added scene_vert struct, result is good
[carveJwlIkooP6JGAAIwe30JlM.git] / player_skate.c
1 #ifndef PLAYER_SKATE_C
2 #define PLAYER_SKATE_C
3
4 #include "player.h"
5
6 VG_STATIC void player__skate_bind( player_instance *player )
7 {
8 struct player_skate *s = &player->_skate;
9 struct player_avatar *av = player->playeravatar;
10 struct skeleton *sk = &av->sk;
11
12 rb_update_transform( &player->rb );
13 s->anim_stand = skeleton_get_anim( sk, "pose_stand" );
14 s->anim_highg = skeleton_get_anim( sk, "pose_highg" );
15 s->anim_air = skeleton_get_anim( sk, "pose_air" );
16 s->anim_slide = skeleton_get_anim( sk, "pose_slide" );
17 s->anim_push = skeleton_get_anim( sk, "push" );
18 s->anim_push_reverse = skeleton_get_anim( sk, "push_reverse" );
19 s->anim_ollie = skeleton_get_anim( sk, "ollie" );
20 s->anim_ollie_reverse = skeleton_get_anim( sk, "ollie_reverse" );
21 s->anim_grabs = skeleton_get_anim( sk, "grabs" );
22 }
23
24 /*
25 * Collision detection routines
26 *
27 *
28 */
29
30 /*
31 * Does collision detection on a sphere vs world, and applies some smoothing
32 * filters to the manifold afterwards
33 */
34 VG_STATIC int skate_collide_smooth( player_instance *player,
35 m4x3f mtx, rb_sphere *sphere,
36 rb_ct *man )
37 {
38 int len = 0;
39 len = rb_sphere__scene( mtx, sphere, NULL, &world.rb_geo.inf.scene, man );
40
41 for( int i=0; i<len; i++ )
42 {
43 man[i].rba = &player->rb;
44 man[i].rbb = NULL;
45 }
46
47 rb_manifold_filter_coplanar( man, len, 0.03f );
48
49 if( len > 1 )
50 {
51 rb_manifold_filter_backface( man, len );
52 rb_manifold_filter_joint_edges( man, len, 0.03f );
53 rb_manifold_filter_pairs( man, len, 0.03f );
54 }
55 int new_len = rb_manifold_apply_filtered( man, len );
56 if( len && !new_len )
57 len = 1;
58 else
59 len = new_len;
60
61 return len;
62 }
63
64 struct grind_info
65 {
66 v3f co, dir, n;
67 };
68
69 VG_STATIC int skate_grind_scansq( player_instance *player,
70 v3f pos, v3f dir, float r,
71 struct grind_info *inf )
72 {
73 v4f plane;
74 v3_copy( dir, plane );
75 v3_normalize( plane );
76 plane[3] = v3_dot( plane, pos );
77
78 boxf box;
79 v3_add( pos, (v3f){ r, r, r }, box[1] );
80 v3_sub( pos, (v3f){ r, r, r }, box[0] );
81
82 bh_iter it;
83 bh_iter_init( 0, &it );
84 int idx;
85
86 struct grind_sample
87 {
88 v2f co;
89 v2f normal;
90 v3f normal3,
91 centroid;
92 }
93 samples[48];
94 int sample_count = 0;
95
96 v2f support_min,
97 support_max;
98
99 v3f support_axis;
100 v3_cross( plane, player->basis[1], support_axis );
101 v3_normalize( support_axis );
102
103 while( bh_next( world.geo_bh, &it, box, &idx ) )
104 {
105 u32 *ptri = &world.scene_geo->arrindices[ idx*3 ];
106 v3f tri[3];
107
108 struct world_material *mat = world_tri_index_material(ptri[0]);
109 if( !(mat->info.flags & k_material_flag_skate_surface) )
110 continue;
111
112 for( int j=0; j<3; j++ )
113 v3_copy( world.scene_geo->arrvertices[ptri[j]].co, tri[j] );
114
115 for( int j=0; j<3; j++ )
116 {
117 int i0 = j,
118 i1 = (j+1) % 3;
119
120 struct grind_sample *sample = &samples[ sample_count ];
121 v3f co;
122
123 if( plane_segment( plane, tri[i0], tri[i1], co ) )
124 {
125 v3f d;
126 v3_sub( co, pos, d );
127 if( v3_length2( d ) > r*r )
128 continue;
129
130 v3f va, vb, normal;
131 v3_sub( tri[1], tri[0], va );
132 v3_sub( tri[2], tri[0], vb );
133 v3_cross( va, vb, normal );
134
135 sample->normal[0] = v3_dot( support_axis, normal );
136 sample->normal[1] = v3_dot( player->basis[1], normal );
137 sample->co[0] = v3_dot( support_axis, d );
138 sample->co[1] = v3_dot( player->basis[1], d );
139
140 v3_copy( normal, sample->normal3 ); /* normalize later
141 if we want to us it */
142
143 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
144 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
145 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
146
147 v2_normalize( sample->normal );
148 sample_count ++;
149
150 if( sample_count == vg_list_size( samples ) )
151 goto too_many_samples;
152 }
153 }
154 }
155
156 too_many_samples:
157
158 if( sample_count < 2 )
159 return 0;
160
161 v3f
162 average_direction,
163 average_normal;
164
165 v2f min_co, max_co;
166 v2_fill( min_co, INFINITY );
167 v2_fill( max_co, -INFINITY );
168
169 v3_zero( average_direction );
170 v3_zero( average_normal );
171
172 int passed_samples = 0;
173
174 for( int i=0; i<sample_count-1; i++ )
175 {
176 struct grind_sample *si, *sj;
177
178 si = &samples[i];
179
180 for( int j=i+1; j<sample_count; j++ )
181 {
182 if( i == j )
183 continue;
184
185 sj = &samples[j];
186
187 /* non overlapping */
188 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
189 continue;
190
191 /* not sharp angle */
192 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
193 continue;
194
195 /* not convex */
196 v3f v0;
197 v3_sub( sj->centroid, si->centroid, v0 );
198 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
199 v3_dot( v0, sj->normal3 ) <= 0.0f )
200 continue;
201
202 v2_minv( sj->co, min_co, min_co );
203 v2_maxv( sj->co, max_co, max_co );
204
205 v3f n0, n1, dir;
206 v3_copy( si->normal3, n0 );
207 v3_copy( sj->normal3, n1 );
208 v3_cross( n0, n1, dir );
209 v3_normalize( dir );
210
211 /* make sure the directions all face a common hemisphere */
212 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
213 v3_add( average_direction, dir, average_direction );
214
215 float yi = v3_dot( player->basis[1], si->normal3 ),
216 yj = v3_dot( player->basis[1], sj->normal3 );
217
218 if( yi > yj )
219 v3_add( si->normal3, average_normal, average_normal );
220 else
221 v3_add( sj->normal3, average_normal, average_normal );
222
223 passed_samples ++;
224 }
225 }
226
227 if( !passed_samples )
228 return 0;
229
230 if( (v3_length2( average_direction ) <= 0.001f) ||
231 (v3_length2( average_normal ) <= 0.001f ) )
232 return 0;
233
234 float div = 1.0f/(float)passed_samples;
235 v3_normalize( average_direction );
236 v3_normalize( average_normal );
237
238 v2f average_coord;
239 v2_add( min_co, max_co, average_coord );
240 v2_muls( average_coord, 0.5f, average_coord );
241
242 v3_muls( support_axis, average_coord[0], inf->co );
243 inf->co[1] += average_coord[1];
244 v3_add( pos, inf->co, inf->co );
245 v3_copy( average_normal, inf->n );
246 v3_copy( average_direction, inf->dir );
247
248 vg_line_pt3( inf->co, 0.02f, VG__GREEN );
249 vg_line_arrow( inf->co, average_direction, 0.3f, VG__GREEN );
250 vg_line_arrow( inf->co, inf->n, 0.2f, VG__CYAN );
251
252 return passed_samples;
253 }
254
255 VG_STATIC int solve_prediction_for_target( player_instance *player,
256 v3f target, float max_angle,
257 struct land_prediction *p )
258 {
259 /* calculate the exact solution(s) to jump onto that grind spot */
260
261 v3f v0;
262 v3_sub( target, player->rb.co, v0 );
263 m3x3_mulv( player->invbasis, v0, v0 );
264
265 v3f ax;
266 v3_copy( v0, ax );
267 ax[1] = 0.0f;
268 v3_normalize( ax );
269
270 v3f v_local;
271 m3x3_mulv( player->invbasis, player->rb.v, v_local );
272
273 v2f d = { v3_dot( ax, v0 ), v0[1] },
274 v = { v3_dot( ax, player->rb.v ), v_local[1] };
275
276 float a = atan2f( v[1], v[0] ),
277 m = v2_length( v ),
278 root = m*m*m*m - p->gravity*(p->gravity*d[0]*d[0] + 2.0f*d[1]*m*m);
279
280 if( root > 0.0f )
281 {
282 root = sqrtf( root );
283 float a0 = atanf( (m*m + root) / (p->gravity * d[0]) ),
284 a1 = atanf( (m*m - root) / (p->gravity * d[0]) );
285
286 if( fabsf(a0-a) > fabsf(a1-a) )
287 a0 = a1;
288
289 if( fabsf(a0-a) > max_angle )
290 return 0;
291
292 /* TODO: sweep the path before chosing the smallest dist */
293
294 p->log_length = 0;
295 p->land_dist = 0.0f;
296 v3_zero( p->apex );
297 p->type = k_prediction_grind;
298
299 v3_muls( ax, cosf( a0 ) * m, p->v );
300 p->v[1] += sinf( a0 ) * m;
301 m3x3_mulv( player->basis, p->v, p->v );
302
303 p->land_dist = d[0] / (cosf(a0)*m);
304
305 /* add a trace */
306 for( int i=0; i<=20; i++ )
307 {
308 float t = (float)i * (1.0f/20.0f) * p->land_dist;
309
310 v3f p0;
311 v3_muls( p->v, t, p0 );
312 v3_muladds( p0, player->basis[1], -0.5f * p->gravity * t*t, p0 );
313
314 v3_add( player->rb.co, p0, p->log[ p->log_length ++ ] );
315 }
316
317 return 1;
318 }
319 else
320 return 0;
321 }
322
323 VG_STATIC
324 void player__approximate_best_trajectory( player_instance *player )
325 {
326 struct player_skate *s = &player->_skate;
327 float k_trace_delta = k_rb_delta * 10.0f;
328
329 s->state.air_start = vg.time;
330 v3_copy( player->rb.v, s->state.air_init_v );
331 v3_copy( player->rb.co, s->state.air_init_co );
332
333 s->prediction_count = 0;
334
335 v3f axis;
336 v3_cross( player->rb.v, player->rb.to_world[1], axis );
337 v3_normalize( axis );
338
339 /* at high slopes, Y component is low */
340 float upness = v3_dot( player->rb.to_world[1], player->basis[1] ),
341 angle_begin = -(1.0f-fabsf( upness )),
342 angle_end = 1.0f;
343
344 struct grind_info grind;
345 int grind_located = 0;
346
347 for( int m=0;m<=30; m++ )
348 {
349 struct land_prediction *p = &s->predictions[ s->prediction_count ++ ];
350
351 p->log_length = 0;
352 p->land_dist = 0.0f;
353 v3_zero( p->apex );
354 p->type = k_prediction_none;
355
356 v3f launch_co, launch_v, co0, co1;
357 v3_copy( player->rb.co, launch_co );
358 v3_copy( player->rb.v, launch_v );
359 v3_copy( launch_co, co0 );
360
361 float vt = (float)m * (1.0f/30.0f),
362 ang = vg_lerpf( angle_begin, angle_end, vt ) * 0.15f;
363
364 v4f qbias;
365 q_axis_angle( qbias, axis, ang );
366 q_mulv( qbias, launch_v, launch_v );
367
368 float yaw_sketch = 1.0f-fabsf(upness);
369
370 float yaw_bias = ((float)(m%3) - 1.0f) * 0.08f * yaw_sketch;
371 q_axis_angle( qbias, player->rb.to_world[1], yaw_bias );
372 q_mulv( qbias, launch_v, launch_v );
373
374
375 float gravity_bias = vg_lerpf( 0.85f, 1.4f, vt ),
376 gravity = k_gravity * gravity_bias;
377 p->gravity = gravity;
378
379 v3_copy( launch_v, p->v );
380
381 for( int i=1; i<=50; i++ )
382 {
383 float t = (float)i * k_trace_delta;
384
385 v3_muls( launch_v, t, co1 );
386 v3_muladds( co1, player->basis[1], -0.5f * gravity * t*t, co1 );
387 v3_add( launch_co, co1, co1 );
388
389 float launch_vy = v3_dot( launch_v,player->basis[1] );
390 if( !grind_located && (launch_vy - gravity*t < 0.0f) )
