im making a note here, huge success
[carveJwlIkooP6JGAAIwe30JlM.git] / player_skate.c
1 #ifndef PLAYER_SKATE_C
2 #define PLAYER_SKATE_C
3
4 #include "player.h"
5
6 VG_STATIC void player__skate_bind( player_instance *player )
7 {
8 struct player_skate *s = &player->_skate;
9 struct player_avatar *av = player->playeravatar;
10 struct skeleton *sk = &av->sk;
11
12 rb_update_transform( &player->rb );
13 s->anim_stand = skeleton_get_anim( sk, "pose_stand" );
14 s->anim_highg = skeleton_get_anim( sk, "pose_highg" );
15 s->anim_air = skeleton_get_anim( sk, "pose_air" );
16 s->anim_slide = skeleton_get_anim( sk, "pose_slide" );
17 s->anim_push = skeleton_get_anim( sk, "push" );
18 s->anim_push_reverse = skeleton_get_anim( sk, "push_reverse" );
19 s->anim_ollie = skeleton_get_anim( sk, "ollie" );
20 s->anim_ollie_reverse = skeleton_get_anim( sk, "ollie_reverse" );
21 s->anim_grabs = skeleton_get_anim( sk, "grabs" );
22 }
23
24 /*
25 * Collision detection routines
26 *
27 *
28 */
29
30 /*
31 * Does collision detection on a sphere vs world, and applies some smoothing
32 * filters to the manifold afterwards
33 */
34 VG_STATIC int skate_collide_smooth( player_instance *player,
35 m4x3f mtx, rb_sphere *sphere,
36 rb_ct *man )
37 {
38 int len = 0;
39 len = rb_sphere__scene( mtx, sphere, NULL, &world.rb_geo.inf.scene, man );
40
41 for( int i=0; i<len; i++ )
42 {
43 man[i].rba = &player->rb;
44 man[i].rbb = NULL;
45 }
46
47 rb_manifold_filter_coplanar( man, len, 0.03f );
48
49 if( len > 1 )
50 {
51 rb_manifold_filter_backface( man, len );
52 rb_manifold_filter_joint_edges( man, len, 0.03f );
53 rb_manifold_filter_pairs( man, len, 0.03f );
54 }
55 int new_len = rb_manifold_apply_filtered( man, len );
56 if( len && !new_len )
57 len = 1;
58 else
59 len = new_len;
60
61 return len;
62 }
63 /*
64 * Gets the closest grindable edge to the player within max_dist
65 */
66 VG_STATIC struct grind_edge *skate_collect_grind_edge( v3f p0, v3f p1,
67 v3f c0, v3f c1,
68 float max_dist )
69 {
70 bh_iter it;
71 bh_iter_init( 0, &it );
72
73 boxf region;
74
75 box_init_inf( region );
76 box_addpt( region, p0 );
77 box_addpt( region, p1 );
78
79 float k_r = max_dist;
80 v3_add( (v3f){ k_r, k_r, k_r}, region[1], region[1] );
81 v3_add( (v3f){-k_r,-k_r,-k_r}, region[0], region[0] );
82
83 float closest = k_r*k_r;
84 struct grind_edge *closest_edge = NULL;
85
86 int idx;
87 while( bh_next( world.grind_bh, &it, region, &idx ) )
88 {
89 struct grind_edge *edge = &world.grind_edges[ idx ];
90
91 float s,t;
92 v3f pa, pb;
93
94 float d2 =
95 closest_segment_segment( p0, p1, edge->p0, edge->p1, &s,&t, pa, pb );
96
97 if( d2 < closest )
98 {
99 closest = d2;
100 closest_edge = edge;
101 v3_copy( pa, c0 );
102 v3_copy( pb, c1 );
103 }
104 }
105
106 return closest_edge;
107 }
108
109 VG_STATIC int skate_grind_collide( player_instance *player, rb_ct *contact )
110 {
111 v3f p0, p1, c0, c1;
112 v3_muladds( player->rb.co, player->rb.to_world[2], 0.5f, p0 );
113 v3_muladds( player->rb.co, player->rb.to_world[2], -0.5f, p1 );
114 v3_muladds( p0, player->rb.to_world[1], 0.08f, p0 );
115 v3_muladds( p1, player->rb.to_world[1], 0.08f, p1 );
116
117 float const k_r = 0.25f;
118 struct grind_edge *closest_edge = skate_collect_grind_edge( p0, p1,
119 c0, c1, k_r );
120
121 if( closest_edge )
122 {
123 v3f delta;
124 v3_sub( c1, c0, delta );
125
126 if( v3_dot( delta, player->rb.to_world[1] ) > 0.0001f )
127 {
128 contact->p = v3_length( delta );
129 contact->type = k_contact_type_edge;
130 contact->element_id = 0;
131 v3_copy( c1, contact->co );
132 contact->rba = NULL;
133 contact->rbb = NULL;
134
135 v3f edge_dir, axis_dir;
136 v3_sub( closest_edge->p1, closest_edge->p0, edge_dir );
137 v3_normalize( edge_dir );
138 v3_cross( (v3f){0.0f,1.0f,0.0f}, edge_dir, axis_dir );
139 v3_cross( edge_dir, axis_dir, contact->n );
140
141 return 1;
142 }
143 else
144 return 0;
145 }
146
147 return 0;
148 }
149
150 struct grind_info
151 {
152 v3f co, dir, n;
153 };
154
155 VG_STATIC int skate_grind_scansq( v3f pos, v3f dir, float r,
156 struct grind_info *inf )
157 {
158 v4f plane;
159 v3_copy( dir, plane );
160 v3_normalize( plane );
161 plane[3] = v3_dot( plane, pos );
162
163 boxf box;
164 v3_add( pos, (v3f){ r, r, r }, box[1] );
165 v3_sub( pos, (v3f){ r, r, r }, box[0] );
166
167 bh_iter it;
168 bh_iter_init( 0, &it );
169 int idx;
170
171 struct grind_sample
172 {
173 v2f co;
174 v2f normal;
175 v3f normal3,
176 centroid;
177 }
178 samples[48];
179 int sample_count = 0;
180
181 v2f support_min,
182 support_max;
183
184 v3f support_axis;
185 v3_cross( plane, (v3f){0.0f,1.0f,0.0f}, support_axis );
186 v3_normalize( support_axis );
187
188 while( bh_next( world.geo_bh, &it, box, &idx ) )
189 {
190 u32 *ptri = &world.scene_geo->arrindices[ idx*3 ];
191 v3f tri[3];
192
193 for( int j=0; j<3; j++ )
194 v3_copy( world.scene_geo->arrvertices[ptri[j]].co, tri[j] );
195
196 for( int j=0; j<3; j++ )
197 {
198 int i0 = j,
199 i1 = (j+1) % 3;
200
201 struct grind_sample *sample = &samples[ sample_count ];
202 v3f co;
203
204 if( plane_segment( plane, tri[i0], tri[i1], co ) )
205 {
206 v3f d;
207 v3_sub( co, pos, d );
208 if( v3_length2( d ) > r*r )
209 continue;
210
211 v3f va, vb, normal;
212 v3_sub( tri[1], tri[0], va );
213 v3_sub( tri[2], tri[0], vb );
214 v3_cross( va, vb, normal );
215
216 sample->normal[0] = v3_dot( support_axis, normal );
217 sample->normal[1] = normal[1];
218 sample->co[0] = v3_dot( support_axis, d );
219 sample->co[1] = d[1];
220
221 v3_copy( normal, sample->normal3 ); /* normalize later
222 if we want to us it */
223
224 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
225 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
226 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
227
228 v2_normalize( sample->normal );
229 sample_count ++;
230
231 if( sample_count == vg_list_size( samples ) )
232 goto too_many_samples;
233 }
234 }
235 }
236
237 too_many_samples:
238
239 if( sample_count < 2 )
240 return 0;
241
242 v3f
243 average_direction,
244 average_normal;
245
246 v2f min_co, max_co;
247 v2_fill( min_co, INFINITY );
248 v2_fill( max_co, -INFINITY );
249
250 v3_zero( average_direction );
251 v3_zero( average_normal );
252
253 int passed_samples = 0;
254
255 for( int i=0; i<sample_count-1; i++ )
256 {
257 struct grind_sample *si, *sj;
258
259 si = &samples[i];
260
261 for( int j=i+1; j<sample_count; j++ )
262 {
263 if( i == j )
264 continue;
265
266 sj = &samples[j];
267
268 /* non overlapping */
269 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
270 continue;
271
272 /* not sharp angle */
273 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
274 continue;
275
276 /* not convex */
277 v3f v0;
278 v3_sub( sj->centroid, si->centroid, v0 );
279 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
280 v3_dot( v0, sj->normal3 ) <= 0.0f )
281 continue;
282
283 v2_minv( sj->co, min_co, min_co );
284 v2_maxv( sj->co, max_co, max_co );
285
286 v3f n0, n1, dir;
287 v3_copy( si->normal3, n0 );
288 v3_copy( sj->normal3, n1 );
289 v3_cross( n0, n1, dir );
290 v3_normalize( dir );
291
292 /* make sure the directions all face a common hemisphere */
293 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
294 v3_add( average_direction, dir, average_direction );
295
296 if( si->normal3[1] > sj->normal3[1] )
297 v3_add( si->normal3, average_normal, average_normal );
298 else
299 v3_add( sj->normal3, average_normal, average_normal );
300
301 passed_samples ++;
302 }
303 }
304
305 if( !passed_samples )
306 return 0;
307
308 if( (v3_length2( average_direction ) <= 0.001f) ||
309 (v3_length2( average_normal ) <= 0.001f ) )
310 return 0;
311
312 float div = 1.0f/(float)passed_samples;
313 v3_normalize( average_direction );
314 v3_normalize( average_normal );
315
316 v2f average_coord;
317 v2_add( min_co, max_co, average_coord );
318 v2_muls( average_coord, 0.5f, average_coord );
319
320 v3_muls( support_axis, average_coord[0], inf->co );
321 inf->co[1] += average_coord[1];
322 v3_add( pos, inf->co, inf->co );
323 v3_copy( average_normal, inf->n );
324 v3_copy( average_direction, inf->dir );
325
326 vg_line_pt3( inf->co, 0.02f, VG__GREEN );
327 vg_line_arrow( inf->co, average_direction, 0.3f, VG__GREEN );
328 vg_line_arrow( inf->co, inf->n, 0.2f, VG__CYAN );
329
330 return passed_samples;
331 }
332
333 #if 0
334 static inline void skate_grind_coordv2i( v2f co, v2i d )
335 {
336 const float k_inv_res = 1.0f/0.01f;
337 d[0] = floorf( co[0] * k_inv_res );
338 d[1] = floorf( co[1] * k_inv_res );
339 }
340
341 static inline u32 skate_grind_hashv2i( v2i d )
342 {
343 return (d[0] * 92837111) ^ (d[1] * 689287499);
344 }
345
346 static inline u32 skate_grind_hashv2f( v2f co )
347 {
348 v2i d;
349 skate_grind_coordv2i( co, d );
350 return skate_grind_hashv2i( d );
351 }
352
353 VG_STATIC int skate_grind_scansq( player_instance *player, v3f pos,
354 v3f result_co, v3f result_dir, v3f result_n )
355 {
356 v4f plane;
357 v3_copy( player->rb.v, plane );
358 v3_normalize( plane );
359 plane[3] = v3_dot( plane, pos );
360
361 boxf box;
362 float r = k_board_length;
363 v3_add( pos, (v3f){ r, r, r }, box[1] );
364 v3_sub( pos, (v3f){ r, r, r }, box[0] );
365
366 vg_line_boxf( box, VG__BLACK );
367
368 m4x3f mtx;
369 m3x3_copy( player->rb.to_world, mtx );
370 v3_copy( pos, mtx[3] );
371
372 bh_iter it;
373 bh_iter_init( 0, &it );
374 int idx;
375
376 struct grind_sample
377 {
378 v2f co;
379 v2f normal;
380 v3f normal3,
381 centroid;
382 }
383 samples[48];
384
385 int sample_count = 0;
386
387 v2f support_min,
388 support_max;
389
390 v3f support_axis;
391 v3_cross( plane, (v3f){0.0f,1.0f,0.0f}, support_axis );
392 v3_normalize( support_axis );
393
394 while( bh_next( world.geo_bh, &it, box, &idx ) )
395 {
396 u32 *ptri = &world.scene_geo->arrindices[ idx*3 ];
397 v3f tri[3];
398
399 for( int j=0; j<3; j++ )
400 v3_copy( world.scene_geo->arrvertices[ptri[j]].co, tri[j] );
