run to skate animation
[carveJwlIkooP6JGAAIwe30JlM.git] / player_skate.c
1 #ifndef PLAYER_SKATE_C
2 #define PLAYER_SKATE_C
3
4 #include "player.h"
5
6 VG_STATIC void player__skate_bind( player_instance *player )
7 {
8 struct player_skate *s = &player->_skate;
9 struct player_avatar *av = player->playeravatar;
10 struct skeleton *sk = &av->sk;
11
12 rb_update_transform( &player->rb );
13 s->anim_stand = skeleton_get_anim( sk, "pose_stand" );
14 s->anim_highg = skeleton_get_anim( sk, "pose_highg" );
15 s->anim_air = skeleton_get_anim( sk, "pose_air" );
16 s->anim_slide = skeleton_get_anim( sk, "pose_slide" );
17 s->anim_push = skeleton_get_anim( sk, "push" );
18 s->anim_push_reverse = skeleton_get_anim( sk, "push_reverse" );
19 s->anim_ollie = skeleton_get_anim( sk, "ollie" );
20 s->anim_ollie_reverse = skeleton_get_anim( sk, "ollie_reverse" );
21 s->anim_grabs = skeleton_get_anim( sk, "grabs" );
22 }
23
24 /*
25 * Collision detection routines
26 *
27 *
28 */
29
30 /*
31 * Does collision detection on a sphere vs world, and applies some smoothing
32 * filters to the manifold afterwards
33 */
34 VG_STATIC int skate_collide_smooth( player_instance *player,
35 m4x3f mtx, rb_sphere *sphere,
36 rb_ct *man )
37 {
38 int len = 0;
39 len = rb_sphere__scene( mtx, sphere, NULL, &world.rb_geo.inf.scene, man );
40
41 for( int i=0; i<len; i++ )
42 {
43 man[i].rba = &player->rb;
44 man[i].rbb = NULL;
45 }
46
47 rb_manifold_filter_coplanar( man, len, 0.03f );
48
49 if( len > 1 )
50 {
51 rb_manifold_filter_backface( man, len );
52 rb_manifold_filter_joint_edges( man, len, 0.03f );
53 rb_manifold_filter_pairs( man, len, 0.03f );
54 }
55 int new_len = rb_manifold_apply_filtered( man, len );
56 if( len && !new_len )
57 len = 1;
58 else
59 len = new_len;
60
61 return len;
62 }
63
64 struct grind_info
65 {
66 v3f co, dir, n;
67 };
68
69 VG_STATIC int skate_grind_scansq( v3f pos, v3f dir, float r,
70 struct grind_info *inf )
71 {
72 v4f plane;
73 v3_copy( dir, plane );
74 v3_normalize( plane );
75 plane[3] = v3_dot( plane, pos );
76
77 boxf box;
78 v3_add( pos, (v3f){ r, r, r }, box[1] );
79 v3_sub( pos, (v3f){ r, r, r }, box[0] );
80
81 bh_iter it;
82 bh_iter_init( 0, &it );
83 int idx;
84
85 struct grind_sample
86 {
87 v2f co;
88 v2f normal;
89 v3f normal3,
90 centroid;
91 }
92 samples[48];
93 int sample_count = 0;
94
95 v2f support_min,
96 support_max;
97
98 v3f support_axis;
99 v3_cross( plane, (v3f){0.0f,1.0f,0.0f}, support_axis );
100 v3_normalize( support_axis );
101
102 while( bh_next( world.geo_bh, &it, box, &idx ) )
103 {
104 u32 *ptri = &world.scene_geo->arrindices[ idx*3 ];
105 v3f tri[3];
106
107 for( int j=0; j<3; j++ )
108 v3_copy( world.scene_geo->arrvertices[ptri[j]].co, tri[j] );
109
110 for( int j=0; j<3; j++ )
111 {
112 int i0 = j,
113 i1 = (j+1) % 3;
114
115 struct grind_sample *sample = &samples[ sample_count ];
116 v3f co;
117
118 if( plane_segment( plane, tri[i0], tri[i1], co ) )
119 {
120 v3f d;
121 v3_sub( co, pos, d );
122 if( v3_length2( d ) > r*r )
123 continue;
124
125 v3f va, vb, normal;
126 v3_sub( tri[1], tri[0], va );
127 v3_sub( tri[2], tri[0], vb );
128 v3_cross( va, vb, normal );
129
130 sample->normal[0] = v3_dot( support_axis, normal );
131 sample->normal[1] = normal[1];
132 sample->co[0] = v3_dot( support_axis, d );
133 sample->co[1] = d[1];
134
135 v3_copy( normal, sample->normal3 ); /* normalize later
136 if we want to us it */
137
138 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
139 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
140 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
141
142 v2_normalize( sample->normal );
143 sample_count ++;
144
145 if( sample_count == vg_list_size( samples ) )
146 goto too_many_samples;
147 }
148 }
149 }
150
151 too_many_samples:
152
153 if( sample_count < 2 )
154 return 0;
155
156 v3f
157 average_direction,
158 average_normal;
159
160 v2f min_co, max_co;
161 v2_fill( min_co, INFINITY );
162 v2_fill( max_co, -INFINITY );
163
164 v3_zero( average_direction );
165 v3_zero( average_normal );
166
167 int passed_samples = 0;
168
169 for( int i=0; i<sample_count-1; i++ )
170 {
171 struct grind_sample *si, *sj;
172
173 si = &samples[i];
174
175 for( int j=i+1; j<sample_count; j++ )
176 {
177 if( i == j )
178 continue;
179
180 sj = &samples[j];
181
182 /* non overlapping */
183 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
184 continue;
185
186 /* not sharp angle */
187 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
188 continue;
189
190 /* not convex */
191 v3f v0;
192 v3_sub( sj->centroid, si->centroid, v0 );
193 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
194 v3_dot( v0, sj->normal3 ) <= 0.0f )
195 continue;
196
197 v2_minv( sj->co, min_co, min_co );
198 v2_maxv( sj->co, max_co, max_co );
199
200 v3f n0, n1, dir;
201 v3_copy( si->normal3, n0 );
202 v3_copy( sj->normal3, n1 );
203 v3_cross( n0, n1, dir );
204 v3_normalize( dir );
205
206 /* make sure the directions all face a common hemisphere */
207 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
208 v3_add( average_direction, dir, average_direction );
209
210 if( si->normal3[1] > sj->normal3[1] )
211 v3_add( si->normal3, average_normal, average_normal );
212 else
213 v3_add( sj->normal3, average_normal, average_normal );
214
215 passed_samples ++;
216 }
217 }
218
219 if( !passed_samples )
220 return 0;
221
222 if( (v3_length2( average_direction ) <= 0.001f) ||
223 (v3_length2( average_normal ) <= 0.001f ) )
224 return 0;
225
226 float div = 1.0f/(float)passed_samples;
227 v3_normalize( average_direction );
228 v3_normalize( average_normal );
229
230 v2f average_coord;
231 v2_add( min_co, max_co, average_coord );
232 v2_muls( average_coord, 0.5f, average_coord );
233
234 v3_muls( support_axis, average_coord[0], inf->co );
235 inf->co[1] += average_coord[1];
236 v3_add( pos, inf->co, inf->co );
237 v3_copy( average_normal, inf->n );
238 v3_copy( average_direction, inf->dir );
239
240 vg_line_pt3( inf->co, 0.02f, VG__GREEN );
241 vg_line_arrow( inf->co, average_direction, 0.3f, VG__GREEN );
242 vg_line_arrow( inf->co, inf->n, 0.2f, VG__CYAN );
243
244 return passed_samples;
245 }
246
247 VG_STATIC int solve_prediction_for_target( player_instance *player,
248 v3f target, float max_angle,
249 struct land_prediction *p )
250 {
251 /* calculate the exact solution(s) to jump onto that grind spot */
252
253 v3f v0;
254 v3_sub( target, player->rb.co, v0 );
255
256 v3f ax;
257 v3_copy( v0, ax );
258 ax[1] = 0.0f;
259 v3_normalize( ax );
260
261 v2f d = { v3_dot( v0, ax ), v0[1] },
262 v = { v3_dot( player->rb.v, ax ), player->rb.v[1] };
263
264 float a = atan2f( v[1], v[0] ),
265 m = v2_length( v ),
266 root = m*m*m*m - k_gravity*(k_gravity*d[0]*d[0] + 2.0f*d[1]*m*m);
267
268 if( root > 0.0f )
269 {
270 root = sqrtf( root );
271 float a0 = atanf( (m*m + root) / (k_gravity * d[0]) ),
272 a1 = atanf( (m*m - root) / (k_gravity * d[0]) );
273
274 if( fabsf(a0-a) > fabsf(a1-a) )
275 a0 = a1;
276
277 if( fabsf(a0-a) > max_angle )
278 return 0;
279
280 /* TODO: sweep the path before chosing the smallest dist */
281
282 p->log_length = 0;
283 p->land_dist = 0.0f;
284 v3_zero( p->apex );
285 p->type = k_prediction_grind;
286
287 v3_muls( ax, cosf( a0 ) * m, p->v );
288 p->v[1] += sinf( a0 ) * m;
289 p->land_dist = d[0] / (cosf(a0)*m);
290
291 /* add a trace */
292 for( int i=0; i<=20; i++ )
293 {
294 float t = (float)i * (1.0f/20.0f) * p->land_dist;
295
296 v3f p0;
297 v3_muls( p->v, t, p0 );
298 p0[1] += -0.5f * k_gravity * t*t;
299
300 v3_add( player->rb.co, p0, p->log[ p->log_length ++ ] );
301 }
302
303 return 1;
304 }
305 else
306 return 0;
307 }
308
309 VG_STATIC
310 void player__approximate_best_trajectory( player_instance *player )
311 {
312 struct player_skate *s = &player->_skate;
313 float k_trace_delta = k_rb_delta * 10.0f;
314
315 s->state.air_start = vg.time;
316 v3_copy( player->rb.v, s->state.air_init_v );
317 v3_copy( player->rb.co, s->state.air_init_co );
318
319 s->prediction_count = 0;
320
321 v3f axis;
322 v3_cross( player->rb.v, player->rb.to_world[1], axis );
323 v3_normalize( axis );
324
325 /* at high slopes, Y component is low */
326 float angle_begin = -(1.0f-fabsf( player->rb.to_world[1][1] )),
327 angle_end = 1.0f;
328
329 struct grind_info grind;
330 int grind_located = 0;
331
332 for( int m=0;m<=15; m++ )
333 {
334 struct land_prediction *p = &s->predictions[ s->prediction_count ++ ];
335
336 p->log_length = 0;
337 p->land_dist = 0.0f;
338 v3_zero( p->apex );
339 p->type = k_prediction_none;
340
341 v3f launch_co, launch_v, co0, co1;
342 v3_copy( player->rb.co, launch_co );
343 v3_copy( player->rb.v, launch_v );
344 v3_copy( launch_co, co0 );
345
346 float vt = (float)m * (1.0f/15.0f),
347 ang = vg_lerpf( angle_begin, angle_end, vt ) * 0.15f;
348
349 v4f qbias;
350 q_axis_angle( qbias, axis, ang );
351 q_mulv( qbias, launch_v, launch_v );
352 v3_copy( launch_v, p->v );
353
354 for( int i=1; i<=50; i++ )
355 {
356 float t = (float)i * k_trace_delta;
357
358 v3_muls( launch_v, t, co1 );
359 co1[1] += -0.5f * k_gravity * t*t;
360 v3_add( launch_co, co1, co1 );
361
362 if( !grind_located && (launch_v[1] - k_gravity*t < 0.0f) )
363 {
364 v3f closest;
365 if( bh_closest_point( world.geo_bh, co1, closest, 1.0f ) != -1 )
366 {
367 v3f ve;
368 v3_copy( launch_v, ve );
369 ve[1] -= k_gravity * t;
370
371 if( skate_grind_scansq( closest, ve, 0.5f, &grind ) )
372 {
373 v2f v0 = { ve[0], ve[2] },
374 v1 = { grind.dir[0], grind.dir[2] };
375
376 v2_normalize( v0 );
377 v2_normalize( v1 );
378
379 float a = v2_dot( v0, v1 );
380
381 if( a >= cosf( VG_PIf * 0.125f ) )
382 {
383 grind_located = 1;
384 }
385 }
386 }
387 }
388
389 float t1;
390 v3f n;
391
392 int idx = spherecast_world( co0, co1, k_board_radius, &t1, n );
393 if( idx != -1 )
394 {
395 v3f co;
396 v3_lerp( co0, co1, t1, co );
397 v3_copy( co, p->log[ p->log_length ++ ] );