391 {
392 v3f closest;
393 if( bh_closest_point( world.geo_bh, co1, closest, 1.0f ) != -1 )
394 {
395 v3f ve;
396 v3_copy( launch_v, ve );
397 v3_muladds( ve, player->basis[1], -gravity * t, ve );
398
399 if( skate_grind_scansq( player, closest, ve, 0.5f, &grind ) )
400 {
401 /* check alignment */
402 v2f v0 = { v3_dot( ve, player->basis[0] ),
403 v3_dot( ve, player->basis[2] ) },
404 v1 = { v3_dot( grind.dir, player->basis[0] ),
405 v3_dot( grind.dir, player->basis[2] ) };
406
407 v2_normalize( v0 );
408 v2_normalize( v1 );
409
410 float a = v2_dot( v0, v1 );
411
412 if( a >= cosf( VG_PIf * 0.185f ) )
413 {
414 grind_located = 1;
415 }
416 }
417 }
418 }
419
420 float t1;
421 v3f n;
422
423 int idx = spherecast_world( co0, co1, k_board_radius, &t1, n );
424 if( idx != -1 )
425 {
426 v3f co;
427 v3_lerp( co0, co1, t1, co );
428 v3_copy( co, p->log[ p->log_length ++ ] );
429
430 v3_copy( n, p->n );
431 p->type = k_prediction_land;
432
433 v3f ve;
434 v3_copy( launch_v, ve );
435 v3_muladds( ve, player->basis[1], -gravity * t, ve );
436
437 struct grind_info replace_grind;
438 if( skate_grind_scansq( player, co, ve, 0.3f, &replace_grind ) )
439 {
440 v3_copy( replace_grind.n, p->n );
441 p->type = k_prediction_grind;
442 }
443
444 p->score = -v3_dot( ve, p->n );
445 p->land_dist = t + k_trace_delta * t1;
446
447 u32 vert_index = world.scene_geo->arrindices[ idx*3 ];
448 struct world_material *mat = world_tri_index_material( vert_index );
449
450 /* Bias prediction towords ramps */
451 if( !(mat->info.flags & k_material_flag_skate_surface) )
452 p->score *= 10.0f;
453
454 break;
455 }
456
457 if( i % 3 == 0 )
458 v3_copy( co1, p->log[ p->log_length ++ ] );
459
460 v3_copy( co1, co0 );
461 }
462
463 if( p->type == k_prediction_none )
464 s->prediction_count --;
465 }
466
467 if( grind_located )
468 {
469 /* calculate the exact solution(s) to jump onto that grind spot */
470 struct land_prediction *p = &s->predictions[ s->prediction_count ];
471 p->gravity = k_gravity;
472
473 if( solve_prediction_for_target( player, grind.co, 0.125f*VG_PIf, p ) )
474 {
475 v3_copy( grind.n, p->n );
476
477 /* determine score */
478 v3f ve;
479 v3_copy( p->v, ve );
480 v3_muladds( ve, player->basis[1], -p->gravity * p->land_dist, ve );
481 p->score = -v3_dot( ve, grind.n ) * 0.85f;
482
483 s->prediction_count ++;
484 }
485 }
486
487
488 float score_min = INFINITY,
489 score_max = -INFINITY;
490
491 struct land_prediction *best = NULL;
492
493 for( int i=0; i<s->prediction_count; i ++ )
494 {
495 struct land_prediction *p = &s->predictions[i];
496
497 if( p->score < score_min )
498 best = p;
499
500 score_min = vg_minf( score_min, p->score );
501 score_max = vg_maxf( score_max, p->score );
502 }
503
504 for( int i=0; i<s->prediction_count; i ++ )
505 {
506 struct land_prediction *p = &s->predictions[i];
507 float s = p->score;
508
509 s -= score_min;
510 s /= (score_max-score_min);
511 s = 1.0f - s;
512
513 p->score = s;
514 p->colour = s * 255.0f;
515
516 if( p == best )
517 p->colour <<= 16;
518 else if( p->type == k_prediction_land )
519 p->colour <<= 8;
520
521 p->colour |= 0xff000000;
522 }
523
524 if( best )
525 {
526 v3_copy( best->n, s->land_normal );
527 v3_copy( best->v, player->rb.v );
528 s->land_dist = best->land_dist;
529
530 v2f steer = { player->input_js1h->axis.value,
531 player->input_js1v->axis.value };
532 v2_normalize_clamp( steer );
533 s->state.gravity_bias = best->gravity;
534
535 if( (fabsf(steer[1]) > 0.5f) && (s->land_dist >= 1.5f) )
536 {
537 s->state.flip_rate = (1.0f/s->land_dist) * vg_signf(steer[1]) *
538 s->state.reverse ;
539 s->state.flip_time = 0.0f;
540 v3_copy( player->rb.to_world[0], s->state.flip_axis );
541 }
542 else
543 {
544 s->state.flip_rate = 0.0f;
545 v3_zero( s->state.flip_axis );
546 }
547 }
548 else
549 {
550 v3_copy( player->basis[1], s->land_normal );
551 }
552 }
553
554 /*
555 *
556 * Varius physics models
557 * ------------------------------------------------
558 */
559
560 /*
561 * Air control, no real physics
562 */
563 VG_STATIC void skate_apply_air_model( player_instance *player )
564 {
565 struct player_skate *s = &player->_skate;
566
567 if( s->state.activity_prev != k_skate_activity_air )
568 player__approximate_best_trajectory( player );
569
570 float angle = v3_dot( player->rb.to_world[1], s->land_normal );
571 angle = vg_clampf( angle, -1.0f, 1.0f );
572 v3f axis;
573 v3_cross( player->rb.to_world[1], s->land_normal, axis );
574
575 v4f correction;
576 q_axis_angle( correction, axis,
577 acosf(angle)*2.0f*VG_TIMESTEP_FIXED );
578 q_mul( correction, player->rb.q, player->rb.q );
579
580 v2f steer = { player->input_js1h->axis.value,
581 player->input_js1v->axis.value };
582 v2_normalize_clamp( steer );
583 }
584
585 VG_STATIC int player_skate_trick_input( player_instance *player );
586 VG_STATIC void skate_apply_trick_model( player_instance *player )
587 {
588 struct player_skate *s = &player->_skate;
589
590 v3f Fd, Fs, F;
591 v3f strength = { 3.7f, 3.6f, 8.0f };
592
593 v3_muls( s->board_trick_residualv, -4.0f , Fd );
594 v3_muls( s->board_trick_residuald, -10.0f, Fs );
595 v3_add( Fd, Fs, F );
596 v3_mul( strength, F, F );
597
598 v3_muladds( s->board_trick_residualv, F, k_rb_delta,
599 s->board_trick_residualv );
600 v3_muladds( s->board_trick_residuald, s->board_trick_residualv,
601 k_rb_delta, s->board_trick_residuald );
602
603 if( s->state.activity == k_skate_activity_air )
604 {
605 if( v3_length2( s->state.trick_vel ) < 0.0001f )
606 return;
607
608 int carry_on = player_skate_trick_input( player );
609
610 /* we assume velocities share a common divisor, in which case the
611 * interval is the minimum value (if not zero) */
612
613 float min_rate = 99999.0f;
614
615 for( int i=0; i<3; i++ )
616 {
617 float v = s->state.trick_vel[i];
618 if( (v > 0.0f) && (v < min_rate) )
619 min_rate = v;
620 }
621
622 float interval = 1.0f / min_rate,
623 current = floorf( s->state.trick_time / interval ),
624 next_end = (current+1.0f) * interval;
625
626
627 /* integrate trick velocities */
628 v3_muladds( s->state.trick_euler, s->state.trick_vel, k_rb_delta,
629 s->state.trick_euler );
630
631 if( !carry_on && (s->state.trick_time + k_rb_delta >= next_end) )
632 {
633 s->state.trick_time = 0.0f;
634 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
635 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
636 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
637 v3_copy( s->state.trick_vel, s->board_trick_residualv );
638 v3_zero( s->state.trick_vel );
639 }
640
641 s->state.trick_time += k_rb_delta;
642 }
643 else
644 {
645 if( (v3_length2(s->state.trick_vel) >= 0.0001f ) &&
646 s->state.trick_time > 0.2f)
647 {
648 player__dead_transition( player );
649 }
650
651 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
652 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
653 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
654 s->state.trick_time = 0.0f;
655 v3_zero( s->state.trick_vel );
656 }
657 }
658
659 VG_STATIC void skate_apply_grab_model( player_instance *player )
660 {
661 struct player_skate *s = &player->_skate;
662
663 float grabt = player->input_grab->axis.value;
664
665 if( grabt > 0.5f )
666 {
667 v2_muladds( s->state.grab_mouse_delta, vg.mouse_delta, 0.02f,
668 s->state.grab_mouse_delta );
669
670 v2_normalize_clamp( s->state.grab_mouse_delta );
671 }
672 else
673 v2_zero( s->state.grab_mouse_delta );
674
675 s->state.grabbing = vg_lerpf( s->state.grabbing, grabt, 8.4f*k_rb_delta );
676 }
677
678 VG_STATIC void skate_apply_steering_model( player_instance *player )
679 {
680 struct player_skate *s = &player->_skate;
681
682 /* Steering */
683 float steer = player->input_js1h->axis.value,
684 grab = player->input_grab->axis.value;
685
686 steer = vg_signf( steer ) * steer*steer * k_steer_ground;
687
688 v3f steer_axis;
689 v3_muls( player->rb.to_world[1], -vg_signf( steer ), steer_axis );
690
691 float rate = 26.0f,
692 top = 1.0f;
693
694 if( s->state.activity == k_skate_activity_air )
695 {
696 rate = 6.0f * fabsf(steer);
697 top = 1.5f;
698 }
699 else
700 {
701 /* rotate slower when grabbing on ground */
702 steer *= (1.0f-(s->state.jump_charge+grab)*0.4f);
703
704 if( s->state.activity == k_skate_activity_grind_5050 )
705 {
706 rate = 0.0f;
707 top = 0.0f;
708 }
709
710 else if( s->state.activity >= k_skate_activity_grind_any )
711 {
712 rate *= fabsf(steer);
713
714 float a = 0.8f * -steer * k_rb_delta;
715
716 v4f q;
717 q_axis_angle( q, player->rb.to_world[1], a );
718 q_mulv( q, s->grind_vec, s->grind_vec );
719
720 v3_normalize( s->grind_vec );
721 }
722
723 else if( s->state.manual_direction )
724 {
725 rate = 35.0f;
726 top = 1.5f;
727 }
728 }
729
730 float current = v3_dot( player->rb.to_world[1], player->rb.w ),
731 addspeed = (steer * -top) - current,
732 maxaccel = rate * k_rb_delta,
733 accel = vg_clampf( addspeed, -maxaccel, maxaccel );
734
735 v3_muladds( player->rb.w, player->rb.to_world[1], accel, player->rb.w );
736 }
737
738 /*
739 * Computes friction and surface interface model
740 */
741 VG_STATIC void skate_apply_friction_model( player_instance *player )
742 {
743 struct player_skate *s = &player->_skate;
744
745 /*
746 * Computing localized friction forces for controlling the character
747 * Friction across X is significantly more than Z
748 */
749
750 v3f vel;
751 m3x3_mulv( player->rb.to_local, player->rb.v, vel );
752 float slip = 0.0f;
753
754 if( fabsf(vel[2]) > 0.01f )
755 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
756
757 if( fabsf( slip ) > 1.2f )
758 slip = vg_signf( slip ) * 1.2f;
759
760 s->state.slip = slip;
761 s->state.reverse = -vg_signf(vel[2]);
762
763 vel[0] += vg_cfrictf( vel[0], k_friction_lat * k_rb_delta );
764 vel[2] += vg_cfrictf( vel[2], k_friction_resistance * k_rb_delta );
765
766 /* Pushing additive force */
767
768 if( !player->input_jump->button.value )
769 {
770 if( player->input_push->button.value ||
771 (vg.time-s->state.start_push<0.75) )
772 {
773 if( (vg.time - s->state.cur_push) > 0.25 )
774 s->state.start_push = vg.time;
775
776 s->state.cur_push = vg.time;
777
778 double push_time = vg.time - s->state.start_push;