401
402 for( int j=0; j<3; j++ )
403 {
404 int i0 = j,
405 i1 = (j+1) % 3;
406
407 struct grind_sample *sample = &samples[ sample_count ];
408 v3f co;
409
410 if( plane_segment( plane, tri[i0], tri[i1], co ) )
411 {
412 v3f d;
413 v3_sub( co, pos, d );
414 if( v3_length2( d ) > r*r )
415 continue;
416
417 v3f va, vb, normal;
418 v3_sub( tri[1], tri[0], va );
419 v3_sub( tri[2], tri[0], vb );
420 v3_cross( va, vb, normal );
421
422 sample->normal[0] = v3_dot( support_axis, normal );
423 sample->normal[1] = normal[1];
424 sample->co[0] = v3_dot( support_axis, d );
425 sample->co[1] = d[1];
426
427 v3_copy( normal, sample->normal3 ); /* normalize later
428 if we want to us it */
429
430 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
431 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
432 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
433
434 v2_normalize( sample->normal );
435 sample_count ++;
436
437 if( sample_count == vg_list_size( samples ) )
438 {
439 break;
440 }
441 }
442 }
443 }
444
445 if( sample_count < 2 )
446 return 0;
447
448
449
450 /* spacial hashing */
451
452 const int k_hashmap_size = 128;
453 u32 hashmap[k_hashmap_size+1];
454 u32 entries[48];
455
456 for( int i=0; i<k_hashmap_size+1; i++ )
457 hashmap[i] = 0;
458
459 for( int i=0; i<sample_count; i++ )
460 {
461 u32 h = skate_grind_hashv2f( samples[i].co ) % k_hashmap_size;
462 hashmap[ h ] ++;
463 }
464
465 /* partial sums */
466 for( int i=0; i<k_hashmap_size; i++ )
467 {
468 hashmap[i+1] += hashmap[i];
469 }
470
471 /* trash compactor */
472 for( int i=0; i<sample_count; i++ )
473 {
474 u32 h = skate_grind_hashv2f( samples[i].co ) % k_hashmap_size;
475 hashmap[ h ] --;
476
477 entries[ hashmap[h] ] = i;
478 }
479
480
481 v3f
482 average_direction,
483 average_normal;
484
485 v2f min_co, max_co;
486 v2_fill( min_co, INFINITY );
487 v2_fill( max_co, -INFINITY );
488
489 v3_zero( average_direction );
490 v3_zero( average_normal );
491
492 int passed_samples = 0;
493
494 for( int i=0; i<sample_count; i++ )
495 {
496 struct grind_sample *si, *sj;
497 si = &samples[i];
498
499 v2i start;
500 skate_grind_coordv2i( si->co, start );
501
502 v2i offsets[] = { {-1,-1},{ 0,-1},{ 1,-1},
503 {-1, 0},{ 0, 0},{ 1, 0},
504 {-1, 1},{ 0, 1},{ 1, 1} };
505
506 for( int j=0; j<vg_list_size(offsets); j++ )
507 {
508 v2i cell;
509 v2i_add( start, offsets[j], cell );
510
511 u32 h = skate_grind_hashv2i( cell ) % k_hashmap_size;
512
513 int start = hashmap[ h ],
514 end = hashmap[ h+1 ];
515
516 for( int k=start; k<end; k++ )
517 {
518 int idx = entries[ k ];
519 if( idx <= i )
520 continue;
521
522 sj = &samples[idx];
523
524 /* non overlapping */
525 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
526 continue;
527
528 /* not sharp angle */
529 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
530 continue;
531
532 /* not convex */
533 v3f v0;
534 v3_sub( sj->centroid, si->centroid, v0 );
535 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
536 v3_dot( v0, sj->normal3 ) <= 0.0f )
537 continue;
538
539 v2_minv( sj->co, min_co, min_co );
540 v2_maxv( sj->co, max_co, max_co );
541
542 v3f n0, n1, dir;
543 v3_copy( si->normal3, n0 );
544 v3_copy( sj->normal3, n1 );
545 v3_cross( n0, n1, dir );
546 v3_normalize( dir );
547
548 /* make sure the directions all face a common hemisphere */
549 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
550 v3_add( average_direction, dir, average_direction );
551
552 if( si->normal3[1] > sj->normal3[1] )
553 v3_add( si->normal3, average_normal, average_normal );
554 else
555 v3_add( sj->normal3, average_normal, average_normal );
556
557 passed_samples ++;
558 }
559 }
560 }
561
562 if( !passed_samples )
563 return 0;
564
565 if( (v3_length2( average_direction ) <= 0.001f) ||
566 (v3_length2( average_normal ) <= 0.001f ) )
567 return 0;
568
569 float div = 1.0f/(float)passed_samples;
570 v3_normalize( average_direction );
571 v3_normalize( average_normal );
572
573 v2f average_coord;
574 v2_add( min_co, max_co, average_coord );
575 v2_muls( average_coord, 0.5f, average_coord );
576
577
578 v3_muls( support_axis, average_coord[0], result_co );
579 result_co[1] += average_coord[1];
580 v3_add( pos, result_co, result_co );
581
582 #if 0
583 vg_line_pt3( result_co, 0.02f, VG__GREEN );
584
585 v3f p0, p1;
586 v3_muladds( result_co, average_direction, 0.35f, p0 );
587 v3_muladds( result_co, average_direction, -0.35f, p1 );
588 vg_line( p0, p1, VG__PINK );
589 #endif
590
591 v3_copy( average_normal, result_n );
592 v3_copy( average_direction, result_dir );
593
594 return passed_samples;
595 }
596
597 #endif
598
599 VG_STATIC
600 void player__approximate_best_trajectory( player_instance *player )
601 {
602 struct player_skate *s = &player->_skate;
603 float k_trace_delta = k_rb_delta * 10.0f;
604
605 s->state.air_start = vg.time;
606 v3_copy( player->rb.v, s->state.air_init_v );
607 v3_copy( player->rb.co, s->state.air_init_co );
608
609 s->prediction_count = 0;
610
611 v3f axis;
612 v3_cross( player->rb.v, player->rb.to_world[1], axis );
613 v3_normalize( axis );
614
615 /* at high slopes, Y component is low */
616 float angle_begin = -(1.0f-fabsf( player->rb.to_world[1][1] )),
617 angle_end = 1.0f;
618
619 for( int m=0;m<=15; m++ )
620 {
621 struct land_prediction *p = &s->predictions[ s->prediction_count ++ ];
622
623 p->log_length = 0;
624 p->land_dist = 0.0f;
625 v3_zero( p->apex );
626 p->type = k_prediction_none;
627
628 v3f launch_co, launch_v, co0, co1;
629 v3_copy( player->rb.co, launch_co );
630 v3_copy( player->rb.v, launch_v );
631 v3_copy( launch_co, co0 );
632
633 float vt = (float)m * (1.0f/15.0f),
634 ang = vg_lerpf( angle_begin, angle_end, vt ) * 0.15f;
635
636 v4f qbias;
637 q_axis_angle( qbias, axis, ang );
638 q_mulv( qbias, launch_v, launch_v );
639 v3_copy( launch_v, p->v );
640
641 for( int i=1; i<=50; i++ )
642 {
643 float t = (float)i * k_trace_delta;
644
645 v3_muls( launch_v, t, co1 );
646 co1[1] += -0.5f * k_gravity * t*t;
647 v3_add( launch_co, co1, co1 );
648
649 float t1;
650 v3f n;
651
652 int idx = spherecast_world( co0, co1, k_board_radius, &t1, n );
653 if( idx != -1 )
654 {
655 v3_copy( n, p->n );
656 v3_lerp( co0, co1, t1, p->log[ p->log_length ++ ] );
657 p->type = k_prediction_land;
658
659 v3f ve;
660 v3_copy( launch_v, ve );
661 ve[1] -= k_gravity * t;
662 p->score = -v3_dot( ve, n );
663 p->land_dist = t + k_trace_delta * t1;
664 break;
665 }
666
667 v3_copy( co1, p->log[ p->log_length ++ ] );
668 v3_copy( co1, co0 );
669 }
670
671 if( p->type == k_prediction_none )
672 s->prediction_count --;
673 }
674
675 float score_min = INFINITY,
676 score_max = -INFINITY;
677
678 struct land_prediction *best = NULL;
679
680 for( int i=0; i<s->prediction_count; i ++ )
681 {
682 struct land_prediction *p = &s->predictions[i];
683
684 if( p->score < score_min )
685 best = p;
686
687 score_min = vg_minf( score_min, p->score );
688 score_max = vg_maxf( score_max, p->score );
689 }
690
691 for( int i=0; i<s->prediction_count; i ++ )
692 {
693 struct land_prediction *p = &s->predictions[i];
694 float s = p->score;
695
696 s -= score_min;
697 s /= (score_max-score_min);
698 s = 1.0f - s;
699
700 p->score = s;
701 p->colour = s * 255.0f;
702
703 if( p == best )
704 p->colour <<= 16;
705 else if( p->type == k_prediction_land )
706 p->colour <<= 8;
707
708 p->colour |= 0xff000000;
709 }
710
711 if( best )
712 {
713 v3_copy( best->n, s->land_normal );
714 v3_copy( best->v, player->rb.v );
715 s->land_dist = best->land_dist;
716
717 v2f steer = { player->input_js1h->axis.value,
718 player->input_js1v->axis.value };
719 v2_normalize_clamp( steer );
720
721 if( (fabsf(steer[1]) > 0.5f) && (s->land_dist >= 1.5f) )
722 {
723 s->state.flip_rate = (1.0f/s->land_dist) * vg_signf(steer[1]) *
724 s->state.reverse ;
725 s->state.flip_time = 0.0f;
726 v3_copy( player->rb.to_world[0], s->state.flip_axis );
727 }
728 else
729 {
730 s->state.flip_rate = 0.0f;
731 v3_zero( s->state.flip_axis );
732 }
733 }
734 else
735 {
736 v3_copy( (v3f){0.0f,1.0f,0.0f}, s->land_normal );
737 }
738 }
739
740 /*
741 *
742 * Varius physics models
743 * ------------------------------------------------
744 */
745
746 /*
747 * Air control, no real physics
748 */
749 VG_STATIC void skate_apply_air_model( player_instance *player )
750 {
751 struct player_skate *s = &player->_skate;
752
753 if( s->state.activity_prev != k_skate_activity_air )
754 player__approximate_best_trajectory( player );
755
756 #if 0
757 m3x3_mulv( s->state.velocity_bias, player->rb.v, player->rb.v );
758
759 ray_hit hit;
760 /*
761 * Prediction
762 */
763 float pstep = VG_TIMESTEP_FIXED * 1.0f;
764 float k_bias = 0.98f;
765
766 v3f pco, pco1, pv;
767 v3_copy( player->rb.co, pco );
768 v3_muls( player->rb.v, 1.0f, pv );
769
770 float time_to_impact = 0.0f;
771 float limiter = 1.0f;
772
773 struct grind_edge *best_grind = NULL;
774 float closest_grind = INFINITY;
775
776 v3f target_normal = { 0.0f, 1.0f, 0.0f };
777 int has_target = 0;
778
779 for( int i=0; i<250; i++ )
780 {
781 v3_copy( pco, pco1 );
782 m3x3_mulv( s->state.velocity_bias, pv, pv );
783
784 pv[1] += -k_gravity * pstep;
785 v3_muladds( pco, pv, pstep, pco );
786
787 ray_hit contact;
788 v3f vdir;
789
790 v3_sub( pco, pco1, vdir );
791 contact.dist = v3_length( vdir );
792 v3_divs( vdir, contact.dist, vdir);
793
794 v3f c0, c1;
795 struct grind_edge *ge = skate_collect_grind_edge( pco, pco1,
796 c0, c1, 0.4f );
797
798 if( ge && (v3_dot((v3f){0.0f,1.0f,0.0f},vdir) < -0.2f ) )
799 {
800 vg_line( ge->p0, ge->p1, 0xff0000ff );
801 vg_line_cross( pco, 0xff0000ff, 0.25f );
802 has_target = 1;
803 break;
804 }
805
806 float orig_dist = contact.dist;
807 if( ray_world( pco1, vdir, &contact ) )
808 {
809 v3_copy( contact.normal, target_normal );
810 has_target = 1;
811 time_to_impact += (contact.dist/orig_dist)*pstep;
812 vg_line_cross( contact.pos, 0xffff0000, 0.25f );
813 break;
814 }