398
399 v3_copy( n, p->n );
400 p->type = k_prediction_land;
401
402 v3f ve;
403 v3_copy( launch_v, ve );
404 ve[1] -= k_gravity * t;
405
406 struct grind_info replace_grind;
407 if( skate_grind_scansq( co, ve, 0.3f, &replace_grind ) )
408 {
409 v3_copy( replace_grind.n, p->n );
410 p->type = k_prediction_grind;
411 }
412
413 p->score = -v3_dot( ve, p->n );
414 p->land_dist = t + k_trace_delta * t1;
415
416 u32 vert_index = world.scene_geo->arrindices[ idx*3 ];
417 struct world_material *mat = world_tri_index_material( vert_index );
418
419 /* Bias prediction towords ramps */
420 if( !(mat->info.flags & k_material_flag_skate_surface) )
421 p->score *= 10.0f;
422
423 break;
424 }
425
426 v3_copy( co1, p->log[ p->log_length ++ ] );
427 v3_copy( co1, co0 );
428 }
429
430 if( p->type == k_prediction_none )
431 s->prediction_count --;
432 }
433
434
435
436 if( grind_located )
437 {
438 /* calculate the exact solution(s) to jump onto that grind spot */
439 struct land_prediction *p = &s->predictions[ s->prediction_count ];
440
441 if( solve_prediction_for_target( player, grind.co, 0.125f*VG_PIf, p ) )
442 {
443 v3_copy( grind.n, p->n );
444
445 /* determine score */
446 v3f ve;
447 v3_copy( p->v, ve );
448 ve[1] -= k_gravity * p->land_dist;
449 p->score = -v3_dot( ve, grind.n ) * 0.85f;
450
451 s->prediction_count ++;
452 }
453 }
454
455
456 float score_min = INFINITY,
457 score_max = -INFINITY;
458
459 struct land_prediction *best = NULL;
460
461 for( int i=0; i<s->prediction_count; i ++ )
462 {
463 struct land_prediction *p = &s->predictions[i];
464
465 if( p->score < score_min )
466 best = p;
467
468 score_min = vg_minf( score_min, p->score );
469 score_max = vg_maxf( score_max, p->score );
470 }
471
472 for( int i=0; i<s->prediction_count; i ++ )
473 {
474 struct land_prediction *p = &s->predictions[i];
475 float s = p->score;
476
477 s -= score_min;
478 s /= (score_max-score_min);
479 s = 1.0f - s;
480
481 p->score = s;
482 p->colour = s * 255.0f;
483
484 if( p == best )
485 p->colour <<= 16;
486 else if( p->type == k_prediction_land )
487 p->colour <<= 8;
488
489 p->colour |= 0xff000000;
490 }
491
492 if( best )
493 {
494 v3_copy( best->n, s->land_normal );
495 v3_copy( best->v, player->rb.v );
496 s->land_dist = best->land_dist;
497
498 v2f steer = { player->input_js1h->axis.value,
499 player->input_js1v->axis.value };
500 v2_normalize_clamp( steer );
501
502 if( (fabsf(steer[1]) > 0.5f) && (s->land_dist >= 1.5f) )
503 {
504 s->state.flip_rate = (1.0f/s->land_dist) * vg_signf(steer[1]) *
505 s->state.reverse ;
506 s->state.flip_time = 0.0f;
507 v3_copy( player->rb.to_world[0], s->state.flip_axis );
508 }
509 else
510 {
511 s->state.flip_rate = 0.0f;
512 v3_zero( s->state.flip_axis );
513 }
514 }
515 else
516 {
517 v3_copy( (v3f){0.0f,1.0f,0.0f}, s->land_normal );
518 }
519 }
520
521 /*
522 *
523 * Varius physics models
524 * ------------------------------------------------
525 */
526
527 /*
528 * Air control, no real physics
529 */
530 VG_STATIC void skate_apply_air_model( player_instance *player )
531 {
532 struct player_skate *s = &player->_skate;
533
534 if( s->state.activity_prev != k_skate_activity_air )
535 player__approximate_best_trajectory( player );
536
537 float angle = v3_dot( player->rb.to_world[1], s->land_normal );
538 angle = vg_clampf( angle, -1.0f, 1.0f );
539 v3f axis;
540 v3_cross( player->rb.to_world[1], s->land_normal, axis );
541
542 v4f correction;
543 q_axis_angle( correction, axis,
544 acosf(angle)*2.0f*VG_TIMESTEP_FIXED );
545 q_mul( correction, player->rb.q, player->rb.q );
546
547 v2f steer = { player->input_js1h->axis.value,
548 player->input_js1v->axis.value };
549 v2_normalize_clamp( steer );
550 s->land_dist = 1.0f;
551 }
552
553 VG_STATIC int player_skate_trick_input( player_instance *player );
554 VG_STATIC void skate_apply_trick_model( player_instance *player )
555 {
556 struct player_skate *s = &player->_skate;
557
558 v3f Fd, Fs, F;
559 v3f strength = { 3.7f, 3.6f, 8.0f };
560
561 v3_muls( s->board_trick_residualv, -4.0f , Fd );
562 v3_muls( s->board_trick_residuald, -10.0f, Fs );
563 v3_add( Fd, Fs, F );
564 v3_mul( strength, F, F );
565
566 v3_muladds( s->board_trick_residualv, F, k_rb_delta,
567 s->board_trick_residualv );
568 v3_muladds( s->board_trick_residuald, s->board_trick_residualv,
569 k_rb_delta, s->board_trick_residuald );
570
571 if( s->state.activity == k_skate_activity_air )
572 {
573 if( v3_length2( s->state.trick_vel ) < 0.0001f )
574 return;
575
576 int carry_on = player_skate_trick_input( player );
577
578 /* we assume velocities share a common divisor, in which case the
579 * interval is the minimum value (if not zero) */
580
581 float min_rate = 99999.0f;
582
583 for( int i=0; i<3; i++ )
584 {
585 float v = s->state.trick_vel[i];
586 if( (v > 0.0f) && (v < min_rate) )
587 min_rate = v;
588 }
589
590 float interval = 1.0f / min_rate,
591 current = floorf( s->state.trick_time / interval ),
592 next_end = (current+1.0f) * interval;
593
594
595 /* integrate trick velocities */
596 v3_muladds( s->state.trick_euler, s->state.trick_vel, k_rb_delta,
597 s->state.trick_euler );
598
599 if( !carry_on && (s->state.trick_time + k_rb_delta >= next_end) )
600 {
601 s->state.trick_time = 0.0f;
602 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
603 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
604 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
605 v3_copy( s->state.trick_vel, s->board_trick_residualv );
606 v3_zero( s->state.trick_vel );
607 }
608
609 s->state.trick_time += k_rb_delta;
610 }
611 else
612 {
613 if( (v3_length2(s->state.trick_vel) >= 0.0001f ) &&
614 s->state.trick_time > 0.2f)
615 {
616 player__dead_transition( player );
617 }
618
619 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
620 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
621 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
622 s->state.trick_time = 0.0f;
623 v3_zero( s->state.trick_vel );
624 }
625 }
626
627 VG_STATIC void skate_apply_grab_model( player_instance *player )
628 {
629 struct player_skate *s = &player->_skate;
630
631 float grabt = player->input_grab->axis.value;
632
633 if( grabt > 0.5f )
634 {
635 v2_muladds( s->state.grab_mouse_delta, vg.mouse_delta, 0.02f,
636 s->state.grab_mouse_delta );
637
638 v2_normalize_clamp( s->state.grab_mouse_delta );
639 }
640 else
641 v2_zero( s->state.grab_mouse_delta );
642
643 s->state.grabbing = vg_lerpf( s->state.grabbing, grabt, 8.4f*k_rb_delta );
644 }
645
646 VG_STATIC void skate_apply_steering_model( player_instance *player )
647 {
648 struct player_skate *s = &player->_skate;
649
650 /* Steering */
651 float steer = player->input_js1h->axis.value,
652 grab = player->input_grab->axis.value;
653
654 steer = vg_signf( steer ) * steer*steer * k_steer_ground;
655
656 v3f steer_axis;
657 v3_muls( player->rb.to_world[1], -vg_signf( steer ), steer_axis );
658
659 float rate = 26.0f,
660 top = 1.0f;
661
662 if( s->state.activity == k_skate_activity_air )
663 {
664 rate = 6.0f * fabsf(steer);
665 top = 1.5f;
666 }
667 else
668 {
669 /* rotate slower when grabbing on ground */
670 steer *= (1.0f-(s->state.jump_charge+grab)*0.4f);
671
672 if( s->state.activity == k_skate_activity_grind_5050 )
673 {
674 rate = 0.0f;
675 top = 0.0f;
676 }
677
678 else if( s->state.activity >= k_skate_activity_grind_any )
679 {
680 rate *= fabsf(steer);
681
682 float a = 0.8f * -steer * k_rb_delta;
683
684 v4f q;
685 q_axis_angle( q, player->rb.to_world[1], a );
686 q_mulv( q, s->grind_vec, s->grind_vec );
687
688 v3_normalize( s->grind_vec );
689 }
690
691 else if( s->state.manual_direction )
692 {
693 rate = 35.0f;
694 top = 1.5f;
695 }
696 }
697
698 float current = v3_dot( player->rb.to_world[1], player->rb.w ),
699 addspeed = (steer * -top) - current,
700 maxaccel = rate * k_rb_delta,
701 accel = vg_clampf( addspeed, -maxaccel, maxaccel );
702
703 v3_muladds( player->rb.w, player->rb.to_world[1], accel, player->rb.w );
704 }
705
706 /*
707 * Computes friction and surface interface model
708 */
709 VG_STATIC void skate_apply_friction_model( player_instance *player )
710 {
711 struct player_skate *s = &player->_skate;
712
713 /*
714 * Computing localized friction forces for controlling the character
715 * Friction across X is significantly more than Z
716 */
717
718 v3f vel;
719 m3x3_mulv( player->rb.to_local, player->rb.v, vel );
720 float slip = 0.0f;
721
722 if( fabsf(vel[2]) > 0.01f )
723 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
724
725 if( fabsf( slip ) > 1.2f )
726 slip = vg_signf( slip ) * 1.2f;
727
728 s->state.slip = slip;
729 s->state.reverse = -vg_signf(vel[2]);
730
731 vel[0] += vg_cfrictf( vel[0], k_friction_lat * k_rb_delta );
732 vel[2] += vg_cfrictf( vel[2], k_friction_resistance * k_rb_delta );
733
734 /* Pushing additive force */
735
736 if( !player->input_jump->button.value )
737 {
738 if( player->input_push->button.value )
739 {
740 if( (vg.time - s->state.cur_push) > 0.25 )
741 s->state.start_push = vg.time;
742
743 s->state.cur_push = vg.time;
744
745 double push_time = vg.time - s->state.start_push;
746
747 float cycle_time = push_time*k_push_cycle_rate,
748 accel = k_push_accel * (sinf(cycle_time)*0.5f+0.5f),
749 amt = accel * VG_TIMESTEP_FIXED,
750 current = v3_length( vel ),
751 new_vel = vg_minf( current + amt, k_max_push_speed ),
752 delta = new_vel - vg_minf( current, k_max_push_speed );
753
754 vel[2] += delta * -s->state.reverse;
755 }
756 }
757
758 /* Send back to velocity */
759 m3x3_mulv( player->rb.to_world, vel, player->rb.v );
760 }
761
762 VG_STATIC void skate_apply_jump_model( player_instance *player )
763 {
764 struct player_skate *s = &player->_skate;
765 int charging_jump_prev = s->state.charging_jump;
766 s->state.charging_jump = player->input_jump->button.value;
767
768 /* Cannot charge this in air */
769 if( s->state.activity == k_skate_activity_air )