779
780 float cycle_time = push_time*k_push_cycle_rate,
781 accel = k_push_accel * (sinf(cycle_time)*0.5f+0.5f),
782 amt = accel * VG_TIMESTEP_FIXED,
783 current = v3_length( vel ),
784 new_vel = vg_minf( current + amt, k_max_push_speed ),
785 delta = new_vel - vg_minf( current, k_max_push_speed );
786
787 vel[2] += delta * -s->state.reverse;
788 }
789 }
790
791 /* Send back to velocity */
792 m3x3_mulv( player->rb.to_world, vel, player->rb.v );
793 }
794
795 VG_STATIC void skate_apply_jump_model( player_instance *player )
796 {
797 struct player_skate *s = &player->_skate;
798 int charging_jump_prev = s->state.charging_jump;
799 s->state.charging_jump = player->input_jump->button.value;
800
801 /* Cannot charge this in air */
802 if( s->state.activity == k_skate_activity_air )
803 {
804 s->state.charging_jump = 0;
805 return;
806 }
807
808 if( s->state.charging_jump )
809 {
810 s->state.jump_charge += k_rb_delta * k_jump_charge_speed;
811
812 if( !charging_jump_prev )
813 s->state.jump_dir = s->state.reverse>0.0f? 1: 0;
814 }
815 else
816 {
817 s->state.jump_charge -= k_jump_charge_speed * k_rb_delta;
818 }
819
820 s->state.jump_charge = vg_clampf( s->state.jump_charge, 0.0f, 1.0f );
821
822 /* player let go after charging past 0.2: trigger jump */
823 if( (!s->state.charging_jump) && (s->state.jump_charge > 0.2f) )
824 {
825 v3f jumpdir;
826
827 /* Launch more up if alignment is up else improve velocity */
828 float aup = v3_dot( player->basis[1], player->rb.to_world[1] ),
829 mod = 0.5f,
830 dir = mod + fabsf(aup)*(1.0f-mod);
831
832 v3_copy( player->rb.v, jumpdir );
833 v3_normalize( jumpdir );
834 v3_muls( jumpdir, 1.0f-dir, jumpdir );
835 v3_muladds( jumpdir, player->rb.to_world[1], dir, jumpdir );
836 v3_normalize( jumpdir );
837
838 float force = k_jump_force*s->state.jump_charge;
839 v3_muladds( player->rb.v, jumpdir, force, player->rb.v );
840 s->state.jump_charge = 0.0f;
841 s->state.jump_time = vg.time;
842 s->state.activity = k_skate_activity_air;
843
844 v2f steer = { player->input_js1h->axis.value,
845 player->input_js1v->axis.value };
846 v2_normalize_clamp( steer );
847
848
849 #if 0
850 float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
851 s->state.steery_s = -steer[0] * maxspin;
852 s->state.steerx = s->state.steerx_s;
853 s->state.lift_frames ++;
854 #endif
855
856 /* FIXME audio events */
857 #if 0
858 audio_lock();
859 audio_player_set_flags( &audio_player_extra, AUDIO_FLAG_SPACIAL_3D );
860 audio_player_set_position( &audio_player_extra, player.rb.co );
861 audio_player_set_vol( &audio_player_extra, 20.0f );
862 audio_player_playclip( &audio_player_extra, &audio_jumps[rand()%2] );
863 audio_unlock();
864 #endif
865 }
866 }
867
868 VG_STATIC void skate_apply_pump_model( player_instance *player )
869 {
870 struct player_skate *s = &player->_skate;
871
872 /* Throw / collect routine
873 *
874 * TODO: Max speed boost
875 */
876 if( player->input_grab->axis.value > 0.5f )
877 {
878 if( s->state.activity == k_skate_activity_ground )
879 {
880 /* Throw */
881 v3_muls( player->rb.to_world[1], k_mmthrow_scale, s->state.throw_v );
882 }
883 }
884 else
885 {
886 /* Collect */
887 float doty = v3_dot( player->rb.to_world[1], s->state.throw_v );
888
889 v3f Fl, Fv;
890 v3_muladds( s->state.throw_v, player->rb.to_world[1], -doty, Fl);
891
892 if( s->state.activity == k_skate_activity_ground )
893 {
894 v3_muladds( player->rb.v, Fl, k_mmcollect_lat, player->rb.v );
895 v3_muladds( s->state.throw_v, Fl, -k_mmcollect_lat, s->state.throw_v );
896 }
897
898 v3_muls( player->rb.to_world[1], -doty, Fv );
899 v3_muladds( player->rb.v, Fv, k_mmcollect_vert, player->rb.v );
900 v3_muladds( s->state.throw_v, Fv, k_mmcollect_vert, s->state.throw_v );
901 }
902
903 /* Decay */
904 if( v3_length2( s->state.throw_v ) > 0.0001f )
905 {
906 v3f dir;
907 v3_copy( s->state.throw_v, dir );
908 v3_normalize( dir );
909
910 float max = v3_dot( dir, s->state.throw_v ),
911 amt = vg_minf( k_mmdecay * k_rb_delta, max );
912 v3_muladds( s->state.throw_v, dir, -amt, s->state.throw_v );
913 }
914 }
915
916 VG_STATIC void skate_apply_cog_model( player_instance *player )
917 {
918 struct player_skate *s = &player->_skate;
919
920 v3f ideal_cog, ideal_diff, ideal_dir;
921 v3_copy( s->state.up_dir, ideal_dir );
922 v3_normalize( ideal_dir );
923
924 v3_muladds( player->rb.co, ideal_dir,
925 1.0f-player->input_grab->axis.value, ideal_cog );
926 v3_sub( ideal_cog, s->state.cog, ideal_diff );
927
928 /* Apply velocities */
929 v3f rv;
930 v3_sub( player->rb.v, s->state.cog_v, rv );
931
932 v3f F;
933 v3_muls( ideal_diff, -k_cog_spring * k_rb_rate, F );
934 v3_muladds( F, rv, -k_cog_damp * k_rb_rate, F );
935
936 float ra = k_cog_mass_ratio,
937 rb = 1.0f-k_cog_mass_ratio;
938
939 /* Apply forces & intergrate */
940 v3_muladds( s->state.cog_v, F, -rb, s->state.cog_v );
941 v3_muladds( s->state.cog_v, player->basis[1], -9.8f * k_rb_delta,
942 s->state.cog_v );
943
944 v3_muladds( s->state.cog, s->state.cog_v, k_rb_delta, s->state.cog );
945 }
946
947
948 VG_STATIC void skate_integrate( player_instance *player )
949 {
950 struct player_skate *s = &player->_skate;
951
952 float decay_rate = 1.0f - (k_rb_delta * 3.0f),
953 decay_rate_y = 1.0f;
954
955 if( s->state.activity >= k_skate_activity_grind_any )
956 {
957 decay_rate = 1.0f-vg_lerpf( 3.0f, 20.0f, s->grind_strength ) * k_rb_delta;
958 decay_rate_y = decay_rate;
959 }
960
961 float wx = v3_dot( player->rb.w, player->rb.to_world[0] ) * decay_rate,
962 wy = v3_dot( player->rb.w, player->rb.to_world[1] ) * decay_rate_y,
963 wz = v3_dot( player->rb.w, player->rb.to_world[2] ) * decay_rate;
964
965 v3_muls( player->rb.to_world[0], wx, player->rb.w );
966 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
967 v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
968
969 s->state.flip_time += s->state.flip_rate * k_rb_delta;
970 rb_update_transform( &player->rb );
971 }
972
973 /*
974 * 1 2 or 3
975 */
976
977 VG_STATIC int player_skate_trick_input( player_instance *player )
978 {
979 return (player->input_trick0->button.value) |
980 (player->input_trick1->button.value << 1) |
981 (player->input_trick2->button.value << 1) |
982 (player->input_trick2->button.value);
983 }
984
985 VG_STATIC void player__skate_pre_update( player_instance *player )
986 {
987 struct player_skate *s = &player->_skate;
988
989 if( vg_input_button_down( player->input_use ) )
990 {
991 player->subsystem = k_player_subsystem_walk;
992
993 v3f angles;
994 v3_copy( player->cam.angles, angles );
995 angles[2] = 0.0f;
996
997 player->holdout_time = 0.25f;
998 player__walk_transition( player, angles );
999 return;
1000 }
1001
1002 if( vg_input_button_down( player->input_reset ) )
1003 {
1004 player->rb.co[1] += 2.0f;
1005 s->state.cog[1] += 2.0f;
1006 q_axis_angle( player->rb.q, (v3f){1.0f,0.0f,0.0f}, VG_PIf * 0.25f );
1007 v3_zero( player->rb.w );
1008 v3_zero( player->rb.v );
1009
1010 rb_update_transform( &player->rb );
1011 }
1012
1013 int trick_id;
1014 if( (s->state.activity == k_skate_activity_air) &&
1015 (trick_id = player_skate_trick_input( player )) )
1016 {
1017 if( (vg.time - s->state.jump_time) < 0.1f )
1018 {
1019 v3_zero( s->state.trick_vel );
1020 s->state.trick_time = 0.0f;
1021
1022 if( trick_id == 1 )
1023 {
1024 s->state.trick_vel[0] = 3.0f;
1025 }
1026 else if( trick_id == 2 )
1027 {
1028 s->state.trick_vel[2] = 3.0f;
1029 }
1030 else if( trick_id == 3 )
1031 {
1032 s->state.trick_vel[0] = 2.0f;
1033 s->state.trick_vel[2] = 2.0f;
1034 }
1035 }
1036 }
1037 }
1038
1039 VG_STATIC void player__skate_post_update( player_instance *player )
1040 {
1041 struct player_skate *s = &player->_skate;
1042
1043 for( int i=0; i<s->prediction_count; i++ )
1044 {
1045 struct land_prediction *p = &s->predictions[i];
1046
1047 for( int j=0; j<p->log_length - 1; j ++ )
1048 {
1049 float brightness = p->score*p->score*p->score;
1050 v3f p1;
1051 v3_lerp( p->log[j], p->log[j+1], brightness, p1 );
1052 vg_line( p->log[j], p1, p->colour );
1053 }
1054
1055 vg_line_cross( p->log[p->log_length-1], p->colour, 0.25f );
1056
1057 v3f p1;
1058 v3_add( p->log[p->log_length-1], p->n, p1 );
1059 vg_line( p->log[p->log_length-1], p1, 0xffffffff );
1060
1061 vg_line_pt3( p->apex, 0.02f, 0xffffffff );
1062 }
1063
1064 #if 0
1065 vg_line_pt3( s->state.apex, 0.030f, 0xff0000ff );
1066 #endif
1067 }
1068
1069 /*
1070 * truck alignment model at ra(local)
1071 * returns 1 if valid surface:
1072 * surface_normal will be filled out with an averaged normal vector
1073 * axel_dir will be the direction from left to right wheels
1074 *
1075 * returns 0 if no good surface found
1076 */
1077 VG_STATIC
1078 int skate_compute_surface_alignment( player_instance *player,
1079 v3f ra, u32 colour,
1080 v3f surface_normal, v3f axel_dir )
1081 {
1082 struct player_skate *s = &player->_skate;
1083
1084 v3f truck, left, right;
1085 m4x3_mulv( player->rb.to_world, ra, truck );
1086
1087 v3_muladds( truck, player->rb.to_world[0], -k_board_width, left );
1088 v3_muladds( truck, player->rb.to_world[0], k_board_width, right );
1089 vg_line( left, right, colour );
1090
1091 float k_max_truck_flex = VG_PIf * 0.25f;
1092
1093 ray_hit ray_l, ray_r;
1094
1095 v3f dir;
1096 v3_muls( player->rb.to_world[1], -1.0f, dir );
1097
1098 int res_l = 0, res_r = 0;
1099
1100 for( int i=0; i<8; i++ )
1101 {
1102 float t = 1.0f - (float)i * (1.0f/8.0f);
1103 v3_muladds( truck, player->rb.to_world[0], -k_board_radius*t, left );
1104 v3_muladds( left, player->rb.to_world[1], k_board_radius, left );
1105 ray_l.dist = 2.1f * k_board_radius;
1106
1107 res_l = ray_world( left, dir, &ray_l );
1108
1109 if( res_l )
1110 break;
1111 }
1112
1113 for( int i=0; i<8; i++ )
1114 {
1115 float t = 1.0f - (float)i * (1.0f/8.0f);
1116 v3_muladds( truck, player->rb.to_world[0], k_board_radius*t, right );
1117 v3_muladds( right, player->rb.to_world[1], k_board_radius, right );
1118 ray_r.dist = 2.1f * k_board_radius;
1119
1120 res_r = ray_world( right, dir, &ray_r );
1121
1122 if( res_r )
1123 break;
1124 }
1125
1126 v3f v0;
1127 v3f midpoint;
1128 v3f tangent_average;
1129 v3_muladds( truck, player->rb.to_world[1], -k_board_radius, midpoint );
