skate audio fadeout
[carveJwlIkooP6JGAAIwe30JlM.git] / player_skate.c
1 #ifndef PLAYER_SKATE_C
2 #define PLAYER_SKATE_C
3
4 #include "player.h"
5 #include "audio.h"
6
7 VG_STATIC void player__skate_bind( player_instance *player )
8 {
9 struct player_skate *s = &player->_skate;
10 struct player_avatar *av = player->playeravatar;
11 struct skeleton *sk = &av->sk;
12
13 rb_update_transform( &player->rb );
14 s->anim_stand = skeleton_get_anim( sk, "pose_stand" );
15 s->anim_highg = skeleton_get_anim( sk, "pose_highg" );
16 s->anim_air = skeleton_get_anim( sk, "pose_air" );
17 s->anim_slide = skeleton_get_anim( sk, "pose_slide" );
18 s->anim_push = skeleton_get_anim( sk, "push" );
19 s->anim_push_reverse = skeleton_get_anim( sk, "push_reverse" );
20 s->anim_ollie = skeleton_get_anim( sk, "ollie" );
21 s->anim_ollie_reverse = skeleton_get_anim( sk, "ollie_reverse" );
22 s->anim_grabs = skeleton_get_anim( sk, "grabs" );
23 }
24
25 VG_STATIC void player__skate_kill_audio( player_instance *player )
26 {
27 struct player_skate *s = &player->_skate;
28
29 audio_lock();
30 if( s->aud_main )
31 s->aud_main = audio_channel_fadeout( s->aud_main, 0.1f );
32 if( s->aud_air )
33 s->aud_air = audio_channel_fadeout( s->aud_air, 0.1f );
34 if( s->aud_slide )
35 s->aud_slide = audio_channel_fadeout( s->aud_slide, 0.1f );
36 audio_unlock();
37 }
38
39 /*
40 * Collision detection routines
41 *
42 *
43 */
44
45 /*
46 * Does collision detection on a sphere vs world, and applies some smoothing
47 * filters to the manifold afterwards
48 */
49 VG_STATIC int skate_collide_smooth( player_instance *player,
50 m4x3f mtx, rb_sphere *sphere,
51 rb_ct *man )
52 {
53 world_instance *world = get_active_world();
54
55 int len = 0;
56 len = rb_sphere__scene( mtx, sphere, NULL, &world->rb_geo.inf.scene, man );
57
58 for( int i=0; i<len; i++ )
59 {
60 man[i].rba = &player->rb;
61 man[i].rbb = NULL;
62 }
63
64 rb_manifold_filter_coplanar( man, len, 0.03f );
65
66 if( len > 1 )
67 {
68 rb_manifold_filter_backface( man, len );
69 rb_manifold_filter_joint_edges( man, len, 0.03f );
70 rb_manifold_filter_pairs( man, len, 0.03f );
71 }
72 int new_len = rb_manifold_apply_filtered( man, len );
73 if( len && !new_len )
74 len = 1;
75 else
76 len = new_len;
77
78 return len;
79 }
80
81 struct grind_info
82 {
83 v3f co, dir, n;
84 };
85
86 VG_STATIC int skate_grind_scansq( player_instance *player,
87 v3f pos, v3f dir, float r,
88 struct grind_info *inf )
89 {
90 world_instance *world = get_active_world();
91
92 v4f plane;
93 v3_copy( dir, plane );
94 v3_normalize( plane );
95 plane[3] = v3_dot( plane, pos );
96
97 boxf box;
98 v3_add( pos, (v3f){ r, r, r }, box[1] );
99 v3_sub( pos, (v3f){ r, r, r }, box[0] );
100
101 bh_iter it;
102 bh_iter_init( 0, &it );
103 int idx;
104
105 struct grind_sample
106 {
107 v2f co;
108 v2f normal;
109 v3f normal3,
110 centroid;
111 }
112 samples[48];
113 int sample_count = 0;
114
115 v2f support_min,
116 support_max;
117
118 v3f support_axis;
119 v3_cross( plane, player->basis[1], support_axis );
120 v3_normalize( support_axis );
121
122 while( bh_next( world->geo_bh, &it, box, &idx ) ){
123 u32 *ptri = &world->scene_geo->arrindices[ idx*3 ];
124 v3f tri[3];
125
126 struct world_surface *surf = world_tri_index_surface(world,ptri[0]);
127 if( !(surf->info.flags & k_material_flag_skate_surface) )
128 continue;
129
130 for( int j=0; j<3; j++ )
131 v3_copy( world->scene_geo->arrvertices[ptri[j]].co, tri[j] );
132
133 for( int j=0; j<3; j++ ){
134 int i0 = j,
135 i1 = (j+1) % 3;
136
