59 if( len && !new_len )
60 len = 1;
61 else
62 len = new_len;
63
64 return len;
65 }
66
67 struct grind_info
68 {
69 v3f co, dir, n;
70 };
71
72 VG_STATIC int skate_grind_scansq( player_instance *player,
73 v3f pos, v3f dir, float r,
74 struct grind_info *inf )
75 {
76 world_instance *world = get_active_world();
77
78 v4f plane;
79 v3_copy( dir, plane );
80 v3_normalize( plane );
81 plane[3] = v3_dot( plane, pos );
82
83 boxf box;
84 v3_add( pos, (v3f){ r, r, r }, box[1] );
85 v3_sub( pos, (v3f){ r, r, r }, box[0] );
86
87 bh_iter it;
88 bh_iter_init( 0, &it );
89 int idx;
90
91 struct grind_sample
92 {
93 v2f co;
94 v2f normal;
95 v3f normal3,
96 centroid;
97 }
98 samples[48];
99 int sample_count = 0;
100
101 v2f support_min,
102 support_max;
103
104 v3f support_axis;
105 v3_cross( plane, player->basis[1], support_axis );
106 v3_normalize( support_axis );
107
108 while( bh_next( world->geo_bh, &it, box, &idx ) )
109 {
110 u32 *ptri = &world->scene_geo->arrindices[ idx*3 ];
111 v3f tri[3];
112
113 struct world_material *mat = world_tri_index_material(world,ptri[0]);
114 if( !(mat->info.flags & k_material_flag_skate_surface) )
115 continue;
116
117 for( int j=0; j<3; j++ )
118 v3_copy( world->scene_geo->arrvertices[ptri[j]].co, tri[j] );
119
120 for( int j=0; j<3; j++ )
121 {
122 int i0 = j,
123 i1 = (j+1) % 3;
124
125 struct grind_sample *sample = &samples[ sample_count ];
126 v3f co;
127
128 if( plane_segment( plane, tri[i0], tri[i1], co ) )
129 {
130 v3f d;
131 v3_sub( co, pos, d );
132 if( v3_length2( d ) > r*r )
133 continue;
134
135 v3f va, vb, normal;
136 v3_sub( tri[1], tri[0], va );
137 v3_sub( tri[2], tri[0], vb );
138 v3_cross( va, vb, normal );
139
140 sample->normal[0] = v3_dot( support_axis, normal );
141 sample->normal[1] = v3_dot( player->basis[1], normal );
142 sample->co[0] = v3_dot( support_axis, d );
143 sample->co[1] = v3_dot( player->basis[1], d );
144
145 v3_copy( normal, sample->normal3 ); /* normalize later
146 if we want to us it */
147
148 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
149 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
150 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
151
152 v2_normalize( sample->normal );
153 sample_count ++;
154
155 if( sample_count == vg_list_size( samples ) )
156 goto too_many_samples;
157 }
158 }
159 }
160
161 too_many_samples:
162
163 if( sample_count < 2 )
164 return 0;
165
166 v3f
167 average_direction,
168 average_normal;
169
170 v2f min_co, max_co;
171 v2_fill( min_co, INFINITY );
172 v2_fill( max_co, -INFINITY );
173
174 v3_zero( average_direction );
175 v3_zero( average_normal );
176
177 int passed_samples = 0;
178
179 for( int i=0; i<sample_count-1; i++ )
180 {
181 struct grind_sample *si, *sj;
182
183 si = &samples[i];
184
185 for( int j=i+1; j<sample_count; j++ )
186 {
187 if( i == j )
188 continue;
189
190 sj = &samples[j];
191
192 /* non overlapping */
193 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
194 continue;
195
196 /* not sharp angle */
197 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
198 continue;
199
200 /* not convex */
201 v3f v0;
202 v3_sub( sj->centroid, si->centroid, v0 );
203 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
204 v3_dot( v0, sj->normal3 ) <= 0.0f )
205 continue;
206
207 v2_minv( sj->co, min_co, min_co );
208 v2_maxv( sj->co, max_co, max_co );
209
210 v3f n0, n1, dir;
211 v3_copy( si->normal3, n0 );
212 v3_copy( sj->normal3, n1 );
213 v3_cross( n0, n1, dir );
214 v3_normalize( dir );
215
216 /* make sure the directions all face a common hemisphere */
217 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
218 v3_add( average_direction, dir, average_direction );
219
220 float yi = v3_dot( player->basis[1], si->normal3 ),
221 yj = v3_dot( player->basis[1], sj->normal3 );
222
223 if( yi > yj )
224 v3_add( si->normal3, average_normal, average_normal );
225 else
226 v3_add( sj->normal3, average_normal, average_normal );
227
228 passed_samples ++;
229 }
230 }
231
232 if( !passed_samples )
233 return 0;
234
235 if( (v3_length2( average_direction ) <= 0.001f) ||
236 (v3_length2( average_normal ) <= 0.001f ) )
237 return 0;
238
239 float div = 1.0f/(float)passed_samples;
240 v3_normalize( average_direction );
241 v3_normalize( average_normal );
242
243 v2f average_coord;
244 v2_add( min_co, max_co, average_coord );
245 v2_muls( average_coord, 0.5f, average_coord );
246
247 v3_muls( support_axis, average_coord[0], inf->co );
248 inf->co[1] += average_coord[1];
249 v3_add( pos, inf->co, inf->co );
250 v3_copy( average_normal, inf->n );
251 v3_copy( average_direction, inf->dir );
252
253 vg_line_pt3( inf->co, 0.02f, VG__GREEN );
254 vg_line_arrow( inf->co, average_direction, 0.3f, VG__GREEN );
255 vg_line_arrow( inf->co, inf->n, 0.2f, VG__CYAN );
256
257 return passed_samples;
258 }
259
260 VG_STATIC int solve_prediction_for_target( player_instance *player,
261 v3f target, float max_angle,
262 struct land_prediction *p )
263 {
264 /* calculate the exact solution(s) to jump onto that grind spot */
265
266 v3f v0;
267 v3_sub( target, player->rb.co, v0 );
268 m3x3_mulv( player->invbasis, v0, v0 );
269
270 v3f ax;
271 v3_copy( v0, ax );
272 ax[1] = 0.0f;
273 v3_normalize( ax );
274
275 v3f v_local;
276 m3x3_mulv( player->invbasis, player->rb.v, v_local );
277
278 v2f d = { v3_dot( ax, v0 ), v0[1] },
279 v = { v3_dot( ax, player->rb.v ), v_local[1] };
280
281 float a = atan2f( v[1], v[0] ),
282 m = v2_length( v ),
283 root = m*m*m*m - p->gravity*(p->gravity*d[0]*d[0] + 2.0f*d[1]*m*m);
284
285 if( root > 0.0f )
286 {
287 root = sqrtf( root );
288 float a0 = atanf( (m*m + root) / (p->gravity * d[0]) ),
289 a1 = atanf( (m*m - root) / (p->gravity * d[0]) );
290
291 if( fabsf(a0-a) > fabsf(a1-a) )
292 a0 = a1;
293
294 if( fabsf(a0-a) > max_angle )
295 return 0;
296
297 /* TODO: sweep the path before chosing the smallest dist */
298
299 p->log_length = 0;
300 p->land_dist = 0.0f;
301 v3_zero( p->apex );
302 p->type = k_prediction_grind;
303
304 v3_muls( ax, cosf( a0 ) * m, p->v );
305 p->v[1] += sinf( a0 ) * m;
306 m3x3_mulv( player->basis, p->v, p->v );
307
308 p->land_dist = d[0] / (cosf(a0)*m);
309
310 /* add a trace */
311 for( int i=0; i<=20; i++ )
312 {
313 float t = (float)i * (1.0f/20.0f) * p->land_dist;
314
315 v3f p0;
316 v3_muls( p->v, t, p0 );
317 v3_muladds( p0, player->basis[1], -0.5f * p->gravity * t*t, p0 );
318
319 v3_add( player->rb.co, p0, p->log[ p->log_length ++ ] );
320 }
321
322 return 1;
323 }
324 else
325 return 0;
326 }
327
328 VG_STATIC
329 void player__approximate_best_trajectory( player_instance *player )
330 {
331 world_instance *world = get_active_world();
332
333 struct player_skate *s = &player->_skate;
334 float k_trace_delta = k_rb_delta * 10.0f;
335
336 s->state.air_start = vg.time;
337 v3_copy( player->rb.v, s->state.air_init_v );
338 v3_copy( player->rb.co, s->state.air_init_co );
339
340 s->prediction_count = 0;
341
342 v3f axis;
343 v3_cross( player->rb.v, player->rb.to_world[1], axis );
344 v3_normalize( axis );
345
346 /* at high slopes, Y component is low */
347 float upness = v3_dot( player->rb.to_world[1], player->basis[1] ),
348 angle_begin = -(1.0f-fabsf( upness )),
349 angle_end = 1.0f;
350
351 struct grind_info grind;
352 int grind_located = 0;
353
354 for( int m=0;m<=30; m++ )
355 {
356 struct land_prediction *p = &s->predictions[ s->prediction_count ++ ];
357
358 p->log_length = 0;
359 p->land_dist = 0.0f;
360 v3_zero( p->apex );
361 p->type = k_prediction_none;
362
363 v3f launch_co, launch_v, co0, co1;
364 v3_copy( player->rb.co, launch_co );
365 v3_copy( player->rb.v, launch_v );
366 v3_copy( launch_co, co0 );
367
368 float vt = (float)m * (1.0f/30.0f),
369 ang = vg_lerpf( angle_begin, angle_end, vt ) * 0.15f;
370
371 v4f qbias;
372 q_axis_angle( qbias, axis, ang );
373 q_mulv( qbias, launch_v, launch_v );
374
375 float yaw_sketch = 1.0f-fabsf(upness);
376
377 float yaw_bias = ((float)(m%3) - 1.0f) * 0.08f * yaw_sketch;
378 q_axis_angle( qbias, player->rb.to_world[1], yaw_bias );
379 q_mulv( qbias, launch_v, launch_v );
380
381
382 float gravity_bias = vg_lerpf( 0.85f, 1.4f, vt ),
383 gravity = k_gravity * gravity_bias;
384 p->gravity = gravity;
385
386 v3_copy( launch_v, p->v );
387
388 for( int i=1; i<=50; i++ )
389 {
390 float t = (float)i * k_trace_delta;
391
392 v3_muls( launch_v, t, co1 );
393 v3_muladds( co1, player->basis[1], -0.5f * gravity * t*t, co1 );
394 v3_add( launch_co, co1, co1 );
395
396 float launch_vy = v3_dot( launch_v,player->basis[1] );
397 if( !grind_located && (launch_vy - gravity*t < 0.0f) )
398 {
399 v3f closest;
400 if( bh_closest_point( world->geo_bh, co1, closest, 1.0f ) != -1 )
401 {
402 v3f ve;
403 v3_copy( launch_v, ve );
404 v3_muladds( ve, player->basis[1], -gravity * t, ve );
405
406 if( skate_grind_scansq( player, closest, ve, 0.5f, &grind ) )
407 {
408 /* check alignment */
409 v2f v0 = { v3_dot( ve, player->basis[0] ),
410 v3_dot( ve, player->basis[2] ) },
411 v1 = { v3_dot( grind.dir, player->basis[0] ),
412 v3_dot( grind.dir, player->basis[2] ) };
413
414 v2_normalize( v0 );
415 v2_normalize( v1 );
416
417 float a = v2_dot( v0, v1 );
418
419 if( a >= cosf( VG_PIf * 0.185f ) )
420 {
421 grind_located = 1;
422 }
423 }
424 }
425 }
426
427 float t1;
428 v3f n;
429
430 int idx = spherecast_world( world, co0, co1, k_board_radius, &t1, n );
431 if( idx != -1 )
432 {
433 v3f co;
434 v3_lerp( co0, co1, t1, co );
435 v3_copy( co, p->log[ p->log_length ++ ] );
436
437 v3_copy( n, p->n );
438 p->type = k_prediction_land;
439
440 v3f ve;
441 v3_copy( launch_v, ve );
442 v3_muladds( ve, player->basis[1], -gravity * t, ve );
443
444 struct grind_info replace_grind;
445 if( skate_grind_scansq( player, co, ve, 0.3f, &replace_grind ) )
446 {
447 v3_copy( replace_grind.n, p->n );
448 p->type = k_prediction_grind;
449 }
450
451 p->score = -v3_dot( ve, p->n );
452 p->land_dist = t + k_trace_delta * t1;
453
454 u32 vert_index = world->scene_geo->arrindices[ idx*3 ];
455 struct world_material *mat =
456 world_tri_index_material( world, vert_index );
457
458 /* Bias prediction towords ramps */
459 if( !(mat->info.flags & k_material_flag_skate_surface) )
460 p->score *= 10.0f;
461
462 break;
463 }
464
465 if( i % 3 == 0 )
466 v3_copy( co1, p->log[ p->log_length ++ ] );