815 time_to_impact += pstep;
816 }
817 #endif
818
819 float angle = v3_dot( player->rb.to_world[1], s->land_normal );
820 angle = vg_clampf( angle, -1.0f, 1.0f );
821 v3f axis;
822 v3_cross( player->rb.to_world[1], s->land_normal, axis );
823
824 v4f correction;
825 q_axis_angle( correction, axis,
826 acosf(angle)*2.0f*VG_TIMESTEP_FIXED );
827 q_mul( correction, player->rb.q, player->rb.q );
828
829 v2f steer = { player->input_js1h->axis.value,
830 player->input_js1v->axis.value };
831 v2_normalize_clamp( steer );
832
833 //s->land_dist = time_to_impact;
834 s->land_dist = 1.0f;
835 }
836
837 VG_STATIC int player_skate_trick_input( player_instance *player );
838 VG_STATIC void skate_apply_trick_model( player_instance *player )
839 {
840 struct player_skate *s = &player->_skate;
841
842 v3f Fd, Fs, F;
843 v3f strength = { 3.7f, 3.6f, 8.0f };
844
845 v3_muls( s->board_trick_residualv, -4.0f , Fd );
846 v3_muls( s->board_trick_residuald, -10.0f, Fs );
847 v3_add( Fd, Fs, F );
848 v3_mul( strength, F, F );
849
850 v3_muladds( s->board_trick_residualv, F, k_rb_delta,
851 s->board_trick_residualv );
852 v3_muladds( s->board_trick_residuald, s->board_trick_residualv,
853 k_rb_delta, s->board_trick_residuald );
854
855 if( s->state.activity == k_skate_activity_air )
856 {
857 if( v3_length2( s->state.trick_vel ) < 0.0001f )
858 return;
859
860 int carry_on = player_skate_trick_input( player );
861
862 /* we assume velocities share a common divisor, in which case the
863 * interval is the minimum value (if not zero) */
864
865 float min_rate = 99999.0f;
866
867 for( int i=0; i<3; i++ )
868 {
869 float v = s->state.trick_vel[i];
870 if( (v > 0.0f) && (v < min_rate) )
871 min_rate = v;
872 }
873
874 float interval = 1.0f / min_rate,
875 current = floorf( s->state.trick_time / interval ),
876 next_end = (current+1.0f) * interval;
877
878
879 /* integrate trick velocities */
880 v3_muladds( s->state.trick_euler, s->state.trick_vel, k_rb_delta,
881 s->state.trick_euler );
882
883 if( !carry_on && (s->state.trick_time + k_rb_delta >= next_end) )
884 {
885 s->state.trick_time = 0.0f;
886 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
887 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
888 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
889 v3_copy( s->state.trick_vel, s->board_trick_residualv );
890 v3_zero( s->state.trick_vel );
891 }
892
893 s->state.trick_time += k_rb_delta;
894 }
895 else
896 {
897 if( (v3_length2(s->state.trick_vel) >= 0.0001f ) &&
898 s->state.trick_time > 0.2f)
899 {
900 player__dead_transition( player );
901 }
902
903 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
904 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
905 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
906 s->state.trick_time = 0.0f;
907 v3_zero( s->state.trick_vel );
908 }
909 }
910
911 VG_STATIC void skate_apply_grab_model( player_instance *player )
912 {
913 struct player_skate *s = &player->_skate;
914
915 float grabt = player->input_grab->axis.value;
916
917 if( grabt > 0.5f )
918 {
919 v2_muladds( s->state.grab_mouse_delta, vg.mouse_delta, 0.02f,
920 s->state.grab_mouse_delta );
921
922 v2_normalize_clamp( s->state.grab_mouse_delta );
923 }
924 else
925 v2_zero( s->state.grab_mouse_delta );
926
927 s->state.grabbing = vg_lerpf( s->state.grabbing, grabt, 8.4f*k_rb_delta );
928 }
929
930 VG_STATIC void skate_apply_steering_model( player_instance *player )
931 {
932 struct player_skate *s = &player->_skate;
933
934 /* Steering */
935 float input = player->input_js1h->axis.value,
936 grab = player->input_grab->axis.value,
937 steer = input * (1.0f-(s->state.jump_charge+grab)*0.4f),
938 steer_scaled = vg_signf(steer) * powf(steer,2.0f) * k_steer_ground;
939
940 v3f steer_axis;
941 v3_muls( player->rb.to_world[1], -vg_signf( steer_scaled ), steer_axis );
942
943 float rate = 26.0f,
944 top = 1.0f;
945
946 if( s->state.activity == k_skate_activity_air )
947 {
948 rate = 6.0f * fabsf(steer_scaled);
949 top = 1.5f;
950 }
951
952 else if( s->state.manual_direction )
953 {
954 rate = 35.0f;
955 top = 1.5f;
956 }
957
958 else if( s->state.activity >= k_skate_activity_grind_any )
959 {
960 rate *= fabsf(steer_scaled);
961
962 float a = 0.8f * -steer_scaled * k_rb_delta;
963
964 v4f q;
965 q_axis_angle( q, player->rb.to_world[1], a );
966 q_mulv( q, s->grind_vec, s->grind_vec );
967
968 #if 0
969 float tilt = player->input_js1v->axis.value;
970 tilt *= tilt * 0.8f * k_rb_delta;
971
972 q_axis_angle( q, player->rb.to_world[0], tilt );
973 q_mulv( q, s->grind_vec, s->grind_vec );
974 #endif
975
976 v3_normalize( s->grind_vec );
977 }
978
979 float current = v3_dot( player->rb.to_world[1], player->rb.w ),
980 addspeed = (steer_scaled * -top) - current,
981 maxaccel = rate * k_rb_delta,
982 accel = vg_clampf( addspeed, -maxaccel, maxaccel );
983
984 v3_muladds( player->rb.w, player->rb.to_world[1], accel, player->rb.w );
985 }
986
987 /*
988 * Computes friction and surface interface model
989 */
990 VG_STATIC void skate_apply_friction_model( player_instance *player )
991 {
992 struct player_skate *s = &player->_skate;
993
994 /*
995 * Computing localized friction forces for controlling the character
996 * Friction across X is significantly more than Z
997 */
998
999 v3f vel;
1000 m3x3_mulv( player->rb.to_local, player->rb.v, vel );
1001 float slip = 0.0f;
1002
1003 if( fabsf(vel[2]) > 0.01f )
1004 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
1005
1006 if( fabsf( slip ) > 1.2f )
1007 slip = vg_signf( slip ) * 1.2f;
1008
1009 s->state.slip = slip;
1010 s->state.reverse = -vg_signf(vel[2]);
1011
1012 vel[0] += vg_cfrictf( vel[0], k_friction_lat * k_rb_delta );
1013 vel[2] += vg_cfrictf( vel[2], k_friction_resistance * k_rb_delta );
1014
1015 /* Pushing additive force */
1016
1017 if( !player->input_jump->button.value )
1018 {
1019 if( player->input_push->button.value )
1020 {
1021 if( (vg.time - s->state.cur_push) > 0.25 )
1022 s->state.start_push = vg.time;
1023
1024 s->state.cur_push = vg.time;
1025
1026 double push_time = vg.time - s->state.start_push;
1027
1028 float cycle_time = push_time*k_push_cycle_rate,
1029 accel = k_push_accel * (sinf(cycle_time)*0.5f+0.5f),
1030 amt = accel * VG_TIMESTEP_FIXED,
1031 current = v3_length( vel ),
1032 new_vel = vg_minf( current + amt, k_max_push_speed ),
1033 delta = new_vel - vg_minf( current, k_max_push_speed );
1034
1035 vel[2] += delta * -s->state.reverse;
1036 }
1037 }
1038
1039 /* Send back to velocity */
1040 m3x3_mulv( player->rb.to_world, vel, player->rb.v );
1041 }
1042
1043 VG_STATIC void skate_apply_jump_model( player_instance *player )
1044 {
1045 struct player_skate *s = &player->_skate;
1046 int charging_jump_prev = s->state.charging_jump;
1047 s->state.charging_jump = player->input_jump->button.value;
1048
1049 /* Cannot charge this in air */
1050 if( s->state.activity == k_skate_activity_air )
1051 {
1052 s->state.charging_jump = 0;
1053 return;
1054 }
1055
1056 if( s->state.charging_jump )
1057 {
1058 s->state.jump_charge += k_rb_delta * k_jump_charge_speed;
1059
1060 if( !charging_jump_prev )
1061 s->state.jump_dir = s->state.reverse>0.0f? 1: 0;
1062 }
1063 else
1064 {
1065 s->state.jump_charge -= k_jump_charge_speed * k_rb_delta;
1066 }
1067
1068 s->state.jump_charge = vg_clampf( s->state.jump_charge, 0.0f, 1.0f );
1069
1070 /* player let go after charging past 0.2: trigger jump */
1071 if( (!s->state.charging_jump) && (s->state.jump_charge > 0.2f) )
1072 {
1073 v3f jumpdir;
1074
1075 /* Launch more up if alignment is up else improve velocity */
1076 float aup = v3_dot( (v3f){0.0f,1.0f,0.0f}, player->rb.to_world[1] ),
1077 mod = 0.5f,
1078 dir = mod + fabsf(aup)*(1.0f-mod);
1079
1080 v3_copy( player->rb.v, jumpdir );
1081 v3_normalize( jumpdir );
1082 v3_muls( jumpdir, 1.0f-dir, jumpdir );
1083 v3_muladds( jumpdir, player->rb.to_world[1], dir, jumpdir );
1084 v3_normalize( jumpdir );
1085
1086 float force = k_jump_force*s->state.jump_charge;
1087 v3_muladds( player->rb.v, jumpdir, force, player->rb.v );
1088 s->state.jump_charge = 0.0f;
1089 s->state.jump_time = vg.time;
1090 s->state.activity = k_skate_activity_air;
1091
1092 v2f steer = { player->input_js1h->axis.value,
1093 player->input_js1v->axis.value };
1094 v2_normalize_clamp( steer );
1095
1096
1097 #if 0
1098 float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
1099 s->state.steery_s = -steer[0] * maxspin;
1100 s->state.steerx = s->state.steerx_s;
1101 s->state.lift_frames ++;
1102 #endif
1103
1104 /* FIXME audio events */
1105 #if 0
1106 audio_lock();
1107 audio_player_set_flags( &audio_player_extra, AUDIO_FLAG_SPACIAL_3D );
1108 audio_player_set_position( &audio_player_extra, player.rb.co );
1109 audio_player_set_vol( &audio_player_extra, 20.0f );
1110 audio_player_playclip( &audio_player_extra, &audio_jumps[rand()%2] );
1111 audio_unlock();
1112 #endif
1113 }
1114 }
1115
1116 VG_STATIC void skate_apply_pump_model( player_instance *player )
1117 {
1118 struct player_skate *s = &player->_skate;
1119
1120 /* Throw / collect routine
1121 *
1122 * TODO: Max speed boost
1123 */
1124 if( player->input_grab->axis.value > 0.5f )
1125 {
1126 if( s->state.activity == k_skate_activity_ground )
1127 {
1128 /* Throw */
1129 v3_muls( player->rb.to_world[1], k_mmthrow_scale, s->state.throw_v );
1130 }
1131 }
1132 else
1133 {
1134 /* Collect */
1135 float doty = v3_dot( player->rb.to_world[1], s->state.throw_v );
1136
1137 v3f Fl, Fv;
1138 v3_muladds( s->state.throw_v, player->rb.to_world[1], -doty, Fl);
1139
1140 if( s->state.activity == k_skate_activity_ground )
1141 {
1142 v3_muladds( player->rb.v, Fl, k_mmcollect_lat, player->rb.v );
1143 v3_muladds( s->state.throw_v, Fl, -k_mmcollect_lat, s->state.throw_v );
1144 }
1145
1146 v3_muls( player->rb.to_world[1], -doty, Fv );
1147 v3_muladds( player->rb.v, Fv, k_mmcollect_vert, player->rb.v );
1148 v3_muladds( s->state.throw_v, Fv, k_mmcollect_vert, s->state.throw_v );