1130 v3_zero( tangent_average );
1131
1132 if( res_l || res_r )
1133 {
1134 v3f p0, p1, t;
1135 v3_copy( midpoint, p0 );
1136 v3_copy( midpoint, p1 );
1137
1138 if( res_l )
1139 {
1140 v3_copy( ray_l.pos, p0 );
1141 v3_cross( ray_l.normal, player->rb.to_world[0], t );
1142 v3_add( t, tangent_average, tangent_average );
1143 }
1144 if( res_r )
1145 {
1146 v3_copy( ray_r.pos, p1 );
1147 v3_cross( ray_r.normal, player->rb.to_world[0], t );
1148 v3_add( t, tangent_average, tangent_average );
1149 }
1150
1151 v3_sub( p1, p0, v0 );
1152 v3_normalize( v0 );
1153 }
1154 else
1155 {
1156 /* fallback: use the closes point to the trucks */
1157 v3f closest;
1158 int idx = bh_closest_point( world.geo_bh, midpoint, closest, 0.1f );
1159
1160 if( idx != -1 )
1161 {
1162 u32 *tri = &world.scene_geo->arrindices[ idx * 3 ];
1163 v3f verts[3];
1164
1165 for( int j=0; j<3; j++ )
1166 v3_copy( world.scene_geo->arrvertices[ tri[j] ].co, verts[j] );
1167
1168 v3f vert0, vert1, n;
1169 v3_sub( verts[1], verts[0], vert0 );
1170 v3_sub( verts[2], verts[0], vert1 );
1171 v3_cross( vert0, vert1, n );
1172 v3_normalize( n );
1173
1174 if( v3_dot( n, player->rb.to_world[1] ) < 0.3f )
1175 return 0;
1176
1177 v3_cross( n, player->rb.to_world[2], v0 );
1178 v3_muladds( v0, player->rb.to_world[2],
1179 -v3_dot( player->rb.to_world[2], v0 ), v0 );
1180 v3_normalize( v0 );
1181
1182 v3f t;
1183 v3_cross( n, player->rb.to_world[0], t );
1184 v3_add( t, tangent_average, tangent_average );
1185 }
1186 else
1187 return 0;
1188 }
1189
1190 v3_muladds( truck, v0, k_board_width, right );
1191 v3_muladds( truck, v0, -k_board_width, left );
1192
1193 vg_line( left, right, VG__WHITE );
1194
1195 v3_normalize( tangent_average );
1196 v3_cross( v0, tangent_average, surface_normal );
1197 v3_copy( v0, axel_dir );
1198
1199 return 1;
1200 }
1201
1202 VG_STATIC void skate_weight_distribute( player_instance *player )
1203 {
1204 struct player_skate *s = &player->_skate;
1205 v3_zero( s->weight_distribution );
1206
1207 int reverse_dir = v3_dot( player->rb.to_world[2], player->rb.v ) < 0.0f?1:-1;
1208
1209 if( s->state.manual_direction == 0 )
1210 {
1211 if( (player->input_js1v->axis.value > 0.7f) &&
1212 (s->state.activity == k_skate_activity_ground) &&
1213 (s->state.jump_charge <= 0.01f) )
1214 s->state.manual_direction = reverse_dir;
1215 }
1216 else
1217 {
1218 if( player->input_js1v->axis.value < 0.1f )
1219 {
1220 s->state.manual_direction = 0;
1221 }
1222 else
1223 {
1224 if( reverse_dir != s->state.manual_direction )
1225 {
1226 return;
1227 }
1228 }
1229 }
1230
1231 if( s->state.manual_direction )
1232 {
1233 float amt = vg_minf( player->input_js1v->axis.value * 8.0f, 1.0f );
1234 s->weight_distribution[2] = k_board_length * amt *
1235 (float)s->state.manual_direction;
1236 }
1237
1238 /* TODO: Fall back on land normal */
1239 /* TODO: Lerp weight distribution */
1240 if( s->state.manual_direction )
1241 {
1242 v3f plane_z;
1243
1244 m3x3_mulv( player->rb.to_world, s->weight_distribution, plane_z );
1245 v3_negate( plane_z, plane_z );
1246
1247 v3_muladds( plane_z, s->surface_picture,
1248 -v3_dot( plane_z, s->surface_picture ), plane_z );
1249 v3_normalize( plane_z );
1250
1251 v3_muladds( plane_z, s->surface_picture, 0.3f, plane_z );
1252 v3_normalize( plane_z );
1253
1254 v3f p1;
1255 v3_muladds( player->rb.co, plane_z, 1.5f, p1 );
1256 vg_line( player->rb.co, p1, VG__GREEN );
1257
1258 v3f refdir;
1259 v3_muls( player->rb.to_world[2], -(float)s->state.manual_direction,
1260 refdir );
1261
1262 rb_effect_spring_target_vector( &player->rb, refdir, plane_z,
1263 k_manul_spring, k_manul_dampener,
1264 s->substep_delta );
1265 }
1266 }
1267
1268 VG_STATIC void skate_adjust_up_direction( player_instance *player )
1269 {
1270 struct player_skate *s = &player->_skate;
1271
1272 if( s->state.activity == k_skate_activity_ground )
1273 {
1274 v3f target;
1275 v3_copy( s->surface_picture, target );
1276
1277 target[1] += 2.0f * s->surface_picture[1];
1278 v3_normalize( target );
1279
1280 v3_lerp( s->state.up_dir, target,
1281 8.0f * s->substep_delta, s->state.up_dir );
1282 }
1283 else if( s->state.activity == k_skate_activity_air )
1284 {
1285 v3_lerp( s->state.up_dir, player->rb.to_world[1],
1286 8.0f * s->substep_delta, s->state.up_dir );
1287 }
1288 else
1289 {
1290 v3_lerp( s->state.up_dir, player->basis[1],
1291 12.0f * s->substep_delta, s->state.up_dir );
1292 }
1293 }
1294
1295 VG_STATIC int skate_point_visible( v3f origin, v3f target )
1296 {
1297 v3f dir;
1298 v3_sub( target, origin, dir );
1299
1300 ray_hit ray;
1301 ray.dist = v3_length( dir );
1302 v3_muls( dir, 1.0f/ray.dist, dir );
1303 ray.dist -= 0.025f;
1304
1305 if( ray_world( origin, dir, &ray ) )
1306 return 0;
1307
1308 return 1;
1309 }
1310
1311 VG_STATIC void skate_grind_orient( struct grind_info *inf, m3x3f mtx )
1312 {
1313 /* TODO: Is N and Dir really orthogonal? */
1314 v3_copy( inf->dir, mtx[0] );
1315 v3_copy( inf->n, mtx[1] );
1316 v3_cross( mtx[0], mtx[1], mtx[2] );
1317 }
1318
1319 VG_STATIC void skate_grind_friction( player_instance *player,
1320 struct grind_info *inf, float strength )
1321 {
1322 v3f v2;
1323 v3_muladds( player->rb.to_world[2], inf->n,
1324 -v3_dot( player->rb.to_world[2], inf->n ), v2 );
1325
1326 float a = 1.0f-fabsf( v3_dot( v2, inf->dir ) ),
1327 dir = vg_signf( v3_dot( player->rb.v, inf->dir ) ),
1328 F = a * -dir * k_grind_max_friction;
1329
1330 v3_muladds( player->rb.v, inf->dir, F*k_rb_delta*strength, player->rb.v );
1331 }
1332
1333 VG_STATIC void skate_grind_decay( player_instance *player,
1334 struct grind_info *inf, float strength )
1335 {
1336 m3x3f mtx, mtx_inv;
1337 skate_grind_orient( inf, mtx );
1338 m3x3_transpose( mtx, mtx_inv );
1339
1340 v3f v_grind;
1341 m3x3_mulv( mtx_inv, player->rb.v, v_grind );
1342
1343 float decay = 1.0f - ( k_rb_delta * k_grind_decayxy * strength );
1344 v3_mul( v_grind, (v3f){ 1.0f, decay, decay }, v_grind );
1345 m3x3_mulv( mtx, v_grind, player->rb.v );
1346 }
1347
1348 VG_STATIC void skate_grind_truck_apply( player_instance *player,
1349 float sign, struct grind_info *inf,
1350 float strength )
1351 {
1352 struct player_skate *s = &player->_skate;
1353
1354 /* TODO: Trash compactor this */
1355 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1356 v3f raw, wsp;
1357 m3x3_mulv( player->rb.to_world, ra, raw );
1358 v3_add( player->rb.co, raw, wsp );
1359
1360 v3_copy( ra, s->weight_distribution );
1361
1362 v3f delta;
1363 v3_sub( inf->co, wsp, delta );
1364
1365 /* spring force */
1366 v3_muladds( player->rb.v, delta, k_spring_force*strength*k_rb_delta,
1367 player->rb.v );
1368
1369 skate_grind_decay( player, inf, strength );
1370 skate_grind_friction( player, inf, strength );
1371
1372 /* yeah yeah yeah yeah */
1373 v3f raw_nplane, axis;
1374 v3_muladds( raw, inf->n, -v3_dot( inf->n, raw ), raw_nplane );
1375 v3_cross( raw_nplane, inf->n, axis );
1376 v3_normalize( axis );
1377
1378 /* orientation */
1379 m3x3f mtx;
1380 skate_grind_orient( inf, mtx );
1381 v3f target_fwd, fwd, up, target_up;
1382 m3x3_mulv( mtx, s->grind_vec, target_fwd );
1383 v3_copy( raw_nplane, fwd );
1384 v3_copy( player->rb.to_world[1], up );
1385 v3_copy( inf->n, target_up );
1386
1387 v3_muladds( target_fwd, inf->n, -v3_dot(inf->n,target_fwd), target_fwd );
1388 v3_muladds( fwd, inf->n, -v3_dot(inf->n,fwd), fwd );
1389
1390 v3_normalize( target_fwd );
1391 v3_normalize( fwd );
1392
1393
1394 float way = player->input_js1v->axis.value *
1395 vg_signf( v3_dot( raw_nplane, player->rb.v ) );
1396
1397 v4f q;
1398 q_axis_angle( q, axis, VG_PIf*0.125f * way );
1399 q_mulv( q, target_up, target_up );
1400 q_mulv( q, target_fwd, target_fwd );
1401
1402 rb_effect_spring_target_vector( &player->rb, up, target_up,
1403 k_grind_spring,
1404 k_grind_dampener,
1405 k_rb_delta );
1406
1407 rb_effect_spring_target_vector( &player->rb, fwd, target_fwd,
1408 k_grind_spring*strength,
1409 k_grind_dampener*strength,
1410 k_rb_delta );
1411
1412 vg_line_arrow( player->rb.co, target_up, 1.0f, VG__GREEN );
1413 vg_line_arrow( player->rb.co, fwd, 0.8f, VG__RED );
1414 vg_line_arrow( player->rb.co, target_fwd, 1.0f, VG__YELOW );
1415
1416 s->grind_strength = strength;
1417
1418 /* Fake contact */
1419 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1420 m4x3_mulv( player->rb.to_local, wsp, limit->ra );
1421 m3x3_mulv( player->rb.to_local, inf->n, limit->n );
1422 limit->p = 0.0f;
1423
1424 v3_copy( inf->dir, s->grind_dir );
1425 }
1426
1427 VG_STATIC void skate_5050_apply( player_instance *player,
1428 struct grind_info *inf_front,
1429 struct grind_info *inf_back )
1430 {
1431 struct player_skate *s = &player->_skate;
1432 struct grind_info inf_avg;
1433
1434 v3_sub( inf_front->co, inf_back->co, inf_avg.dir );
1435 v3_muladds( inf_back->co, inf_avg.dir, 0.5f, inf_avg.co );
1436 v3_normalize( inf_avg.dir );
1437
1438 v3f axis_front, axis_back, axis;
1439 v3_cross( inf_front->dir, inf_front->n, axis_front );
1440 v3_cross( inf_back->dir, inf_back->n, axis_back );
1441 v3_add( axis_front, axis_back, axis );
1442 v3_normalize( axis );
1443
1444 v3_cross( axis, inf_avg.dir, inf_avg.n );
1445
1446 skate_grind_decay( player, &inf_avg, 1.0f );
1447
1448
1449 float way = player->input_js1v->axis.value *
1450 vg_signf( v3_dot( player->rb.to_world[2], player->rb.v ) );
1451 v4f q;
1452 v3f up, target_up;
1453 v3_copy( player->rb.to_world[1], up );
1454 v3_copy( inf_avg.n, target_up );
1455 q_axis_angle( q, player->rb.to_world[0], VG_PIf*0.25f * -way );
1456 q_mulv( q, target_up, target_up );
1457
1458 v3_zero( s->weight_distribution );
1459 s->weight_distribution[2] = k_board_length * -way;
1460
1461 rb_effect_spring_target_vector( &player->rb, up, target_up,
1462 k_grind_spring,
1463 k_grind_dampener,
1464 k_rb_delta );
1465
1466 v3f fwd_nplane, dir_nplane;
1467 v3_muladds( player->rb.to_world[2], inf_avg.n,
1468 -v3_dot( player->rb.to_world[2], inf_avg.n ), fwd_nplane );
1469
1470 v3f dir;
1471 v3_muls( inf_avg.dir, v3_dot( fwd_nplane, inf_avg.dir ), dir );
1472 v3_muladds( dir, inf_avg.n, -v3_dot( dir, inf_avg.n ), dir_nplane );
1473
1474 v3_normalize( fwd_nplane );
1475 v3_normalize( dir_nplane );