137 struct grind_sample *sample = &samples[ sample_count ];
138 v3f co;
139
140 if( plane_segment( plane, tri[i0], tri[i1], co ) ){
141 v3f d;
142 v3_sub( co, pos, d );
143 if( v3_length2( d ) > r*r )
144 continue;
145
146 v3f va, vb, normal;
147 v3_sub( tri[1], tri[0], va );
148 v3_sub( tri[2], tri[0], vb );
149 v3_cross( va, vb, normal );
150
151 sample->normal[0] = v3_dot( support_axis, normal );
152 sample->normal[1] = v3_dot( player->basis[1], normal );
153 sample->co[0] = v3_dot( support_axis, d );
154 sample->co[1] = v3_dot( player->basis[1], d );
155
156 v3_copy( normal, sample->normal3 ); /* normalize later
157 if we want to us it */
158
159 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
160 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
161 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
162
163 v2_normalize( sample->normal );
164 sample_count ++;
165
166 if( sample_count == vg_list_size( samples ) )
167 goto too_many_samples;
168 }
169 }
170 }
171
172 too_many_samples:
173
174 if( sample_count < 2 )
175 return 0;
176
177 v3f
178 average_direction,
179 average_normal;
180
181 v2f min_co, max_co;
182 v2_fill( min_co, INFINITY );
183 v2_fill( max_co, -INFINITY );
184
185 v3_zero( average_direction );
186 v3_zero( average_normal );
187
188 int passed_samples = 0;
189
190 for( int i=0; i<sample_count-1; i++ ){
191 struct grind_sample *si, *sj;
192
193 si = &samples[i];
194
195 for( int j=i+1; j<sample_count; j++ ){
196 if( i == j )
197 continue;
198
199 sj = &samples[j];
200
201 /* non overlapping */
202 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
203 continue;
204
205 /* not sharp angle */
206 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
207 continue;
208
209 /* not convex */
210 v3f v0;
211 v3_sub( sj->centroid, si->centroid, v0 );
212 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
213 v3_dot( v0, sj->normal3 ) <= 0.0f )
214 continue;
215
216 v2_minv( sj->co, min_co, min_co );
217 v2_maxv( sj->co, max_co, max_co );
218
219 v3f n0, n1, dir;
220 v3_copy( si->normal3, n0 );
221 v3_copy( sj->normal3, n1 );
222 v3_cross( n0, n1, dir );
223 v3_normalize( dir );
224
225 /* make sure the directions all face a common hemisphere */
226 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
227 v3_add( average_direction, dir, average_direction );
228
229 float yi = v3_dot( player->basis[1], si->normal3 ),
230 yj = v3_dot( player->basis[1], sj->normal3 );
231
232 if( yi > yj )
233 v3_add( si->normal3, average_normal, average_normal );
234 else
235 v3_add( sj->normal3, average_normal, average_normal );
236
237 passed_samples ++;
238 }
239 }
240
241 if( !passed_samples )
242 return 0;
243
244 if( (v3_length2( average_direction ) <= 0.001f) ||
245 (v3_length2( average_normal ) <= 0.001f ) )
246 return 0;
247
248 float div = 1.0f/(float)passed_samples;
249 v3_normalize( average_direction );
250 v3_normalize( average_normal );
251
252 v2f average_coord;
253 v2_add( min_co, max_co, average_coord );
254 v2_muls( average_coord, 0.5f, average_coord );
255
256 v3_muls( support_axis, average_coord[0], inf->co );
257 inf->co[1] += average_coord[1];
258 v3_add( pos, inf->co, inf->co );
259 v3_copy( average_normal, inf->n );
260 v3_copy( average_direction, inf->dir );
261
262 vg_line_pt3( inf->co, 0.02f, VG__GREEN );
263 vg_line_arrow( inf->co, average_direction, 0.3f, VG__GREEN );
264 vg_line_arrow( inf->co, inf->n, 0.2f, VG__CYAN );
265
266 return passed_samples;
267 }
268
269 VG_STATIC int solve_prediction_for_target( player_instance *player,