770 {
771 s->state.charging_jump = 0;
772 return;
773 }
774
775 if( s->state.charging_jump )
776 {
777 s->state.jump_charge += k_rb_delta * k_jump_charge_speed;
778
779 if( !charging_jump_prev )
780 s->state.jump_dir = s->state.reverse>0.0f? 1: 0;
781 }
782 else
783 {
784 s->state.jump_charge -= k_jump_charge_speed * k_rb_delta;
785 }
786
787 s->state.jump_charge = vg_clampf( s->state.jump_charge, 0.0f, 1.0f );
788
789 /* player let go after charging past 0.2: trigger jump */
790 if( (!s->state.charging_jump) && (s->state.jump_charge > 0.2f) )
791 {
792 v3f jumpdir;
793
794 /* Launch more up if alignment is up else improve velocity */
795 float aup = v3_dot( (v3f){0.0f,1.0f,0.0f}, player->rb.to_world[1] ),
796 mod = 0.5f,
797 dir = mod + fabsf(aup)*(1.0f-mod);
798
799 v3_copy( player->rb.v, jumpdir );
800 v3_normalize( jumpdir );
801 v3_muls( jumpdir, 1.0f-dir, jumpdir );
802 v3_muladds( jumpdir, player->rb.to_world[1], dir, jumpdir );
803 v3_normalize( jumpdir );
804
805 float force = k_jump_force*s->state.jump_charge;
806 v3_muladds( player->rb.v, jumpdir, force, player->rb.v );
807 s->state.jump_charge = 0.0f;
808 s->state.jump_time = vg.time;
809 s->state.activity = k_skate_activity_air;
810
811 v2f steer = { player->input_js1h->axis.value,
812 player->input_js1v->axis.value };
813 v2_normalize_clamp( steer );
814
815
816 #if 0
817 float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
818 s->state.steery_s = -steer[0] * maxspin;
819 s->state.steerx = s->state.steerx_s;
820 s->state.lift_frames ++;
821 #endif
822
823 /* FIXME audio events */
824 #if 0
825 audio_lock();
826 audio_player_set_flags( &audio_player_extra, AUDIO_FLAG_SPACIAL_3D );
827 audio_player_set_position( &audio_player_extra, player.rb.co );
828 audio_player_set_vol( &audio_player_extra, 20.0f );
829 audio_player_playclip( &audio_player_extra, &audio_jumps[rand()%2] );
830 audio_unlock();
831 #endif
832 }
833 }
834
835 VG_STATIC void skate_apply_pump_model( player_instance *player )
836 {
837 struct player_skate *s = &player->_skate;
838
839 /* Throw / collect routine
840 *
841 * TODO: Max speed boost
842 */
843 if( player->input_grab->axis.value > 0.5f )
844 {
845 if( s->state.activity == k_skate_activity_ground )
846 {
847 /* Throw */
848 v3_muls( player->rb.to_world[1], k_mmthrow_scale, s->state.throw_v );
849 }
850 }
851 else
852 {
853 /* Collect */
854 float doty = v3_dot( player->rb.to_world[1], s->state.throw_v );
855
856 v3f Fl, Fv;
857 v3_muladds( s->state.throw_v, player->rb.to_world[1], -doty, Fl);
858
859 if( s->state.activity == k_skate_activity_ground )
860 {
861 v3_muladds( player->rb.v, Fl, k_mmcollect_lat, player->rb.v );
862 v3_muladds( s->state.throw_v, Fl, -k_mmcollect_lat, s->state.throw_v );
863 }
864
865 v3_muls( player->rb.to_world[1], -doty, Fv );
866 v3_muladds( player->rb.v, Fv, k_mmcollect_vert, player->rb.v );
867 v3_muladds( s->state.throw_v, Fv, k_mmcollect_vert, s->state.throw_v );
868 }
869
870 /* Decay */
871 if( v3_length2( s->state.throw_v ) > 0.0001f )
872 {
873 v3f dir;
874 v3_copy( s->state.throw_v, dir );
875 v3_normalize( dir );
876
877 float max = v3_dot( dir, s->state.throw_v ),
878 amt = vg_minf( k_mmdecay * k_rb_delta, max );
879 v3_muladds( s->state.throw_v, dir, -amt, s->state.throw_v );
880 }
881 }
882
883 VG_STATIC void skate_apply_cog_model( player_instance *player )
884 {
885 struct player_skate *s = &player->_skate;
886
887 v3f ideal_cog, ideal_diff, ideal_dir;
888 v3_copy( s->state.up_dir, ideal_dir );
889 v3_normalize( ideal_dir );
890
891 v3_muladds( player->rb.co, ideal_dir,
892 1.0f-player->input_grab->axis.value, ideal_cog );
893 v3_sub( ideal_cog, s->state.cog, ideal_diff );
894
895 /* Apply velocities */
896 v3f rv;
897 v3_sub( player->rb.v, s->state.cog_v, rv );
898
899 v3f F;
900 v3_muls( ideal_diff, -k_cog_spring * k_rb_rate, F );
901 v3_muladds( F, rv, -k_cog_damp * k_rb_rate, F );
902
903 float ra = k_cog_mass_ratio,
904 rb = 1.0f-k_cog_mass_ratio;
905
906 /* Apply forces & intergrate */
907 v3_muladds( s->state.cog_v, F, -rb, s->state.cog_v );
908 s->state.cog_v[1] += -9.8f * k_rb_delta;
909 v3_muladds( s->state.cog, s->state.cog_v, k_rb_delta, s->state.cog );
910 }
911
912
913 VG_STATIC void skate_integrate( player_instance *player )
914 {
915 struct player_skate *s = &player->_skate;
916
917 float decay_rate = 1.0f - (k_rb_delta * 3.0f),
918 decay_rate_y = 1.0f;
919
920 if( s->state.activity >= k_skate_activity_grind_any )
921 {
922 decay_rate = 1.0f-vg_lerpf( 3.0f, 20.0f, s->grind_strength ) * k_rb_delta;
923 decay_rate_y = decay_rate;
924 }
925
926 float wx = v3_dot( player->rb.w, player->rb.to_world[0] ) * decay_rate,
927 wy = v3_dot( player->rb.w, player->rb.to_world[1] ) * decay_rate_y,
928 wz = v3_dot( player->rb.w, player->rb.to_world[2] ) * decay_rate;
929
930 v3_muls( player->rb.to_world[0], wx, player->rb.w );
931 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
932 v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
933
934 s->state.flip_time += s->state.flip_rate * k_rb_delta;
935 rb_update_transform( &player->rb );
936 }
937
938 /*
939 * 1 2 or 3
940 */
941
942 VG_STATIC int player_skate_trick_input( player_instance *player )
943 {
944 return (player->input_trick0->button.value) |
945 (player->input_trick1->button.value << 1) |
946 (player->input_trick2->button.value << 1) |
947 (player->input_trick2->button.value);
948 }
949
950 VG_STATIC void player__skate_pre_update( player_instance *player )
951 {
952 struct player_skate *s = &player->_skate;
953
954 if( vg_input_button_down( player->input_use ) )
955 {
956 player->subsystem = k_player_subsystem_walk;
957
958 v3f angles;
959 v3_copy( player->cam.angles, angles );
960 angles[2] = 0.0f;
961
962 player__walk_transition( player, angles );
963 return;
964 }
965
966 if( vg_input_button_down( player->input_reset ) )
967 {
968 player->rb.co[1] += 2.0f;
969 s->state.cog[1] += 2.0f;
970 q_axis_angle( player->rb.q, (v3f){1.0f,0.0f,0.0f}, VG_PIf * 0.25f );
971 v3_zero( player->rb.w );
972 v3_zero( player->rb.v );
973
974 rb_update_transform( &player->rb );
975 }
976
977 int trick_id;
978 if( (s->state.activity == k_skate_activity_air) &&
979 (trick_id = player_skate_trick_input( player )) )
980 {
981 if( (vg.time - s->state.jump_time) < 0.1f )
982 {
983 v3_zero( s->state.trick_vel );
984 s->state.trick_time = 0.0f;
985
986 if( trick_id == 1 )
987 {
988 s->state.trick_vel[0] = 3.0f;
989 }
990 else if( trick_id == 2 )
991 {
992 s->state.trick_vel[2] = 3.0f;
993 }
994 else if( trick_id == 3 )
995 {
996 s->state.trick_vel[0] = 2.0f;
997 s->state.trick_vel[2] = 2.0f;
998 }
999 }
1000 }
1001 }
1002
1003 VG_STATIC void player__skate_post_update( player_instance *player )
1004 {
1005 struct player_skate *s = &player->_skate;
1006
1007 for( int i=0; i<s->prediction_count; i++ )
1008 {
1009 struct land_prediction *p = &s->predictions[i];
1010
1011 for( int j=0; j<p->log_length - 1; j ++ )
1012 {
1013 float brightness = p->score*p->score*p->score;
1014 v3f p1;
1015 v3_lerp( p->log[j], p->log[j+1], brightness, p1 );
1016 vg_line( p->log[j], p1, p->colour );
1017 }
1018
1019 vg_line_cross( p->log[p->log_length-1], p->colour, 0.25f );
1020
1021 v3f p1;
1022 v3_add( p->log[p->log_length-1], p->n, p1 );
1023 vg_line( p->log[p->log_length-1], p1, 0xffffffff );
1024
1025 vg_line_pt3( p->apex, 0.02f, 0xffffffff );
1026 }
1027
1028 #if 0
1029 vg_line_pt3( s->state.apex, 0.030f, 0xff0000ff );
1030 #endif
1031 }
1032
1033 /*
1034 * truck alignment model at ra(local)
1035 * returns 1 if valid surface:
1036 * surface_normal will be filled out with an averaged normal vector
1037 * axel_dir will be the direction from left to right wheels
1038 *
1039 * returns 0 if no good surface found
1040 */
1041 VG_STATIC
1042 int skate_compute_surface_alignment( player_instance *player,
1043 v3f ra, u32 colour,
1044 v3f surface_normal, v3f axel_dir )
1045 {
1046 struct player_skate *s = &player->_skate;
1047
1048 v3f truck, left, right;
1049 m4x3_mulv( player->rb.to_world, ra, truck );
1050
1051 v3_muladds( truck, player->rb.to_world[0], -k_board_width, left );
1052 v3_muladds( truck, player->rb.to_world[0], k_board_width, right );
1053 vg_line( left, right, colour );
1054
1055 float k_max_truck_flex = VG_PIf * 0.25f;
1056
1057 ray_hit ray_l, ray_r;
1058
1059 v3f dir;
1060 v3_muls( player->rb.to_world[1], -1.0f, dir );
1061
1062 int res_l = 0, res_r = 0;
1063
1064 for( int i=0; i<8; i++ )
1065 {
1066 float t = 1.0f - (float)i * (1.0f/8.0f);
1067 v3_muladds( truck, player->rb.to_world[0], -k_board_radius*t, left );
1068 v3_muladds( left, player->rb.to_world[1], k_board_radius, left );
1069 ray_l.dist = 2.1f * k_board_radius;
1070
1071 res_l = ray_world( left, dir, &ray_l );
1072
1073 if( res_l )
1074 break;
1075 }
1076
1077 for( int i=0; i<8; i++ )
1078 {
1079 float t = 1.0f - (float)i * (1.0f/8.0f);
1080 v3_muladds( truck, player->rb.to_world[0], k_board_radius*t, right );
1081 v3_muladds( right, player->rb.to_world[1], k_board_radius, right );
1082 ray_r.dist = 2.1f * k_board_radius;
1083
1084 res_r = ray_world( right, dir, &ray_r );
1085
1086 if( res_r )
1087 break;
1088 }
1089
1090 v3f v0;
1091 v3f midpoint;
1092 v3f tangent_average;
1093 v3_muladds( truck, player->rb.to_world[1], -k_board_radius, midpoint );
1094 v3_zero( tangent_average );
1095
1096 if( res_l || res_r )
1097 {
1098 v3f p0, p1, t;
1099 v3_copy( midpoint, p0 );
1100 v3_copy( midpoint, p1 );
1101
1102 if( res_l )
1103 {
1104 v3_copy( ray_l.pos, p0 );
1105 v3_cross( ray_l.normal, player->rb.to_world[0], t );
1106 v3_add( t, tangent_average, tangent_average );
1107 }
1108 if( res_r )
1109 {
1110 v3_copy( ray_r.pos, p1 );
1111 v3_cross( ray_r.normal, player->rb.to_world[0], t );
1112 v3_add( t, tangent_average, tangent_average );
1113 }
1114
1115 v3_sub( p1, p0, v0 );
1116 v3_normalize( v0 );
1117 }
1118 else
1119 {