1476
1477 rb_effect_spring_target_vector( &player->rb, fwd_nplane, dir_nplane,
1478 1000.0f,
1479 k_grind_dampener,
1480 k_rb_delta );
1481
1482 v3f pos_front = { 0.0f, -k_board_radius, -1.0f * k_board_length },
1483 pos_back = { 0.0f, -k_board_radius, 1.0f * k_board_length },
1484 delta_front, delta_back, delta_total;
1485
1486 m4x3_mulv( player->rb.to_world, pos_front, pos_front );
1487 m4x3_mulv( player->rb.to_world, pos_back, pos_back );
1488
1489 v3_sub( inf_front->co, pos_front, delta_front );
1490 v3_sub( inf_back->co, pos_back, delta_back );
1491 v3_add( delta_front, delta_back, delta_total );
1492
1493 v3_muladds( player->rb.v, delta_total, 50.0f * k_rb_delta, player->rb.v );
1494
1495 /* Fake contact */
1496 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1497 v3_zero( limit->ra );
1498 m3x3_mulv( player->rb.to_local, inf_avg.n, limit->n );
1499 limit->p = 0.0f;
1500
1501 v3_copy( inf_avg.dir, s->grind_dir );
1502 }
1503
1504 VG_STATIC int skate_grind_truck_renew( player_instance *player, float sign,
1505 struct grind_info *inf )
1506 {
1507 struct player_skate *s = &player->_skate;
1508
1509 v3f wheel_co = { 0.0f, 0.0f, sign * k_board_length },
1510 grind_co = { 0.0f, -k_board_radius, sign * k_board_length };
1511
1512 m4x3_mulv( player->rb.to_world, wheel_co, wheel_co );
1513 m4x3_mulv( player->rb.to_world, grind_co, grind_co );
1514
1515 /* Exit condition: lost grind tracking */
1516 if( !skate_grind_scansq( player, grind_co, player->rb.v, 0.3f, inf ) )
1517 return 0;
1518
1519 /* Exit condition: cant see grind target directly */
1520 if( !skate_point_visible( wheel_co, inf->co ) )
1521 return 0;
1522
1523 /* Exit condition: minimum velocity not reached, but allow a bit of error */
1524 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1525 minv = k_grind_axel_min_vel*0.8f;
1526
1527 if( dv < minv )
1528 return 0;
1529
1530 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1531 return 0;
1532
1533 v3_copy( inf->dir, s->grind_dir );
1534 return 1;
1535 }
1536
1537 VG_STATIC int skate_grind_truck_entry( player_instance *player, float sign,
1538 struct grind_info *inf )
1539 {
1540 struct player_skate *s = &player->_skate;
1541
1542 /* TODO: Trash compactor this */
1543 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1544
1545 v3f raw, wsp;
1546 m3x3_mulv( player->rb.to_world, ra, raw );
1547 v3_add( player->rb.co, raw, wsp );
1548
1549 if( skate_grind_scansq( player, wsp, player->rb.v, 0.3, inf ) )
1550 {
1551 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1552 return 0;
1553
1554 /* velocity should be at least 60% aligned */
1555 v3f pv, axis;
1556 v3_cross( inf->n, inf->dir, axis );
1557 v3_muladds( player->rb.v, inf->n, -v3_dot( player->rb.v, inf->n ), pv );
1558
1559 if( v3_length2( pv ) < 0.0001f )
1560 return 0;
1561 v3_normalize( pv );
1562
1563 if( fabsf(v3_dot( pv, inf->dir )) < k_grind_axel_max_angle )
1564 return 0;
1565
1566 if( v3_dot( player->rb.v, inf->n ) > 0.5f )
1567 return 0;
1568
1569 #if 0
1570 /* check for vertical alignment */
1571 if( v3_dot( player->rb.to_world[1], inf->n ) < k_grind_axel_max_vangle )
1572 return 0;
1573 #endif
1574
1575 v3f local_co, local_dir, local_n;
1576 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1577 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1578 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1579
1580 v2f delta = { local_co[0], local_co[2] - k_board_length*sign };
1581
1582 float truck_height = -(k_board_radius+0.03f);
1583
1584 v3f rv;
1585 v3_cross( player->rb.w, raw, rv );
1586 v3_add( player->rb.v, rv, rv );
1587
1588 if( (local_co[1] >= truck_height) &&
1589 (v2_length2( delta ) <= k_board_radius*k_board_radius) )
1590 {
1591 return 1;
1592 }
1593 }
1594
1595 return 0;
1596 }
1597
1598 VG_STATIC void skate_boardslide_apply( player_instance *player,
1599 struct grind_info *inf )
1600 {
1601 struct player_skate *s = &player->_skate;
1602
1603 v3f local_co, local_dir, local_n;
1604 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1605 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1606 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1607
1608 v3f intersection;
1609 v3_muladds( local_co, local_dir, local_co[0]/-local_dir[0],
1610 intersection );
1611 v3_copy( intersection, s->weight_distribution );
1612
1613 skate_grind_decay( player, inf, 0.1f );
1614 skate_grind_friction( player, inf, 0.25f );
1615
1616 /* direction alignment */
1617 v3f dir, perp;
1618 v3_cross( local_dir, local_n, perp );
1619 v3_muls( local_dir, vg_signf(local_dir[0]), dir );
1620 v3_muls( perp, vg_signf(perp[2]), perp );
1621
1622 m3x3_mulv( player->rb.to_world, dir, dir );
1623 m3x3_mulv( player->rb.to_world, perp, perp );
1624
1625 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1626 dir,
1627 k_grind_spring, k_grind_dampener,
1628 k_rb_delta );
1629
1630 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[2],
1631 perp,
1632 k_grind_spring, k_grind_dampener,
1633 k_rb_delta );
1634
1635 vg_line_arrow( player->rb.co, dir, 0.5f, VG__GREEN );
1636 vg_line_arrow( player->rb.co, perp, 0.5f, VG__BLUE );
1637
1638 v3_copy( inf->dir, s->grind_dir );
1639 }
1640
1641 VG_STATIC int skate_boardslide_entry( player_instance *player,
1642 struct grind_info *inf )
1643 {
1644 struct player_skate *s = &player->_skate;
1645
1646 if( skate_grind_scansq( player, player->rb.co,
1647 player->rb.to_world[0], k_board_length,
1648 inf ) )
1649 {
1650 v3f local_co, local_dir;
1651 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1652 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1653
1654 if( (fabsf(local_co[2]) <= k_board_length) && /* within wood area */
1655 (local_co[1] >= 0.0f) && /* at deck level */
1656 (fabsf(local_dir[0]) >= 0.5f) ) /* perpendicular to us */
1657 {
1658 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1659 return 0;
1660
1661 return 1;
1662 }
1663 }
1664
1665 return 0;
1666 }
1667
1668 VG_STATIC int skate_boardslide_renew( player_instance *player,
1669 struct grind_info *inf )
1670 {
1671 struct player_skate *s = &player->_skate;
1672
1673 if( !skate_grind_scansq( player, player->rb.co,
1674 player->rb.to_world[0], k_board_length,
1675 inf ) )
1676 return 0;
1677
1678 /* Exit condition: cant see grind target directly */
1679 v3f vis;
1680 v3_muladds( player->rb.co, player->rb.to_world[1], 0.2f, vis );
1681 if( !skate_point_visible( vis, inf->co ) )
1682 return 0;
1683
1684 /* Exit condition: minimum velocity not reached, but allow a bit of error
1685 * TODO: trash compactor */
1686 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1687 minv = k_grind_axel_min_vel*0.8f;
1688
1689 if( dv < minv )
1690 return 0;
1691
1692 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1693 return 0;
1694
1695 return 1;
1696 }
1697
1698 VG_STATIC void skate_store_grind_vec( player_instance *player,
1699 struct grind_info *inf )
1700 {
1701 struct player_skate *s = &player->_skate;
1702
1703 m3x3f mtx;
1704 skate_grind_orient( inf, mtx );
1705 m3x3_transpose( mtx, mtx );
1706
1707 v3f raw;
1708 v3_sub( inf->co, player->rb.co, raw );
1709
1710 m3x3_mulv( mtx, raw, s->grind_vec );
1711 v3_normalize( s->grind_vec );
1712 v3_copy( inf->dir, s->grind_dir );
1713 }
1714
1715 VG_STATIC enum skate_activity skate_availible_grind( player_instance *player )
1716 {
1717 struct player_skate *s = &player->_skate;
1718
1719 /* debounces this state manager a little bit */
1720 if( s->frames_since_activity_change < 10 )
1721 {
1722 s->frames_since_activity_change ++;
1723 return k_skate_activity_undefined;
1724 }
1725
1726 struct grind_info inf_back50,
1727 inf_front50,
1728 inf_slide;
1729
1730 int res_back50 = 0,
1731 res_front50 = 0,
1732 res_slide = 0;
1733
1734 if( s->state.activity == k_skate_activity_grind_boardslide )
1735 {
1736 res_slide = skate_boardslide_renew( player, &inf_slide );
1737 }
1738 else if( s->state.activity == k_skate_activity_grind_back50 )
1739 {
1740 res_back50 = skate_grind_truck_renew( player, 1.0f, &inf_back50 );
1741 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1742 }
1743 else if( s->state.activity == k_skate_activity_grind_front50 )
1744 {
1745 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1746 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1747 }
1748 else if( s->state.activity == k_skate_activity_grind_5050 )
1749 {
1750 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1751 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1752 }
1753 else
1754 {
1755 res_slide = skate_boardslide_entry( player, &inf_slide );
1756 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1757 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1758
1759 if( res_back50 != res_front50 )
1760 {
1761 int wants_to_do_that = fabsf(player->input_js1v->axis.value) >= 0.25f;
1762
1763 res_back50 &= wants_to_do_that;
1764 res_front50 &= wants_to_do_that;
1765 }
1766 }
1767
1768 const enum skate_activity table[] =
1769 { /* slide | back | front */
1770 k_skate_activity_undefined, /* 0 0 0 */
1771 k_skate_activity_grind_front50, /* 0 0 1 */
1772 k_skate_activity_grind_back50, /* 0 1 0 */
1773 k_skate_activity_grind_5050, /* 0 1 1 */
1774
1775 /* slide has priority always */
1776 k_skate_activity_grind_boardslide, /* 1 0 0 */
1777 k_skate_activity_grind_boardslide, /* 1 0 1 */
1778 k_skate_activity_grind_boardslide, /* 1 1 0 */
1779 k_skate_activity_grind_boardslide, /* 1 1 1 */
1780 }
1781 , new_activity = table[ res_slide << 2 | res_back50 << 1 | res_front50 ];
1782
1783 if( new_activity == k_skate_activity_undefined )
1784 {
1785 if( s->state.activity >= k_skate_activity_grind_any )
1786 s->frames_since_activity_change = 0;
1787 }
1788 else if( new_activity == k_skate_activity_grind_boardslide )
1789 {
1790 skate_boardslide_apply( player, &inf_slide );
1791 }
1792 else if( new_activity == k_skate_activity_grind_back50 )
1793 {
1794 if( s->state.activity != k_skate_activity_grind_back50 )
1795 skate_store_grind_vec( player, &inf_back50 );
1796
1797 skate_grind_truck_apply( player, 1.0f, &inf_back50, 1.0f );
1798 }
1799 else if( new_activity == k_skate_activity_grind_front50 )
1800 {
1801 if( s->state.activity != k_skate_activity_grind_front50 )