467
468 v3_copy( co1, co0 );
469 }
470
471 if( p->type == k_prediction_none )
472 s->prediction_count --;
473 }
474
475 if( grind_located )
476 {
477 /* calculate the exact solution(s) to jump onto that grind spot */
478 struct land_prediction *p = &s->predictions[ s->prediction_count ];
479 p->gravity = k_gravity;
480
481 if( solve_prediction_for_target( player, grind.co, 0.125f*VG_PIf, p ) )
482 {
483 v3_copy( grind.n, p->n );
484
485 /* determine score */
486 v3f ve;
487 v3_copy( p->v, ve );
488 v3_muladds( ve, player->basis[1], -p->gravity * p->land_dist, ve );
489 p->score = -v3_dot( ve, grind.n ) * 0.85f;
490
491 s->prediction_count ++;
492 }
493 }
494
495
496 float score_min = INFINITY,
497 score_max = -INFINITY;
498
499 struct land_prediction *best = NULL;
500
501 for( int i=0; i<s->prediction_count; i ++ )
502 {
503 struct land_prediction *p = &s->predictions[i];
504
505 if( p->score < score_min )
506 best = p;
507
508 score_min = vg_minf( score_min, p->score );
509 score_max = vg_maxf( score_max, p->score );
510 }
511
512 for( int i=0; i<s->prediction_count; i ++ )
513 {
514 struct land_prediction *p = &s->predictions[i];
515 float s = p->score;
516
517 s -= score_min;
518 s /= (score_max-score_min);
519 s = 1.0f - s;
520
521 p->score = s;
522 p->colour = s * 255.0f;
523
524 if( p == best )
525 p->colour <<= 16;
526 else if( p->type == k_prediction_land )
527 p->colour <<= 8;
528
529 p->colour |= 0xff000000;
530 }
531
532 if( best )
533 {
534 v3_copy( best->n, s->land_normal );
535 v3_copy( best->v, player->rb.v );
536 s->land_dist = best->land_dist;
537
538 v2f steer = { player->input_js1h->axis.value,
539 player->input_js1v->axis.value };
540 v2_normalize_clamp( steer );
541 s->state.gravity_bias = best->gravity;
542
543 if( (fabsf(steer[1]) > 0.5f) && (s->land_dist >= 1.5f) )
544 {
545 s->state.flip_rate = (1.0f/s->land_dist) * vg_signf(steer[1]) *
546 s->state.reverse ;
547 s->state.flip_time = 0.0f;
548 v3_copy( player->rb.to_world[0], s->state.flip_axis );
549 }
550 else
551 {
552 s->state.flip_rate = 0.0f;
553 v3_zero( s->state.flip_axis );
554 }
555 }
556 else
557 {
558 v3_copy( player->basis[1], s->land_normal );
559 }
560 }
561
562 /*
563 *
564 * Varius physics models
565 * ------------------------------------------------
566 */
567
568 /*
569 * Air control, no real physics
570 */
571 VG_STATIC void skate_apply_air_model( player_instance *player )
572 {
573 struct player_skate *s = &player->_skate;
574
575 if( s->state.activity_prev != k_skate_activity_air )
576 player__approximate_best_trajectory( player );
577
578 float angle = v3_dot( player->rb.to_world[1], s->land_normal );
579 angle = vg_clampf( angle, -1.0f, 1.0f );
580 v3f axis;
581 v3_cross( player->rb.to_world[1], s->land_normal, axis );
582
583 v4f correction;
584 q_axis_angle( correction, axis,
585 acosf(angle)*2.0f*VG_TIMESTEP_FIXED );
586 q_mul( correction, player->rb.q, player->rb.q );
587
588 v2f steer = { player->input_js1h->axis.value,
589 player->input_js1v->axis.value };
590 v2_normalize_clamp( steer );
591 }
592
593 VG_STATIC int player_skate_trick_input( player_instance *player );
594 VG_STATIC void skate_apply_trick_model( player_instance *player )
595 {
596 struct player_skate *s = &player->_skate;
597
598 v3f Fd, Fs, F;
599 v3f strength = { 3.7f, 3.6f, 8.0f };
600
601 v3_muls( s->board_trick_residualv, -4.0f , Fd );
602 v3_muls( s->board_trick_residuald, -10.0f, Fs );
603 v3_add( Fd, Fs, F );
604 v3_mul( strength, F, F );
605
606 v3_muladds( s->board_trick_residualv, F, k_rb_delta,
607 s->board_trick_residualv );
608 v3_muladds( s->board_trick_residuald, s->board_trick_residualv,
609 k_rb_delta, s->board_trick_residuald );
610
611 if( s->state.activity == k_skate_activity_air )
612 {
613 if( v3_length2( s->state.trick_vel ) < 0.0001f )
614 return;
615
616 int carry_on = player_skate_trick_input( player );
617
618 /* we assume velocities share a common divisor, in which case the
619 * interval is the minimum value (if not zero) */
620
621 float min_rate = 99999.0f;
622
623 for( int i=0; i<3; i++ )
624 {
625 float v = s->state.trick_vel[i];
626 if( (v > 0.0f) && (v < min_rate) )
627 min_rate = v;
628 }
629
630 float interval = 1.0f / min_rate,
631 current = floorf( s->state.trick_time / interval ),
632 next_end = (current+1.0f) * interval;
633
634
635 /* integrate trick velocities */
636 v3_muladds( s->state.trick_euler, s->state.trick_vel, k_rb_delta,
637 s->state.trick_euler );
638
639 if( !carry_on && (s->state.trick_time + k_rb_delta >= next_end) )
640 {
641 s->state.trick_time = 0.0f;
642 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
643 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
644 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
645 v3_copy( s->state.trick_vel, s->board_trick_residualv );
646 v3_zero( s->state.trick_vel );
647 }
648
649 s->state.trick_time += k_rb_delta;
650 }
651 else
652 {
653 if( (v3_length2(s->state.trick_vel) >= 0.0001f ) &&
654 s->state.trick_time > 0.2f)
655 {
656 player__dead_transition( player );
657 }
658
659 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
660 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
661 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
662 s->state.trick_time = 0.0f;
663 v3_zero( s->state.trick_vel );
664 }
665 }
666
667 VG_STATIC void skate_apply_grab_model( player_instance *player )
668 {
669 struct player_skate *s = &player->_skate;
670
671 float grabt = player->input_grab->axis.value;
672
673 if( grabt > 0.5f )
674 {
675 v2_muladds( s->state.grab_mouse_delta, vg.mouse_delta, 0.02f,
676 s->state.grab_mouse_delta );
677
678 v2_normalize_clamp( s->state.grab_mouse_delta );
679 }
680 else
681 v2_zero( s->state.grab_mouse_delta );
682
683 s->state.grabbing = vg_lerpf( s->state.grabbing, grabt, 8.4f*k_rb_delta );
684 }
685
686 VG_STATIC void skate_apply_steering_model( player_instance *player )
687 {
688 struct player_skate *s = &player->_skate;
689
690 /* Steering */
691 float steer = player->input_js1h->axis.value,
692 grab = player->input_grab->axis.value;
693
694 steer = vg_signf( steer ) * steer*steer * k_steer_ground;
695
696 v3f steer_axis;
697 v3_muls( player->rb.to_world[1], -vg_signf( steer ), steer_axis );
698
699 float rate = 26.0f,
700 top = 1.0f;
701
702 if( s->state.activity == k_skate_activity_air )
703 {
704 rate = 6.0f * fabsf(steer);
705 top = 1.5f;
706 }
707 else
708 {
709 /* rotate slower when grabbing on ground */
710 steer *= (1.0f-(s->state.jump_charge+grab)*0.4f);
711
712 if( s->state.activity == k_skate_activity_grind_5050 )
713 {
714 rate = 0.0f;
715 top = 0.0f;
716 }
717
718 else if( s->state.activity >= k_skate_activity_grind_any )
719 {
720 rate *= fabsf(steer);
721
722 float a = 0.8f * -steer * k_rb_delta;
723
724 v4f q;
725 q_axis_angle( q, player->rb.to_world[1], a );
726 q_mulv( q, s->grind_vec, s->grind_vec );
727
728 v3_normalize( s->grind_vec );
729 }
730
731 else if( s->state.manual_direction )
732 {
733 rate = 35.0f;
734 top = 1.5f;
735 }
736 }
737
738 float current = v3_dot( player->rb.to_world[1], player->rb.w ),
739 addspeed = (steer * -top) - current,
740 maxaccel = rate * k_rb_delta,
741 accel = vg_clampf( addspeed, -maxaccel, maxaccel );
742
743 v3_muladds( player->rb.w, player->rb.to_world[1], accel, player->rb.w );
744 }
745
746 /*
747 * Computes friction and surface interface model
748 */
749 VG_STATIC void skate_apply_friction_model( player_instance *player )
750 {
751 struct player_skate *s = &player->_skate;
752
753 /*
754 * Computing localized friction forces for controlling the character
755 * Friction across X is significantly more than Z
756 */
757
758 v3f vel;
759 m3x3_mulv( player->rb.to_local, player->rb.v, vel );
760 float slip = 0.0f;
761
762 if( fabsf(vel[2]) > 0.01f )
763 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
764
765 if( fabsf( slip ) > 1.2f )
766 slip = vg_signf( slip ) * 1.2f;
767
768 s->state.slip = slip;
769 s->state.reverse = -vg_signf(vel[2]);
770
771 vel[0] += vg_cfrictf( vel[0], k_friction_lat * k_rb_delta );
772 vel[2] += vg_cfrictf( vel[2], k_friction_resistance * k_rb_delta );
773
774 /* Pushing additive force */
775
776 if( !player->input_jump->button.value )
777 {
778 if( player->input_push->button.value ||
779 (vg.time-s->state.start_push<0.75) )
780 {
781 if( (vg.time - s->state.cur_push) > 0.25 )
782 s->state.start_push = vg.time;
783
784 s->state.cur_push = vg.time;
785
786 double push_time = vg.time - s->state.start_push;
787
788 float cycle_time = push_time*k_push_cycle_rate,
789 accel = k_push_accel * (sinf(cycle_time)*0.5f+0.5f),
790 amt = accel * VG_TIMESTEP_FIXED,
791 current = v3_length( vel ),
792 new_vel = vg_minf( current + amt, k_max_push_speed ),
793 delta = new_vel - vg_minf( current, k_max_push_speed );
794
795 vel[2] += delta * -s->state.reverse;
796 }
797 }
798
799 /* Send back to velocity */
800 m3x3_mulv( player->rb.to_world, vel, player->rb.v );
801 }
802
803 VG_STATIC void skate_apply_jump_model( player_instance *player )
804 {
805 struct player_skate *s = &player->_skate;
806 int charging_jump_prev = s->state.charging_jump;
807 s->state.charging_jump = player->input_jump->button.value;
808
809 /* Cannot charge this in air */
810 if( s->state.activity == k_skate_activity_air )
811 {
812 s->state.charging_jump = 0;
813 return;
814 }
815
816 if( s->state.charging_jump )
817 {
818 s->state.jump_charge += k_rb_delta * k_jump_charge_speed;
819
820 if( !charging_jump_prev )
821 s->state.jump_dir = s->state.reverse>0.0f? 1: 0;
822 }
823 else
824 {
825 s->state.jump_charge -= k_jump_charge_speed * k_rb_delta;
826 }
827
828 s->state.jump_charge = vg_clampf( s->state.jump_charge, 0.0f, 1.0f );
829
830 /* player let go after charging past 0.2: trigger jump */
831 if( (!s->state.charging_jump) && (s->state.jump_charge > 0.2f) )
832 {
833 v3f jumpdir;
834
835 /* Launch more up if alignment is up else improve velocity */
836 float aup = v3_dot( player->basis[1], player->rb.to_world[1] ),
837 mod = 0.5f,
838 dir = mod + fabsf(aup)*(1.0f-mod);
839
840 v3_copy( player->rb.v, jumpdir );
841 v3_normalize( jumpdir );
842 v3_muls( jumpdir, 1.0f-dir, jumpdir );
843 v3_muladds( jumpdir, player->rb.to_world[1], dir, jumpdir );
844 v3_normalize( jumpdir );
845