1120 /* fallback: use the closes point to the trucks */
1121 v3f closest;
1122 int idx = bh_closest_point( world.geo_bh, midpoint, closest, 0.1f );
1123
1124 if( idx != -1 )
1125 {
1126 u32 *tri = &world.scene_geo->arrindices[ idx * 3 ];
1127 v3f verts[3];
1128
1129 for( int j=0; j<3; j++ )
1130 v3_copy( world.scene_geo->arrvertices[ tri[j] ].co, verts[j] );
1131
1132 v3f vert0, vert1, n;
1133 v3_sub( verts[1], verts[0], vert0 );
1134 v3_sub( verts[2], verts[0], vert1 );
1135 v3_cross( vert0, vert1, n );
1136 v3_normalize( n );
1137
1138 if( v3_dot( n, player->rb.to_world[1] ) < 0.3f )
1139 return 0;
1140
1141 v3_cross( n, player->rb.to_world[2], v0 );
1142 v3_muladds( v0, player->rb.to_world[2],
1143 -v3_dot( player->rb.to_world[2], v0 ), v0 );
1144 v3_normalize( v0 );
1145
1146 v3f t;
1147 v3_cross( n, player->rb.to_world[0], t );
1148 v3_add( t, tangent_average, tangent_average );
1149 }
1150 else
1151 return 0;
1152 }
1153
1154 v3_muladds( truck, v0, k_board_width, right );
1155 v3_muladds( truck, v0, -k_board_width, left );
1156
1157 vg_line( left, right, VG__WHITE );
1158
1159 v3_normalize( tangent_average );
1160 v3_cross( v0, tangent_average, surface_normal );
1161 v3_copy( v0, axel_dir );
1162
1163 return 1;
1164 }
1165
1166 VG_STATIC void skate_weight_distribute( player_instance *player )
1167 {
1168 struct player_skate *s = &player->_skate;
1169 v3_zero( s->weight_distribution );
1170
1171 int reverse_dir = v3_dot( player->rb.to_world[2], player->rb.v ) < 0.0f?1:-1;
1172
1173 if( s->state.manual_direction == 0 )
1174 {
1175 if( (player->input_js1v->axis.value > 0.7f) &&
1176 (s->state.activity == k_skate_activity_ground) &&
1177 (s->state.jump_charge <= 0.01f) )
1178 s->state.manual_direction = reverse_dir;
1179 }
1180 else
1181 {
1182 if( player->input_js1v->axis.value < 0.1f )
1183 {
1184 s->state.manual_direction = 0;
1185 }
1186 else
1187 {
1188 if( reverse_dir != s->state.manual_direction )
1189 {
1190 #if 0
1191 player__dead_transition( player );
1192 #endif
1193 return;
1194 }
1195 }
1196 }
1197
1198 if( s->state.manual_direction )
1199 {
1200 float amt = vg_minf( player->input_js1v->axis.value * 8.0f, 1.0f );
1201 s->weight_distribution[2] = k_board_length * amt *
1202 (float)s->state.manual_direction;
1203 }
1204
1205 /* TODO: Fall back on land normal */
1206 /* TODO: Lerp weight distribution */
1207 /* TODO: Can start manual only if not charge jump */
1208 if( s->state.manual_direction )
1209 {
1210 v3f plane_z;
1211
1212 m3x3_mulv( player->rb.to_world, s->weight_distribution, plane_z );
1213 v3_negate( plane_z, plane_z );
1214
1215 v3_muladds( plane_z, s->surface_picture,
1216 -v3_dot( plane_z, s->surface_picture ), plane_z );
1217 v3_normalize( plane_z );
1218
1219 v3_muladds( plane_z, s->surface_picture, 0.3f, plane_z );
1220 v3_normalize( plane_z );
1221
1222 v3f p1;
1223 v3_muladds( player->rb.co, plane_z, 1.5f, p1 );
1224 vg_line( player->rb.co, p1, VG__GREEN );
1225
1226 v3f refdir;
1227 v3_muls( player->rb.to_world[2], -(float)s->state.manual_direction,
1228 refdir );
1229
1230 rb_effect_spring_target_vector( &player->rb, refdir, plane_z,
1231 k_manul_spring, k_manul_dampener,
1232 s->substep_delta );
1233 }
1234 }
1235
1236 VG_STATIC void skate_adjust_up_direction( player_instance *player )
1237 {
1238 struct player_skate *s = &player->_skate;
1239
1240 if( s->state.activity == k_skate_activity_ground )
1241 {
1242 v3f target;
1243 v3_copy( s->surface_picture, target );
1244
1245 target[1] += 2.0f * s->surface_picture[1];
1246 v3_normalize( target );
1247
1248 v3_lerp( s->state.up_dir, target,
1249 8.0f * s->substep_delta, s->state.up_dir );
1250 }
1251 else if( s->state.activity == k_skate_activity_air )
1252 {
1253 v3_lerp( s->state.up_dir, player->rb.to_world[1],
1254 8.0f * s->substep_delta, s->state.up_dir );
1255 }
1256 else
1257 {
1258 /* FIXME UNDEFINED! */
1259 vg_warn( "Undefined up target!\n" );
1260
1261 v3_lerp( s->state.up_dir, (v3f){0.0f,1.0f,0.0f},
1262 12.0f * s->substep_delta, s->state.up_dir );
1263 }
1264 }
1265
1266 VG_STATIC int skate_point_visible( v3f origin, v3f target )
1267 {
1268 v3f dir;
1269 v3_sub( target, origin, dir );
1270
1271 ray_hit ray;
1272 ray.dist = v3_length( dir );
1273 v3_muls( dir, 1.0f/ray.dist, dir );
1274 ray.dist -= 0.025f;
1275
1276 if( ray_world( origin, dir, &ray ) )
1277 return 0;
1278
1279 return 1;
1280 }
1281
1282 VG_STATIC void skate_grind_orient( struct grind_info *inf, m3x3f mtx )
1283 {
1284 /* TODO: Is N and Dir really orthogonal? */
1285 v3_copy( inf->dir, mtx[0] );
1286 v3_copy( inf->n, mtx[1] );
1287 v3_cross( mtx[0], mtx[1], mtx[2] );
1288 }
1289
1290 VG_STATIC void skate_grind_friction( player_instance *player,
1291 struct grind_info *inf, float strength )
1292 {
1293 v3f v2;
1294 v3_muladds( player->rb.to_world[2], inf->n,
1295 -v3_dot( player->rb.to_world[2], inf->n ), v2 );
1296
1297 float a = 1.0f-fabsf( v3_dot( v2, inf->dir ) ),
1298 dir = vg_signf( v3_dot( player->rb.v, inf->dir ) ),
1299 F = a * -dir * k_grind_max_friction;
1300
1301 v3_muladds( player->rb.v, inf->dir, F*k_rb_delta*strength, player->rb.v );
1302 }
1303
1304 VG_STATIC void skate_grind_decay( player_instance *player,
1305 struct grind_info *inf, float strength )
1306 {
1307 m3x3f mtx, mtx_inv;
1308 skate_grind_orient( inf, mtx );
1309 m3x3_transpose( mtx, mtx_inv );
1310
1311 v3f v_grind;
1312 m3x3_mulv( mtx_inv, player->rb.v, v_grind );
1313
1314 float decay = 1.0f - ( k_rb_delta * k_grind_decayxy * strength );
1315 v3_mul( v_grind, (v3f){ 1.0f, decay, decay }, v_grind );
1316 m3x3_mulv( mtx, v_grind, player->rb.v );
1317 }
1318
1319 VG_STATIC void skate_grind_truck_apply( player_instance *player,
1320 float sign, struct grind_info *inf,
1321 float strength )
1322 {
1323 struct player_skate *s = &player->_skate;
1324
1325 /* TODO: Trash compactor this */
1326 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1327 v3f raw, wsp;
1328 m3x3_mulv( player->rb.to_world, ra, raw );
1329 v3_add( player->rb.co, raw, wsp );
1330
1331 v3_copy( ra, s->weight_distribution );
1332
1333 v3f delta;
1334 v3_sub( inf->co, wsp, delta );
1335
1336 /* spring force */
1337 v3_muladds( player->rb.v, delta, k_spring_force*strength*k_rb_delta,
1338 player->rb.v );
1339
1340 skate_grind_decay( player, inf, strength );
1341 skate_grind_friction( player, inf, strength );
1342
1343 /* yeah yeah yeah yeah */
1344 v3f raw_nplane, axis;
1345 v3_muladds( raw, inf->n, -v3_dot( inf->n, raw ), raw_nplane );
1346 v3_cross( raw_nplane, inf->n, axis );
1347 v3_normalize( axis );
1348
1349 /* orientation */
1350 m3x3f mtx;
1351 skate_grind_orient( inf, mtx );
1352 v3f target_fwd, fwd, up, target_up;
1353 m3x3_mulv( mtx, s->grind_vec, target_fwd );
1354 v3_copy( raw_nplane, fwd );
1355 v3_copy( player->rb.to_world[1], up );
1356 v3_copy( inf->n, target_up );
1357
1358 v3_muladds( target_fwd, inf->n, -v3_dot(inf->n,target_fwd), target_fwd );
1359 v3_muladds( fwd, inf->n, -v3_dot(inf->n,fwd), fwd );
1360
1361 v3_normalize( target_fwd );
1362 v3_normalize( fwd );
1363
1364
1365
1366
1367 float way = player->input_js1v->axis.value *
1368 vg_signf( v3_dot( raw_nplane, player->rb.v ) );
1369
1370 v4f q;
1371 q_axis_angle( q, axis, VG_PIf*0.125f * way );
1372 q_mulv( q, target_up, target_up );
1373 q_mulv( q, target_fwd, target_fwd );
1374
1375 rb_effect_spring_target_vector( &player->rb, up, target_up,
1376 k_grind_spring,
1377 k_grind_dampener,
1378 k_rb_delta );
1379
1380 rb_effect_spring_target_vector( &player->rb, fwd, target_fwd,
1381 k_grind_spring*strength,
1382 k_grind_dampener*strength,
1383 k_rb_delta );
1384
1385 vg_line_arrow( player->rb.co, target_up, 1.0f, VG__GREEN );
1386 vg_line_arrow( player->rb.co, fwd, 0.8f, VG__RED );
1387 vg_line_arrow( player->rb.co, target_fwd, 1.0f, VG__YELOW );
1388
1389 s->grind_strength = strength;
1390
1391 /* Fake contact */
1392 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1393 m4x3_mulv( player->rb.to_local, wsp, limit->ra );
1394 m3x3_mulv( player->rb.to_local, inf->n, limit->n );
1395 limit->p = 0.0f;
1396
1397 v3_copy( inf->dir, s->grind_dir );
1398 }
1399
1400 VG_STATIC void skate_5050_apply( player_instance *player,
1401 struct grind_info *inf_front,
1402 struct grind_info *inf_back )
1403 {
1404 struct player_skate *s = &player->_skate;
1405 struct grind_info inf_avg;
1406
1407 v3_sub( inf_front->co, inf_back->co, inf_avg.dir );
1408 v3_muladds( inf_back->co, inf_avg.dir, 0.5f, inf_avg.co );
1409 v3_normalize( inf_avg.dir );
1410
1411 /* FIXME */
1412 v3_copy( (v3f){0.0f,1.0f,0.0f}, inf_avg.n );
1413
1414 skate_grind_decay( player, &inf_avg, 1.0f );
1415
1416
1417 float way = player->input_js1v->axis.value *
1418 vg_signf( v3_dot( player->rb.to_world[2], player->rb.v ) );
1419 v4f q;
1420 v3f up, target_up;
1421 v3_copy( player->rb.to_world[1], up );
1422 v3_copy( inf_avg.n, target_up );
1423 q_axis_angle( q, player->rb.to_world[0], VG_PIf*0.25f * -way );
1424 q_mulv( q, target_up, target_up );
1425
1426 v3_zero( s->weight_distribution );
1427 s->weight_distribution[2] = k_board_length * -way;
1428
1429 rb_effect_spring_target_vector( &player->rb, up, target_up,
1430 k_grind_spring,
1431 k_grind_dampener,
1432 k_rb_delta );
1433
1434 v3f fwd_nplane, dir_nplane;
1435 v3_muladds( player->rb.to_world[2], inf_avg.n,
1436 -v3_dot( player->rb.to_world[2], inf_avg.n ), fwd_nplane );
1437
1438 v3f dir;
1439 v3_muls( inf_avg.dir, v3_dot( fwd_nplane, inf_avg.dir ), dir );
1440 v3_muladds( dir, inf_avg.n, -v3_dot( dir, inf_avg.n ), dir_nplane );
1441
1442 v3_normalize( fwd_nplane );
1443 v3_normalize( dir_nplane );
1444
1445 rb_effect_spring_target_vector( &player->rb, fwd_nplane, dir_nplane,
1446 1000.0f,
1447 k_grind_dampener,
1448 k_rb_delta );
1449
1450 v3f pos_front = { 0.0f, -k_board_radius, -1.0f * k_board_length },
1451 pos_back = { 0.0f, -k_board_radius, 1.0f * k_board_length },
1452 delta_front, delta_back, delta_total;