1802 skate_store_grind_vec( player, &inf_front50 );
1803
1804 skate_grind_truck_apply( player, -1.0f, &inf_front50, 1.0f );
1805 }
1806 else if( new_activity == k_skate_activity_grind_5050 )
1807 skate_5050_apply( player, &inf_front50, &inf_back50 );
1808
1809 return new_activity;
1810 }
1811
1812 VG_STATIC void player__skate_update( player_instance *player )
1813 {
1814 struct player_skate *s = &player->_skate;
1815 v3_copy( player->rb.co, s->state.prev_pos );
1816 s->state.activity_prev = s->state.activity;
1817
1818 struct board_collider
1819 {
1820 v3f pos;
1821 float radius;
1822
1823 u32 colour;
1824
1825 enum board_collider_state
1826 {
1827 k_collider_state_default,
1828 k_collider_state_disabled,
1829 k_collider_state_colliding
1830 }
1831 state;
1832 }
1833 wheels[] =
1834 {
1835 {
1836 { 0.0f, 0.0f, -k_board_length },
1837 .radius = k_board_radius,
1838 .colour = VG__RED
1839 },
1840 {
1841 { 0.0f, 0.0f, k_board_length },
1842 .radius = k_board_radius,
1843 .colour = VG__GREEN
1844 }
1845 };
1846
1847 const int k_wheel_count = 2;
1848
1849 s->substep = k_rb_delta;
1850 s->substep_delta = s->substep;
1851 s->limit_count = 0;
1852
1853 int substep_count = 0;
1854
1855 v3_zero( s->surface_picture );
1856
1857 for( int i=0; i<k_wheel_count; i++ )
1858 wheels[i].state = k_collider_state_default;
1859
1860 /* check if we can enter or continue grind */
1861 enum skate_activity grindable_activity = skate_availible_grind( player );
1862 if( grindable_activity != k_skate_activity_undefined )
1863 {
1864 s->state.activity = grindable_activity;
1865 goto grinding;
1866 }
1867
1868 int contact_count = 0;
1869 for( int i=0; i<2; i++ )
1870 {
1871 v3f normal, axel;
1872 v3_copy( player->rb.to_world[0], axel );
1873
1874 if( skate_compute_surface_alignment( player, wheels[i].pos,
1875 wheels[i].colour, normal, axel ) )
1876 {
1877 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1878 axel,
1879 k_board_spring, k_board_dampener,
1880 s->substep_delta );
1881
1882 v3_add( normal, s->surface_picture, s->surface_picture );
1883 contact_count ++;
1884 }
1885
1886 m3x3_mulv( player->rb.to_local, axel, s->truckv0[i] );
1887 }
1888
1889 if( contact_count )
1890 {
1891 s->state.activity = k_skate_activity_ground;
1892 s->state.gravity_bias = k_gravity;
1893 v3_normalize( s->surface_picture );
1894
1895 skate_apply_friction_model( player );
1896 skate_weight_distribute( player );
1897 skate_apply_pump_model( player );
1898 }
1899 else
1900 {
1901 s->state.activity = k_skate_activity_air;
1902 v3_zero( s->weight_distribution );
1903 skate_apply_air_model( player );
1904 }
1905
1906 grinding:;
1907
1908 if( s->state.activity == k_skate_activity_grind_back50 )
1909 wheels[1].state = k_collider_state_disabled;
1910 if( s->state.activity == k_skate_activity_grind_front50 )
1911 wheels[0].state = k_collider_state_disabled;
1912 if( s->state.activity == k_skate_activity_grind_5050 )
1913 {
1914 wheels[0].state = k_collider_state_disabled;
1915 wheels[1].state = k_collider_state_disabled;
1916 }
1917
1918 /* all activities */
1919 skate_apply_steering_model( player );
1920 skate_adjust_up_direction( player );
1921 skate_apply_cog_model( player );
1922 skate_apply_jump_model( player );
1923 skate_apply_grab_model( player );
1924 skate_apply_trick_model( player );
1925
1926 begin_collision:;
1927
1928 /*
1929 * Phase 0: Continous collision detection
1930 * --------------------------------------------------------------------------
1931 */
1932
1933 v3f head_wp0, head_wp1, start_co;
1934 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp0 );
1935 v3_copy( player->rb.co, start_co );
1936
1937 /* calculate transform one step into future */
1938 v3f future_co;
1939 v4f future_q;
1940 v3_muladds( player->rb.co, player->rb.v, s->substep, future_co );
1941
1942 if( v3_length2( player->rb.w ) > 0.0f )
1943 {
1944 v4f rotation;
1945 v3f axis;
1946 v3_copy( player->rb.w, axis );
1947
1948 float mag = v3_length( axis );
1949 v3_divs( axis, mag, axis );
1950 q_axis_angle( rotation, axis, mag*s->substep );
1951 q_mul( rotation, player->rb.q, future_q );
1952 q_normalize( future_q );
1953 }
1954 else
1955 v4_copy( player->rb.q, future_q );
1956
1957 v3f future_cg, current_cg, cg_offset;
1958 q_mulv( player->rb.q, s->weight_distribution, current_cg );
1959 q_mulv( future_q, s->weight_distribution, future_cg );
1960 v3_sub( future_cg, current_cg, cg_offset );
1961
1962 /* calculate the minimum time we can move */
1963 float max_time = s->substep;
1964
1965 for( int i=0; i<k_wheel_count; i++ )
1966 {
1967 if( wheels[i].state == k_collider_state_disabled )
1968 continue;
1969
1970 v3f current, future, r_cg;
1971
1972 q_mulv( future_q, wheels[i].pos, future );
1973 v3_add( future, future_co, future );
1974 v3_add( cg_offset, future, future );
1975
1976 q_mulv( player->rb.q, wheels[i].pos, current );
1977 v3_add( current, player->rb.co, current );
1978
1979 float t;
1980 v3f n;
1981
1982 float cast_radius = wheels[i].radius - k_penetration_slop * 2.0f;
1983 if( spherecast_world( current, future, cast_radius, &t, n ) != -1)
1984 max_time = vg_minf( max_time, t * s->substep );
1985 }
1986
1987 /* clamp to a fraction of delta, to prevent locking */
1988 float rate_lock = substep_count;
1989 rate_lock *= k_rb_delta * 0.1f;
1990 rate_lock *= rate_lock;
1991
1992 max_time = vg_maxf( max_time, rate_lock );
1993 s->substep_delta = max_time;
1994
1995 /* integrate */
1996 v3_muladds( player->rb.co, player->rb.v, s->substep_delta, player->rb.co );
1997 if( v3_length2( player->rb.w ) > 0.0f )
1998 {
1999 v4f rotation;
2000 v3f axis;
2001 v3_copy( player->rb.w, axis );
2002
2003 float mag = v3_length( axis );
2004 v3_divs( axis, mag, axis );
2005 q_axis_angle( rotation, axis, mag*s->substep_delta );
2006 q_mul( rotation, player->rb.q, player->rb.q );
2007 q_normalize( player->rb.q );
2008
2009 q_mulv( player->rb.q, s->weight_distribution, future_cg );
2010 v3_sub( current_cg, future_cg, cg_offset );
2011 v3_add( player->rb.co, cg_offset, player->rb.co );
2012 }
2013
2014 rb_update_transform( &player->rb );
2015 v3_muladds( player->rb.v, player->basis[1],
2016 -s->state.gravity_bias * s->substep_delta, player->rb.v );
2017
2018 s->substep -= s->substep_delta;
2019
2020 rb_ct manifold[128];
2021 int manifold_len = 0;
2022
2023 /*
2024 * Phase -1: head detection
2025 * --------------------------------------------------------------------------
2026 */
2027 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp1 );
2028
2029 float t;
2030 v3f n;
2031 if( (v3_dist2( head_wp0, head_wp1 ) > 0.001f) &&
2032 (spherecast_world( head_wp0, head_wp1, 0.2f, &t, n ) != -1) )
2033 {
2034 v3_lerp( start_co, player->rb.co, t, player->rb.co );
2035 rb_update_transform( &player->rb );
2036
2037 player__dead_transition( player );
2038 return;
2039 }
2040
2041 /*
2042 * Phase 1: Regular collision detection
2043 * --------------------------------------------------------------------------
2044 */
2045
2046 for( int i=0; i<k_wheel_count; i++ )
2047 {
2048 if( wheels[i].state == k_collider_state_disabled )
2049 continue;
2050
2051 m4x3f mtx;
2052 m3x3_identity( mtx );
2053 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2054
2055 rb_sphere collider = { .radius = wheels[i].radius };
2056
2057 rb_ct *man = &manifold[ manifold_len ];
2058
2059 int l = skate_collide_smooth( player, mtx, &collider, man );
2060 if( l )
2061 wheels[i].state = k_collider_state_colliding;
2062
2063 manifold_len += l;
2064 }
2065
2066 float grind_radius = k_board_radius * 0.75f;
2067 rb_capsule capsule = { .height = (k_board_length+0.2f)*2.0f,
2068 .radius=grind_radius };
2069 m4x3f mtx;
2070 v3_muls( player->rb.to_world[0], 1.0f, mtx[0] );
2071 v3_muls( player->rb.to_world[2], -1.0f, mtx[1] );
2072 v3_muls( player->rb.to_world[1], 1.0f, mtx[2] );
2073 v3_muladds( player->rb.to_world[3], player->rb.to_world[1],
2074 grind_radius + k_board_radius*0.25f, mtx[3] );
2075
2076 rb_ct *cman = &manifold[manifold_len];
2077
2078 int l = rb_capsule__scene( mtx, &capsule, NULL, &world.rb_geo.inf.scene,
2079 cman );
2080
2081 /* weld joints */
2082 for( int i=0; i<l; i ++ )
2083 cman[l].type = k_contact_type_edge;
2084 rb_manifold_filter_joint_edges( cman, l, 0.03f );
2085 l = rb_manifold_apply_filtered( cman, l );
2086
2087 manifold_len += l;
2088
2089 debug_capsule( mtx, capsule.radius, capsule.height, VG__WHITE );
2090
2091 /* add limits */
2092 for( int i=0; i<s->limit_count; i++ )
2093 {
2094 struct grind_limit *limit = &s->limits[i];
2095 rb_ct *ct = &manifold[ manifold_len ++ ];
2096 m4x3_mulv( player->rb.to_world, limit->ra, ct->co );
2097 m3x3_mulv( player->rb.to_world, limit->n, ct->n );
2098 ct->p = limit->p;
2099 ct->type = k_contact_type_default;
2100 }
2101
2102 /*
2103 * Phase 3: Dynamics
2104 * --------------------------------------------------------------------------
2105 */
2106
2107
2108 v3f world_cog;
2109 m4x3_mulv( player->rb.to_world, s->weight_distribution, world_cog );
2110 vg_line_pt3( world_cog, 0.02f, VG__BLACK );
2111
2112 for( int i=0; i<manifold_len; i ++ )
2113 {
2114 rb_prepare_contact( &manifold[i], s->substep_delta );
2115 rb_debug_contact( &manifold[i] );
2116 }
2117
2118 /* yes, we are currently rebuilding mass matrices every frame. too bad! */
2119 v3f extent = { k_board_width, 0.1f, k_board_length };
2120 float ex2 = k_board_interia*extent[0]*extent[0],
2121 ey2 = k_board_interia*extent[1]*extent[1],
2122 ez2 = k_board_interia*extent[2]*extent[2];
2123
2124 float mass = 2.0f * (extent[0]*extent[1]*extent[2]);
2125 float inv_mass = 1.0f/mass;
2126
2127 v3f I;
2128 I[0] = ((1.0f/12.0f) * mass * (ey2+ez2));
2129 I[1] = ((1.0f/12.0f) * mass * (ex2+ez2));
2130 I[2] = ((1.0f/12.0f) * mass * (ex2+ey2));
2131
2132 m3x3f iI;
2133 m3x3_identity( iI );
2134 iI[0][0] = I[0];
2135 iI[1][1] = I[1];
2136 iI[2][2] = I[2];
2137 m3x3_inv( iI, iI );
2138
2139 m3x3f iIw;
2140 m3x3_mul( iI, player->rb.to_local, iIw );
2141 m3x3_mul( player->rb.to_world, iIw, iIw );
2142
2143 for( int j=0; j<10; j++ )
2144 {
2145 for( int i=0; i<manifold_len; i++ )
2146 {
2147 /*
2148 * regular dance; calculate velocity & total mass, apply impulse.