846 float force = k_jump_force*s->state.jump_charge;
847 v3_muladds( player->rb.v, jumpdir, force, player->rb.v );
848 s->state.jump_charge = 0.0f;
849 s->state.jump_time = vg.time;
850 s->state.activity = k_skate_activity_air;
851
852 v2f steer = { player->input_js1h->axis.value,
853 player->input_js1v->axis.value };
854 v2_normalize_clamp( steer );
855 skate_apply_air_model( player );
856
857 #if 0
858 float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
859 s->state.steery_s = -steer[0] * maxspin;
860 s->state.steerx = s->state.steerx_s;
861 s->state.lift_frames ++;
862 #endif
863
864 audio_lock();
865 audio_oneshot_3d( &audio_jumps[rand()%2], player->rb.co, 40.0f, 1.0f );
866 audio_unlock();
867 }
868 }
869
870 VG_STATIC void skate_apply_pump_model( player_instance *player )
871 {
872 struct player_skate *s = &player->_skate;
873
874 if( s->state.activity != k_skate_activity_ground )
875 {
876 v3_zero( s->state.throw_v );
877 return;
878 }
879
880 /* Throw / collect routine
881 *
882 * TODO: Max speed boost
883 */
884 if( player->input_grab->axis.value > 0.5f )
885 {
886 if( s->state.activity == k_skate_activity_ground )
887 {
888 /* Throw */
889 v3_muls( player->rb.to_world[1], k_mmthrow_scale, s->state.throw_v );
890 }
891 }
892 else
893 {
894 /* Collect */
895 float doty = v3_dot( player->rb.to_world[1], s->state.throw_v );
896
897 v3f Fl, Fv;
898 v3_muladds( s->state.throw_v, player->rb.to_world[1], -doty, Fl);
899
900 if( s->state.activity == k_skate_activity_ground )
901 {
902 v3_muladds( player->rb.v, Fl, k_mmcollect_lat, player->rb.v );
903 v3_muladds( s->state.throw_v, Fl, -k_mmcollect_lat, s->state.throw_v );
904 }
905
906 v3_muls( player->rb.to_world[1], -doty, Fv );
907 v3_muladds( player->rb.v, Fv, k_mmcollect_vert, player->rb.v );
908 v3_muladds( s->state.throw_v, Fv, k_mmcollect_vert, s->state.throw_v );
909 }
910
911 /* Decay */
912 if( v3_length2( s->state.throw_v ) > 0.0001f )
913 {
914 v3f dir;
915 v3_copy( s->state.throw_v, dir );
916 v3_normalize( dir );
917
918 float max = v3_dot( dir, s->state.throw_v ),
919 amt = vg_minf( k_mmdecay * k_rb_delta, max );
920 v3_muladds( s->state.throw_v, dir, -amt, s->state.throw_v );
921 }
922 }
923
924 VG_STATIC void skate_apply_cog_model( player_instance *player )
925 {
926 struct player_skate *s = &player->_skate;
927
928 v3f ideal_cog, ideal_diff, ideal_dir;
929 v3_copy( s->state.up_dir, ideal_dir );
930 v3_normalize( ideal_dir );
931
932 v3_muladds( player->rb.co, ideal_dir,
933 1.0f-player->input_grab->axis.value, ideal_cog );
934 v3_sub( ideal_cog, s->state.cog, ideal_diff );
935
936 /* Apply velocities */
937 v3f rv;
938 v3_sub( player->rb.v, s->state.cog_v, rv );
939
940 v3f F;
941 v3_muls( ideal_diff, -k_cog_spring * k_rb_rate, F );
942 v3_muladds( F, rv, -k_cog_damp * k_rb_rate, F );
943
944 float ra = k_cog_mass_ratio,
945 rb = 1.0f-k_cog_mass_ratio;
946
947 /* Apply forces & intergrate */
948 v3_muladds( s->state.cog_v, F, -rb, s->state.cog_v );
949 v3_muladds( s->state.cog_v, player->basis[1], -9.8f * k_rb_delta,
950 s->state.cog_v );
951
952 v3_muladds( s->state.cog, s->state.cog_v, k_rb_delta, s->state.cog );
953 }
954
955
956 VG_STATIC void skate_integrate( player_instance *player )
957 {
958 struct player_skate *s = &player->_skate;
959
960 float decay_rate = 1.0f - (k_rb_delta * 3.0f),
961 decay_rate_y = 1.0f;
962
963 if( s->state.activity >= k_skate_activity_grind_any )
964 {
965 decay_rate = 1.0f-vg_lerpf( 3.0f, 20.0f, s->grind_strength ) * k_rb_delta;
966 decay_rate_y = decay_rate;
967 }
968
969 float wx = v3_dot( player->rb.w, player->rb.to_world[0] ) * decay_rate,
970 wy = v3_dot( player->rb.w, player->rb.to_world[1] ) * decay_rate_y,
971 wz = v3_dot( player->rb.w, player->rb.to_world[2] ) * decay_rate;
972
973 v3_muls( player->rb.to_world[0], wx, player->rb.w );
974 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
975 v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
976
977 s->state.flip_time += s->state.flip_rate * k_rb_delta;
978 rb_update_transform( &player->rb );
979 }
980
981 /*
982 * 1 2 or 3
983 */
984
985 VG_STATIC int player_skate_trick_input( player_instance *player )
986 {
987 return (player->input_trick0->button.value) |
988 (player->input_trick1->button.value << 1) |
989 (player->input_trick2->button.value << 1) |
990 (player->input_trick2->button.value);
991 }
992
993 VG_STATIC void player__skate_pre_update( player_instance *player )
994 {
995 struct player_skate *s = &player->_skate;
996
997 if( vg_input_button_down( player->input_use ) )
998 {
999 player->subsystem = k_player_subsystem_walk;
1000
1001 v3f angles;
1002 v3_copy( player->cam.angles, angles );
1003 angles[2] = 0.0f;
1004
1005 player->holdout_time = 0.25f;
1006 player__walk_transition( player, angles );
1007 return;
1008 }
1009
1010 if( vg_input_button_down( player->input_reset ) )
1011 {
1012 player->rb.co[1] += 2.0f;
1013 s->state.cog[1] += 2.0f;
1014 q_axis_angle( player->rb.q, (v3f){1.0f,0.0f,0.0f}, VG_PIf * 0.25f );
1015 v3_zero( player->rb.w );
1016 v3_zero( player->rb.v );
1017
1018 rb_update_transform( &player->rb );
1019 }
1020
1021 int trick_id;
1022 if( (s->state.activity == k_skate_activity_air) &&
1023 (trick_id = player_skate_trick_input( player )) )
1024 {
1025 if( (vg.time - s->state.jump_time) < 0.1f )
1026 {
1027 v3_zero( s->state.trick_vel );
1028 s->state.trick_time = 0.0f;
1029
1030 if( trick_id == 1 )
1031 {
1032 s->state.trick_vel[0] = 3.0f;
1033 }
1034 else if( trick_id == 2 )
1035 {
1036 s->state.trick_vel[2] = 3.0f;
1037 }
1038 else if( trick_id == 3 )
1039 {
1040 s->state.trick_vel[0] = 2.0f;
1041 s->state.trick_vel[2] = 2.0f;
1042 }
1043 }
1044 }
1045 }
1046
1047 VG_STATIC void player__skate_post_update( player_instance *player )
1048 {
1049 struct player_skate *s = &player->_skate;
1050
1051 for( int i=0; i<s->prediction_count; i++ )
1052 {
1053 struct land_prediction *p = &s->predictions[i];
1054
1055 for( int j=0; j<p->log_length - 1; j ++ )
1056 {
1057 float brightness = p->score*p->score*p->score;
1058 v3f p1;
1059 v3_lerp( p->log[j], p->log[j+1], brightness, p1 );
1060 vg_line( p->log[j], p1, p->colour );
1061 }
1062
1063 vg_line_cross( p->log[p->log_length-1], p->colour, 0.25f );
1064
1065 v3f p1;
1066 v3_add( p->log[p->log_length-1], p->n, p1 );
1067 vg_line( p->log[p->log_length-1], p1, 0xffffffff );
1068
1069 vg_line_pt3( p->apex, 0.02f, 0xffffffff );
1070 }
1071
1072 #if 0
1073 vg_line_pt3( s->state.apex, 0.030f, 0xff0000ff );
1074 #endif
1075
1076 audio_lock();
1077
1078 float air = s->state.activity == k_skate_activity_air? 1.0f: 0.0f,
1079 speed = v3_length( player->rb.v ),
1080 attn = vg_minf( 1.0f, speed*0.1f ),
1081 slide = vg_clampf( fabsf(s->state.slip), 0.0f, 1.0f ),
1082
1083 vol_main = sqrtf( (1.0f-air)*attn*(1.0f-slide) * 0.4f ),
1084 vol_air = sqrtf( air *attn * 0.5f ),
1085 vol_slide = sqrtf( (1.0f-air)*attn*slide * 0.25f );
1086
1087 const u32 flags = AUDIO_FLAG_SPACIAL_3D|AUDIO_FLAG_LOOP;
1088 if( !s->aud_main )
1089 s->aud_main = audio_request_channel( &audio_board[0], flags );
1090
1091 if( !s->aud_air )
1092 s->aud_air = audio_request_channel( &audio_board[1], flags );
1093
1094 if( !s->aud_slide )
1095 s->aud_slide = audio_request_channel( &audio_board[2], flags );
1096
1097
1098 /* brrrrrrrrrrrt sound for tiles and stuff
1099 * --------------------------------------------------------*/
1100 float sidechain_amt = 0.0f,
1101 hz = speed * 2.0f;
1102
1103 if( s->surface == k_surface_prop_tiles )
1104 sidechain_amt = 1.0f;
1105 else
1106 sidechain_amt = 0.0f;
1107
1108 audio_set_lfo_frequency( 0, hz );
1109 audio_set_lfo_wave( 0, k_lfo_polynomial_bipolar,
1110 vg_lerpf( 250.0f, 80.0f, attn ) );
1111
1112 if( s->aud_main )
1113 {
1114 s->aud_main->colour = 0x00103efe;
1115 audio_channel_set_spacial( s->aud_main, player->rb.co, 40.0f );
1116 audio_channel_slope_volume( s->aud_main, 0.05f, vol_main );
1117 audio_channel_sidechain_lfo( s->aud_main, 0, sidechain_amt );
1118
1119 float rate = 1.0f + (attn-0.5f)*0.2f;
1120 audio_channel_set_sampling_rate( s->aud_main, rate );
1121 }
1122
1123 if( s->aud_slide )
1124 {
1125 s->aud_slide->colour = 0x00103efe;
1126 audio_channel_set_spacial( s->aud_slide, player->rb.co, 40.0f );
1127 audio_channel_slope_volume( s->aud_slide, 0.05f, vol_slide );
1128 audio_channel_sidechain_lfo( s->aud_slide, 0, sidechain_amt );
1129 }
1130
1131 if( s->aud_air )
1132 {
1133 s->aud_air->colour = 0x00103efe;
1134 audio_channel_set_spacial( s->aud_air, player->rb.co, 40.0f );
1135 audio_channel_slope_volume( s->aud_air, 0.05f, vol_air );
1136 }
1137
1138 audio_unlock();
1139 }
1140
1141 /*
1142 * truck alignment model at ra(local)
1143 * returns 1 if valid surface:
1144 * surface_normal will be filled out with an averaged normal vector
1145 * axel_dir will be the direction from left to right wheels
1146 *
1147 * returns 0 if no good surface found
1148 */
1149 VG_STATIC
1150 int skate_compute_surface_alignment( player_instance *player,
1151 v3f ra, u32 colour,
1152 v3f surface_normal, v3f axel_dir )
1153 {
1154 struct player_skate *s = &player->_skate;
1155 world_instance *world = get_active_world();
1156
1157 v3f truck, left, right;
1158 m4x3_mulv( player->rb.to_world, ra, truck );
1159
1160 v3_muladds( truck, player->rb.to_world[0], -k_board_width, left );
1161 v3_muladds( truck, player->rb.to_world[0], k_board_width, right );
1162 vg_line( left, right, colour );
1163
1164 float k_max_truck_flex = VG_PIf * 0.25f;
1165
1166 ray_hit ray_l, ray_r;
1167
1168 v3f dir;
1169 v3_muls( player->rb.to_world[1], -1.0f, dir );
1170
1171 int res_l = 0, res_r = 0;
1172
1173 for( int i=0; i<8; i++ )
1174 {
1175 float t = 1.0f - (float)i * (1.0f/8.0f);
1176 v3_muladds( truck, player->rb.to_world[0], -k_board_radius*t, left );
1177 v3_muladds( left, player->rb.to_world[1], k_board_radius, left );
1178 ray_l.dist = 2.1f * k_board_radius;
1179
1180 res_l = ray_world( world, left, dir, &ray_l );
1181
1182 if( res_l )
1183 break;
1184 }
1185
1186 for( int i=0; i<8; i++ )
1187 {
1188 float t = 1.0f - (float)i * (1.0f/8.0f);
1189 v3_muladds( truck, player->rb.to_world[0], k_board_radius*t, right );
1190 v3_muladds( right, player->rb.to_world[1], k_board_radius, right );
1191 ray_r.dist = 2.1f * k_board_radius;
1192