1453
1454 m4x3_mulv( player->rb.to_world, pos_front, pos_front );
1455 m4x3_mulv( player->rb.to_world, pos_back, pos_back );
1456
1457 v3_sub( inf_front->co, pos_front, delta_front );
1458 v3_sub( inf_back->co, pos_back, delta_back );
1459 v3_add( delta_front, delta_back, delta_total );
1460
1461 v3_muladds( player->rb.v, delta_total, 50.0f * k_rb_delta, player->rb.v );
1462
1463 /* Fake contact */
1464 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1465 v3_zero( limit->ra );
1466 m3x3_mulv( player->rb.to_local, inf_avg.n, limit->n );
1467 limit->p = 0.0f;
1468
1469 v3_copy( inf_avg.dir, s->grind_dir );
1470 }
1471
1472 VG_STATIC int skate_grind_truck_renew( player_instance *player, float sign,
1473 struct grind_info *inf )
1474 {
1475 struct player_skate *s = &player->_skate;
1476
1477 v3f wheel_co = { 0.0f, 0.0f, sign * k_board_length },
1478 grind_co = { 0.0f, -k_board_radius, sign * k_board_length };
1479
1480 m4x3_mulv( player->rb.to_world, wheel_co, wheel_co );
1481 m4x3_mulv( player->rb.to_world, grind_co, grind_co );
1482
1483 /* Exit condition: lost grind tracking */
1484 if( !skate_grind_scansq( grind_co, player->rb.v, 0.3f, inf ) )
1485 return 0;
1486
1487 /* Exit condition: cant see grind target directly */
1488 if( !skate_point_visible( wheel_co, inf->co ) )
1489 return 0;
1490
1491 /* Exit condition: minimum velocity not reached, but allow a bit of error */
1492 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1493 minv = k_grind_axel_min_vel*0.8f;
1494
1495 if( dv < minv )
1496 return 0;
1497
1498 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1499 return 0;
1500
1501 v3_copy( inf->dir, s->grind_dir );
1502 return 1;
1503 }
1504
1505 VG_STATIC int skate_grind_truck_entry( player_instance *player, float sign,
1506 struct grind_info *inf )
1507 {
1508 struct player_skate *s = &player->_skate;
1509
1510 /* TODO: Trash compactor this */
1511 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1512
1513 v3f raw, wsp;
1514 m3x3_mulv( player->rb.to_world, ra, raw );
1515 v3_add( player->rb.co, raw, wsp );
1516
1517 if( skate_grind_scansq( wsp, player->rb.v, 0.3, inf ) )
1518 {
1519 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1520 return 0;
1521
1522 /* velocity should be at least 60% aligned */
1523 v3f pv, axis;
1524 v3_cross( inf->n, inf->dir, axis );
1525 v3_muladds( player->rb.v, inf->n, -v3_dot( player->rb.v, inf->n ), pv );
1526
1527 if( v3_length2( pv ) < 0.0001f )
1528 return 0;
1529 v3_normalize( pv );
1530
1531 if( fabsf(v3_dot( pv, inf->dir )) < k_grind_axel_max_angle )
1532 return 0;
1533
1534 if( v3_dot( player->rb.v, inf->n ) > 0.5f )
1535 return 0;
1536
1537 #if 0
1538 /* check for vertical alignment */
1539 if( v3_dot( player->rb.to_world[1], inf->n ) < k_grind_axel_max_vangle )
1540 return 0;
1541 #endif
1542
1543 v3f local_co, local_dir, local_n;
1544 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1545 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1546 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1547
1548 v2f delta = { local_co[0], local_co[2] - k_board_length*sign };
1549
1550 float truck_height = -(k_board_radius+0.03f);
1551
1552 v3f rv;
1553 v3_cross( player->rb.w, raw, rv );
1554 v3_add( player->rb.v, rv, rv );
1555
1556 if( (local_co[1] >= truck_height) &&
1557 (v2_length2( delta ) <= k_board_radius*k_board_radius) )
1558 {
1559 return 1;
1560 }
1561 }
1562
1563 return 0;
1564 }
1565
1566 VG_STATIC void skate_boardslide_apply( player_instance *player,
1567 struct grind_info *inf )
1568 {
1569 struct player_skate *s = &player->_skate;
1570
1571 v3f local_co, local_dir, local_n;
1572 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1573 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1574 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1575
1576 v3f intersection;
1577 v3_muladds( local_co, local_dir, local_co[0]/-local_dir[0],
1578 intersection );
1579 v3_copy( intersection, s->weight_distribution );
1580
1581 skate_grind_decay( player, inf, 0.1f );
1582 skate_grind_friction( player, inf, 0.25f );
1583
1584 /* direction alignment */
1585 v3f dir, perp;
1586 v3_cross( local_dir, local_n, perp );
1587 v3_muls( local_dir, vg_signf(local_dir[0]), dir );
1588 v3_muls( perp, vg_signf(perp[2]), perp );
1589
1590 m3x3_mulv( player->rb.to_world, dir, dir );
1591 m3x3_mulv( player->rb.to_world, perp, perp );
1592
1593 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1594 dir,
1595 k_grind_spring, k_grind_dampener,
1596 k_rb_delta );
1597
1598 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[2],
1599 perp,
1600 k_grind_spring, k_grind_dampener,
1601 k_rb_delta );
1602
1603 vg_line_arrow( player->rb.co, dir, 0.5f, VG__GREEN );
1604 vg_line_arrow( player->rb.co, perp, 0.5f, VG__BLUE );
1605
1606 v3_copy( inf->dir, s->grind_dir );
1607 }
1608
1609 VG_STATIC int skate_boardslide_entry( player_instance *player,
1610 struct grind_info *inf )
1611 {
1612 struct player_skate *s = &player->_skate;
1613
1614 if( skate_grind_scansq( player->rb.co,
1615 player->rb.to_world[0], k_board_length,
1616 inf ) )
1617 {
1618 v3f local_co, local_dir;
1619 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1620 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1621
1622 if( (fabsf(local_co[2]) <= k_board_length) && /* within wood area */
1623 (local_co[1] >= 0.0f) && /* at deck level */
1624 (fabsf(local_dir[0]) >= 0.5f) ) /* perpendicular to us */
1625 {
1626 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1627 return 0;
1628
1629 return 1;
1630 }
1631 }
1632
1633 return 0;
1634 }
1635
1636 VG_STATIC int skate_boardslide_renew( player_instance *player,
1637 struct grind_info *inf )
1638 {
1639 struct player_skate *s = &player->_skate;
1640
1641 if( !skate_grind_scansq( player->rb.co,
1642 player->rb.to_world[0], k_board_length,
1643 inf ) )
1644 return 0;
1645
1646 /* Exit condition: cant see grind target directly */
1647 v3f vis;
1648 v3_muladds( player->rb.co, player->rb.to_world[1], 0.2f, vis );
1649 if( !skate_point_visible( vis, inf->co ) )
1650 return 0;
1651
1652 /* Exit condition: minimum velocity not reached, but allow a bit of error
1653 * TODO: trash compactor */
1654 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1655 minv = k_grind_axel_min_vel*0.8f;
1656
1657 if( dv < minv )
1658 return 0;
1659
1660 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1661 return 0;
1662
1663 return 1;
1664 }
1665
1666 VG_STATIC void skate_store_grind_vec( player_instance *player,
1667 struct grind_info *inf )
1668 {
1669 struct player_skate *s = &player->_skate;
1670
1671 m3x3f mtx;
1672 skate_grind_orient( inf, mtx );
1673 m3x3_transpose( mtx, mtx );
1674
1675 v3f raw;
1676 v3_sub( inf->co, player->rb.co, raw );
1677
1678 m3x3_mulv( mtx, raw, s->grind_vec );
1679 v3_normalize( s->grind_vec );
1680 v3_copy( inf->dir, s->grind_dir );
1681 }
1682
1683 VG_STATIC enum skate_activity skate_availible_grind( player_instance *player )
1684 {
1685 struct player_skate *s = &player->_skate;
1686
1687 /* debounces this state manager a little bit */
1688 if( s->frames_since_activity_change < 10 )
1689 {
1690 s->frames_since_activity_change ++;
1691 return k_skate_activity_undefined;
1692 }
1693
1694 struct grind_info inf_back50,
1695 inf_front50,
1696 inf_slide;
1697
1698 int res_back50 = 0,
1699 res_front50 = 0,
1700 res_slide = 0;
1701
1702 if( s->state.activity == k_skate_activity_grind_boardslide )
1703 {
1704 res_slide = skate_boardslide_renew( player, &inf_slide );
1705 }
1706 else if( s->state.activity == k_skate_activity_grind_back50 )
1707 {
1708 res_back50 = skate_grind_truck_renew( player, 1.0f, &inf_back50 );
1709 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1710 }
1711 else if( s->state.activity == k_skate_activity_grind_front50 )
1712 {
1713 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1714 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1715 }
1716 else if( s->state.activity == k_skate_activity_grind_5050 )
1717 {
1718 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1719 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1720 }
1721 else
1722 {
1723 res_slide = skate_boardslide_entry( player, &inf_slide );
1724 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1725 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1726
1727 if( res_back50 != res_front50 )
1728 {
1729 int wants_to_do_that = fabsf(player->input_js1v->axis.value) >= 0.25f;
1730
1731 res_back50 &= wants_to_do_that;
1732 res_front50 &= wants_to_do_that;
1733 }
1734 }
1735
1736 const enum skate_activity table[] =
1737 { /* slide | back | front */
1738 k_skate_activity_undefined, /* 0 0 0 */
1739 k_skate_activity_grind_front50, /* 0 0 1 */
1740 k_skate_activity_grind_back50, /* 0 1 0 */
1741 k_skate_activity_grind_5050, /* 0 1 1 */
1742
1743 /* slide has priority always */
1744 k_skate_activity_grind_boardslide, /* 1 0 0 */
1745 k_skate_activity_grind_boardslide, /* 1 0 1 */
1746 k_skate_activity_grind_boardslide, /* 1 1 0 */
1747 k_skate_activity_grind_boardslide, /* 1 1 1 */
1748 }
1749 , new_activity = table[ res_slide << 2 | res_back50 << 1 | res_front50 ];
1750
1751 if( new_activity == k_skate_activity_undefined )
1752 {
1753 if( s->state.activity >= k_skate_activity_grind_any )
1754 s->frames_since_activity_change = 0;
1755 }
1756 else if( new_activity == k_skate_activity_grind_boardslide )
1757 {
1758 skate_boardslide_apply( player, &inf_slide );
1759 }
1760 else if( new_activity == k_skate_activity_grind_back50 )
1761 {
1762 if( s->state.activity != k_skate_activity_grind_back50 )
1763 skate_store_grind_vec( player, &inf_back50 );
1764
1765 skate_grind_truck_apply( player, 1.0f, &inf_back50, 1.0f );
1766 }
1767 else if( new_activity == k_skate_activity_grind_front50 )
1768 {
1769 if( s->state.activity != k_skate_activity_grind_front50 )
1770 skate_store_grind_vec( player, &inf_front50 );