1149 }
1150
1151 /* Decay */
1152 if( v3_length2( s->state.throw_v ) > 0.0001f )
1153 {
1154 v3f dir;
1155 v3_copy( s->state.throw_v, dir );
1156 v3_normalize( dir );
1157
1158 float max = v3_dot( dir, s->state.throw_v ),
1159 amt = vg_minf( k_mmdecay * k_rb_delta, max );
1160 v3_muladds( s->state.throw_v, dir, -amt, s->state.throw_v );
1161 }
1162 }
1163
1164 VG_STATIC void skate_apply_cog_model( player_instance *player )
1165 {
1166 struct player_skate *s = &player->_skate;
1167
1168 v3f ideal_cog, ideal_diff, ideal_dir;
1169 v3_copy( s->state.up_dir, ideal_dir );
1170 v3_normalize( ideal_dir );
1171
1172 v3_muladds( player->rb.co, ideal_dir,
1173 1.0f-player->input_grab->axis.value, ideal_cog );
1174 v3_sub( ideal_cog, s->state.cog, ideal_diff );
1175
1176 /* Apply velocities */
1177 v3f rv;
1178 v3_sub( player->rb.v, s->state.cog_v, rv );
1179
1180 v3f F;
1181 v3_muls( ideal_diff, -k_cog_spring * k_rb_rate, F );
1182 v3_muladds( F, rv, -k_cog_damp * k_rb_rate, F );
1183
1184 float ra = k_cog_mass_ratio,
1185 rb = 1.0f-k_cog_mass_ratio;
1186
1187 /* Apply forces & intergrate */
1188 v3_muladds( s->state.cog_v, F, -rb, s->state.cog_v );
1189 s->state.cog_v[1] += -9.8f * k_rb_delta;
1190 v3_muladds( s->state.cog, s->state.cog_v, k_rb_delta, s->state.cog );
1191 }
1192
1193
1194 VG_STATIC void skate_integrate( player_instance *player )
1195 {
1196 struct player_skate *s = &player->_skate;
1197
1198 float decay_rate = 1.0f - (k_rb_delta * 3.0f),
1199 decay_rate_y = 1.0f;
1200
1201 if( s->state.activity >= k_skate_activity_grind_any )
1202 {
1203 decay_rate = 1.0f-vg_lerpf( 3.0f, 20.0f, s->grind_strength ) * k_rb_delta;
1204 decay_rate_y = decay_rate;
1205 }
1206
1207 float wx = v3_dot( player->rb.w, player->rb.to_world[0] ) * decay_rate,
1208 wy = v3_dot( player->rb.w, player->rb.to_world[1] ) * decay_rate_y,
1209 wz = v3_dot( player->rb.w, player->rb.to_world[2] ) * decay_rate;
1210
1211 v3_muls( player->rb.to_world[0], wx, player->rb.w );
1212 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
1213 v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
1214
1215 s->state.flip_time += s->state.flip_rate * k_rb_delta;
1216 rb_update_transform( &player->rb );
1217 }
1218
1219 /*
1220 * 1 2 or 3
1221 */
1222
1223 VG_STATIC int player_skate_trick_input( player_instance *player )
1224 {
1225 return (player->input_trick0->button.value) |
1226 (player->input_trick1->button.value << 1) |
1227 (player->input_trick2->button.value << 1) |
1228 (player->input_trick2->button.value);
1229 }
1230
1231 VG_STATIC void player__skate_pre_update( player_instance *player )
1232 {
1233 struct player_skate *s = &player->_skate;
1234
1235 if( vg_input_button_down( player->input_use ) )
1236 {
1237 player->subsystem = k_player_subsystem_walk;
1238
1239 v3f angles;
1240 v3_copy( player->cam.angles, angles );
1241 angles[2] = 0.0f;
1242
1243 player__walk_transition( player, angles );
1244 return;
1245 }
1246
1247 if( vg_input_button_down( player->input_reset ) )
1248 {
1249 player->rb.co[1] += 2.0f;
1250 s->state.cog[1] += 2.0f;
1251 q_axis_angle( player->rb.q, (v3f){1.0f,0.0f,0.0f}, VG_PIf * 0.25f );
1252 v3_zero( player->rb.w );
1253 v3_zero( player->rb.v );
1254
1255 rb_update_transform( &player->rb );
1256 }
1257
1258 int trick_id;
1259 if( (s->state.activity == k_skate_activity_air) &&
1260 (trick_id = player_skate_trick_input( player )) )
1261 {
1262 if( (vg.time - s->state.jump_time) < 0.1f )
1263 {
1264 v3_zero( s->state.trick_vel );
1265 s->state.trick_time = 0.0f;
1266
1267 if( trick_id == 1 )
1268 {
1269 s->state.trick_vel[0] = 3.0f;
1270 }
1271 else if( trick_id == 2 )
1272 {
1273 s->state.trick_vel[2] = 3.0f;
1274 }
1275 else if( trick_id == 3 )
1276 {
1277 s->state.trick_vel[0] = 2.0f;
1278 s->state.trick_vel[2] = 2.0f;
1279 }
1280 }
1281 }
1282 }
1283
1284 VG_STATIC void player__skate_post_update( player_instance *player )
1285 {
1286 struct player_skate *s = &player->_skate;
1287
1288 for( int i=0; i<s->prediction_count; i++ )
1289 {
1290 struct land_prediction *p = &s->predictions[i];
1291
1292 for( int j=0; j<p->log_length - 1; j ++ )
1293 {
1294 float brightness = p->score*p->score*p->score;
1295 v3f p1;
1296 v3_lerp( p->log[j], p->log[j+1], brightness, p1 );
1297 vg_line( p->log[j], p1, p->colour );
1298 }
1299
1300 vg_line_cross( p->log[p->log_length-1], p->colour, 0.25f );
1301
1302 v3f p1;
1303 v3_add( p->log[p->log_length-1], p->n, p1 );
1304 vg_line( p->log[p->log_length-1], p1, 0xffffffff );
1305
1306 vg_line_pt3( p->apex, 0.02f, 0xffffffff );
1307 }
1308
1309 #if 0
1310 vg_line_pt3( s->state.apex, 0.030f, 0xff0000ff );
1311 #endif
1312 }
1313
1314 /*
1315 * truck alignment model at ra(local)
1316 * returns 1 if valid surface:
1317 * surface_normal will be filled out with an averaged normal vector
1318 * axel_dir will be the direction from left to right wheels
1319 *
1320 * returns 0 if no good surface found
1321 */
1322 VG_STATIC
1323 int skate_compute_surface_alignment( player_instance *player,
1324 v3f ra, u32 colour,
1325 v3f surface_normal, v3f axel_dir )
1326 {
1327 struct player_skate *s = &player->_skate;
1328
1329 v3f truck, left, right;
1330 m4x3_mulv( player->rb.to_world, ra, truck );
1331 v3_muladds( truck, player->rb.to_world[0], -k_board_width, left );
1332 v3_muladds( truck, player->rb.to_world[0], k_board_width, right );
1333
1334 vg_line( left, right, colour );
1335
1336 v3_muladds( left, player->rb.to_world[1], 0.1f, left );
1337 v3_muladds( right, player->rb.to_world[1], 0.1f, right );
1338
1339 float k_max_truck_flex = VG_PIf * 0.25f;
1340
1341 ray_hit ray_l, ray_r;
1342 ray_l.dist = 0.2f;
1343 ray_r.dist = 0.2f;
1344
1345 v3f dir;
1346 v3_muls( player->rb.to_world[1], -1.0f, dir );
1347
1348 int res_l = ray_world( left, dir, &ray_l ),
1349 res_r = ray_world( right, dir, &ray_r );
1350
1351 /* ignore bad normals */
1352 if( res_l )
1353 if( v3_dot( ray_l.normal, player->rb.to_world[1] ) < 0.7071f )
1354 res_l = 0;
1355
1356 if( res_r )
1357 if( v3_dot( ray_r.normal, player->rb.to_world[1] ) < 0.7071f )
1358 res_r = 0;
1359
1360 v3f v0;
1361 v3f midpoint;
1362 v3f tangent_average;
1363 v3_muladds( truck, player->rb.to_world[1], -k_board_radius, midpoint );
1364 v3_zero( tangent_average );
1365
1366 if( res_l || res_r )
1367 {
1368 v3f p0, p1, t;
1369 v3_copy( midpoint, p0 );
1370 v3_copy( midpoint, p1 );
1371
1372 if( res_l )
1373 {
1374 v3_copy( ray_l.pos, p0 );
1375 v3_cross( ray_l.normal, player->rb.to_world[0], t );
1376 v3_add( t, tangent_average, tangent_average );
1377 }
1378 if( res_r )
1379 {
1380 v3_copy( ray_r.pos, p1 );
1381 v3_cross( ray_r.normal, player->rb.to_world[0], t );
1382 v3_add( t, tangent_average, tangent_average );
1383 }
1384
1385 v3_sub( p1, p0, v0 );
1386 v3_normalize( v0 );
1387 }
1388 else
1389 {
1390 /* fallback: use the closes point to the trucks */
1391 v3f closest;
1392 int idx = bh_closest_point( world.geo_bh, midpoint, closest, 0.1f );
1393
1394 if( idx != -1 )
1395 {
1396 u32 *tri = &world.scene_geo->arrindices[ idx * 3 ];
1397 v3f verts[3];
1398
1399 for( int j=0; j<3; j++ )
1400 v3_copy( world.scene_geo->arrvertices[ tri[j] ].co, verts[j] );
1401
1402 v3f vert0, vert1, n;
1403 v3_sub( verts[1], verts[0], vert0 );
1404 v3_sub( verts[2], verts[0], vert1 );
1405 v3_cross( vert0, vert1, n );
1406 v3_normalize( n );
1407
1408 if( v3_dot( n, player->rb.to_world[1] ) < 0.3f )
1409 return 0;
1410
1411 v3_cross( n, player->rb.to_world[2], v0 );
1412 v3_muladds( v0, player->rb.to_world[2],
1413 -v3_dot( player->rb.to_world[2], v0 ), v0 );
1414 v3_normalize( v0 );
1415
1416 v3f t;
1417 v3_cross( n, player->rb.to_world[0], t );
1418 v3_add( t, tangent_average, tangent_average );
1419 }
1420 else
1421 return 0;
1422 }
1423
1424 v3_muladds( truck, v0, k_board_width, right );
1425 v3_muladds( truck, v0, -k_board_width, left );
1426
1427 vg_line( left, right, VG__WHITE );
1428
1429 v3_normalize( tangent_average );
1430 v3_cross( v0, tangent_average, surface_normal );
1431 v3_copy( v0, axel_dir );
1432
1433 return 1;
1434 }
1435
1436 VG_STATIC void skate_weight_distribute( player_instance *player )
1437 {
1438 struct player_skate *s = &player->_skate;
1439 v3_zero( s->weight_distribution );
1440
1441 int reverse_dir = v3_dot( player->rb.to_world[2], player->rb.v ) < 0.0f?1:-1;
1442
1443 if( s->state.manual_direction == 0 )
1444 {
1445 if( (player->input_js1v->axis.value > 0.7f) &&
1446 (s->state.activity == k_skate_activity_ground) &&
1447 (s->state.jump_charge <= 0.01f) )
1448 s->state.manual_direction = reverse_dir;
1449 }
1450 else
1451 {
1452 if( player->input_js1v->axis.value < 0.1f )
1453 {
1454 s->state.manual_direction = 0;
1455 }
1456 else
1457 {
1458 if( reverse_dir != s->state.manual_direction )
1459 {
1460 #if 0
1461 player__dead_transition( player );
1462 #endif
1463 return;
1464 }
1465 }
1466 }
1467
1468 if( s->state.manual_direction )
1469 {
1470 float amt = vg_minf( player->input_js1v->axis.value * 8.0f, 1.0f );
1471 s->weight_distribution[2] = k_board_length * amt *
1472 (float)s->state.manual_direction;
1473 }
1474
1475 /* TODO: Fall back on land normal */
1476 /* TODO: Lerp weight distribution */
1477 /* TODO: Can start manual only if not charge jump */
1478 if( s->state.manual_direction )
1479 {
1480 v3f plane_z;
1481
1482 m3x3_mulv( player->rb.to_world, s->weight_distribution, plane_z );
1483 v3_negate( plane_z, plane_z );
1484
1485 v3_muladds( plane_z, s->surface_picture,
1486 -v3_dot( plane_z, s->surface_picture ), plane_z );
1487 v3_normalize( plane_z );
1488
1489 v3_muladds( plane_z, s->surface_picture, 0.3f, plane_z );
1490 v3_normalize( plane_z );
1491
1492 v3f p1;
1493 v3_muladds( player->rb.co, plane_z, 1.5f, p1 );
1494 vg_line( player->rb.co, p1, VG__GREEN );
1495
1496 v3f refdir;
1497 v3_muls( player->rb.to_world[2], -(float)s->state.manual_direction,
1498 refdir );
1499