2149 */
2150
2151 struct contact *ct = &manifold[i];
2152
2153 v3f rv, delta;
2154 v3_sub( ct->co, world_cog, delta );
2155 v3_cross( player->rb.w, delta, rv );
2156 v3_add( player->rb.v, rv, rv );
2157
2158 v3f raCn;
2159 v3_cross( delta, ct->n, raCn );
2160
2161 v3f raCnI, rbCnI;
2162 m3x3_mulv( iIw, raCn, raCnI );
2163
2164 float normal_mass = 1.0f / (inv_mass + v3_dot(raCn,raCnI)),
2165 vn = v3_dot( rv, ct->n ),
2166 lambda = normal_mass * ( -vn );
2167
2168 float temp = ct->norm_impulse;
2169 ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
2170 lambda = ct->norm_impulse - temp;
2171
2172 v3f impulse;
2173 v3_muls( ct->n, lambda, impulse );
2174
2175 v3_muladds( player->rb.v, impulse, inv_mass, player->rb.v );
2176 v3_cross( delta, impulse, impulse );
2177 m3x3_mulv( iIw, impulse, impulse );
2178 v3_add( impulse, player->rb.w, player->rb.w );
2179
2180 v3_cross( player->rb.w, delta, rv );
2181 v3_add( player->rb.v, rv, rv );
2182 vn = v3_dot( rv, ct->n );
2183 }
2184 }
2185
2186 v3f dt;
2187 rb_depenetrate( manifold, manifold_len, dt );
2188 v3_add( dt, player->rb.co, player->rb.co );
2189 rb_update_transform( &player->rb );
2190
2191 substep_count ++;
2192
2193 if( s->substep >= 0.0001f )
2194 goto begin_collision; /* again! */
2195
2196 /*
2197 * End of collision and dynamics routine
2198 * --------------------------------------------------------------------------
2199 */
2200
2201 for( int i=0; i<k_wheel_count; i++ )
2202 {
2203 m4x3f mtx;
2204 m3x3_copy( player->rb.to_world, mtx );
2205 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2206 debug_sphere( mtx, wheels[i].radius,
2207 (u32[]){ VG__WHITE, VG__BLACK,
2208 wheels[i].colour }[ wheels[i].state ]);
2209 }
2210
2211 skate_integrate( player );
2212 vg_line_pt3( s->state.cog, 0.02f, VG__WHITE );
2213
2214 teleport_gate *gate;
2215 if( (gate = world_intersect_gates( player->rb.co, s->state.prev_pos )) )
2216 {
2217 m4x3_mulv( gate->transport, player->rb.co, player->rb.co );
2218 m3x3_mulv( gate->transport, player->rb.v, player->rb.v );
2219 m4x3_mulv( gate->transport, s->state.cog, s->state.cog );
2220 m3x3_mulv( gate->transport, s->state.cog_v, s->state.cog_v );
2221 m3x3_mulv( gate->transport, s->state.throw_v, s->state.throw_v );
2222 m3x3_mulv( gate->transport, s->state.head_position,
2223 s->state.head_position );
2224 m3x3_mulv( gate->transport, s->state.up_dir, s->state.up_dir );
2225
2226 v4f transport_rotation;
2227 m3x3_q( gate->transport, transport_rotation );
2228 q_mul( transport_rotation, player->rb.q, player->rb.q );
2229 rb_update_transform( &player->rb );
2230
2231 s->state_gate_storage = s->state;
2232 player__pass_gate( player, gate );
2233 }
2234 }
2235
2236 VG_STATIC void player__skate_im_gui( player_instance *player )
2237 {
2238 struct player_skate *s = &player->_skate;
2239
2240 /* FIXME: Compression */
2241 player__debugtext( 1, "V: %5.2f %5.2f %5.2f",player->rb.v[0],
2242 player->rb.v[1],
2243 player->rb.v[2] );
2244 player__debugtext( 1, "CO: %5.2f %5.2f %5.2f",player->rb.co[0],
2245 player->rb.co[1],
2246 player->rb.co[2] );
2247 player__debugtext( 1, "W: %5.2f %5.2f %5.2f",player->rb.w[0],
2248 player->rb.w[1],
2249 player->rb.w[2] );
2250
2251 const char *activity_txt[] =
2252 {
2253 "air",
2254 "ground",
2255 "undefined (INVALID)",
2256 "grind_any (INVALID)",
2257 "grind_boardslide",
2258 "grind_noseslide",
2259 "grind_tailslide",
2260 "grind_back50",
2261 "grind_front50",
2262 "grind_5050"
2263 };
2264
2265 player__debugtext( 1, "activity: %s", activity_txt[s->state.activity] );
2266 #if 0
2267 player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
2268 s->state.steerx_s, s->state.steery_s,
2269 k_steer_ground, k_steer_air );
2270 #endif
2271 player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
2272 s->state.flip_time );
2273 player__debugtext( 1, "trickv: %.2f %.2f %.2f",
2274 s->state.trick_vel[0],
2275 s->state.trick_vel[1],
2276 s->state.trick_vel[2] );
2277 player__debugtext( 1, "tricke: %.2f %.2f %.2f",
2278 s->state.trick_euler[0],
2279 s->state.trick_euler[1],
2280 s->state.trick_euler[2] );
2281 }
2282
2283 VG_STATIC void player__skate_animate( player_instance *player,
2284 player_animation *dest )
2285 {
2286 struct player_skate *s = &player->_skate;
2287 struct player_avatar *av = player->playeravatar;
2288 struct skeleton *sk = &av->sk;
2289
2290 /* Head */
2291 float kheight = 2.0f,
2292 kleg = 0.6f;
2293
2294 v3f offset;
2295 v3_zero( offset );
2296
2297 v3f cog_local, cog_ideal;
2298 m4x3_mulv( player->rb.to_local, s->state.cog, cog_local );
2299
2300 v3_copy( s->state.up_dir, cog_ideal );
2301 v3_normalize( cog_ideal );
2302 m3x3_mulv( player->rb.to_local, cog_ideal, cog_ideal );
2303
2304 v3_sub( cog_ideal, cog_local, offset );
2305
2306
2307 v3_muls( offset, 4.0f, offset );
2308 offset[1] *= -1.0f;
2309
2310 float curspeed = v3_length( player->rb.v ),
2311 kickspeed = vg_clampf( curspeed*(1.0f/40.0f), 0.0f, 1.0f ),
2312 kicks = (vg_randf()-0.5f)*2.0f*kickspeed,
2313 sign = vg_signf( kicks );
2314
2315 s->wobble[0] = vg_lerpf( s->wobble[0], kicks*kicks*sign, 6.0f*vg.time_delta);
2316 s->wobble[1] = vg_lerpf( s->wobble[1], s->wobble[0], 2.4f*vg.time_delta);
2317
2318 offset[0] *= 0.26f;
2319 offset[0] += s->wobble[1]*3.0f;
2320
2321 offset[1] *= -0.3f;
2322 offset[2] *= 0.01f;
2323
2324 offset[0]=vg_clampf(offset[0],-0.8f,0.8f)*(1.0f-fabsf(s->blend_slide)*0.9f);
2325 offset[1]=vg_clampf(offset[1],-0.5f,0.0f);
2326
2327 /*
2328 * Animation blending
2329 * ===========================================
2330 */
2331
2332 /* sliding */
2333 {
2334 float desired = vg_clampf( fabsf( s->state.slip ), 0.0f, 1.0f );
2335 s->blend_slide = vg_lerpf( s->blend_slide, desired, 2.4f*vg.time_delta);
2336 }
2337
2338 /* movement information */
2339 {
2340 int iair = s->state.activity == k_skate_activity_air;
2341
2342 float dirz = s->state.reverse > 0.0f? 0.0f: 1.0f,
2343 dirx = s->state.slip < 0.0f? 0.0f: 1.0f,
2344 fly = iair? 1.0f: 0.0f,
2345 wdist= s->weight_distribution[2] / k_board_length;
2346
2347 s->blend_z = vg_lerpf( s->blend_z, dirz, 2.4f*vg.time_delta );
2348 s->blend_x = vg_lerpf( s->blend_x, dirx, 0.6f*vg.time_delta );
2349 s->blend_fly = vg_lerpf( s->blend_fly, fly, 2.4f*vg.time_delta );
2350 s->blend_weight= vg_lerpf( s->blend_weight, wdist, 9.0f*vg.time_delta );
2351 }
2352
2353 mdl_keyframe apose[32], bpose[32];
2354 mdl_keyframe ground_pose[32];
2355 {
2356 /* when the player is moving fast he will crouch down a little bit */
2357 float stand = 1.0f - vg_clampf( curspeed * 0.03f, 0.0f, 1.0f );
2358 s->blend_stand = vg_lerpf( s->blend_stand, stand, 6.0f*vg.time_delta );
2359
2360 /* stand/crouch */
2361 float dir_frame = s->blend_z * (15.0f/30.0f),
2362 stand_blend = offset[1]*-2.0f;
2363
2364 v3f local_cog;
2365 m4x3_mulv( player->rb.to_local, s->state.cog, local_cog );
2366
2367 stand_blend = vg_clampf( 1.0f-local_cog[1], 0, 1 );
2368
2369 skeleton_sample_anim( sk, s->anim_stand, dir_frame, apose );
2370 skeleton_sample_anim( sk, s->anim_highg, dir_frame, bpose );
2371 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
2372
2373 /* sliding */
2374 float slide_frame = s->blend_x * (15.0f/30.0f);
2375 skeleton_sample_anim( sk, s->anim_slide, slide_frame, bpose );
2376 skeleton_lerp_pose( sk, apose, bpose, s->blend_slide, apose );
2377
2378 /* pushing */
2379 double push_time = vg.time - s->state.start_push;
2380 s->blend_push = vg_lerpf( s->blend_push,
2381 (vg.time - s->state.cur_push) < 0.125,
2382 6.0f*vg.time_delta );
2383
2384 float pt = push_time + vg.accumulator;
2385 if( s->state.reverse > 0.0f )
2386 skeleton_sample_anim( sk, s->anim_push, pt, bpose );
2387 else
2388 skeleton_sample_anim( sk, s->anim_push_reverse, pt, bpose );
2389
2390 skeleton_lerp_pose( sk, apose, bpose, s->blend_push, apose );
2391
2392 /* trick setup */
2393 float jump_start_frame = 14.0f/30.0f;
2394
2395 float charge = s->state.jump_charge;
2396 s->blend_jump = vg_lerpf( s->blend_jump, charge, 8.4f*vg.time_delta );
2397
2398 float setup_frame = charge * jump_start_frame,
2399 setup_blend = vg_minf( s->blend_jump, 1.0f );
2400
2401 float jump_frame = (vg.time - s->state.jump_time) + jump_start_frame;
2402 if( jump_frame >= jump_start_frame && jump_frame <= (40.0f/30.0f) )
2403 setup_frame = jump_frame;
2404
2405 struct skeleton_anim *jump_anim = s->state.jump_dir?