1771
1772 skate_grind_truck_apply( player, -1.0f, &inf_front50, 1.0f );
1773 }
1774 else if( new_activity == k_skate_activity_grind_5050 )
1775 skate_5050_apply( player, &inf_front50, &inf_back50 );
1776
1777 return new_activity;
1778 }
1779
1780 VG_STATIC void player__skate_update( player_instance *player )
1781 {
1782 struct player_skate *s = &player->_skate;
1783 v3_copy( player->rb.co, s->state.prev_pos );
1784 s->state.activity_prev = s->state.activity;
1785
1786 struct board_collider
1787 {
1788 v3f pos;
1789 float radius;
1790
1791 u32 colour;
1792
1793 enum board_collider_state
1794 {
1795 k_collider_state_default,
1796 k_collider_state_disabled,
1797 k_collider_state_colliding
1798 }
1799 state;
1800 }
1801 wheels[] =
1802 {
1803 {
1804 { 0.0f, 0.0f, -k_board_length },
1805 .radius = k_board_radius,
1806 .colour = VG__RED
1807 },
1808 {
1809 { 0.0f, 0.0f, k_board_length },
1810 .radius = k_board_radius,
1811 .colour = VG__GREEN
1812 }
1813 };
1814
1815 const int k_wheel_count = 2;
1816
1817 s->substep = k_rb_delta;
1818 s->substep_delta = s->substep;
1819 s->limit_count = 0;
1820
1821 int substep_count = 0;
1822
1823 v3_zero( s->surface_picture );
1824
1825 for( int i=0; i<k_wheel_count; i++ )
1826 wheels[i].state = k_collider_state_default;
1827
1828 /* check if we can enter or continue grind */
1829 enum skate_activity grindable_activity = skate_availible_grind( player );
1830 if( grindable_activity != k_skate_activity_undefined )
1831 {
1832 s->state.activity = grindable_activity;
1833 goto grinding;
1834 }
1835
1836 int contact_count = 0;
1837 for( int i=0; i<2; i++ )
1838 {
1839 v3f normal, axel;
1840 if( skate_compute_surface_alignment( player, wheels[i].pos,
1841 wheels[i].colour, normal, axel ) )
1842 {
1843 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1844 axel,
1845 k_board_spring, k_board_dampener,
1846 s->substep_delta );
1847
1848 v3_add( normal, s->surface_picture, s->surface_picture );
1849 contact_count ++;
1850 }
1851 }
1852
1853 if( contact_count )
1854 {
1855 s->state.activity = k_skate_activity_ground;
1856 v3_normalize( s->surface_picture );
1857
1858 skate_apply_friction_model( player );
1859 skate_weight_distribute( player );
1860 skate_apply_pump_model( player );
1861 }
1862 else
1863 {
1864 s->state.activity = k_skate_activity_air;
1865 v3_zero( s->weight_distribution );
1866 skate_apply_air_model( player );
1867 }
1868
1869 grinding:;
1870
1871 if( s->state.activity == k_skate_activity_grind_back50 )
1872 wheels[1].state = k_collider_state_disabled;
1873 if( s->state.activity == k_skate_activity_grind_front50 )
1874 wheels[0].state = k_collider_state_disabled;
1875 if( s->state.activity == k_skate_activity_grind_5050 )
1876 {
1877 wheels[0].state = k_collider_state_disabled;
1878 wheels[1].state = k_collider_state_disabled;
1879 }
1880
1881 /* all activities */
1882 skate_apply_steering_model( player );
1883 skate_adjust_up_direction( player );
1884 skate_apply_cog_model( player );
1885 skate_apply_jump_model( player );
1886 skate_apply_grab_model( player );
1887 skate_apply_trick_model( player );
1888
1889 begin_collision:;
1890
1891 /*
1892 * Phase 0: Continous collision detection
1893 * --------------------------------------------------------------------------
1894 */
1895
1896 v3f head_wp0, head_wp1, start_co;
1897 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp0 );
1898 v3_copy( player->rb.co, start_co );
1899
1900 /* calculate transform one step into future */
1901 v3f future_co;
1902 v4f future_q;
1903 v3_muladds( player->rb.co, player->rb.v, s->substep, future_co );
1904
1905 if( v3_length2( player->rb.w ) > 0.0f )
1906 {
1907 v4f rotation;
1908 v3f axis;
1909 v3_copy( player->rb.w, axis );
1910
1911 float mag = v3_length( axis );
1912 v3_divs( axis, mag, axis );
1913 q_axis_angle( rotation, axis, mag*s->substep );
1914 q_mul( rotation, player->rb.q, future_q );
1915 q_normalize( future_q );
1916 }
1917 else
1918 v4_copy( player->rb.q, future_q );
1919
1920 v3f future_cg, current_cg, cg_offset;
1921 q_mulv( player->rb.q, s->weight_distribution, current_cg );
1922 q_mulv( future_q, s->weight_distribution, future_cg );
1923 v3_sub( future_cg, current_cg, cg_offset );
1924
1925 /* calculate the minimum time we can move */
1926 float max_time = s->substep;
1927
1928 for( int i=0; i<k_wheel_count; i++ )
1929 {
1930 if( wheels[i].state == k_collider_state_disabled )
1931 continue;
1932
1933 v3f current, future, r_cg;
1934
1935 q_mulv( future_q, wheels[i].pos, future );
1936 v3_add( future, future_co, future );
1937 v3_add( cg_offset, future, future );
1938
1939 q_mulv( player->rb.q, wheels[i].pos, current );
1940 v3_add( current, player->rb.co, current );
1941
1942 float t;
1943 v3f n;
1944
1945 float cast_radius = wheels[i].radius - k_penetration_slop * 2.0f;
1946 if( spherecast_world( current, future, cast_radius, &t, n ) != -1)
1947 max_time = vg_minf( max_time, t * s->substep );
1948 }
1949
1950 /* clamp to a fraction of delta, to prevent locking */
1951 float rate_lock = substep_count;
1952 rate_lock *= k_rb_delta * 0.1f;
1953 rate_lock *= rate_lock;
1954
1955 max_time = vg_maxf( max_time, rate_lock );
1956 s->substep_delta = max_time;
1957
1958 /* integrate */
1959 v3_muladds( player->rb.co, player->rb.v, s->substep_delta, player->rb.co );
1960 if( v3_length2( player->rb.w ) > 0.0f )
1961 {
1962 v4f rotation;
1963 v3f axis;
1964 v3_copy( player->rb.w, axis );
1965
1966 float mag = v3_length( axis );
1967 v3_divs( axis, mag, axis );
1968 q_axis_angle( rotation, axis, mag*s->substep_delta );
1969 q_mul( rotation, player->rb.q, player->rb.q );
1970 q_normalize( player->rb.q );
1971
1972 q_mulv( player->rb.q, s->weight_distribution, future_cg );
1973 v3_sub( current_cg, future_cg, cg_offset );
1974 v3_add( player->rb.co, cg_offset, player->rb.co );
1975 }
1976
1977 rb_update_transform( &player->rb );
1978 player->rb.v[1] += -k_gravity * s->substep_delta;
1979
1980 s->substep -= s->substep_delta;
1981
1982 rb_ct manifold[128];
1983 int manifold_len = 0;
1984
1985 /*
1986 * Phase -1: head detection
1987 * --------------------------------------------------------------------------
1988 */
1989 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp1 );
1990
1991 float t;
1992 v3f n;
1993 if( (v3_dist2( head_wp0, head_wp1 ) > 0.001f) &&
1994 (spherecast_world( head_wp0, head_wp1, 0.2f, &t, n ) != -1) )
1995 {
1996 v3_lerp( start_co, player->rb.co, t, player->rb.co );
1997 rb_update_transform( &player->rb );
1998
1999 player__dead_transition( player );
2000 return;
2001 }
2002
2003 /*
2004 * Phase 1: Regular collision detection
2005 * --------------------------------------------------------------------------
2006 */
2007
2008 for( int i=0; i<k_wheel_count; i++ )
2009 {
2010 if( wheels[i].state == k_collider_state_disabled )
2011 continue;
2012
2013 m4x3f mtx;
2014 m3x3_identity( mtx );
2015 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2016
2017 rb_sphere collider = { .radius = wheels[i].radius };
2018
2019 rb_ct *man = &manifold[ manifold_len ];
2020
2021 int l = skate_collide_smooth( player, mtx, &collider, man );
2022 if( l )
2023 wheels[i].state = k_collider_state_colliding;
2024
2025 manifold_len += l;
2026 }
2027
2028 float grind_radius = k_board_radius * 0.75f;
2029 rb_capsule capsule = { .height = (k_board_length+0.2f)*2.0f,
2030 .radius=grind_radius };
2031 m4x3f mtx;
2032 v3_muls( player->rb.to_world[0], 1.0f, mtx[0] );
2033 v3_muls( player->rb.to_world[2], -1.0f, mtx[1] );
2034 v3_muls( player->rb.to_world[1], 1.0f, mtx[2] );
2035 v3_muladds( player->rb.to_world[3], player->rb.to_world[1],
2036 grind_radius + k_board_radius*0.25f, mtx[3] );
2037
2038 rb_ct *cman = &manifold[manifold_len];
2039
2040 int l = rb_capsule__scene( mtx, &capsule, NULL, &world.rb_geo.inf.scene,
2041 cman );
2042
2043 /* weld joints */
2044 for( int i=0; i<l; i ++ )
2045 cman[l].type = k_contact_type_edge;
2046 rb_manifold_filter_joint_edges( cman, l, 0.03f );
2047 l = rb_manifold_apply_filtered( cman, l );
2048
2049 manifold_len += l;
2050
2051 debug_capsule( mtx, capsule.radius, capsule.height, VG__WHITE );
2052
2053 /* add limits */
2054 for( int i=0; i<s->limit_count; i++ )
2055 {
2056 struct grind_limit *limit = &s->limits[i];
2057 rb_ct *ct = &manifold[ manifold_len ++ ];
2058 m4x3_mulv( player->rb.to_world, limit->ra, ct->co );
2059 m3x3_mulv( player->rb.to_world, limit->n, ct->n );
2060 ct->p = limit->p;
2061 ct->type = k_contact_type_default;
2062 }
2063
2064 /*
2065 * Phase 3: Dynamics
2066 * --------------------------------------------------------------------------
2067 */
2068
2069
2070 v3f world_cog;
2071 m4x3_mulv( player->rb.to_world, s->weight_distribution, world_cog );
2072 vg_line_pt3( world_cog, 0.02f, VG__BLACK );
2073
2074 for( int i=0; i<manifold_len; i ++ )
2075 {
2076 rb_prepare_contact( &manifold[i], s->substep_delta );
2077 rb_debug_contact( &manifold[i] );
2078 }
2079
2080 /* yes, we are currently rebuilding mass matrices every frame. too bad! */
2081 v3f extent = { k_board_width, 0.1f, k_board_length };
2082 float ex2 = k_board_interia*extent[0]*extent[0],
2083 ey2 = k_board_interia*extent[1]*extent[1],
2084 ez2 = k_board_interia*extent[2]*extent[2];
2085
2086 float mass = 2.0f * (extent[0]*extent[1]*extent[2]);
2087 float inv_mass = 1.0f/mass;
2088
2089 v3f I;
2090 I[0] = ((1.0f/12.0f) * mass * (ey2+ez2));
2091 I[1] = ((1.0f/12.0f) * mass * (ex2+ez2));
2092 I[2] = ((1.0f/12.0f) * mass * (ex2+ey2));
2093
2094 m3x3f iI;
2095 m3x3_identity( iI );
2096 iI[0][0] = I[0];
2097 iI[1][1] = I[1];
2098 iI[2][2] = I[2];
2099 m3x3_inv( iI, iI );
2100
2101 m3x3f iIw;
2102 m3x3_mul( iI, player->rb.to_local, iIw );
2103 m3x3_mul( player->rb.to_world, iIw, iIw );
2104
2105 for( int j=0; j<10; j++ )
2106 {
2107 for( int i=0; i<manifold_len; i++ )
2108 {
2109 /*
2110 * regular dance; calculate velocity & total mass, apply impulse.