1500 rb_effect_spring_target_vector( &player->rb, refdir, plane_z,
1501 k_manul_spring, k_manul_dampener,
1502 s->substep_delta );
1503 }
1504 }
1505
1506 VG_STATIC void skate_adjust_up_direction( player_instance *player )
1507 {
1508 struct player_skate *s = &player->_skate;
1509
1510 if( s->state.activity == k_skate_activity_ground )
1511 {
1512 v3f target;
1513 v3_copy( s->surface_picture, target );
1514
1515 target[1] += 2.0f * s->surface_picture[1];
1516 v3_normalize( target );
1517
1518 v3_lerp( s->state.up_dir, target,
1519 8.0f * s->substep_delta, s->state.up_dir );
1520 }
1521 else if( s->state.activity == k_skate_activity_air )
1522 {
1523 v3_lerp( s->state.up_dir, player->rb.to_world[1],
1524 8.0f * s->substep_delta, s->state.up_dir );
1525 }
1526 else
1527 {
1528 /* FIXME UNDEFINED! */
1529 vg_warn( "Undefined up target!\n" );
1530
1531 v3_lerp( s->state.up_dir, (v3f){0.0f,1.0f,0.0f},
1532 12.0f * s->substep_delta, s->state.up_dir );
1533 }
1534 }
1535
1536 VG_STATIC int skate_point_visible( v3f origin, v3f target )
1537 {
1538 v3f dir;
1539 v3_sub( target, origin, dir );
1540
1541 ray_hit ray;
1542 ray.dist = v3_length( dir );
1543 v3_muls( dir, 1.0f/ray.dist, dir );
1544 ray.dist -= 0.025f;
1545
1546 if( ray_world( origin, dir, &ray ) )
1547 return 0;
1548
1549 return 1;
1550 }
1551
1552 VG_STATIC void skate_grind_orient( struct grind_info *inf, m3x3f mtx )
1553 {
1554 /* TODO: Is N and Dir really orthogonal? */
1555 v3_copy( inf->dir, mtx[0] );
1556 v3_copy( inf->n, mtx[1] );
1557 v3_cross( mtx[0], mtx[1], mtx[2] );
1558 }
1559
1560 VG_STATIC void skate_grind_friction( player_instance *player,
1561 struct grind_info *inf, float strength )
1562 {
1563 v3f v2;
1564 v3_muladds( player->rb.to_world[2], inf->n,
1565 -v3_dot( player->rb.to_world[2], inf->n ), v2 );
1566
1567 float a = 1.0f-fabsf( v3_dot( v2, inf->dir ) ),
1568 dir = vg_signf( v3_dot( player->rb.v, inf->dir ) ),
1569 F = a * -dir * k_grind_max_friction;
1570
1571 v3_muladds( player->rb.v, inf->dir, F*k_rb_delta*strength, player->rb.v );
1572 }
1573
1574 VG_STATIC void skate_grind_decay( player_instance *player,
1575 struct grind_info *inf, float strength )
1576 {
1577 m3x3f mtx, mtx_inv;
1578 skate_grind_orient( inf, mtx );
1579 m3x3_transpose( mtx, mtx_inv );
1580
1581 v3f v_grind;
1582 m3x3_mulv( mtx_inv, player->rb.v, v_grind );
1583
1584 float decay = 1.0f - ( k_rb_delta * k_grind_decayxy * strength );
1585 v3_mul( v_grind, (v3f){ 1.0f, decay, decay }, v_grind );
1586 m3x3_mulv( mtx, v_grind, player->rb.v );
1587 }
1588
1589 VG_STATIC void skate_grind_truck_apply( player_instance *player,
1590 v3f grind_co, struct grind_info *inf,
1591 float strength )
1592 {
1593 struct player_skate *s = &player->_skate;
1594
1595 v3f delta;
1596 v3_sub( inf->co, grind_co, delta );
1597
1598 /* spring force */
1599 v3_muladds( player->rb.v, delta, k_spring_force*strength*k_rb_delta,
1600 player->rb.v );
1601
1602 skate_grind_decay( player, inf, strength );
1603 skate_grind_friction( player, inf, strength );
1604
1605 /* yeah yeah yeah yeah */
1606 v3f raw, axis;
1607 v3_sub( grind_co, player->rb.co, raw );
1608 v3_muladds( raw, inf->n, -v3_dot( inf->n, raw ), raw );
1609 v3_cross( raw, inf->n, axis );
1610 v3_normalize( axis );
1611
1612 /* orientation */
1613 m3x3f mtx;
1614 skate_grind_orient( inf, mtx );
1615 v3f target_fwd, fwd, up, target_up;
1616 m3x3_mulv( mtx, s->grind_vec, target_fwd );
1617 v3_copy( raw, fwd );
1618 v3_copy( player->rb.to_world[1], up );
1619 v3_copy( inf->n, target_up );
1620
1621 v3_muladds( target_fwd, inf->n, -v3_dot(inf->n,target_fwd), target_fwd );
1622 v3_muladds( fwd, inf->n, -v3_dot(inf->n,fwd), fwd );
1623
1624 v3_normalize( target_fwd );
1625 v3_normalize( fwd );
1626
1627 float way = player->input_js1v->axis.value *
1628 vg_signf( v3_dot( raw, player->rb.v ) );
1629
1630 v4f q;
1631 q_axis_angle( q, axis, VG_PIf*0.125f * way );
1632 q_mulv( q, target_up, target_up );
1633 q_mulv( q, target_fwd, target_fwd );
1634
1635 rb_effect_spring_target_vector( &player->rb, up, target_up,
1636 k_grind_spring,
1637 k_grind_dampener,
1638 k_rb_delta );
1639
1640 rb_effect_spring_target_vector( &player->rb, fwd, target_fwd,
1641 k_grind_spring*strength,
1642 k_grind_dampener*strength,
1643 k_rb_delta );
1644
1645 vg_line_arrow( player->rb.co, target_up, 1.0f, VG__GREEN );
1646 vg_line_arrow( player->rb.co, fwd, 0.8f, VG__RED );
1647 vg_line_arrow( player->rb.co, target_fwd, 1.0f, VG__YELOW );
1648
1649 s->grind_strength = strength;
1650
1651 /* Fake contact */
1652 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1653 m4x3_mulv( player->rb.to_local, grind_co, limit->ra );
1654 m3x3_mulv( player->rb.to_local, inf->n, limit->n );
1655 limit->p = 0.0f;
1656 }
1657
1658 VG_STATIC int skate_grind_truck_singular( player_instance *player, float sign )
1659 {
1660 struct player_skate *s = &player->_skate;
1661 struct grind_info inf;
1662
1663 v3f wheel_co = { 0.0f, 0.0f, sign * k_board_length },
1664 grind_co = { 0.0f, -k_board_radius, sign * k_board_length };
1665
1666 m4x3_mulv( player->rb.to_world, wheel_co, wheel_co );
1667 m4x3_mulv( player->rb.to_world, grind_co, grind_co );
1668
1669 /* Exit condition: lost grind tracking */
1670 if( !skate_grind_scansq( grind_co, player->rb.v, 0.3f, &inf ) )
1671 return 0;
1672
1673 /* Exit condition: cant see grind target directly */
1674 if( !skate_point_visible( wheel_co, inf.co ) )
1675 return 0;
1676
1677 /* Exit condition: minimum velocity not reached, but allow a bit of error */
1678 float dv = fabsf(v3_dot( player->rb.v, inf.dir )),
1679 minv = k_grind_axel_min_vel*0.8f;
1680
1681 if( dv < minv )
1682 return 0;
1683
1684 if( fabsf(v3_dot( inf.dir, s->grind_dir )) < k_grind_max_edge_angle )
1685 return 0;
1686
1687 v3_copy( inf.dir, s->grind_dir );
1688
1689 float t = vg_clampf( (dv-minv)/(k_grind_axel_min_vel-minv), 0.0f, 1.0f );
1690 skate_grind_truck_apply( player, grind_co, &inf, t );
1691 return 1;
1692 }
1693
1694 VG_STATIC int skate_truck_entry_condition( player_instance *player, float sign )
1695 {
1696 struct player_skate *s = &player->_skate;
1697 struct grind_info inf;
1698
1699 /* TODO: Trash compactor this */
1700 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1701
1702 v3f raw, wsp;
1703 m3x3_mulv( player->rb.to_world, ra, raw );
1704 v3_add( player->rb.co, raw, wsp );
1705
1706 if( skate_grind_scansq( wsp, player->rb.v, 0.3, &inf ) )
1707 {
1708 if( fabsf(v3_dot( player->rb.v, inf.dir )) < k_grind_axel_min_vel )
1709 return 0;
1710
1711 /* velocity should be at least 60% aligned */
1712 v3f pv, axis;
1713 v3_cross( inf.n, inf.dir, axis );
1714 v3_muladds( player->rb.v, inf.n, -v3_dot( player->rb.v, inf.n ), pv );
1715
1716 if( v3_length2( pv ) < 0.0001f )
1717 return 0;
1718 v3_normalize( pv );
1719
1720 if( fabsf(v3_dot( pv, inf.dir )) < k_grind_axel_max_angle )
1721 return 0;
1722
1723 /* check for vertical alignment */
1724 if( v3_dot( player->rb.to_world[1], inf.n ) < k_grind_axel_max_vangle )
1725 return 0;
1726
1727 /* TODO: new condition, opposite wheel MUST be in-air or close to it */
1728
1729 v3f local_co, local_dir, local_n;
1730 m4x3_mulv( player->rb.to_local, inf.co, local_co );
1731 m3x3_mulv( player->rb.to_local, inf.dir, local_dir );
1732 m3x3_mulv( player->rb.to_local, inf.n, local_n );
1733
1734 v2f delta = { local_co[0], local_co[2] - k_board_length*sign };
1735
1736 float truck_height = -(k_board_radius+0.03f);
1737
1738 v3f rv;
1739 v3_cross( player->rb.w, raw, rv );
1740 v3_add( player->rb.v, rv, rv );
1741
1742 if( (local_co[1] >= truck_height) &&
1743 (v2_length2( delta ) <= k_board_radius*k_board_radius) &&
1744 (v3_dot( rv, inf.n ) < 0.1f) )
1745 {
1746 m3x3f mtx;
1747 skate_grind_orient( &inf, mtx );
1748 m3x3_transpose( mtx, mtx );
1749 m3x3_mulv( mtx, raw, s->grind_vec );
1750 v3_normalize( s->grind_vec );
1751 v3_copy( inf.dir, s->grind_dir );
1752
1753 skate_grind_truck_apply( player, wsp, &inf, 1.0f );
1754 return 1;
1755 }
1756 }
1757
1758 return 0;
1759 }
1760
1761 VG_STATIC void skate_boardslide_apply( player_instance *player,
1762 struct grind_info *inf )
1763 {
1764 struct player_skate *s = &player->_skate;
1765
1766 v3f local_co, local_dir, local_n;
1767 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1768 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1769 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1770
1771 v3f intersection;
1772 v3_muladds( local_co, local_dir, local_co[0]/-local_dir[0],
1773 intersection );
1774 v3_copy( intersection, s->weight_distribution );
1775
1776 skate_grind_decay( player, inf, 0.1f );
1777 skate_grind_friction( player, inf, 0.25f );
1778
1779 /* direction alignment */
1780 v3f dir, perp;
1781 v3_cross( local_dir, local_n, perp );
1782 v3_muls( local_dir, vg_signf(local_dir[0]), dir );
1783 v3_muls( perp, vg_signf(perp[2]), perp );
1784
1785 m3x3_mulv( player->rb.to_world, dir, dir );
1786 m3x3_mulv( player->rb.to_world, perp, perp );
1787
1788 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1789 dir,
1790 k_grind_spring, k_grind_dampener,
1791 k_rb_delta );
1792
1793 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[2],
1794 perp,
1795 k_grind_spring, k_grind_dampener,
1796 k_rb_delta );
1797
1798 vg_line_arrow( player->rb.co, dir, 0.5f, VG__GREEN );
1799 vg_line_arrow( player->rb.co, perp, 0.5f, VG__BLUE );
1800 }
1801
1802 VG_STATIC int skate_boardslide_entry_condition( player_instance *player )
1803 {
1804 struct player_skate *s = &player->_skate;
1805
1806 struct grind_info inf;
1807 if( skate_grind_scansq( player->rb.co,
1808 player->rb.to_world[0], k_board_length,
1809 &inf ) )
1810 {
1811 v3f local_co, local_dir;
1812 m4x3_mulv( player->rb.to_local, inf.co, local_co );
1813 m3x3_mulv( player->rb.to_local, inf.dir, local_dir );
1814
1815 if( (fabsf(local_co[2]) <= k_board_length) && /* within wood area */
1816 (local_co[1] >= 0.0f) && /* at deck level */