2406 s->anim_ollie:
2407 s->anim_ollie_reverse;
2408
2409 skeleton_sample_anim_clamped( sk, jump_anim, setup_frame, bpose );
2410 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
2411 }
2412
2413 mdl_keyframe air_pose[32];
2414 {
2415 float target = -player->input_js1h->axis.value;
2416 s->blend_airdir = vg_lerpf( s->blend_airdir, target, 2.4f*vg.time_delta );
2417
2418 float air_frame = (s->blend_airdir*0.5f+0.5f) * (15.0f/30.0f);
2419 skeleton_sample_anim( sk, s->anim_air, air_frame, apose );
2420
2421 static v2f grab_choice;
2422
2423 v2f grab_input = { player->input_js2h->axis.value,
2424 player->input_js2v->axis.value };
2425 v2_add( s->state.grab_mouse_delta, grab_input, grab_input );
2426 if( v2_length2( grab_input ) <= 0.001f )
2427 grab_input[0] = -1.0f;
2428 else
2429 v2_normalize_clamp( grab_input );
2430 v2_lerp( grab_choice, grab_input, 2.4f*vg.time_delta, grab_choice );
2431
2432 float ang = atan2f( grab_choice[0], grab_choice[1] ),
2433 ang_unit = (ang+VG_PIf) * (1.0f/VG_TAUf),
2434 grab_frame = ang_unit * (15.0f/30.0f);
2435
2436 skeleton_sample_anim( sk, s->anim_grabs, grab_frame, bpose );
2437 skeleton_lerp_pose( sk, apose, bpose, s->state.grabbing, air_pose );
2438 }
2439
2440 skeleton_lerp_pose( sk, ground_pose, air_pose, s->blend_fly, dest->pose );
2441
2442 float add_grab_mod = 1.0f - s->blend_fly;
2443
2444 /* additive effects */
2445 {
2446 u32 apply_to[] = { av->id_hip,
2447 av->id_ik_hand_l,
2448 av->id_ik_hand_r,
2449 av->id_ik_elbow_l,
2450 av->id_ik_elbow_r };
2451
2452 for( int i=0; i<vg_list_size(apply_to); i ++ )
2453 {
2454 dest->pose[apply_to[i]-1].co[0] += offset[0]*add_grab_mod;
2455 dest->pose[apply_to[i]-1].co[2] += offset[2]*add_grab_mod;
2456 }
2457
2458
2459 /* angle correction */
2460 if( v3_length2( s->state.up_dir ) > 0.001f )
2461 {
2462 v3f ndir;
2463 m3x3_mulv( player->rb.to_local, s->state.up_dir, ndir );
2464 v3_normalize( ndir );
2465
2466 v3f up = { 0.0f, 1.0f, 0.0f };
2467
2468 float a = v3_dot( ndir, up );
2469 a = acosf( vg_clampf( a, -1.0f, 1.0f ) );
2470
2471 v3f axis;
2472 v4f q;
2473
2474 v3_cross( up, ndir, axis );
2475 q_axis_angle( q, axis, a );
2476
2477 mdl_keyframe *kf_hip = &dest->pose[av->id_hip-1];
2478
2479 for( int i=0; i<vg_list_size(apply_to); i ++ )
2480 {
2481 mdl_keyframe *kf = &dest->pose[apply_to[i]-1];
2482
2483 v3f v0;
2484 v3_sub( kf->co, kf_hip->co, v0 );
2485 q_mulv( q, v0, v0 );
2486 v3_add( v0, kf_hip->co, kf->co );
2487
2488 q_mul( q, kf->q, kf->q );
2489 q_normalize( kf->q );
2490 }
2491
2492 v3f p1, p2;
2493 m3x3_mulv( player->rb.to_world, up, p1 );
2494 m3x3_mulv( player->rb.to_world, ndir, p2 );
2495
2496 vg_line_arrow( player->rb.co, p1, 0.25f, VG__PINK );
2497 vg_line_arrow( player->rb.co, p2, 0.25f, VG__PINK );
2498 }
2499
2500
2501
2502 mdl_keyframe *kf_board = &dest->pose[av->id_board-1],
2503 *kf_foot_l = &dest->pose[av->id_ik_foot_l-1],
2504 *kf_foot_r = &dest->pose[av->id_ik_foot_r-1],
2505 *kf_wheels[] = { &dest->pose[av->id_wheel_r-1],
2506 &dest->pose[av->id_wheel_l-1] };
2507
2508 v4f qtotal;
2509 v4f qtrickr, qyawr, qpitchr, qrollr;
2510 v3f eulerr;
2511
2512 v3_muls( s->board_trick_residuald, VG_TAUf, eulerr );
2513
2514 q_axis_angle( qyawr, (v3f){0.0f,1.0f,0.0f}, eulerr[0] * 0.5f );
2515 q_axis_angle( qpitchr, (v3f){1.0f,0.0f,0.0f}, eulerr[1] );
2516 q_axis_angle( qrollr, (v3f){0.0f,0.0f,1.0f}, eulerr[2] );
2517
2518 q_mul( qpitchr, qrollr, qtrickr );
2519 q_mul( qyawr, qtrickr, qtotal );
2520 q_normalize( qtotal );
2521
2522 q_mul( qtotal, kf_board->q, kf_board->q );
2523
2524
2525 /* trick rotation */
2526 v4f qtrick, qyaw, qpitch, qroll;
2527 v3f euler;
2528 v3_muls( s->state.trick_euler, VG_TAUf, euler );
2529
2530 q_axis_angle( qyaw, (v3f){0.0f,1.0f,0.0f}, euler[0] * 0.5f );
2531 q_axis_angle( qpitch, (v3f){1.0f,0.0f,0.0f}, euler[1] );
2532 q_axis_angle( qroll, (v3f){0.0f,0.0f,1.0f}, euler[2] );
2533
2534 q_mul( qpitch, qroll, qtrick );
2535 q_mul( qyaw, qtrick, qtrick );
2536 q_mul( kf_board->q, qtrick, kf_board->q );
2537 q_normalize( kf_board->q );
2538
2539 /* foot weight distribution */
2540 if( s->blend_weight > 0.0f )
2541 {
2542 kf_foot_l->co[2] += s->blend_weight * 0.2f;
2543 kf_foot_r->co[2] += s->blend_weight * 0.1f;
2544 }
2545 else
2546 {
2547 kf_foot_r->co[2] += s->blend_weight * 0.3f;
2548 kf_foot_l->co[2] += s->blend_weight * 0.1f;
2549 }
2550
2551 /* truck rotation */
2552 for( int i=0; i<2; i++ )
2553 {
2554 float a = vg_minf( s->truckv0[i][0], 1.0f );
2555 a = -acosf( a ) * vg_signf( s->truckv0[i][1] );
2556
2557 v4f q;
2558 q_axis_angle( q, (v3f){0.0f,0.0f,1.0f}, a );
2559 q_mul( q, kf_wheels[i]->q, kf_wheels[i]->q );
2560 q_normalize( kf_wheels[i]->q );
2561 }
2562 }
2563
2564 /* transform */
2565 rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
2566 v3_muladds( dest->root_co, player->rb.to_world[1], -0.1f, dest->root_co );
2567
2568 float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
2569 #if 0
2570 v4f qresy, qresx, qresidual;
2571 m3x3f mtx_residual;
2572 q_axis_angle( qresy, player->rb.to_world[1], s->state.steery_s*substep );
2573 q_axis_angle( qresx, player->rb.to_world[0], s->state.steerx_s*substep );
2574
2575 q_mul( qresy, qresx, qresidual );
2576 q_normalize( qresidual );
2577 q_mul( dest->root_q, qresidual, dest->root_q );
2578 q_normalize( dest->root_q );
2579 #endif
2580
2581 v4f qflip;
2582 if( (s->state.activity == k_skate_activity_air) &&
2583 (fabsf(s->state.flip_rate) > 0.01f) )
2584 {
2585 float t = s->state.flip_time + s->state.flip_rate*substep*k_rb_delta,
2586 angle = vg_clampf( t, -1.0f, 1.0f ) * VG_TAUf,
2587 distm = s->land_dist * fabsf(s->state.flip_rate) * 3.0f,
2588 blend = vg_clampf( 1.0f-distm, 0.0f, 1.0f );
2589
2590 angle = vg_lerpf( angle, vg_signf(s->state.flip_rate) * VG_TAUf, blend );
2591
2592 q_axis_angle( qflip, s->state.flip_axis, angle );
2593 q_mul( qflip, dest->root_q, dest->root_q );
2594 q_normalize( dest->root_q );
2595
2596 v3f rotation_point, rco;
2597 v3_muladds( player->rb.co, player->rb.to_world[1], 0.5f, rotation_point );
2598 v3_sub( dest->root_co, rotation_point, rco );
2599
2600 q_mulv( qflip, rco, rco );
2601 v3_add( rco, rotation_point, dest->root_co );
2602 }
2603
2604 skeleton_copy_pose( sk, dest->pose, player->holdout_pose );
2605 }
2606
2607 VG_STATIC void player__skate_post_animate( player_instance *player )
2608 {
2609 struct player_skate *s = &player->_skate;
2610 struct player_avatar *av = player->playeravatar;
2611
2612 player->cam_velocity_influence = 1.0f;
2613
2614 v3f head = { 0.0f, 1.8f, 0.0f }; /* FIXME: Viewpoint entity */
2615 m4x3_mulv( av->sk.final_mtx[ av->id_head ], head, s->state.head_position );
2616 m4x3_mulv( player->rb.to_local, s->state.head_position,
2617 s->state.head_position );
2618 }
2619
2620 VG_STATIC void player__skate_reset_animator( player_instance *player )
2621 {
2622 struct player_skate *s = &player->_skate;
2623
2624 if( s->state.activity == k_skate_activity_air )
2625 s->blend_fly = 1.0f;
2626 else
2627 s->blend_fly = 0.0f;
2628
2629 s->blend_slide = 0.0f;
2630 s->blend_z = 0.0f;
2631 s->blend_x = 0.0f;
2632 s->blend_stand = 0.0f;
2633 s->blend_push = 0.0f;
2634 s->blend_jump = 0.0f;
2635 s->blend_airdir = 0.0f;
2636 }
2637
2638 VG_STATIC void player__skate_clear_mechanics( player_instance *player )
2639 {
2640 struct player_skate *s = &player->_skate;
2641 s->state.jump_charge = 0.0f;
2642 s->state.lift_frames = 0;
2643 s->state.flip_rate = 0.0f;
2644 #if 0
2645 s->state.steery = 0.0f;
2646 s->state.steerx = 0.0f;
2647 s->state.steery_s = 0.0f;
2648 s->state.steerx_s = 0.0f;
2649 #endif
2650 s->state.reverse = 0.0f;
2651 s->state.slip = 0.0f;
2652 v3_copy( player->rb.co, s->state.prev_pos );
2653
2654 #if 0
2655 m3x3_identity( s->state.velocity_bias );
2656 m3x3_identity( s->state.velocity_bias_pstep );
2657 #endif
2658
2659 v3_zero( s->state.throw_v );
2660 v3_zero( s->state.trick_vel );
2661 v3_zero( s->state.trick_euler );
2662 }
2663
2664 VG_STATIC void player__skate_reset( player_instance *player,
2665 struct respawn_point *rp )
2666 {
2667 struct player_skate *s = &player->_skate;
2668 v3_muladds( player->rb.co, player->rb.to_world[1], 1.0f, s->state.cog );
2669 v3_zero( player->rb.v );
2670 v3_zero( s->state.cog_v );
2671 v4_copy( rp->q, player->rb.q );
2672
2673 s->state.activity = k_skate_activity_air;
2674 s->state.activity_prev = k_skate_activity_air;
2675
2676 player__skate_clear_mechanics( player );
2677 player__skate_reset_animator( player );
2678
2679 v3_zero( s->state.head_position );
2680 s->state.head_position[1] = 1.8f;
2681 }
2682
2683 #endif /* PLAYER_SKATE_C */