1193 res_r = ray_world( world, right, dir, &ray_r );
1194
1195 if( res_r )
1196 break;
1197 }
1198
1199 v3f v0;
1200 v3f midpoint;
1201 v3f tangent_average;
1202 v3_muladds( truck, player->rb.to_world[1], -k_board_radius, midpoint );
1203 v3_zero( tangent_average );
1204
1205 if( res_l || res_r )
1206 {
1207 v3f p0, p1, t;
1208 v3_copy( midpoint, p0 );
1209 v3_copy( midpoint, p1 );
1210
1211 if( res_l )
1212 {
1213 v3_copy( ray_l.pos, p0 );
1214 v3_cross( ray_l.normal, player->rb.to_world[0], t );
1215 v3_add( t, tangent_average, tangent_average );
1216 }
1217 if( res_r )
1218 {
1219 v3_copy( ray_r.pos, p1 );
1220 v3_cross( ray_r.normal, player->rb.to_world[0], t );
1221 v3_add( t, tangent_average, tangent_average );
1222 }
1223
1224 v3_sub( p1, p0, v0 );
1225 v3_normalize( v0 );
1226 }
1227 else
1228 {
1229 /* fallback: use the closes point to the trucks */
1230 v3f closest;
1231 int idx = bh_closest_point( world->geo_bh, midpoint, closest, 0.1f );
1232
1233 if( idx != -1 )
1234 {
1235 u32 *tri = &world->scene_geo->arrindices[ idx * 3 ];
1236 v3f verts[3];
1237
1238 for( int j=0; j<3; j++ )
1239 v3_copy( world->scene_geo->arrvertices[ tri[j] ].co, verts[j] );
1240
1241 v3f vert0, vert1, n;
1242 v3_sub( verts[1], verts[0], vert0 );
1243 v3_sub( verts[2], verts[0], vert1 );
1244 v3_cross( vert0, vert1, n );
1245 v3_normalize( n );
1246
1247 if( v3_dot( n, player->rb.to_world[1] ) < 0.3f )
1248 return 0;
1249
1250 v3_cross( n, player->rb.to_world[2], v0 );
1251 v3_muladds( v0, player->rb.to_world[2],
1252 -v3_dot( player->rb.to_world[2], v0 ), v0 );
1253 v3_normalize( v0 );
1254
1255 v3f t;
1256 v3_cross( n, player->rb.to_world[0], t );
1257 v3_add( t, tangent_average, tangent_average );
1258 }
1259 else
1260 return 0;
1261 }
1262
1263 v3_muladds( truck, v0, k_board_width, right );
1264 v3_muladds( truck, v0, -k_board_width, left );
1265
1266 vg_line( left, right, VG__WHITE );
1267
1268 v3_normalize( tangent_average );
1269 v3_cross( v0, tangent_average, surface_normal );
1270 v3_copy( v0, axel_dir );
1271
1272 return 1;
1273 }
1274
1275 VG_STATIC void skate_weight_distribute( player_instance *player )
1276 {
1277 struct player_skate *s = &player->_skate;
1278 v3_zero( s->weight_distribution );
1279
1280 int reverse_dir = v3_dot( player->rb.to_world[2], player->rb.v ) < 0.0f?1:-1;
1281
1282 if( s->state.manual_direction == 0 )
1283 {
1284 if( (player->input_js1v->axis.value > 0.7f) &&
1285 (s->state.activity == k_skate_activity_ground) &&
1286 (s->state.jump_charge <= 0.01f) )
1287 s->state.manual_direction = reverse_dir;
1288 }
1289 else
1290 {
1291 if( player->input_js1v->axis.value < 0.1f )
1292 {
1293 s->state.manual_direction = 0;
1294 }
1295 else
1296 {
1297 if( reverse_dir != s->state.manual_direction )
1298 {
1299 return;
1300 }
1301 }
1302 }
1303
1304 if( s->state.manual_direction )
1305 {
1306 float amt = vg_minf( player->input_js1v->axis.value * 8.0f, 1.0f );
1307 s->weight_distribution[2] = k_board_length * amt *
1308 (float)s->state.manual_direction;
1309 }
1310
1311 /* TODO: Fall back on land normal */
1312 /* TODO: Lerp weight distribution */
1313 if( s->state.manual_direction )
1314 {
1315 v3f plane_z;
1316
1317 m3x3_mulv( player->rb.to_world, s->weight_distribution, plane_z );
1318 v3_negate( plane_z, plane_z );
1319
1320 v3_muladds( plane_z, s->surface_picture,
1321 -v3_dot( plane_z, s->surface_picture ), plane_z );
1322 v3_normalize( plane_z );
1323
1324 v3_muladds( plane_z, s->surface_picture, 0.3f, plane_z );
1325 v3_normalize( plane_z );
1326
1327 v3f p1;
1328 v3_muladds( player->rb.co, plane_z, 1.5f, p1 );
1329 vg_line( player->rb.co, p1, VG__GREEN );
1330
1331 v3f refdir;
1332 v3_muls( player->rb.to_world[2], -(float)s->state.manual_direction,
1333 refdir );
1334
1335 rb_effect_spring_target_vector( &player->rb, refdir, plane_z,
1336 k_manul_spring, k_manul_dampener,
1337 s->substep_delta );
1338 }
1339 }
1340
1341 VG_STATIC void skate_adjust_up_direction( player_instance *player )
1342 {
1343 struct player_skate *s = &player->_skate;
1344
1345 if( s->state.activity == k_skate_activity_ground )
1346 {
1347 v3f target;
1348 v3_copy( s->surface_picture, target );
1349
1350 target[1] += 2.0f * s->surface_picture[1];
1351 v3_normalize( target );
1352
1353 v3_lerp( s->state.up_dir, target,
1354 8.0f * s->substep_delta, s->state.up_dir );
1355 }
1356 else if( s->state.activity == k_skate_activity_air )
1357 {
1358 v3_lerp( s->state.up_dir, player->rb.to_world[1],
1359 8.0f * s->substep_delta, s->state.up_dir );
1360 }
1361 else
1362 {
1363 v3_lerp( s->state.up_dir, player->basis[1],
1364 12.0f * s->substep_delta, s->state.up_dir );
1365 }
1366 }
1367
1368 VG_STATIC int skate_point_visible( v3f origin, v3f target )
1369 {
1370 v3f dir;
1371 v3_sub( target, origin, dir );
1372
1373 ray_hit ray;
1374 ray.dist = v3_length( dir );
1375 v3_muls( dir, 1.0f/ray.dist, dir );
1376 ray.dist -= 0.025f;
1377
1378 if( ray_world( get_active_world(), origin, dir, &ray ) )
1379 return 0;
1380
1381 return 1;
1382 }
1383
1384 VG_STATIC void skate_grind_orient( struct grind_info *inf, m3x3f mtx )
1385 {
1386 /* TODO: Is N and Dir really orthogonal? */
1387 v3_copy( inf->dir, mtx[0] );
1388 v3_copy( inf->n, mtx[1] );
1389 v3_cross( mtx[0], mtx[1], mtx[2] );
1390 }
1391
1392 VG_STATIC void skate_grind_friction( player_instance *player,
1393 struct grind_info *inf, float strength )
1394 {
1395 v3f v2;
1396 v3_muladds( player->rb.to_world[2], inf->n,
1397 -v3_dot( player->rb.to_world[2], inf->n ), v2 );
1398
1399 float a = 1.0f-fabsf( v3_dot( v2, inf->dir ) ),
1400 dir = vg_signf( v3_dot( player->rb.v, inf->dir ) ),
1401 F = a * -dir * k_grind_max_friction;
1402
1403 v3_muladds( player->rb.v, inf->dir, F*k_rb_delta*strength, player->rb.v );
1404 }
1405
1406 VG_STATIC void skate_grind_decay( player_instance *player,
1407 struct grind_info *inf, float strength )
1408 {
1409 m3x3f mtx, mtx_inv;
1410 skate_grind_orient( inf, mtx );
1411 m3x3_transpose( mtx, mtx_inv );
1412
1413 v3f v_grind;
1414 m3x3_mulv( mtx_inv, player->rb.v, v_grind );
1415
1416 float decay = 1.0f - ( k_rb_delta * k_grind_decayxy * strength );
1417 v3_mul( v_grind, (v3f){ 1.0f, decay, decay }, v_grind );
1418 m3x3_mulv( mtx, v_grind, player->rb.v );
1419 }
1420
1421 VG_STATIC void skate_grind_truck_apply( player_instance *player,
1422 float sign, struct grind_info *inf,
1423 float strength )
1424 {
1425 struct player_skate *s = &player->_skate;
1426
1427 /* TODO: Trash compactor this */
1428 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1429 v3f raw, wsp;
1430 m3x3_mulv( player->rb.to_world, ra, raw );
1431 v3_add( player->rb.co, raw, wsp );
1432
1433 v3_copy( ra, s->weight_distribution );
1434
1435 v3f delta;
1436 v3_sub( inf->co, wsp, delta );
1437
1438 /* spring force */
1439 v3_muladds( player->rb.v, delta, k_spring_force*strength*k_rb_delta,
1440 player->rb.v );
1441
1442 skate_grind_decay( player, inf, strength );
1443 skate_grind_friction( player, inf, strength );
1444
1445 /* yeah yeah yeah yeah */
1446 v3f raw_nplane, axis;
1447 v3_muladds( raw, inf->n, -v3_dot( inf->n, raw ), raw_nplane );
1448 v3_cross( raw_nplane, inf->n, axis );
1449 v3_normalize( axis );
1450
1451 /* orientation */
1452 m3x3f mtx;
1453 skate_grind_orient( inf, mtx );
1454 v3f target_fwd, fwd, up, target_up;
1455 m3x3_mulv( mtx, s->grind_vec, target_fwd );
1456 v3_copy( raw_nplane, fwd );
1457 v3_copy( player->rb.to_world[1], up );
1458 v3_copy( inf->n, target_up );
1459
1460 v3_muladds( target_fwd, inf->n, -v3_dot(inf->n,target_fwd), target_fwd );
1461 v3_muladds( fwd, inf->n, -v3_dot(inf->n,fwd), fwd );
1462
1463 v3_normalize( target_fwd );
1464 v3_normalize( fwd );
1465
1466
1467 float way = player->input_js1v->axis.value *
1468 vg_signf( v3_dot( raw_nplane, player->rb.v ) );
1469
1470 v4f q;
1471 q_axis_angle( q, axis, VG_PIf*0.125f * way );
1472 q_mulv( q, target_up, target_up );
1473 q_mulv( q, target_fwd, target_fwd );
1474
1475 rb_effect_spring_target_vector( &player->rb, up, target_up,
1476 k_grind_spring,
1477 k_grind_dampener,
1478 k_rb_delta );
1479
1480 rb_effect_spring_target_vector( &player->rb, fwd, target_fwd,
1481 k_grind_spring*strength,
1482 k_grind_dampener*strength,
1483 k_rb_delta );
1484
1485 vg_line_arrow( player->rb.co, target_up, 1.0f, VG__GREEN );
1486 vg_line_arrow( player->rb.co, fwd, 0.8f, VG__RED );
1487 vg_line_arrow( player->rb.co, target_fwd, 1.0f, VG__YELOW );
1488
1489 s->grind_strength = strength;
1490
1491 /* Fake contact */
1492 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1493 m4x3_mulv( player->rb.to_local, wsp, limit->ra );
1494 m3x3_mulv( player->rb.to_local, inf->n, limit->n );
1495 limit->p = 0.0f;
1496
1497 v3_copy( inf->dir, s->grind_dir );
1498 }
1499
1500 VG_STATIC void skate_5050_apply( player_instance *player,
1501 struct grind_info *inf_front,
1502 struct grind_info *inf_back )
1503 {
1504 struct player_skate *s = &player->_skate;
1505 struct grind_info inf_avg;
1506
1507 v3_sub( inf_front->co, inf_back->co, inf_avg.dir );
1508 v3_muladds( inf_back->co, inf_avg.dir, 0.5f, inf_avg.co );
1509 v3_normalize( inf_avg.dir );
1510
1511 v3f axis_front, axis_back, axis;
1512 v3_cross( inf_front->dir, inf_front->n, axis_front );
1513 v3_cross( inf_back->dir, inf_back->n, axis_back );
1514 v3_add( axis_front, axis_back, axis );
1515 v3_normalize( axis );
1516
1517 v3_cross( axis, inf_avg.dir, inf_avg.n );
1518
1519 skate_grind_decay( player, &inf_avg, 1.0f );
1520
1521
1522 float way = player->input_js1v->axis.value *
1523 vg_signf( v3_dot( player->rb.to_world[2], player->rb.v ) );
1524 v4f q;
1525 v3f up, target_up;
1526 v3_copy( player->rb.to_world[1], up );
1527 v3_copy( inf_avg.n, target_up );
1528 q_axis_angle( q, player->rb.to_world[0], VG_PIf*0.25f * -way );
1529 q_mulv( q, target_up, target_up );
1530
1531 v3_zero( s->weight_distribution );
1532 s->weight_distribution[2] = k_board_length * -way;
1533
1534 rb_effect_spring_target_vector( &player->rb, up, target_up,
1535 k_grind_spring,
1536 k_grind_dampener,
1537 k_rb_delta );
1538
1539 v3f fwd_nplane, dir_nplane;
1540 v3_muladds( player->rb.to_world[2], inf_avg.n,
1541 -v3_dot( player->rb.to_world[2], inf_avg.n ), fwd_nplane );
1542
1543 v3f dir;
1544 v3_muls( inf_avg.dir, v3_dot( fwd_nplane, inf_avg.dir ), dir );