1817 (fabsf(local_dir[0]) >= 0.5f) ) /* perpendicular to us */
1818 {
1819 if( fabsf(v3_dot( player->rb.v, inf.dir )) < k_grind_axel_min_vel )
1820 return 0;
1821
1822 v3_copy( inf.dir, s->grind_dir );
1823
1824 skate_boardslide_apply( player, &inf );
1825 return 1;
1826 }
1827 }
1828
1829 return 0;
1830 }
1831
1832 VG_STATIC int skate_boardslide_singular( player_instance *player )
1833 {
1834 struct player_skate *s = &player->_skate;
1835
1836 struct grind_info inf;
1837 if( !skate_grind_scansq( player->rb.co,
1838 player->rb.to_world[0], k_board_length,
1839 &inf ) )
1840 return 0;
1841
1842 /* Exit condition: cant see grind target directly */
1843 v3f vis;
1844 v3_muladds( player->rb.co, player->rb.to_world[1], 0.2f, vis );
1845 if( !skate_point_visible( vis, inf.co ) )
1846 return 0;
1847
1848 /* Exit condition: minimum velocity not reached, but allow a bit of error
1849 * TODO: trash compactor */
1850 float dv = fabsf(v3_dot( player->rb.v, inf.dir )),
1851 minv = k_grind_axel_min_vel*0.8f;
1852
1853 if( dv < minv )
1854 return 0;
1855
1856 if( fabsf(v3_dot( inf.dir, s->grind_dir )) < k_grind_max_edge_angle )
1857 return 0;
1858 v3_copy( inf.dir, s->grind_dir );
1859
1860 float t = vg_clampf( (dv-minv)/(k_grind_axel_min_vel-minv), 0.0f, 1.0f );
1861
1862 skate_boardslide_apply( player, &inf );
1863 return 1;
1864 }
1865
1866 VG_STATIC enum skate_activity skate_availible_grind( player_instance *player )
1867 {
1868 struct player_skate *s = &player->_skate;
1869
1870 if( s->state.activity == k_skate_activity_grind_boardslide )
1871 {
1872 int result = skate_boardslide_singular( player );
1873
1874 const enum skate_activity table[] =
1875 {
1876 k_skate_activity_undefined,
1877 k_skate_activity_grind_boardslide
1878 };
1879
1880 return table[ result ];
1881 }
1882 if( s->state.activity == k_skate_activity_grind_back50 )
1883 {
1884 int result = skate_grind_truck_singular( player, 1.0f ),
1885 front = 0;//skate_truck_entry_condition( player, -1.0f );
1886
1887 const enum skate_activity table[] =
1888 { /* result | front */
1889 k_skate_activity_undefined, /* 0 0 */
1890 k_skate_activity_grind_front50, /* 0 1 */
1891 k_skate_activity_grind_back50, /* 1 0 */
1892 k_skate_activity_grind_5050 /* 1 1 */
1893 };
1894
1895 return table[ result<<1 | front ];
1896 }
1897 else if( s->state.activity == k_skate_activity_grind_front50 )
1898 {
1899 int result = skate_grind_truck_singular( player, -1.0f ),
1900 back = 0;//skate_truck_entry_condition( player, 1.0f );
1901
1902 const enum skate_activity table[] =
1903 { /* result | back */
1904 k_skate_activity_undefined, /* 0 0 */
1905 k_skate_activity_grind_back50, /* 0 1 */
1906 k_skate_activity_grind_front50, /* 1 0 */
1907 k_skate_activity_grind_5050 /* 1 1 */
1908 };
1909
1910 return table[ result<<1 | back ];
1911 }
1912 else if( s->state.activity == k_skate_activity_grind_5050 )
1913 {
1914 /* FIXME */
1915 return k_skate_activity_grind_back50;
1916 }
1917 else
1918 {
1919 int slide = skate_boardslide_entry_condition( player );
1920
1921 if( slide )
1922 return k_skate_activity_grind_boardslide;
1923
1924 int front = skate_truck_entry_condition( player, -1.0f ),
1925 back = skate_truck_entry_condition( player, 1.0f );
1926
1927 const enum skate_activity table[] =
1928 { /* front | back */
1929 k_skate_activity_undefined, /* 0 0 */
1930 k_skate_activity_grind_back50, /* 0 1 */
1931 k_skate_activity_grind_front50, /* 1 0 */
1932 k_skate_activity_grind_5050 /* 1 1 */
1933 };
1934
1935 return table[ front<<1 | back ];
1936 }
1937
1938 return 0;
1939 }
1940
1941 VG_STATIC void player__skate_update( player_instance *player )
1942 {
1943 struct player_skate *s = &player->_skate;
1944 v3_copy( player->rb.co, s->state.prev_pos );
1945 s->state.activity_prev = s->state.activity;
1946
1947 struct board_collider
1948 {
1949 v3f pos;
1950 float radius;
1951
1952 int apply_angular;
1953 u32 colour;
1954
1955 enum board_collider_state
1956 {
1957 k_collider_state_default,
1958 k_collider_state_disabled,
1959 k_collider_state_colliding
1960 }
1961 state;
1962 }
1963 wheels[] =
1964 {
1965 {
1966 { 0.0f, 0.0f, -k_board_length },
1967 .radius = k_board_radius,
1968 .apply_angular = 1,
1969 .colour = VG__RED
1970 },
1971 {
1972 { 0.0f, 0.0f, k_board_length },
1973 .radius = k_board_radius,
1974 .apply_angular = 1,
1975 .colour = VG__GREEN
1976 },
1977 {
1978 { 0.0f, 0.2f, -k_board_length - k_board_end_radius },
1979 .radius = k_board_end_radius,
1980 .apply_angular = 0,
1981 .colour = VG__YELOW
1982 },
1983 {
1984 { 0.0f, 0.2f, k_board_length + k_board_end_radius },
1985 .radius = k_board_end_radius,
1986 .apply_angular = 0,
1987 .colour = VG__YELOW
1988 },
1989 };
1990
1991 const int k_wheel_count = 2;
1992
1993 s->substep = k_rb_delta;
1994 s->substep_delta = s->substep;
1995 s->limit_count = 0;
1996
1997 int substep_count = 0;
1998
1999 v3_zero( s->surface_picture );
2000
2001 for( int i=0; i<k_wheel_count; i++ )
2002 wheels[i].state = k_collider_state_default;
2003
2004 /* check if we can enter or continue grind */
2005 enum skate_activity grindable_activity = skate_availible_grind( player );
2006 if( grindable_activity != k_skate_activity_undefined )
2007 {
2008 s->state.activity = grindable_activity;
2009 goto grinding;
2010 }
2011
2012 int contact_count = 0;
2013 for( int i=0; i<2; i++ )
2014 {
2015 v3f normal, axel;
2016 if( skate_compute_surface_alignment( player, wheels[i].pos,
2017 wheels[i].colour, normal, axel ) )
2018 {
2019 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
2020 axel,
2021 k_board_spring, k_board_dampener,
2022 s->substep_delta );
2023
2024 v3_add( normal, s->surface_picture, s->surface_picture );
2025 contact_count ++;
2026 }
2027 }
2028
2029 if( contact_count )
2030 {
2031 s->state.activity = k_skate_activity_ground;
2032 v3_normalize( s->surface_picture );
2033
2034 skate_apply_friction_model( player );
2035 skate_weight_distribute( player );
2036 skate_apply_pump_model( player );
2037 }
2038 else
2039 {
2040 s->state.activity = k_skate_activity_air;
2041 skate_apply_air_model( player );
2042 }
2043
2044 grinding:;
2045
2046 if( s->state.activity == k_skate_activity_grind_back50 )
2047 wheels[1].state = k_collider_state_disabled;
2048 if( s->state.activity == k_skate_activity_grind_front50 )
2049 wheels[0].state = k_collider_state_disabled;
2050 if( s->state.activity == k_skate_activity_grind_5050 )
2051 {
2052 wheels[0].state = k_collider_state_disabled;
2053 wheels[1].state = k_collider_state_disabled;
2054 }
2055
2056 /* all activities */
2057 skate_apply_steering_model( player );
2058 skate_adjust_up_direction( player );
2059 skate_apply_cog_model( player );
2060 skate_apply_jump_model( player );
2061 skate_apply_grab_model( player );
2062 skate_apply_trick_model( player );
2063
2064
2065 begin_collision:;
2066
2067 /*
2068 * Phase 0: Continous collision detection
2069 * --------------------------------------------------------------------------
2070 */
2071
2072 v3f head_wp0, head_wp1, start_co;
2073 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp0 );
2074 v3_copy( player->rb.co, start_co );
2075
2076 /* calculate transform one step into future */
2077 v3f future_co;
2078 v4f future_q;
2079 v3_muladds( player->rb.co, player->rb.v, s->substep, future_co );
2080
2081 if( v3_length2( player->rb.w ) > 0.0f )
2082 {
2083 v4f rotation;
2084 v3f axis;
2085 v3_copy( player->rb.w, axis );
2086
2087 float mag = v3_length( axis );
2088 v3_divs( axis, mag, axis );
2089 q_axis_angle( rotation, axis, mag*s->substep );
2090 q_mul( rotation, player->rb.q, future_q );
2091 q_normalize( future_q );
2092 }
2093
2094 /* calculate the minimum time we can move */
2095 float max_time = s->substep;
2096
2097 for( int i=0; i<k_wheel_count; i++ )
2098 {
2099 if( wheels[i].state == k_collider_state_disabled )
2100 continue;
2101
2102 v3f current, future;
2103 q_mulv( future_q, wheels[i].pos, future );
2104 v3_add( future, future_co, future );
2105
2106 q_mulv( player->rb.q, wheels[i].pos, current );
2107 v3_add( current, player->rb.co, current );
2108
2109 float t;
2110 v3f n;
2111
2112 float cast_radius = wheels[i].radius - k_penetration_slop * 2.0f;
2113 if( spherecast_world( current, future, cast_radius, &t, n ) != -1)
2114 max_time = vg_minf( max_time, t * s->substep );
2115 }
2116
2117 /* clamp to a fraction of delta, to prevent locking */
2118 float rate_lock = substep_count;
2119 rate_lock *= k_rb_delta * 0.1f;
2120 rate_lock *= rate_lock;
2121
2122 max_time = vg_maxf( max_time, rate_lock );
2123 s->substep_delta = max_time;
2124
2125 /* integrate */
2126 v3_muladds( player->rb.co, player->rb.v, s->substep_delta, player->rb.co );
2127 if( v3_length2( player->rb.w ) > 0.0f )
2128 {
2129 v4f rotation;
2130 v3f axis;
2131 v3_copy( player->rb.w, axis );
2132
2133 float mag = v3_length( axis );
2134 v3_divs( axis, mag, axis );
2135 q_axis_angle( rotation, axis, mag*s->substep_delta );
2136 q_mul( rotation, player->rb.q, player->rb.q );
2137 }
2138
2139 rb_update_transform( &player->rb );
2140 player->rb.v[1] += -k_gravity * s->substep_delta;
2141
2142 s->substep -= s->substep_delta;
2143
2144 rb_ct manifold[128];
2145 int manifold_len = 0;
2146
2147 /*
2148 * Phase -1: head detection
2149 * --------------------------------------------------------------------------
2150 */
2151 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp1 );
2152
2153 float t;
2154 v3f n;
2155 if( (v3_dist2( head_wp0, head_wp1 ) > 0.001f) &&
2156 (spherecast_world( head_wp0, head_wp1, 0.2f, &t, n ) != -1) )
2157 {
2158 v3_lerp( start_co, player->rb.co, t, player->rb.co );
2159 rb_update_transform( &player->rb );
2160
2161 player__dead_transition( player );
2162 return;
2163 }
2164
2165 /*
2166 * Phase 1: Regular collision detection
2167 * TODO: Me might want to automatically add contacts from CCD,
2168 * since at high angular velocities, theres a small change
2169 * that discreet detection will miss.