2111 */
2112
2113 struct contact *ct = &manifold[i];
2114
2115 v3f rv, delta;
2116 v3_sub( ct->co, world_cog, delta );
2117 v3_cross( player->rb.w, delta, rv );
2118 v3_add( player->rb.v, rv, rv );
2119
2120 v3f raCn;
2121 v3_cross( delta, ct->n, raCn );
2122
2123 v3f raCnI, rbCnI;
2124 m3x3_mulv( iIw, raCn, raCnI );
2125
2126 float normal_mass = 1.0f / (inv_mass + v3_dot(raCn,raCnI)),
2127 vn = v3_dot( rv, ct->n ),
2128 lambda = normal_mass * ( -vn );
2129
2130 float temp = ct->norm_impulse;
2131 ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
2132 lambda = ct->norm_impulse - temp;
2133
2134 v3f impulse;
2135 v3_muls( ct->n, lambda, impulse );
2136
2137 v3_muladds( player->rb.v, impulse, inv_mass, player->rb.v );
2138 v3_cross( delta, impulse, impulse );
2139 m3x3_mulv( iIw, impulse, impulse );
2140 v3_add( impulse, player->rb.w, player->rb.w );
2141
2142 v3_cross( player->rb.w, delta, rv );
2143 v3_add( player->rb.v, rv, rv );
2144 vn = v3_dot( rv, ct->n );
2145 }
2146 }
2147
2148 v3f dt;
2149 rb_depenetrate( manifold, manifold_len, dt );
2150 v3_add( dt, player->rb.co, player->rb.co );
2151 rb_update_transform( &player->rb );
2152
2153 substep_count ++;
2154
2155 if( s->substep >= 0.0001f )
2156 goto begin_collision; /* again! */
2157
2158 /*
2159 * End of collision and dynamics routine
2160 * --------------------------------------------------------------------------
2161 */
2162
2163 for( int i=0; i<k_wheel_count; i++ )
2164 {
2165 m4x3f mtx;
2166 m3x3_copy( player->rb.to_world, mtx );
2167 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2168 debug_sphere( mtx, wheels[i].radius,
2169 (u32[]){ VG__WHITE, VG__BLACK,
2170 wheels[i].colour }[ wheels[i].state ]);
2171 }
2172
2173 skate_integrate( player );
2174 vg_line_pt3( s->state.cog, 0.02f, VG__WHITE );
2175
2176 teleport_gate *gate;
2177 if( (gate = world_intersect_gates( player->rb.co, s->state.prev_pos )) )
2178 {
2179 m4x3_mulv( gate->transport, player->rb.co, player->rb.co );
2180 m3x3_mulv( gate->transport, player->rb.v, player->rb.v );
2181 m4x3_mulv( gate->transport, s->state.cog, s->state.cog );
2182 m3x3_mulv( gate->transport, s->state.cog_v, s->state.cog_v );
2183 m3x3_mulv( gate->transport, s->state.throw_v, s->state.throw_v );
2184 m3x3_mulv( gate->transport, s->state.head_position,
2185 s->state.head_position );
2186
2187 v4f transport_rotation;
2188 m3x3_q( gate->transport, transport_rotation );
2189 q_mul( transport_rotation, player->rb.q, player->rb.q );
2190 rb_update_transform( &player->rb );
2191
2192 s->state_gate_storage = s->state;
2193 player__pass_gate( player, gate );
2194 }
2195 }
2196
2197 VG_STATIC void player__skate_im_gui( player_instance *player )
2198 {
2199 struct player_skate *s = &player->_skate;
2200
2201 /* FIXME: Compression */
2202 player__debugtext( 1, "V: %5.2f %5.2f %5.2f",player->rb.v[0],
2203 player->rb.v[1],
2204 player->rb.v[2] );
2205 player__debugtext( 1, "CO: %5.2f %5.2f %5.2f",player->rb.co[0],
2206 player->rb.co[1],
2207 player->rb.co[2] );
2208 player__debugtext( 1, "W: %5.2f %5.2f %5.2f",player->rb.w[0],
2209 player->rb.w[1],
2210 player->rb.w[2] );
2211
2212 const char *activity_txt[] =
2213 {
2214 "air",
2215 "ground",
2216 "undefined (INVALID)",
2217 "grind_any (INVALID)",
2218 "grind_boardslide",
2219 "grind_noseslide",
2220 "grind_tailslide",
2221 "grind_back50",
2222 "grind_front50",
2223 "grind_5050"
2224 };
2225
2226 player__debugtext( 1, "activity: %s", activity_txt[s->state.activity] );
2227 #if 0
2228 player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
2229 s->state.steerx_s, s->state.steery_s,
2230 k_steer_ground, k_steer_air );
2231 #endif
2232 player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
2233 s->state.flip_time );
2234 player__debugtext( 1, "trickv: %.2f %.2f %.2f",
2235 s->state.trick_vel[0],
2236 s->state.trick_vel[1],
2237 s->state.trick_vel[2] );
2238 player__debugtext( 1, "tricke: %.2f %.2f %.2f",
2239 s->state.trick_euler[0],
2240 s->state.trick_euler[1],
2241 s->state.trick_euler[2] );
2242 }
2243
2244 VG_STATIC void player__skate_animate( player_instance *player,
2245 player_animation *dest )
2246 {
2247 struct player_skate *s = &player->_skate;
2248 struct player_avatar *av = player->playeravatar;
2249 struct skeleton *sk = &av->sk;
2250
2251 /* Head */
2252 float kheight = 2.0f,
2253 kleg = 0.6f;
2254
2255 v3f offset;
2256 v3_zero( offset );
2257
2258 v3f cog_local, cog_ideal;
2259 m4x3_mulv( player->rb.to_local, s->state.cog, cog_local );
2260
2261 v3_copy( s->state.up_dir, cog_ideal );
2262 v3_normalize( cog_ideal );
2263 m3x3_mulv( player->rb.to_local, cog_ideal, cog_ideal );
2264
2265 v3_sub( cog_ideal, cog_local, offset );
2266
2267
2268 v3_muls( offset, 4.0f, offset );
2269 offset[1] *= -1.0f;
2270
2271 float curspeed = v3_length( player->rb.v ),
2272 kickspeed = vg_clampf( curspeed*(1.0f/40.0f), 0.0f, 1.0f ),
2273 kicks = (vg_randf()-0.5f)*2.0f*kickspeed,
2274 sign = vg_signf( kicks );
2275
2276 s->wobble[0] = vg_lerpf( s->wobble[0], kicks*kicks*sign, 6.0f*vg.time_delta);
2277 s->wobble[1] = vg_lerpf( s->wobble[1], s->wobble[0], 2.4f*vg.time_delta);
2278
2279 offset[0] *= 0.26f;
2280 offset[0] += s->wobble[1]*3.0f;
2281
2282 offset[1] *= -0.3f;
2283 offset[2] *= 0.01f;
2284
2285 offset[0]=vg_clampf(offset[0],-0.8f,0.8f)*(1.0f-fabsf(s->blend_slide)*0.9f);
2286 offset[1]=vg_clampf(offset[1],-0.5f,0.0f);
2287
2288 /*
2289 * Animation blending
2290 * ===========================================
2291 */
2292
2293 /* sliding */
2294 {
2295 float desired = vg_clampf( fabsf( s->state.slip ), 0.0f, 1.0f );
2296 s->blend_slide = vg_lerpf( s->blend_slide, desired, 2.4f*vg.time_delta);
2297 }
2298
2299 /* movement information */
2300 {
2301 int iair = s->state.activity == k_skate_activity_air;
2302
2303 float dirz = s->state.reverse > 0.0f? 0.0f: 1.0f,
2304 dirx = s->state.slip < 0.0f? 0.0f: 1.0f,
2305 fly = iair? 1.0f: 0.0f,
2306 wdist= s->weight_distribution[2] / k_board_length;
2307
2308 s->blend_z = vg_lerpf( s->blend_z, dirz, 2.4f*vg.time_delta );
2309 s->blend_x = vg_lerpf( s->blend_x, dirx, 0.6f*vg.time_delta );
2310 s->blend_fly = vg_lerpf( s->blend_fly, fly, 2.4f*vg.time_delta );
2311 s->blend_weight= vg_lerpf( s->blend_weight, wdist, 9.0f*vg.time_delta );
2312 }
2313
2314 mdl_keyframe apose[32], bpose[32];
2315 mdl_keyframe ground_pose[32];
2316 {
2317 /* when the player is moving fast he will crouch down a little bit */
2318 float stand = 1.0f - vg_clampf( curspeed * 0.03f, 0.0f, 1.0f );
2319 s->blend_stand = vg_lerpf( s->blend_stand, stand, 6.0f*vg.time_delta );
2320
2321 /* stand/crouch */
2322 float dir_frame = s->blend_z * (15.0f/30.0f),
2323 stand_blend = offset[1]*-2.0f;
2324
2325 v3f local_cog;
2326 m4x3_mulv( player->rb.to_local, s->state.cog, local_cog );
2327
2328 stand_blend = vg_clampf( 1.0f-local_cog[1], 0, 1 );
2329
2330 skeleton_sample_anim( sk, s->anim_stand, dir_frame, apose );
2331 skeleton_sample_anim( sk, s->anim_highg, dir_frame, bpose );
2332 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
2333
2334 /* sliding */
2335 float slide_frame = s->blend_x * (15.0f/30.0f);
2336 skeleton_sample_anim( sk, s->anim_slide, slide_frame, bpose );
2337 skeleton_lerp_pose( sk, apose, bpose, s->blend_slide, apose );
2338
2339 /* pushing */
2340 double push_time = vg.time - s->state.start_push;
2341 s->blend_push = vg_lerpf( s->blend_push,
2342 (vg.time - s->state.cur_push) < 0.125,
2343 6.0f*vg.time_delta );
2344
2345 float pt = push_time + vg.accumulator;
2346 if( s->state.reverse > 0.0f )
2347 skeleton_sample_anim( sk, s->anim_push, pt, bpose );
2348 else
2349 skeleton_sample_anim( sk, s->anim_push_reverse, pt, bpose );
2350
2351 skeleton_lerp_pose( sk, apose, bpose, s->blend_push, apose );
2352
2353 /* trick setup */
2354 float jump_start_frame = 14.0f/30.0f;
2355
2356 float charge = s->state.jump_charge;
2357 s->blend_jump = vg_lerpf( s->blend_jump, charge, 8.4f*vg.time_delta );
2358
2359 float setup_frame = charge * jump_start_frame,
2360 setup_blend = vg_minf( s->blend_jump, 1.0f );
2361
2362 float jump_frame = (vg.time - s->state.jump_time) + jump_start_frame;
2363 if( jump_frame >= jump_start_frame && jump_frame <= (40.0f/30.0f) )
2364 setup_frame = jump_frame;
2365
2366 struct skeleton_anim *jump_anim = s->state.jump_dir?