1545 v3_muladds( dir, inf_avg.n, -v3_dot( dir, inf_avg.n ), dir_nplane );
1546
1547 v3_normalize( fwd_nplane );
1548 v3_normalize( dir_nplane );
1549
1550 rb_effect_spring_target_vector( &player->rb, fwd_nplane, dir_nplane,
1551 1000.0f,
1552 k_grind_dampener,
1553 k_rb_delta );
1554
1555 v3f pos_front = { 0.0f, -k_board_radius, -1.0f * k_board_length },
1556 pos_back = { 0.0f, -k_board_radius, 1.0f * k_board_length },
1557 delta_front, delta_back, delta_total;
1558
1559 m4x3_mulv( player->rb.to_world, pos_front, pos_front );
1560 m4x3_mulv( player->rb.to_world, pos_back, pos_back );
1561
1562 v3_sub( inf_front->co, pos_front, delta_front );
1563 v3_sub( inf_back->co, pos_back, delta_back );
1564 v3_add( delta_front, delta_back, delta_total );
1565
1566 v3_muladds( player->rb.v, delta_total, 50.0f * k_rb_delta, player->rb.v );
1567
1568 /* Fake contact */
1569 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1570 v3_zero( limit->ra );
1571 m3x3_mulv( player->rb.to_local, inf_avg.n, limit->n );
1572 limit->p = 0.0f;
1573
1574 v3_copy( inf_avg.dir, s->grind_dir );
1575 }
1576
1577 VG_STATIC int skate_grind_truck_renew( player_instance *player, float sign,
1578 struct grind_info *inf )
1579 {
1580 struct player_skate *s = &player->_skate;
1581
1582 v3f wheel_co = { 0.0f, 0.0f, sign * k_board_length },
1583 grind_co = { 0.0f, -k_board_radius, sign * k_board_length };
1584
1585 m4x3_mulv( player->rb.to_world, wheel_co, wheel_co );
1586 m4x3_mulv( player->rb.to_world, grind_co, grind_co );
1587
1588 /* Exit condition: lost grind tracking */
1589 if( !skate_grind_scansq( player, grind_co, player->rb.v, 0.3f, inf ) )
1590 return 0;
1591
1592 /* Exit condition: cant see grind target directly */
1593 if( !skate_point_visible( wheel_co, inf->co ) )
1594 return 0;
1595
1596 /* Exit condition: minimum velocity not reached, but allow a bit of error */
1597 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1598 minv = k_grind_axel_min_vel*0.8f;
1599
1600 if( dv < minv )
1601 return 0;
1602
1603 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1604 return 0;
1605
1606 v3_copy( inf->dir, s->grind_dir );
1607 return 1;
1608 }
1609
1610 VG_STATIC int skate_grind_truck_entry( player_instance *player, float sign,
1611 struct grind_info *inf )
1612 {
1613 struct player_skate *s = &player->_skate;
1614
1615 /* TODO: Trash compactor this */
1616 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1617
1618 v3f raw, wsp;
1619 m3x3_mulv( player->rb.to_world, ra, raw );
1620 v3_add( player->rb.co, raw, wsp );
1621
1622 if( skate_grind_scansq( player, wsp, player->rb.v, 0.3, inf ) )
1623 {
1624 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1625 return 0;
1626
1627 /* velocity should be at least 60% aligned */
1628 v3f pv, axis;
1629 v3_cross( inf->n, inf->dir, axis );
1630 v3_muladds( player->rb.v, inf->n, -v3_dot( player->rb.v, inf->n ), pv );
1631
1632 if( v3_length2( pv ) < 0.0001f )
1633 return 0;
1634 v3_normalize( pv );
1635
1636 if( fabsf(v3_dot( pv, inf->dir )) < k_grind_axel_max_angle )
1637 return 0;
1638
1639 if( v3_dot( player->rb.v, inf->n ) > 0.5f )
1640 return 0;
1641
1642 #if 0
1643 /* check for vertical alignment */
1644 if( v3_dot( player->rb.to_world[1], inf->n ) < k_grind_axel_max_vangle )
1645 return 0;
1646 #endif
1647
1648 v3f local_co, local_dir, local_n;
1649 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1650 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1651 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1652
1653 v2f delta = { local_co[0], local_co[2] - k_board_length*sign };
1654
1655 float truck_height = -(k_board_radius+0.03f);
1656
1657 v3f rv;
1658 v3_cross( player->rb.w, raw, rv );
1659 v3_add( player->rb.v, rv, rv );
1660
1661 if( (local_co[1] >= truck_height) &&
1662 (v2_length2( delta ) <= k_board_radius*k_board_radius) )
1663 {
1664 return 1;
1665 }
1666 }
1667
1668 return 0;
1669 }
1670
1671 VG_STATIC void skate_boardslide_apply( player_instance *player,
1672 struct grind_info *inf )
1673 {
1674 struct player_skate *s = &player->_skate;
1675
1676 v3f local_co, local_dir, local_n;
1677 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1678 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1679 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1680
1681 v3f intersection;
1682 v3_muladds( local_co, local_dir, local_co[0]/-local_dir[0],
1683 intersection );
1684 v3_copy( intersection, s->weight_distribution );
1685
1686 skate_grind_decay( player, inf, 0.1f );
1687 skate_grind_friction( player, inf, 0.25f );
1688
1689 /* direction alignment */
1690 v3f dir, perp;
1691 v3_cross( local_dir, local_n, perp );
1692 v3_muls( local_dir, vg_signf(local_dir[0]), dir );
1693 v3_muls( perp, vg_signf(perp[2]), perp );
1694
1695 m3x3_mulv( player->rb.to_world, dir, dir );
1696 m3x3_mulv( player->rb.to_world, perp, perp );
1697
1698 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1699 dir,
1700 k_grind_spring, k_grind_dampener,
1701 k_rb_delta );
1702
1703 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[2],
1704 perp,
1705 k_grind_spring, k_grind_dampener,
1706 k_rb_delta );
1707
1708 vg_line_arrow( player->rb.co, dir, 0.5f, VG__GREEN );
1709 vg_line_arrow( player->rb.co, perp, 0.5f, VG__BLUE );
1710
1711 v3_copy( inf->dir, s->grind_dir );
1712 }
1713
1714 VG_STATIC int skate_boardslide_entry( player_instance *player,
1715 struct grind_info *inf )
1716 {
1717 struct player_skate *s = &player->_skate;
1718
1719 if( skate_grind_scansq( player, player->rb.co,
1720 player->rb.to_world[0], k_board_length,
1721 inf ) )
1722 {
1723 v3f local_co, local_dir;
1724 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1725 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1726
1727 if( (fabsf(local_co[2]) <= k_board_length) && /* within wood area */
1728 (local_co[1] >= 0.0f) && /* at deck level */
1729 (fabsf(local_dir[0]) >= 0.5f) ) /* perpendicular to us */
1730 {
1731 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1732 return 0;
1733
1734 return 1;
1735 }
1736 }
1737
1738 return 0;
1739 }
1740
1741 VG_STATIC int skate_boardslide_renew( player_instance *player,
1742 struct grind_info *inf )
1743 {
1744 struct player_skate *s = &player->_skate;
1745
1746 if( !skate_grind_scansq( player, player->rb.co,
1747 player->rb.to_world[0], k_board_length,
1748 inf ) )
1749 return 0;
1750
1751 /* Exit condition: cant see grind target directly */
1752 v3f vis;
1753 v3_muladds( player->rb.co, player->rb.to_world[1], 0.2f, vis );
1754 if( !skate_point_visible( vis, inf->co ) )
1755 return 0;
1756
1757 /* Exit condition: minimum velocity not reached, but allow a bit of error
1758 * TODO: trash compactor */
1759 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1760 minv = k_grind_axel_min_vel*0.8f;
1761
1762 if( dv < minv )
1763 return 0;
1764
1765 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1766 return 0;
1767
1768 return 1;
1769 }
1770
1771 VG_STATIC void skate_store_grind_vec( player_instance *player,
1772 struct grind_info *inf )
1773 {
1774 struct player_skate *s = &player->_skate;
1775
1776 m3x3f mtx;
1777 skate_grind_orient( inf, mtx );
1778 m3x3_transpose( mtx, mtx );
1779
1780 v3f raw;
1781 v3_sub( inf->co, player->rb.co, raw );
1782
1783 m3x3_mulv( mtx, raw, s->grind_vec );
1784 v3_normalize( s->grind_vec );
1785 v3_copy( inf->dir, s->grind_dir );
1786 }
1787
1788 VG_STATIC enum skate_activity skate_availible_grind( player_instance *player )
1789 {
1790 struct player_skate *s = &player->_skate;
1791
1792 /* debounces this state manager a little bit */
1793 if( s->frames_since_activity_change < 10 )
1794 {
1795 s->frames_since_activity_change ++;
1796 return k_skate_activity_undefined;
1797 }
1798
1799 struct grind_info inf_back50,
1800 inf_front50,
1801 inf_slide;
1802
1803 int res_back50 = 0,
1804 res_front50 = 0,
1805 res_slide = 0;
1806
1807 if( s->state.activity == k_skate_activity_grind_boardslide )
1808 {
1809 res_slide = skate_boardslide_renew( player, &inf_slide );
1810 }
1811 else if( s->state.activity == k_skate_activity_grind_back50 )
1812 {
1813 res_back50 = skate_grind_truck_renew( player, 1.0f, &inf_back50 );
1814 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1815 }
1816 else if( s->state.activity == k_skate_activity_grind_front50 )
1817 {
1818 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1819 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1820 }
1821 else if( s->state.activity == k_skate_activity_grind_5050 )
1822 {
1823 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1824 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1825 }
1826 else
1827 {
1828 res_slide = skate_boardslide_entry( player, &inf_slide );
1829 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1830 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1831
1832 if( res_back50 != res_front50 )
1833 {
1834 int wants_to_do_that = fabsf(player->input_js1v->axis.value) >= 0.25f;
1835
1836 res_back50 &= wants_to_do_that;
1837 res_front50 &= wants_to_do_that;
1838 }
1839 }
1840
1841 const enum skate_activity table[] =
1842 { /* slide | back | front */
1843 k_skate_activity_undefined, /* 0 0 0 */
1844 k_skate_activity_grind_front50, /* 0 0 1 */
1845 k_skate_activity_grind_back50, /* 0 1 0 */
1846 k_skate_activity_grind_5050, /* 0 1 1 */
1847
1848 /* slide has priority always */
1849 k_skate_activity_grind_boardslide, /* 1 0 0 */
1850 k_skate_activity_grind_boardslide, /* 1 0 1 */
1851 k_skate_activity_grind_boardslide, /* 1 1 0 */
1852 k_skate_activity_grind_boardslide, /* 1 1 1 */
1853 }
1854 , new_activity = table[ res_slide << 2 | res_back50 << 1 | res_front50 ];
1855
1856 if( new_activity == k_skate_activity_undefined )
1857 {
1858 if( s->state.activity >= k_skate_activity_grind_any )
1859 s->frames_since_activity_change = 0;
1860 }
1861 else if( new_activity == k_skate_activity_grind_boardslide )
1862 {
1863 skate_boardslide_apply( player, &inf_slide );
1864 }
1865 else if( new_activity == k_skate_activity_grind_back50 )
1866 {
1867 if( s->state.activity != k_skate_activity_grind_back50 )
1868 skate_store_grind_vec( player, &inf_back50 );
1869
1870 skate_grind_truck_apply( player, 1.0f, &inf_back50, 1.0f );
1871 }
1872 else if( new_activity == k_skate_activity_grind_front50 )
1873 {