2170 * --------------------------------------------------------------------------
2171 */
2172
2173 for( int i=0; i<k_wheel_count; i++ )
2174 {
2175 if( wheels[i].state == k_collider_state_disabled )
2176 continue;
2177
2178 m4x3f mtx;
2179 m3x3_identity( mtx );
2180 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2181
2182 rb_sphere collider = { .radius = wheels[i].radius };
2183
2184 rb_ct *man = &manifold[ manifold_len ];
2185
2186 int l = skate_collide_smooth( player, mtx, &collider, man );
2187 if( l )
2188 wheels[i].state = k_collider_state_colliding;
2189
2190 /* for non-angular contacts we just want Y. contact positions are
2191 * snapped to the local xz plane */
2192 if( !wheels[i].apply_angular )
2193 {
2194 for( int j=0; j<l; j++ )
2195 {
2196 v3f ra;
2197 v3_sub( man[j].co, player->rb.co, ra );
2198
2199 float dy = v3_dot( player->rb.to_world[1], ra );
2200 v3_muladds( man[j].co, player->rb.to_world[1], -dy, man[j].co );
2201 }
2202 }
2203
2204 manifold_len += l;
2205 }
2206
2207 float grind_radius = k_board_radius * 0.75f;
2208 rb_capsule capsule = { .height = (k_board_length+0.2f)*2.0f,
2209 .radius=grind_radius };
2210 m4x3f mtx;
2211 v3_muls( player->rb.to_world[0], 1.0f, mtx[0] );
2212 v3_muls( player->rb.to_world[2], -1.0f, mtx[1] );
2213 v3_muls( player->rb.to_world[1], 1.0f, mtx[2] );
2214 v3_muladds( player->rb.to_world[3], player->rb.to_world[1],
2215 grind_radius + k_board_radius*0.25f, mtx[3] );
2216
2217 rb_ct *cman = &manifold[manifold_len];
2218
2219 int l = rb_capsule__scene( mtx, &capsule, NULL, &world.rb_geo.inf.scene,
2220 cman );
2221
2222 /* weld joints */
2223 for( int i=0; i<l; i ++ )
2224 cman[l].type = k_contact_type_edge;
2225 rb_manifold_filter_joint_edges( cman, l, 0.03f );
2226 l = rb_manifold_apply_filtered( cman, l );
2227
2228 manifold_len += l;
2229
2230 debug_capsule( mtx, capsule.radius, capsule.height, VG__WHITE );
2231
2232 /* add limits */
2233 for( int i=0; i<s->limit_count; i++ )
2234 {
2235 struct grind_limit *limit = &s->limits[i];
2236 rb_ct *ct = &manifold[ manifold_len ++ ];
2237 m4x3_mulv( player->rb.to_world, limit->ra, ct->co );
2238 m3x3_mulv( player->rb.to_world, limit->n, ct->n );
2239 ct->p = limit->p;
2240 ct->type = k_contact_type_default;
2241 }
2242
2243 /*
2244 * Phase 3: Dynamics
2245 * --------------------------------------------------------------------------
2246 */
2247
2248 for( int i=0; i<manifold_len; i ++ )
2249 {
2250 rb_prepare_contact( &manifold[i], s->substep_delta );
2251 rb_debug_contact( &manifold[i] );
2252 }
2253
2254 /* yes, we are currently rebuilding mass matrices every frame. too bad! */
2255 v3f extent = { k_board_width, 0.1f, k_board_length };
2256 float ex2 = k_board_interia*extent[0]*extent[0],
2257 ey2 = k_board_interia*extent[1]*extent[1],
2258 ez2 = k_board_interia*extent[2]*extent[2];
2259
2260 float mass = 2.0f * (extent[0]*extent[1]*extent[2]);
2261 float inv_mass = 1.0f/mass;
2262
2263 v3f I;
2264 I[0] = ((1.0f/12.0f) * mass * (ey2+ez2));
2265 I[1] = ((1.0f/12.0f) * mass * (ex2+ez2));
2266 I[2] = ((1.0f/12.0f) * mass * (ex2+ey2));
2267
2268 m3x3f iI;
2269 m3x3_identity( iI );
2270 iI[0][0] = I[0];
2271 iI[1][1] = I[1];
2272 iI[2][2] = I[2];
2273 m3x3_inv( iI, iI );
2274
2275 m3x3f iIw;
2276 m3x3_mul( iI, player->rb.to_local, iIw );
2277 m3x3_mul( player->rb.to_world, iIw, iIw );
2278
2279 v3f world_cog;
2280 m4x3_mulv( player->rb.to_world, s->weight_distribution, world_cog );
2281 vg_line_pt3( world_cog, 0.02f, VG__BLACK );
2282
2283 for( int j=0; j<10; j++ )
2284 {
2285 for( int i=0; i<manifold_len; i++ )
2286 {
2287 /*
2288 * regular dance; calculate velocity & total mass, apply impulse.
2289 */
2290
2291 struct contact *ct = &manifold[i];
2292
2293 v3f rv, delta;
2294 v3_sub( ct->co, world_cog, delta );
2295 v3_cross( player->rb.w, delta, rv );
2296 v3_add( player->rb.v, rv, rv );
2297
2298 v3f raCn;
2299 v3_cross( delta, ct->n, raCn );
2300
2301 v3f raCnI, rbCnI;
2302 m3x3_mulv( iIw, raCn, raCnI );
2303
2304 float normal_mass = 1.0f / (inv_mass + v3_dot(raCn,raCnI)),
2305 vn = v3_dot( rv, ct->n ),
2306 lambda = normal_mass * ( -vn );
2307
2308 float temp = ct->norm_impulse;
2309 ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
2310 lambda = ct->norm_impulse - temp;
2311
2312 v3f impulse;
2313 v3_muls( ct->n, lambda, impulse );
2314
2315 v3_muladds( player->rb.v, impulse, inv_mass, player->rb.v );
2316 v3_cross( delta, impulse, impulse );
2317 m3x3_mulv( iIw, impulse, impulse );
2318 v3_add( impulse, player->rb.w, player->rb.w );
2319
2320 v3_cross( player->rb.w, delta, rv );
2321 v3_add( player->rb.v, rv, rv );
2322 vn = v3_dot( rv, ct->n );
2323 }
2324 }
2325
2326 v3f dt;
2327 rb_depenetrate( manifold, manifold_len, dt );
2328 v3_add( dt, player->rb.co, player->rb.co );
2329 rb_update_transform( &player->rb );
2330
2331 substep_count ++;
2332
2333 if( s->substep >= 0.0001f )
2334 goto begin_collision; /* again! */
2335
2336 /*
2337 * End of collision and dynamics routine
2338 * --------------------------------------------------------------------------
2339 */
2340
2341 for( int i=0; i<k_wheel_count; i++ )
2342 {
2343 m4x3f mtx;
2344 m3x3_copy( player->rb.to_world, mtx );
2345 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2346 debug_sphere( mtx, wheels[i].radius,
2347 (u32[]){ VG__WHITE, VG__BLACK,
2348 wheels[i].colour }[ wheels[i].state ]);
2349 }
2350
2351 skate_integrate( player );
2352 vg_line_pt3( s->state.cog, 0.02f, VG__WHITE );
2353
2354 teleport_gate *gate;
2355 if( (gate = world_intersect_gates( player->rb.co, s->state.prev_pos )) )
2356 {
2357 m4x3_mulv( gate->transport, player->rb.co, player->rb.co );
2358 m3x3_mulv( gate->transport, player->rb.v, player->rb.v );
2359 m4x3_mulv( gate->transport, s->state.cog, s->state.cog );
2360 m3x3_mulv( gate->transport, s->state.cog_v, s->state.cog_v );
2361 m3x3_mulv( gate->transport, s->state.throw_v, s->state.throw_v );
2362 m3x3_mulv( gate->transport, s->state.head_position,
2363 s->state.head_position );
2364
2365 v4f transport_rotation;
2366 m3x3_q( gate->transport, transport_rotation );
2367 q_mul( transport_rotation, player->rb.q, player->rb.q );
2368 rb_update_transform( &player->rb );
2369
2370 s->state_gate_storage = s->state;
2371 player__pass_gate( player, gate );
2372 }
2373 }
2374
2375 VG_STATIC void player__skate_im_gui( player_instance *player )
2376 {
2377 struct player_skate *s = &player->_skate;
2378
2379 /* FIXME: Compression */
2380 player__debugtext( 1, "V: %5.2f %5.2f %5.2f",player->rb.v[0],
2381 player->rb.v[1],
2382 player->rb.v[2] );
2383 player__debugtext( 1, "CO: %5.2f %5.2f %5.2f",player->rb.co[0],
2384 player->rb.co[1],
2385 player->rb.co[2] );
2386 player__debugtext( 1, "W: %5.2f %5.2f %5.2f",player->rb.w[0],
2387 player->rb.w[1],
2388 player->rb.w[2] );
2389
2390 const char *activity_txt[] =
2391 {
2392 "air",
2393 "ground",
2394 "undefined (INVALID)",
2395 "grind_any (INVALID)",
2396 "grind_boardslide",
2397 "grind_noseslide",
2398 "grind_tailslide",
2399 "grind_back50",
2400 "grind_front50",
2401 "grind_5050"
2402 };
2403
2404 player__debugtext( 1, "activity: %s", activity_txt[s->state.activity] );
2405 #if 0
2406 player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
2407 s->state.steerx_s, s->state.steery_s,
2408 k_steer_ground, k_steer_air );
2409 #endif
2410 player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
2411 s->state.flip_time );
2412 player__debugtext( 1, "trickv: %.2f %.2f %.2f",
2413 s->state.trick_vel[0],
2414 s->state.trick_vel[1],
2415 s->state.trick_vel[2] );
2416 player__debugtext( 1, "tricke: %.2f %.2f %.2f",
2417 s->state.trick_euler[0],
2418 s->state.trick_euler[1],
2419 s->state.trick_euler[2] );
2420 }
2421
2422 VG_STATIC void player__skate_animate( player_instance *player,
2423 player_animation *dest )
2424 {
2425 struct player_skate *s = &player->_skate;
2426 struct player_avatar *av = player->playeravatar;
2427 struct skeleton *sk = &av->sk;
2428
2429 /* Head */
2430 float kheight = 2.0f,
2431 kleg = 0.6f;
2432
2433 v3f offset;
2434 v3_zero( offset );
2435
2436 v3f cog_local, cog_ideal;
2437 m4x3_mulv( player->rb.to_local, s->state.cog, cog_local );
2438
2439 v3_copy( s->state.up_dir, cog_ideal );
2440 v3_normalize( cog_ideal );
2441 m3x3_mulv( player->rb.to_local, cog_ideal, cog_ideal );
2442
2443 v3_sub( cog_ideal, cog_local, offset );
2444
2445
2446 v3_muls( offset, 4.0f, offset );
2447 offset[1] *= -1.0f;
2448
2449 float curspeed = v3_length( player->rb.v ),
2450 kickspeed = vg_clampf( curspeed*(1.0f/40.0f), 0.0f, 1.0f ),
2451 kicks = (vg_randf()-0.5f)*2.0f*kickspeed,
2452 sign = vg_signf( kicks );
2453
2454 s->wobble[0] = vg_lerpf( s->wobble[0], kicks*kicks*sign, 6.0f*vg.time_delta);
2455 s->wobble[1] = vg_lerpf( s->wobble[1], s->wobble[0], 2.4f*vg.time_delta);
2456
2457 offset[0] *= 0.26f;
2458 offset[0] += s->wobble[1]*3.0f;
2459
2460 offset[1] *= -0.3f;
2461 offset[2] *= 0.01f;
2462
2463 offset[0]=vg_clampf(offset[0],-0.8f,0.8f)*(1.0f-fabsf(s->blend_slide)*0.9f);
2464 offset[1]=vg_clampf(offset[1],-0.5f,0.0f);
2465
2466 /*
2467 * Animation blending
2468 * ===========================================
2469 */
2470
2471 /* sliding */
2472 {
2473 float desired = vg_clampf( fabsf( s->state.slip ), 0.0f, 1.0f );
2474 s->blend_slide = vg_lerpf( s->blend_slide, desired, 2.4f*vg.time_delta);
2475 }
2476
2477 /* movement information */
2478 {
2479 int iair = s->state.activity == k_skate_activity_air;
2480
2481 float dirz = s->state.reverse > 0.0f? 0.0f: 1.0f,
2482 dirx = s->state.slip < 0.0f? 0.0f: 1.0f,
2483 fly = iair? 1.0f: 0.0f;
2484
2485 s->blend_z = vg_lerpf( s->blend_z, dirz, 2.4f*vg.time_delta );
2486 s->blend_x = vg_lerpf( s->blend_x, dirx, 0.6f*vg.time_delta );
2487 s->blend_fly = vg_lerpf( s->blend_fly, fly, 2.4f*vg.time_delta );
2488 }
2489
2490 mdl_keyframe apose[32], bpose[32];
2491 mdl_keyframe ground_pose[32];
2492 {
2493 /* when the player is moving fast he will crouch down a little bit */
2494 float stand = 1.0f - vg_clampf( curspeed * 0.03f, 0.0f, 1.0f );
2495 s->blend_stand = vg_lerpf( s->blend_stand, stand, 6.0f*vg.time_delta );
2496
2497 /* stand/crouch */
2498 float dir_frame = s->blend_z * (15.0f/30.0f),
2499 stand_blend = offset[1]*-2.0f;
2500
2501 v3f local_cog;
2502 m4x3_mulv( player->rb.to_local, s->state.cog, local_cog );
2503
2504 stand_blend = vg_clampf( 1.0f-local_cog[1], 0, 1 );
2505
2506 skeleton_sample_anim( sk, s->anim_stand, dir_frame, apose );
2507 skeleton_sample_anim( sk, s->anim_highg, dir_frame, bpose );
2508 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
2509
2510 /* sliding */
2511 float slide_frame = s->blend_x * (15.0f/30.0f);
2512 skeleton_sample_anim( sk, s->anim_slide, slide_frame, bpose );
2513 skeleton_lerp_pose( sk, apose, bpose, s->blend_slide, apose );
2514
2515 /* pushing */
2516 double push_time = vg.time - s->state.start_push;
2517 s->blend_push = vg_lerpf( s->blend_push,
2518 (vg.time - s->state.cur_push) < 0.125,
2519 6.0f*vg.time_delta );
2520
2521 float pt = push_time + vg.accumulator;
2522 if( s->state.reverse > 0.0f )
2523 skeleton_sample_anim( sk, s->anim_push, pt, bpose );
2524 else
2525 skeleton_sample_anim( sk, s->anim_push_reverse, pt, bpose );
2526
2527 skeleton_lerp_pose( sk, apose, bpose, s->blend_push, apose );
2528
2529 /* trick setup */
2530 float jump_start_frame = 14.0f/30.0f;
2531
2532 float charge = s->state.jump_charge;
2533 s->blend_jump = vg_lerpf( s->blend_jump, charge, 8.4f*vg.time_delta );
2534
2535 float setup_frame = charge * jump_start_frame,
2536 setup_blend = vg_minf( s->blend_jump, 1.0f );
2537
2538 float jump_frame = (vg.time - s->state.jump_time) + jump_start_frame;
2539 if( jump_frame >= jump_start_frame && jump_frame <= (40.0f/30.0f) )
2540 setup_frame = jump_frame;
2541
2542 struct skeleton_anim *jump_anim = s->state.jump_dir?