2367 s->anim_ollie:
2368 s->anim_ollie_reverse;
2369
2370 skeleton_sample_anim_clamped( sk, jump_anim, setup_frame, bpose );
2371 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
2372 }
2373
2374 mdl_keyframe air_pose[32];
2375 {
2376 float target = -player->input_js1h->axis.value;
2377 s->blend_airdir = vg_lerpf( s->blend_airdir, target, 2.4f*vg.time_delta );
2378
2379 float air_frame = (s->blend_airdir*0.5f+0.5f) * (15.0f/30.0f);
2380 skeleton_sample_anim( sk, s->anim_air, air_frame, apose );
2381
2382 static v2f grab_choice;
2383
2384 v2f grab_input = { player->input_js2h->axis.value,
2385 player->input_js2v->axis.value };
2386 v2_add( s->state.grab_mouse_delta, grab_input, grab_input );
2387 if( v2_length2( grab_input ) <= 0.001f )
2388 grab_input[0] = -1.0f;
2389 else
2390 v2_normalize_clamp( grab_input );
2391 v2_lerp( grab_choice, grab_input, 2.4f*vg.time_delta, grab_choice );
2392
2393 float ang = atan2f( grab_choice[0], grab_choice[1] ),
2394 ang_unit = (ang+VG_PIf) * (1.0f/VG_TAUf),
2395 grab_frame = ang_unit * (15.0f/30.0f);
2396
2397 skeleton_sample_anim( sk, s->anim_grabs, grab_frame, bpose );
2398 skeleton_lerp_pose( sk, apose, bpose, s->state.grabbing, air_pose );
2399 }
2400
2401 skeleton_lerp_pose( sk, ground_pose, air_pose, s->blend_fly, dest->pose );
2402
2403 float add_grab_mod = 1.0f - s->blend_fly;
2404
2405 /* additive effects */
2406 {
2407 u32 apply_to[] = { av->id_hip,
2408 av->id_ik_hand_l,
2409 av->id_ik_hand_r,
2410 av->id_ik_elbow_l,
2411 av->id_ik_elbow_r };
2412
2413 for( int i=0; i<vg_list_size(apply_to); i ++ )
2414 {
2415 dest->pose[apply_to[i]-1].co[0] += offset[0]*add_grab_mod;
2416 dest->pose[apply_to[i]-1].co[2] += offset[2]*add_grab_mod;
2417 }
2418
2419
2420
2421
2422 /* angle correction */
2423 if( v3_length2( s->state.up_dir ) > 0.001f )
2424 {
2425 v3f ndir;
2426 m3x3_mulv( player->rb.to_local, s->state.up_dir, ndir );
2427 v3_normalize( ndir );
2428
2429 v3f up = { 0.0f, 1.0f, 0.0f };
2430
2431 float a = v3_dot( ndir, up );
2432 a = acosf( vg_clampf( a, -1.0f, 1.0f ) );
2433
2434 v3f axis;
2435 v4f q;
2436
2437 v3_cross( up, ndir, axis );
2438 q_axis_angle( q, axis, a );
2439
2440 mdl_keyframe *kf_hip = &dest->pose[av->id_hip-1];
2441
2442 for( int i=0; i<vg_list_size(apply_to); i ++ )
2443 {
2444 mdl_keyframe *kf = &dest->pose[apply_to[i]-1];
2445
2446 v3f v0;
2447 v3_sub( kf->co, kf_hip->co, v0 );
2448 q_mulv( q, v0, v0 );
2449 v3_add( v0, kf_hip->co, kf->co );
2450
2451 q_mul( q, kf->q, kf->q );
2452 q_normalize( kf->q );
2453 }
2454
2455 v3f p1, p2;
2456 m3x3_mulv( player->rb.to_world, up, p1 );
2457 m3x3_mulv( player->rb.to_world, ndir, p2 );
2458
2459 vg_line_arrow( player->rb.co, p1, 0.25f, VG__PINK );
2460 vg_line_arrow( player->rb.co, p2, 0.25f, VG__PINK );
2461 }
2462
2463
2464
2465 mdl_keyframe *kf_board = &dest->pose[av->id_board-1],
2466 *kf_foot_l = &dest->pose[av->id_ik_foot_l-1],
2467 *kf_foot_r = &dest->pose[av->id_ik_foot_r-1];
2468
2469
2470 v4f qtotal;
2471 v4f qtrickr, qyawr, qpitchr, qrollr;
2472 v3f eulerr;
2473
2474
2475 v3_muls( s->board_trick_residuald, VG_TAUf, eulerr );
2476
2477 q_axis_angle( qyawr, (v3f){0.0f,1.0f,0.0f}, eulerr[0] * 0.5f );
2478 q_axis_angle( qpitchr, (v3f){1.0f,0.0f,0.0f}, eulerr[1] );
2479 q_axis_angle( qrollr, (v3f){0.0f,0.0f,1.0f}, eulerr[2] );
2480
2481 q_mul( qpitchr, qrollr, qtrickr );
2482 q_mul( qyawr, qtrickr, qtotal );
2483 q_normalize( qtotal );
2484
2485 q_mul( qtotal, kf_board->q, kf_board->q );
2486
2487
2488 /* trick rotation */
2489 v4f qtrick, qyaw, qpitch, qroll;
2490 v3f euler;
2491 v3_muls( s->state.trick_euler, VG_TAUf, euler );
2492
2493 q_axis_angle( qyaw, (v3f){0.0f,1.0f,0.0f}, euler[0] * 0.5f );
2494 q_axis_angle( qpitch, (v3f){1.0f,0.0f,0.0f}, euler[1] );
2495 q_axis_angle( qroll, (v3f){0.0f,0.0f,1.0f}, euler[2] );
2496
2497 q_mul( qpitch, qroll, qtrick );
2498 q_mul( qyaw, qtrick, qtrick );
2499 q_mul( kf_board->q, qtrick, kf_board->q );
2500 q_normalize( kf_board->q );
2501
2502 /* foot weight distribution */
2503 if( s->blend_weight > 0.0f )
2504 {
2505 kf_foot_l->co[2] += s->blend_weight * 0.2f;
2506 kf_foot_r->co[2] += s->blend_weight * 0.1f;
2507 }
2508 else
2509 {
2510 kf_foot_r->co[2] += s->blend_weight * 0.3f;
2511 kf_foot_l->co[2] += s->blend_weight * 0.1f;
2512 }
2513 }
2514
2515 /* transform */
2516 rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
2517 v3_muladds( dest->root_co, player->rb.to_world[1], -0.1f, dest->root_co );
2518
2519 float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
2520 #if 0
2521 v4f qresy, qresx, qresidual;
2522 m3x3f mtx_residual;
2523 q_axis_angle( qresy, player->rb.to_world[1], s->state.steery_s*substep );
2524 q_axis_angle( qresx, player->rb.to_world[0], s->state.steerx_s*substep );
2525
2526 q_mul( qresy, qresx, qresidual );
2527 q_normalize( qresidual );
2528 q_mul( dest->root_q, qresidual, dest->root_q );
2529 q_normalize( dest->root_q );
2530 #endif
2531
2532 v4f qflip;
2533 if( (s->state.activity == k_skate_activity_air) &&
2534 (fabsf(s->state.flip_rate) > 0.01f) )
2535 {
2536 float t = s->state.flip_time + s->state.flip_rate*substep*k_rb_delta,
2537 angle = vg_clampf( t, -1.0f, 1.0f ) * VG_TAUf,
2538 distm = s->land_dist * fabsf(s->state.flip_rate) * 3.0f,
2539 blend = vg_clampf( 1.0f-distm, 0.0f, 1.0f );
2540
2541 angle = vg_lerpf( angle, vg_signf(s->state.flip_rate) * VG_TAUf, blend );
2542
2543 q_axis_angle( qflip, s->state.flip_axis, angle );
2544 q_mul( qflip, dest->root_q, dest->root_q );
2545 q_normalize( dest->root_q );
2546
2547 v3f rotation_point, rco;
2548 v3_muladds( player->rb.co, player->rb.to_world[1], 0.5f, rotation_point );
2549 v3_sub( dest->root_co, rotation_point, rco );
2550
2551 q_mulv( qflip, rco, rco );
2552 v3_add( rco, rotation_point, dest->root_co );
2553 }
2554 }
2555
2556 VG_STATIC void player__skate_post_animate( player_instance *player )
2557 {
2558 struct player_skate *s = &player->_skate;
2559 struct player_avatar *av = player->playeravatar;
2560
2561 player->cam_velocity_influence = 1.0f;
2562
2563 v3f head = { 0.0f, 1.8f, 0.0f }; /* FIXME: Viewpoint entity */
2564 m4x3_mulv( av->sk.final_mtx[ av->id_head ], head, s->state.head_position );
2565 m4x3_mulv( player->rb.to_local, s->state.head_position,
2566 s->state.head_position );
2567 }
2568
2569 VG_STATIC void player__skate_reset_animator( player_instance *player )
2570 {
2571 struct player_skate *s = &player->_skate;
2572
2573 if( s->state.activity == k_skate_activity_air )
2574 s->blend_fly = 1.0f;
2575 else
2576 s->blend_fly = 0.0f;
2577
2578 s->blend_slide = 0.0f;
2579 s->blend_z = 0.0f;
2580 s->blend_x = 0.0f;
2581 s->blend_stand = 0.0f;
2582 s->blend_push = 0.0f;
2583 s->blend_jump = 0.0f;
2584 s->blend_airdir = 0.0f;
2585 }
2586
2587 VG_STATIC void player__skate_clear_mechanics( player_instance *player )
2588 {
2589 struct player_skate *s = &player->_skate;
2590 s->state.jump_charge = 0.0f;
2591 s->state.lift_frames = 0;
2592 s->state.flip_rate = 0.0f;
2593 #if 0
2594 s->state.steery = 0.0f;
2595 s->state.steerx = 0.0f;
2596 s->state.steery_s = 0.0f;
2597 s->state.steerx_s = 0.0f;
2598 #endif
2599 s->state.reverse = 0.0f;
2600 s->state.slip = 0.0f;
2601 v3_copy( player->rb.co, s->state.prev_pos );
2602
2603 #if 0
2604 m3x3_identity( s->state.velocity_bias );
2605 m3x3_identity( s->state.velocity_bias_pstep );
2606 #endif
2607
2608 v3_zero( s->state.throw_v );
2609 v3_zero( s->state.trick_vel );
2610 v3_zero( s->state.trick_euler );
2611 }
2612
2613 VG_STATIC void player__skate_reset( player_instance *player,
2614 struct respawn_point *rp )
2615 {
2616 struct player_skate *s = &player->_skate;
2617 v3_muladds( player->rb.co, player->rb.to_world[1], 1.0f, s->state.cog );
2618 v3_zero( player->rb.v );
2619 v3_zero( s->state.cog_v );
2620 v4_copy( rp->q, player->rb.q );
2621
2622 s->state.activity = k_skate_activity_air;
2623 s->state.activity_prev = k_skate_activity_air;
2624
2625 player__skate_clear_mechanics( player );
2626 player__skate_reset_animator( player );
2627
2628 v3_zero( s->state.head_position );
2629 s->state.head_position[1] = 1.8f;
2630 }
2631
2632 #endif /* PLAYER_SKATE_C */