1874 if( s->state.activity != k_skate_activity_grind_front50 )
1875 skate_store_grind_vec( player, &inf_front50 );
1876
1877 skate_grind_truck_apply( player, -1.0f, &inf_front50, 1.0f );
1878 }
1879 else if( new_activity == k_skate_activity_grind_5050 )
1880 skate_5050_apply( player, &inf_front50, &inf_back50 );
1881
1882 return new_activity;
1883 }
1884
1885 VG_STATIC void player__skate_update( player_instance *player )
1886 {
1887 struct player_skate *s = &player->_skate;
1888 world_instance *world = get_active_world();
1889
1890 v3_copy( player->rb.co, s->state.prev_pos );
1891 s->state.activity_prev = s->state.activity;
1892
1893 struct board_collider
1894 {
1895 v3f pos;
1896 float radius;
1897
1898 u32 colour;
1899
1900 enum board_collider_state
1901 {
1902 k_collider_state_default,
1903 k_collider_state_disabled,
1904 k_collider_state_colliding
1905 }
1906 state;
1907 }
1908 wheels[] =
1909 {
1910 {
1911 { 0.0f, 0.0f, -k_board_length },
1912 .radius = k_board_radius,
1913 .colour = VG__RED
1914 },
1915 {
1916 { 0.0f, 0.0f, k_board_length },
1917 .radius = k_board_radius,
1918 .colour = VG__GREEN
1919 }
1920 };
1921
1922 const int k_wheel_count = 2;
1923
1924 s->substep = k_rb_delta;
1925 s->substep_delta = s->substep;
1926 s->limit_count = 0;
1927
1928 int substep_count = 0;
1929
1930 v3_zero( s->surface_picture );
1931
1932 for( int i=0; i<k_wheel_count; i++ )
1933 wheels[i].state = k_collider_state_default;
1934
1935 /* check if we can enter or continue grind */
1936 enum skate_activity grindable_activity = skate_availible_grind( player );
1937 if( grindable_activity != k_skate_activity_undefined )
1938 {
1939 s->state.activity = grindable_activity;
1940 goto grinding;
1941 }
1942
1943 int contact_count = 0;
1944 for( int i=0; i<2; i++ )
1945 {
1946 v3f normal, axel;
1947 v3_copy( player->rb.to_world[0], axel );
1948
1949 if( skate_compute_surface_alignment( player, wheels[i].pos,
1950 wheels[i].colour, normal, axel ) )
1951 {
1952 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1953 axel,
1954 k_surface_spring, k_surface_dampener,
1955 s->substep_delta );
1956
1957 v3_add( normal, s->surface_picture, s->surface_picture );
1958 contact_count ++;
1959 }
1960
1961 m3x3_mulv( player->rb.to_local, axel, s->truckv0[i] );
1962 }
1963
1964 if( contact_count )
1965 {
1966 s->state.activity = k_skate_activity_ground;
1967 s->state.gravity_bias = k_gravity;
1968 v3_normalize( s->surface_picture );
1969
1970 skate_apply_friction_model( player );
1971 skate_weight_distribute( player );
1972 }
1973 else
1974 {
1975 s->state.activity = k_skate_activity_air;
1976 v3_zero( s->weight_distribution );
1977 skate_apply_air_model( player );
1978 }
1979
1980 grinding:;
1981
1982 if( s->state.activity == k_skate_activity_grind_back50 )
1983 wheels[1].state = k_collider_state_disabled;
1984 if( s->state.activity == k_skate_activity_grind_front50 )
1985 wheels[0].state = k_collider_state_disabled;
1986 if( s->state.activity == k_skate_activity_grind_5050 )
1987 {
1988 wheels[0].state = k_collider_state_disabled;
1989 wheels[1].state = k_collider_state_disabled;
1990 }
1991
1992 /* all activities */
1993 skate_apply_steering_model( player );
1994 skate_adjust_up_direction( player );
1995 skate_apply_cog_model( player );
1996 skate_apply_jump_model( player );
1997 skate_apply_grab_model( player );
1998 skate_apply_trick_model( player );
1999 skate_apply_pump_model( player );
2000
2001 begin_collision:;
2002
2003 /*
2004 * Phase 0: Continous collision detection
2005 * --------------------------------------------------------------------------
2006 */
2007
2008 v3f head_wp0, head_wp1, start_co;
2009 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp0 );
2010 v3_copy( player->rb.co, start_co );
2011
2012 /* calculate transform one step into future */
2013 v3f future_co;
2014 v4f future_q;
2015 v3_muladds( player->rb.co, player->rb.v, s->substep, future_co );
2016
2017 if( v3_length2( player->rb.w ) > 0.0f )
2018 {
2019 v4f rotation;
2020 v3f axis;
2021 v3_copy( player->rb.w, axis );
2022
2023 float mag = v3_length( axis );
2024 v3_divs( axis, mag, axis );
2025 q_axis_angle( rotation, axis, mag*s->substep );
2026 q_mul( rotation, player->rb.q, future_q );
2027 q_normalize( future_q );
2028 }
2029 else
2030 v4_copy( player->rb.q, future_q );
2031
2032 v3f future_cg, current_cg, cg_offset;
2033 q_mulv( player->rb.q, s->weight_distribution, current_cg );
2034 q_mulv( future_q, s->weight_distribution, future_cg );
2035 v3_sub( future_cg, current_cg, cg_offset );
2036
2037 /* calculate the minimum time we can move */
2038 float max_time = s->substep;
2039
2040 for( int i=0; i<k_wheel_count; i++ )
2041 {
2042 if( wheels[i].state == k_collider_state_disabled )
2043 continue;
2044
2045 v3f current, future, r_cg;
2046
2047 q_mulv( future_q, wheels[i].pos, future );
2048 v3_add( future, future_co, future );
2049 v3_add( cg_offset, future, future );
2050
2051 q_mulv( player->rb.q, wheels[i].pos, current );
2052 v3_add( current, player->rb.co, current );
2053
2054 float t;
2055 v3f n;
2056
2057 float cast_radius = wheels[i].radius - k_penetration_slop * 2.0f;
2058 if( spherecast_world( world, current, future, cast_radius, &t, n ) != -1)
2059 max_time = vg_minf( max_time, t * s->substep );
2060 }
2061
2062 /* clamp to a fraction of delta, to prevent locking */
2063 float rate_lock = substep_count;
2064 rate_lock *= k_rb_delta * 0.1f;
2065 rate_lock *= rate_lock;
2066
2067 max_time = vg_maxf( max_time, rate_lock );
2068 s->substep_delta = max_time;
2069
2070 /* integrate */
2071 v3_muladds( player->rb.co, player->rb.v, s->substep_delta, player->rb.co );
2072 if( v3_length2( player->rb.w ) > 0.0f )
2073 {
2074 v4f rotation;
2075 v3f axis;
2076 v3_copy( player->rb.w, axis );
2077
2078 float mag = v3_length( axis );
2079 v3_divs( axis, mag, axis );
2080 q_axis_angle( rotation, axis, mag*s->substep_delta );
2081 q_mul( rotation, player->rb.q, player->rb.q );
2082 q_normalize( player->rb.q );
2083
2084 q_mulv( player->rb.q, s->weight_distribution, future_cg );
2085 v3_sub( current_cg, future_cg, cg_offset );
2086 v3_add( player->rb.co, cg_offset, player->rb.co );
2087 }
2088
2089 rb_update_transform( &player->rb );
2090 v3_muladds( player->rb.v, player->basis[1],
2091 -s->state.gravity_bias * s->substep_delta, player->rb.v );
2092
2093 s->substep -= s->substep_delta;
2094
2095 rb_ct manifold[128];
2096 int manifold_len = 0;
2097
2098 /*
2099 * Phase -1: head detection
2100 * --------------------------------------------------------------------------
2101 */
2102 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp1 );
2103
2104 float t;
2105 v3f n;
2106 if( (v3_dist2( head_wp0, head_wp1 ) > 0.001f) &&
2107 (spherecast_world( world, head_wp0, head_wp1, 0.2f, &t, n ) != -1) )
2108 {
2109 v3_lerp( start_co, player->rb.co, t, player->rb.co );
2110 rb_update_transform( &player->rb );
2111
2112 player__dead_transition( player );
2113 return;
2114 }
2115
2116 /*
2117 * Phase 1: Regular collision detection
2118 * --------------------------------------------------------------------------
2119 */
2120
2121 for( int i=0; i<k_wheel_count; i++ )
2122 {
2123 if( wheels[i].state == k_collider_state_disabled )
2124 continue;
2125
2126 m4x3f mtx;
2127 m3x3_identity( mtx );
2128 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2129
2130 rb_sphere collider = { .radius = wheels[i].radius };
2131
2132 rb_ct *man = &manifold[ manifold_len ];
2133
2134 int l = skate_collide_smooth( player, mtx, &collider, man );
2135 if( l )
2136 wheels[i].state = k_collider_state_colliding;
2137
2138 manifold_len += l;
2139 }
2140
2141 float grind_radius = k_board_radius * 0.75f;
2142 rb_capsule capsule = { .height = (k_board_length+0.2f)*2.0f,
2143 .radius=grind_radius };
2144 m4x3f mtx;
2145 v3_muls( player->rb.to_world[0], 1.0f, mtx[0] );
2146 v3_muls( player->rb.to_world[2], -1.0f, mtx[1] );
2147 v3_muls( player->rb.to_world[1], 1.0f, mtx[2] );
2148 v3_muladds( player->rb.to_world[3], player->rb.to_world[1],
2149 grind_radius + k_board_radius*0.25f, mtx[3] );
2150
2151 rb_ct *cman = &manifold[manifold_len];
2152
2153 int l = rb_capsule__scene( mtx, &capsule, NULL, &world->rb_geo.inf.scene,
2154 cman );
2155
2156 /* weld joints */
2157 for( int i=0; i<l; i ++ )
2158 cman[l].type = k_contact_type_edge;
2159 rb_manifold_filter_joint_edges( cman, l, 0.03f );
2160 l = rb_manifold_apply_filtered( cman, l );
2161
2162 manifold_len += l;
2163
2164 debug_capsule( mtx, capsule.radius, capsule.height, VG__WHITE );
2165
2166 /* add limits */
2167 for( int i=0; i<s->limit_count; i++ )
2168 {
2169 struct grind_limit *limit = &s->limits[i];
2170 rb_ct *ct = &manifold[ manifold_len ++ ];
2171 m4x3_mulv( player->rb.to_world, limit->ra, ct->co );
2172 m3x3_mulv( player->rb.to_world, limit->n, ct->n );
2173 ct->p = limit->p;
2174 ct->type = k_contact_type_default;
2175 }
2176
2177 /*
2178 * Phase 3: Dynamics
2179 * --------------------------------------------------------------------------
2180 */
2181
2182
2183 v3f world_cog;
2184 m4x3_mulv( player->rb.to_world, s->weight_distribution, world_cog );
2185 vg_line_pt3( world_cog, 0.02f, VG__BLACK );
2186
2187 for( int i=0; i<manifold_len; i ++ )
2188 {
2189 rb_prepare_contact( &manifold[i], s->substep_delta );
2190 rb_debug_contact( &manifold[i] );
2191 }
2192
2193 /* yes, we are currently rebuilding mass matrices every frame. too bad! */
2194 v3f extent = { k_board_width, 0.1f, k_board_length };
2195 float ex2 = k_board_interia*extent[0]*extent[0],
2196 ey2 = k_board_interia*extent[1]*extent[1],
2197 ez2 = k_board_interia*extent[2]*extent[2];
2198
2199 float mass = 2.0f * (extent[0]*extent[1]*extent[2]);
2200 float inv_mass = 1.0f/mass;
2201
2202 v3f I;
2203 I[0] = ((1.0f/12.0f) * mass * (ey2+ez2));
2204 I[1] = ((1.0f/12.0f) * mass * (ex2+ez2));
2205 I[2] = ((1.0f/12.0f) * mass * (ex2+ey2));
2206
2207 m3x3f iI;
2208 m3x3_identity( iI );
2209 iI[0][0] = I[0];
2210 iI[1][1] = I[1];
2211 iI[2][2] = I[2];
2212 m3x3_inv( iI, iI );
2213
2214 m3x3f iIw;
2215 m3x3_mul( iI, player->rb.to_local, iIw );
2216 m3x3_mul( player->rb.to_world, iIw, iIw );
2217
2218 for( int j=0; j<10; j++ )
2219 {
2220 for( int i=0; i<manifold_len; i++ )
2221 {
2222 /*
2223 * regular dance; calculate velocity & total mass, apply impulse.