2543 s->anim_ollie:
2544 s->anim_ollie_reverse;
2545
2546 skeleton_sample_anim_clamped( sk, jump_anim, setup_frame, bpose );
2547 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
2548 }
2549
2550 mdl_keyframe air_pose[32];
2551 {
2552 float target = -player->input_js1h->axis.value;
2553 s->blend_airdir = vg_lerpf( s->blend_airdir, target, 2.4f*vg.time_delta );
2554
2555 float air_frame = (s->blend_airdir*0.5f+0.5f) * (15.0f/30.0f);
2556 skeleton_sample_anim( sk, s->anim_air, air_frame, apose );
2557
2558 static v2f grab_choice;
2559
2560 v2f grab_input = { player->input_js2h->axis.value,
2561 player->input_js2v->axis.value };
2562 v2_add( s->state.grab_mouse_delta, grab_input, grab_input );
2563 if( v2_length2( grab_input ) <= 0.001f )
2564 grab_input[0] = -1.0f;
2565 else
2566 v2_normalize_clamp( grab_input );
2567 v2_lerp( grab_choice, grab_input, 2.4f*vg.time_delta, grab_choice );
2568
2569 float ang = atan2f( grab_choice[0], grab_choice[1] ),
2570 ang_unit = (ang+VG_PIf) * (1.0f/VG_TAUf),
2571 grab_frame = ang_unit * (15.0f/30.0f);
2572
2573 skeleton_sample_anim( sk, s->anim_grabs, grab_frame, bpose );
2574 skeleton_lerp_pose( sk, apose, bpose, s->state.grabbing, air_pose );
2575 }
2576
2577 skeleton_lerp_pose( sk, ground_pose, air_pose, s->blend_fly, dest->pose );
2578
2579 float add_grab_mod = 1.0f - s->blend_fly;
2580
2581 /* additive effects */
2582 {
2583 u32 apply_to[] = { av->id_hip,
2584 av->id_ik_hand_l,
2585 av->id_ik_hand_r,
2586 av->id_ik_elbow_l,
2587 av->id_ik_elbow_r };
2588
2589 for( int i=0; i<vg_list_size(apply_to); i ++ )
2590 {
2591 dest->pose[apply_to[i]-1].co[0] += offset[0]*add_grab_mod;
2592 dest->pose[apply_to[i]-1].co[2] += offset[2]*add_grab_mod;
2593 }
2594
2595
2596
2597
2598 /* angle correction */
2599 if( v3_length2( s->state.up_dir ) > 0.001f )
2600 {
2601 v3f ndir;
2602 m3x3_mulv( player->rb.to_local, s->state.up_dir, ndir );
2603 v3_normalize( ndir );
2604
2605 v3f up = { 0.0f, 1.0f, 0.0f };
2606
2607 float a = v3_dot( ndir, up );
2608 a = acosf( vg_clampf( a, -1.0f, 1.0f ) );
2609
2610 v3f axis;
2611 v4f q;
2612
2613 v3_cross( up, ndir, axis );
2614 q_axis_angle( q, axis, a );
2615
2616 mdl_keyframe *kf_hip = &dest->pose[av->id_hip-1];
2617
2618 for( int i=0; i<vg_list_size(apply_to); i ++ )
2619 {
2620 mdl_keyframe *kf = &dest->pose[apply_to[i]-1];
2621
2622 v3f v0;
2623 v3_sub( kf->co, kf_hip->co, v0 );
2624 q_mulv( q, v0, v0 );
2625 v3_add( v0, kf_hip->co, kf->co );
2626
2627 q_mul( q, kf->q, kf->q );
2628 q_normalize( kf->q );
2629 }
2630
2631 v3f p1, p2;
2632 m3x3_mulv( player->rb.to_world, up, p1 );
2633 m3x3_mulv( player->rb.to_world, ndir, p2 );
2634
2635 vg_line_arrow( player->rb.co, p1, 0.25f, VG__PINK );
2636 vg_line_arrow( player->rb.co, p2, 0.25f, VG__PINK );
2637 }
2638
2639
2640
2641 mdl_keyframe *kf_board = &dest->pose[av->id_board-1],
2642 *kf_foot_l = &dest->pose[av->id_ik_foot_l-1],
2643 *kf_foot_r = &dest->pose[av->id_ik_foot_r-1];
2644
2645
2646 v4f qtotal;
2647 v4f qtrickr, qyawr, qpitchr, qrollr;
2648 v3f eulerr;
2649
2650
2651 v3_muls( s->board_trick_residuald, VG_TAUf, eulerr );
2652
2653 q_axis_angle( qyawr, (v3f){0.0f,1.0f,0.0f}, eulerr[0] * 0.5f );
2654 q_axis_angle( qpitchr, (v3f){1.0f,0.0f,0.0f}, eulerr[1] );
2655 q_axis_angle( qrollr, (v3f){0.0f,0.0f,1.0f}, eulerr[2] );
2656
2657 q_mul( qpitchr, qrollr, qtrickr );
2658 q_mul( qyawr, qtrickr, qtotal );
2659 q_normalize( qtotal );
2660
2661 q_mul( qtotal, kf_board->q, kf_board->q );
2662
2663
2664 /* trick rotation */
2665 v4f qtrick, qyaw, qpitch, qroll;
2666 v3f euler;
2667 v3_muls( s->state.trick_euler, VG_TAUf, euler );
2668
2669 q_axis_angle( qyaw, (v3f){0.0f,1.0f,0.0f}, euler[0] * 0.5f );
2670 q_axis_angle( qpitch, (v3f){1.0f,0.0f,0.0f}, euler[1] );
2671 q_axis_angle( qroll, (v3f){0.0f,0.0f,1.0f}, euler[2] );
2672
2673 q_mul( qpitch, qroll, qtrick );
2674 q_mul( qyaw, qtrick, qtrick );
2675 q_mul( kf_board->q, qtrick, kf_board->q );
2676 q_normalize( kf_board->q );
2677 }
2678
2679 /* transform */
2680 rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
2681 v3_muladds( dest->root_co, player->rb.to_world[1], -0.1f, dest->root_co );
2682
2683 float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
2684 #if 0
2685 v4f qresy, qresx, qresidual;
2686 m3x3f mtx_residual;
2687 q_axis_angle( qresy, player->rb.to_world[1], s->state.steery_s*substep );
2688 q_axis_angle( qresx, player->rb.to_world[0], s->state.steerx_s*substep );
2689
2690 q_mul( qresy, qresx, qresidual );
2691 q_normalize( qresidual );
2692 q_mul( dest->root_q, qresidual, dest->root_q );
2693 q_normalize( dest->root_q );
2694 #endif
2695
2696 v4f qflip;
2697 if( (s->state.activity == k_skate_activity_air) &&
2698 (fabsf(s->state.flip_rate) > 0.01f) )
2699 {
2700 float t = s->state.flip_time + s->state.flip_rate*substep*k_rb_delta,
2701 angle = vg_clampf( t, -1.0f, 1.0f ) * VG_TAUf,
2702 distm = s->land_dist * fabsf(s->state.flip_rate) * 3.0f,
2703 blend = vg_clampf( 1.0f-distm, 0.0f, 1.0f );
2704
2705 angle = vg_lerpf( angle, vg_signf(s->state.flip_rate) * VG_TAUf, blend );
2706
2707 q_axis_angle( qflip, s->state.flip_axis, angle );
2708 q_mul( qflip, dest->root_q, dest->root_q );
2709 q_normalize( dest->root_q );
2710
2711 v3f rotation_point, rco;
2712 v3_muladds( player->rb.co, player->rb.to_world[1], 0.5f, rotation_point );
2713 v3_sub( dest->root_co, rotation_point, rco );
2714
2715 q_mulv( qflip, rco, rco );
2716 v3_add( rco, rotation_point, dest->root_co );
2717 }
2718 }
2719
2720 VG_STATIC void player__skate_post_animate( player_instance *player )
2721 {
2722 struct player_skate *s = &player->_skate;
2723 struct player_avatar *av = player->playeravatar;
2724
2725 player->cam_velocity_influence = 1.0f;
2726
2727 v3f head = { 0.0f, 1.8f, 0.0f }; /* FIXME: Viewpoint entity */
2728 m4x3_mulv( av->sk.final_mtx[ av->id_head ], head, s->state.head_position );
2729 m4x3_mulv( player->rb.to_local, s->state.head_position,
2730 s->state.head_position );
2731 }
2732
2733 VG_STATIC void player__skate_reset_animator( player_instance *player )
2734 {
2735 struct player_skate *s = &player->_skate;
2736
2737 if( s->state.activity == k_skate_activity_air )
2738 s->blend_fly = 1.0f;
2739 else
2740 s->blend_fly = 0.0f;
2741
2742 s->blend_slide = 0.0f;
2743 s->blend_z = 0.0f;
2744 s->blend_x = 0.0f;
2745 s->blend_stand = 0.0f;
2746 s->blend_push = 0.0f;
2747 s->blend_jump = 0.0f;
2748 s->blend_airdir = 0.0f;
2749 }
2750
2751 VG_STATIC void player__skate_clear_mechanics( player_instance *player )
2752 {
2753 struct player_skate *s = &player->_skate;
2754 s->state.jump_charge = 0.0f;
2755 s->state.lift_frames = 0;
2756 s->state.flip_rate = 0.0f;
2757 #if 0
2758 s->state.steery = 0.0f;
2759 s->state.steerx = 0.0f;
2760 s->state.steery_s = 0.0f;
2761 s->state.steerx_s = 0.0f;
2762 #endif
2763 s->state.reverse = 0.0f;
2764 s->state.slip = 0.0f;
2765 v3_copy( player->rb.co, s->state.prev_pos );
2766
2767 #if 0
2768 m3x3_identity( s->state.velocity_bias );
2769 m3x3_identity( s->state.velocity_bias_pstep );
2770 #endif
2771
2772 v3_zero( s->state.throw_v );
2773 v3_zero( s->state.trick_vel );
2774 v3_zero( s->state.trick_euler );
2775 }
2776
2777 VG_STATIC void player__skate_reset( player_instance *player,
2778 struct respawn_point *rp )
2779 {
2780 struct player_skate *s = &player->_skate;
2781 v3_muladds( player->rb.co, player->rb.to_world[1], 1.0f, s->state.cog );
2782 v3_zero( player->rb.v );
2783 v3_zero( s->state.cog_v );
2784 v4_copy( rp->q, player->rb.q );
2785
2786 s->state.activity = k_skate_activity_air;
2787 s->state.activity_prev = k_skate_activity_air;
2788
2789 player__skate_clear_mechanics( player );
2790 player__skate_reset_animator( player );
2791
2792 v3_zero( s->state.head_position );
2793 s->state.head_position[1] = 1.8f;
2794 }
2795
2796 #endif /* PLAYER_SKATE_C */