2224 */
2225
2226 struct contact *ct = &manifold[i];
2227
2228 v3f rv, delta;
2229 v3_sub( ct->co, world_cog, delta );
2230 v3_cross( player->rb.w, delta, rv );
2231 v3_add( player->rb.v, rv, rv );
2232
2233 v3f raCn;
2234 v3_cross( delta, ct->n, raCn );
2235
2236 v3f raCnI, rbCnI;
2237 m3x3_mulv( iIw, raCn, raCnI );
2238
2239 float normal_mass = 1.0f / (inv_mass + v3_dot(raCn,raCnI)),
2240 vn = v3_dot( rv, ct->n ),
2241 lambda = normal_mass * ( -vn );
2242
2243 float temp = ct->norm_impulse;
2244 ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
2245 lambda = ct->norm_impulse - temp;
2246
2247 v3f impulse;
2248 v3_muls( ct->n, lambda, impulse );
2249
2250 v3_muladds( player->rb.v, impulse, inv_mass, player->rb.v );
2251 v3_cross( delta, impulse, impulse );
2252 m3x3_mulv( iIw, impulse, impulse );
2253 v3_add( impulse, player->rb.w, player->rb.w );
2254
2255 v3_cross( player->rb.w, delta, rv );
2256 v3_add( player->rb.v, rv, rv );
2257 vn = v3_dot( rv, ct->n );
2258 }
2259 }
2260
2261 v3f dt;
2262 rb_depenetrate( manifold, manifold_len, dt );
2263 v3_add( dt, player->rb.co, player->rb.co );
2264 rb_update_transform( &player->rb );
2265
2266 substep_count ++;
2267
2268 if( s->substep >= 0.0001f )
2269 goto begin_collision; /* again! */
2270
2271 /*
2272 * End of collision and dynamics routine
2273 * --------------------------------------------------------------------------
2274 */
2275
2276 s->surface = k_surface_prop_concrete;
2277
2278 for( int i=0; i<manifold_len; i++ )
2279 {
2280 rb_ct *ct = &manifold[i];
2281 struct world_material *surface_mat = world_contact_material( world, ct );
2282
2283 if( surface_mat->info.surface_prop != k_surface_prop_concrete )
2284 s->surface = surface_mat->info.surface_prop;
2285 }
2286
2287 for( int i=0; i<k_wheel_count; i++ )
2288 {
2289 m4x3f mtx;
2290 m3x3_copy( player->rb.to_world, mtx );
2291 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2292 debug_sphere( mtx, wheels[i].radius,
2293 (u32[]){ VG__WHITE, VG__BLACK,
2294 wheels[i].colour }[ wheels[i].state ]);
2295 }
2296
2297 skate_integrate( player );
2298 vg_line_pt3( s->state.cog, 0.02f, VG__WHITE );
2299
2300 struct gate_hit hit;
2301 if( world_intersect_gates(world, player->rb.co, s->state.prev_pos, &hit) )
2302 {
2303 teleport_gate *gate = hit.gate;
2304 m4x3_mulv( gate->transport, player->rb.co, player->rb.co );
2305 m3x3_mulv( gate->transport, player->rb.v, player->rb.v );
2306 m4x3_mulv( gate->transport, s->state.cog, s->state.cog );
2307 m3x3_mulv( gate->transport, s->state.cog_v, s->state.cog_v );
2308 m3x3_mulv( gate->transport, s->state.throw_v, s->state.throw_v );
2309 m3x3_mulv( gate->transport, s->state.head_position,
2310 s->state.head_position );
2311 m3x3_mulv( gate->transport, s->state.up_dir, s->state.up_dir );
2312
2313 v4f transport_rotation;
2314 m3x3_q( gate->transport, transport_rotation );
2315 q_mul( transport_rotation, player->rb.q, player->rb.q );
2316 rb_update_transform( &player->rb );
2317
2318 s->state_gate_storage = s->state;
2319 player__pass_gate( player, &hit );
2320 }
2321
2322 /* FIXME: Rate limit */
2323 static int stick_frames = 0;
2324
2325 if( s->state.activity == k_skate_activity_ground )
2326 stick_frames ++;
2327 else
2328 stick_frames = 0;
2329
2330
2331 if( stick_frames == 4 )
2332 {
2333 audio_lock();
2334 if( (fabsf(s->state.slip) > 0.75f) )
2335 {
2336 audio_oneshot_3d( &audio_lands[rand()%2+3], player->rb.co,
2337 40.0f, 1.0f );
2338 }
2339 else
2340 {
2341 audio_oneshot_3d( &audio_lands[rand()%3], player->rb.co,
2342 40.0f, 1.0f );
2343 }
2344 audio_unlock();
2345 }
2346 }
2347
2348 VG_STATIC void player__skate_im_gui( player_instance *player )
2349 {
2350 struct player_skate *s = &player->_skate;
2351 player__debugtext( 1, "V: %5.2f %5.2f %5.2f",player->rb.v[0],
2352 player->rb.v[1],
2353 player->rb.v[2] );
2354 player__debugtext( 1, "CO: %5.2f %5.2f %5.2f",player->rb.co[0],
2355 player->rb.co[1],
2356 player->rb.co[2] );
2357 player__debugtext( 1, "W: %5.2f %5.2f %5.2f",player->rb.w[0],
2358 player->rb.w[1],
2359 player->rb.w[2] );
2360
2361 const char *activity_txt[] =
2362 {
2363 "air",
2364 "ground",
2365 "undefined (INVALID)",
2366 "grind_any (INVALID)",
2367 "grind_boardslide",
2368 "grind_noseslide",
2369 "grind_tailslide",
2370 "grind_back50",
2371 "grind_front50",
2372 "grind_5050"
2373 };
2374
2375 player__debugtext( 1, "activity: %s", activity_txt[s->state.activity] );
2376 #if 0
2377 player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
2378 s->state.steerx_s, s->state.steery_s,
2379 k_steer_ground, k_steer_air );
2380 #endif
2381 player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
2382 s->state.flip_time );
2383 player__debugtext( 1, "trickv: %.2f %.2f %.2f",
2384 s->state.trick_vel[0],
2385 s->state.trick_vel[1],
2386 s->state.trick_vel[2] );
2387 player__debugtext( 1, "tricke: %.2f %.2f %.2f",
2388 s->state.trick_euler[0],
2389 s->state.trick_euler[1],
2390 s->state.trick_euler[2] );
2391 }
2392
2393 VG_STATIC void player__skate_animate( player_instance *player,
2394 player_animation *dest )
2395 {
2396 struct player_skate *s = &player->_skate;
2397 struct player_avatar *av = player->playeravatar;
2398 struct skeleton *sk = &av->sk;
2399
2400 /* Head */
2401 float kheight = 2.0f,
2402 kleg = 0.6f;
2403
2404 v3f offset;
2405 v3_zero( offset );
2406
2407 v3f cog_local, cog_ideal;
2408 m4x3_mulv( player->rb.to_local, s->state.cog, cog_local );
2409
2410 v3_copy( s->state.up_dir, cog_ideal );
2411 v3_normalize( cog_ideal );
2412 m3x3_mulv( player->rb.to_local, cog_ideal, cog_ideal );
2413
2414 v3_sub( cog_ideal, cog_local, offset );
2415
2416
2417 v3_muls( offset, 4.0f, offset );
2418 offset[1] *= -1.0f;
2419
2420 float curspeed = v3_length( player->rb.v ),
2421 kickspeed = vg_clampf( curspeed*(1.0f/40.0f), 0.0f, 1.0f ),
2422 kicks = (vg_randf()-0.5f)*2.0f*kickspeed,
2423 sign = vg_signf( kicks );
2424
2425 s->wobble[0] = vg_lerpf( s->wobble[0], kicks*kicks*sign, 6.0f*vg.time_delta);
2426 s->wobble[1] = vg_lerpf( s->wobble[1], s->wobble[0], 2.4f*vg.time_delta);
2427
2428 offset[0] *= 0.26f;
2429 offset[0] += s->wobble[1]*3.0f;
2430
2431 offset[1] *= -0.3f;
2432 offset[2] *= 0.01f;
2433
2434 offset[0]=vg_clampf(offset[0],-0.8f,0.8f)*(1.0f-fabsf(s->blend_slide)*0.9f);
2435 offset[1]=vg_clampf(offset[1],-0.5f,0.0f);
2436
2437 /*
2438 * Animation blending
2439 * ===========================================
2440 */
2441
2442 /* sliding */
2443 {
2444 float desired = vg_clampf( fabsf( s->state.slip ), 0.0f, 1.0f );
2445 s->blend_slide = vg_lerpf( s->blend_slide, desired, 2.4f*vg.time_delta);
2446 }
2447
2448 /* movement information */
2449 {
2450 int iair = s->state.activity == k_skate_activity_air;
2451
2452 float dirz = s->state.reverse > 0.0f? 0.0f: 1.0f,
2453 dirx = s->state.slip < 0.0f? 0.0f: 1.0f,
2454 fly = iair? 1.0f: 0.0f,
2455 wdist= s->weight_distribution[2] / k_board_length;
2456
2457 s->blend_z = vg_lerpf( s->blend_z, dirz, 2.4f*vg.time_delta );
2458 s->blend_x = vg_lerpf( s->blend_x, dirx, 0.6f*vg.time_delta );
2459 s->blend_fly = vg_lerpf( s->blend_fly, fly, 2.4f*vg.time_delta );
2460 s->blend_weight= vg_lerpf( s->blend_weight, wdist, 9.0f*vg.time_delta );
2461 }
2462
2463 mdl_keyframe apose[32], bpose[32];
2464 mdl_keyframe ground_pose[32];
2465 {
2466 /* when the player is moving fast he will crouch down a little bit */
2467 float stand = 1.0f - vg_clampf( curspeed * 0.03f, 0.0f, 1.0f );
2468 s->blend_stand = vg_lerpf( s->blend_stand, stand, 6.0f*vg.time_delta );
2469
2470 /* stand/crouch */
2471 float dir_frame = s->blend_z * (15.0f/30.0f),
2472 stand_blend = offset[1]*-2.0f;
2473
2474 v3f local_cog;
2475 m4x3_mulv( player->rb.to_local, s->state.cog, local_cog );
2476
2477 stand_blend = vg_clampf( 1.0f-local_cog[1], 0, 1 );
2478
2479 skeleton_sample_anim( sk, s->anim_stand, dir_frame, apose );
2480 skeleton_sample_anim( sk, s->anim_highg, dir_frame, bpose );
2481 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
2482
2483 /* sliding */
2484 float slide_frame = s->blend_x * (15.0f/30.0f);
2485 skeleton_sample_anim( sk, s->anim_slide, slide_frame, bpose );
2486 skeleton_lerp_pose( sk, apose, bpose, s->blend_slide, apose );
2487
2488 /* pushing */
2489 double push_time = vg.time - s->state.start_push;
2490 s->blend_push = vg_lerpf( s->blend_push,
2491 (vg.time - s->state.cur_push) < 0.125,
2492 6.0f*vg.time_delta );
2493
2494 float pt = push_time + vg.accumulator;
2495 if( s->state.reverse > 0.0f )
2496 skeleton_sample_anim( sk, s->anim_push, pt, bpose );
2497 else
2498 skeleton_sample_anim( sk, s->anim_push_reverse, pt, bpose );
2499
2500 skeleton_lerp_pose( sk, apose, bpose, s->blend_push, apose );
2501
2502 /* trick setup */
2503 float jump_start_frame = 14.0f/30.0f;
2504
2505 float charge = s->state.jump_charge;
2506 s->blend_jump = vg_lerpf( s->blend_jump, charge, 8.4f*vg.time_delta );
2507
2508 float setup_frame = charge * jump_start_frame,
2509 setup_blend = vg_minf( s->blend_jump, 1.0f );
2510
2511 float jump_frame = (vg.time - s->state.jump_time) + jump_start_frame;
2512 if( jump_frame >= jump_start_frame && jump_frame <= (40.0f/30.0f) )
2513 setup_frame = jump_frame;
2514
2515 struct skeleton_anim *jump_anim = s->state.jump_dir?
2516 s->anim_ollie:
2517 s->anim_ollie_reverse;
2518
2519 skeleton_sample_anim_clamped( sk, jump_anim, setup_frame, bpose );
2520 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
2521 }
2522
2523 mdl_keyframe air_pose[32];
2524 {
2525 float target = -player->input_js1h->axis.value;
2526 s->blend_airdir = vg_lerpf( s->blend_airdir, target, 2.4f*vg.time_delta );
2527
2528 float air_frame = (s->blend_airdir*0.5f+0.5f) * (15.0f/30.0f);
2529 skeleton_sample_anim( sk, s->anim_air, air_frame, apose );
2530
2531 static v2f grab_choice;
2532
2533 v2f grab_input = { player->input_js2h->axis.value,
2534 player->input_js2v->axis.value };
2535 v2_add( s->state.grab_mouse_delta, grab_input, grab_input );
2536 if( v2_length2( grab_input ) <= 0.001f )
2537 grab_input[0] = -1.0f;
2538 else
2539 v2_normalize_clamp( grab_input );
2540 v2_lerp( grab_choice, grab_input, 2.4f*vg.time_delta, grab_choice );
2541
2542 float ang = atan2f( grab_choice[0], grab_choice[1] ),
2543 ang_unit = (ang+VG_PIf) * (1.0f/VG_TAUf),
2544 grab_frame = ang_unit * (15.0f/30.0f);
2545
2546 skeleton_sample_anim( sk, s->anim_grabs, grab_frame, bpose );
2547 skeleton_lerp_pose( sk, apose, bpose, s->state.grabbing, air_pose );
2548 }
2549
2550 skeleton_lerp_pose( sk, ground_pose, air_pose, s->blend_fly, dest->pose );
2551
2552 float add_grab_mod = 1.0f - s->blend_fly;
2553
2554 /* additive effects */
2555 {
2556 u32 apply_to[] = { av->id_hip,
2557 av->id_ik_hand_l,
2558 av->id_ik_hand_r,
2559 av->id_ik_elbow_l,
2560 av->id_ik_elbow_r };
2561
2562 for( int i=0; i<vg_list_size(apply_to); i ++ )
2563 {
2564 dest->pose[apply_to[i]-1].co[0] += offset[0]*add_grab_mod;
2565 dest->pose[apply_to[i]-1].co[2] += offset[2]*add_grab_mod;
2566 }
2567
2568
2569 /* angle correction */
2570 if( v3_length2( s->state.up_dir ) > 0.001f )
2571 {
2572 v3f ndir;
2573 m3x3_mulv( player->rb.to_local, s->state.up_dir, ndir );
2574 v3_normalize( ndir );
2575
2576 v3f up = { 0.0f, 1.0f, 0.0f };
2577
2578 float a = v3_dot( ndir, up );
2579 a = acosf( vg_clampf( a, -1.0f, 1.0f ) );
2580
2581 v3f axis;
2582 v4f q;
2583
2584 v3_cross( up, ndir, axis );
2585 q_axis_angle( q, axis, a );
2586
2587 mdl_keyframe *kf_hip = &dest->pose[av->id_hip-1];
2588
2589 for( int i=0; i<vg_list_size(apply_to); i ++ )
2590 {
2591 mdl_keyframe *kf = &dest->pose[apply_to[i]-1];
2592
2593 v3f v0;
2594 v3_sub( kf->co, kf_hip->co, v0 );
2595 q_mulv( q, v0, v0 );
2596 v3_add( v0, kf_hip->co, kf->co );
2597
2598 q_mul( q, kf->q, kf->q );
2599 q_normalize( kf->q );
2600 }
2601
2602 v3f p1, p2;
2603 m3x3_mulv( player->rb.to_world, up, p1 );
2604 m3x3_mulv( player->rb.to_world, ndir, p2 );
2605
2606 vg_line_arrow( player->rb.co, p1, 0.25f, VG__PINK );
2607 vg_line_arrow( player->rb.co, p2, 0.25f, VG__PINK );
2608 }
2609
2610
2611
2612 mdl_keyframe *kf_board = &dest->pose[av->id_board-1],
2613 *kf_foot_l = &dest->pose[av->id_ik_foot_l-1],
2614 *kf_foot_r = &dest->pose[av->id_ik_foot_r-1],
2615 *kf_wheels[] = { &dest->pose[av->id_wheel_r-1],
2616 &dest->pose[av->id_wheel_l-1] };
2617
2618 v4f qtotal;
2619 v4f qtrickr, qyawr, qpitchr, qrollr;
2620 v3f eulerr;
2621
2622 v3_muls( s->board_trick_residuald, VG_TAUf, eulerr );
2623
2624 q_axis_angle( qyawr, (v3f){0.0f,1.0f,0.0f}, eulerr[0] * 0.5f );
2625 q_axis_angle( qpitchr, (v3f){1.0f,0.0f,0.0f}, eulerr[1] );
2626 q_axis_angle( qrollr, (v3f){0.0f,0.0f,1.0f}, eulerr[2] );
2627
2628 q_mul( qpitchr, qrollr, qtrickr );
2629 q_mul( qyawr, qtrickr, qtotal );
2630 q_normalize( qtotal );
2631
2632 q_mul( qtotal, kf_board->q, kf_board->q );
2633
2634
2635 /* trick rotation */
2636 v4f qtrick, qyaw, qpitch, qroll;
2637 v3f euler;
2638 v3_muls( s->state.trick_euler, VG_TAUf, euler );
2639
2640 q_axis_angle( qyaw, (v3f){0.0f,1.0f,0.0f}, euler[0] * 0.5f );
2641 q_axis_angle( qpitch, (v3f){1.0f,0.0f,0.0f}, euler[1] );
2642 q_axis_angle( qroll, (v3f){0.0f,0.0f,1.0f}, euler[2] );
2643
2644 q_mul( qpitch, qroll, qtrick );
2645 q_mul( qyaw, qtrick, qtrick );
2646 q_mul( kf_board->q, qtrick, kf_board->q );
2647 q_normalize( kf_board->q );
2648
2649 /* foot weight distribution */
2650 if( s->blend_weight > 0.0f )
2651 {
2652 kf_foot_l->co[2] += s->blend_weight * 0.2f;
2653 kf_foot_r->co[2] += s->blend_weight * 0.1f;
2654 }
2655 else
2656 {
2657 kf_foot_r->co[2] += s->blend_weight * 0.3f;
2658 kf_foot_l->co[2] += s->blend_weight * 0.1f;
2659 }
2660
2661 /* truck rotation */
2662 for( int i=0; i<2; i++ )
2663 {
2664 float a = vg_minf( s->truckv0[i][0], 1.0f );
2665 a = -acosf( a ) * vg_signf( s->truckv0[i][1] );
2666
2667 v4f q;
2668 q_axis_angle( q, (v3f){0.0f,0.0f,1.0f}, a );
2669 q_mul( q, kf_wheels[i]->q, kf_wheels[i]->q );
2670 q_normalize( kf_wheels[i]->q );
2671 }
2672 }
2673
2674 /* transform */
2675 rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
2676 v3_muladds( dest->root_co, player->rb.to_world[1], -0.1f, dest->root_co );
2677
2678 float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
2679
2680 v4f qflip;
2681 if( (s->state.activity == k_skate_activity_air) &&
2682 (fabsf(s->state.flip_rate) > 0.01f) )
2683 {
2684 float t = s->state.flip_time;
2685 sign = vg_signf( t );
2686
2687 t = 1.0f - vg_minf( 1.0f, fabsf( t * 1.1f ) );
2688 t = sign * (1.0f-t*t);
2689
2690 float angle = vg_clampf( t, -1.0f, 1.0f ) * VG_TAUf,
2691 distm = s->land_dist * fabsf(s->state.flip_rate) * 3.0f,
2692 blend = vg_clampf( 1.0f-distm, 0.0f, 1.0f );
2693
2694 angle = vg_lerpf( angle, vg_signf(s->state.flip_rate) * VG_TAUf, blend );
2695
2696 q_axis_angle( qflip, s->state.flip_axis, angle );
2697 q_mul( qflip, dest->root_q, dest->root_q );
2698 q_normalize( dest->root_q );
2699
2700 v3f rotation_point, rco;
2701 v3_muladds( player->rb.co, player->rb.to_world[1], 0.5f, rotation_point );
2702 v3_sub( dest->root_co, rotation_point, rco );
2703
2704 q_mulv( qflip, rco, rco );
2705 v3_add( rco, rotation_point, dest->root_co );
2706 }
2707
2708 skeleton_copy_pose( sk, dest->pose, player->holdout_pose );
2709 }
2710
2711 VG_STATIC void player__skate_post_animate( player_instance *player )
2712 {
2713 struct player_skate *s = &player->_skate;
2714 struct player_avatar *av = player->playeravatar;
2715
2716 player->cam_velocity_influence = 1.0f;
2717
2718 v3f head = { 0.0f, 1.8f, 0.0f };
2719 m4x3_mulv( av->sk.final_mtx[ av->id_head ], head, s->state.head_position );
2720 m4x3_mulv( player->rb.to_local, s->state.head_position,
2721 s->state.head_position );
2722 }
2723
2724 VG_STATIC void player__skate_reset_animator( player_instance *player )
2725 {
2726 struct player_skate *s = &player->_skate;
2727
2728 if( s->state.activity == k_skate_activity_air )
2729 s->blend_fly = 1.0f;
2730 else
2731 s->blend_fly = 0.0f;
2732
2733 s->blend_slide = 0.0f;
2734 s->blend_z = 0.0f;
2735 s->blend_x = 0.0f;
2736 s->blend_stand = 0.0f;
2737 s->blend_push = 0.0f;
2738 s->blend_jump = 0.0f;
2739 s->blend_airdir = 0.0f;
2740 }
2741
2742 VG_STATIC void player__skate_clear_mechanics( player_instance *player )
2743 {
2744 struct player_skate *s = &player->_skate;
2745 s->state.jump_charge = 0.0f;
2746 s->state.lift_frames = 0;
2747 s->state.flip_rate = 0.0f;
2748 #if 0
2749 s->state.steery = 0.0f;
2750 s->state.steerx = 0.0f;
2751 s->state.steery_s = 0.0f;
2752 s->state.steerx_s = 0.0f;
2753 #endif
2754 s->state.reverse = 0.0f;
2755 s->state.slip = 0.0f;
2756 v3_copy( player->rb.co, s->state.prev_pos );
2757
2758 #if 0
2759 m3x3_identity( s->state.velocity_bias );
2760 m3x3_identity( s->state.velocity_bias_pstep );
2761 #endif
2762
2763 v3_zero( s->state.throw_v );
2764 v3_zero( s->state.trick_vel );
2765 v3_zero( s->state.trick_euler );
2766 }
2767
2768 VG_STATIC void player__skate_reset( player_instance *player,
2769 struct respawn_point *rp )
2770 {
2771 struct player_skate *s = &player->_skate;
2772 v3_muladds( player->rb.co, player->rb.to_world[1], 1.0f, s->state.cog );
2773 v3_zero( player->rb.v );
2774 v3_zero( s->state.cog_v );
2775 v4_copy( rp->q, player->rb.q );
2776
2777 s->state.activity = k_skate_activity_air;
2778 s->state.activity_prev = k_skate_activity_air;
2779
2780 player__skate_clear_mechanics( player );
2781 player__skate_reset_animator( player );
2782
2783 v3_zero( s->state.head_position );
2784 s->state.head_position[1] = 1.8f;
2785 }
2786
2787 #endif /* PLAYER_SKATE_C */