270 v3f target, float max_angle,
271 struct land_prediction *p )
272 {
273 /* calculate the exact solution(s) to jump onto that grind spot */
274
275 v3f v0;
276 v3_sub( target, player->rb.co, v0 );
277 m3x3_mulv( player->invbasis, v0, v0 );
278
279 v3f ax;
280 v3_copy( v0, ax );
281 ax[1] = 0.0f;
282 v3_normalize( ax );
283
284 v3f v_local;
285 m3x3_mulv( player->invbasis, player->rb.v, v_local );
286
287 v2f d = { v3_dot( ax, v0 ), v0[1] },
288 v = { v3_dot( ax, player->rb.v ), v_local[1] };
289
290 float a = atan2f( v[1], v[0] ),
291 m = v2_length( v ),
292 root = m*m*m*m - p->gravity*(p->gravity*d[0]*d[0] + 2.0f*d[1]*m*m);
293
294 if( root > 0.0f )
295 {
296 root = sqrtf( root );
297 float a0 = atanf( (m*m + root) / (p->gravity * d[0]) ),
298 a1 = atanf( (m*m - root) / (p->gravity * d[0]) );
299
300 if( fabsf(a0-a) > fabsf(a1-a) )
301 a0 = a1;
302
303 if( fabsf(a0-a) > max_angle )
304 return 0;
305
306 /* TODO: sweep the path before chosing the smallest dist */
307
308 p->log_length = 0;
309 p->land_dist = 0.0f;
310 v3_zero( p->apex );
311 p->type = k_prediction_grind;
312
313 v3_muls( ax, cosf( a0 ) * m, p->v );
314 p->v[1] += sinf( a0 ) * m;
315 m3x3_mulv( player->basis, p->v, p->v );
316
317 p->land_dist = d[0] / (cosf(a0)*m);
318
319 /* add a trace */
320 for( int i=0; i<=20; i++ )
321 {
322 float t = (float)i * (1.0f/20.0f) * p->land_dist;
323
324 v3f p0;
325 v3_muls( p->v, t, p0 );
326 v3_muladds( p0, player->basis[1], -0.5f * p->gravity * t*t, p0 );
327
328 v3_add( player->rb.co, p0, p->log[ p->log_length ++ ] );
329 }
330
331 return 1;
332 }
333 else
334 return 0;
335 }
336
337 VG_STATIC
338 void player__approximate_best_trajectory( player_instance *player )
339 {
340 world_instance *world = get_active_world();
341
342 struct player_skate *s = &player->_skate;
343 float k_trace_delta = k_rb_delta * 10.0f;
344
345 s->state.air_start = vg.time;
346 v3_copy( player->rb.v, s->state.air_init_v );
347 v3_copy( player->rb.co, s->state.air_init_co );
348
349 s->prediction_count = 0;
350
351 v3f axis;
352 v3_cross( player->rb.v, player->rb.to_world[1], axis );
353 v3_normalize( axis );
354
355 /* at high slopes, Y component is low */
356 float upness = v3_dot( player->rb.to_world[1], player->basis[1] ),
357 angle_begin = -(1.0f-fabsf( upness )),
358 angle_end = 1.0f;
359
360 struct grind_info grind;
361 int grind_located = 0;
362
363 for( int m=0;m<=30; m++ )
364 {
365 struct land_prediction *p = &s->predictions[ s->prediction_count ++ ];
366
367 p->log_length = 0;
368 p->land_dist = 0.0f;
369 v3_zero( p->apex );
370 p->type = k_prediction_none;
371
372 v3f launch_co, launch_v, co0, co1;
373 v3_copy( player->rb.co, launch_co );
374 v3_copy( player->rb.v, launch_v );
375 v3_copy( launch_co, co0 );
376
377 float vt = (float)m * (1.0f/30.0f),
378 ang = vg_lerpf( angle_begin, angle_end, vt ) * 0.15f;
379
380 v4f qbias;
381 q_axis_angle( qbias, axis, ang );
382 q_mulv( qbias, launch_v, launch_v );
383
384 float yaw_sketch = 1.0f-fabsf(upness);
385
386 float yaw_bias = ((float)(m%3) - 1.0f) * 0.08f * yaw_sketch;
387 q_axis_angle( qbias, player->rb.to_world[1], yaw_bias );
388 q_mulv( qbias, launch_v, launch_v );
389
390
391 float gravity_bias = vg_lerpf( 0.85f, 1.4f, vt ),
392 gravity = k_gravity * gravity_bias;
393 p->gravity = gravity;
394
395 v3_copy( launch_v, p->v );
396
397 for( int i=1; i<=50; i++ )
398 {
399 float t = (float)i * k_trace_delta;
400
401 v3_muls( launch_v, t, co1 );
402 v3_muladds( co1, player->basis[1], -0.5f * gravity * t*t, co1 );
403 v3_add( launch_co, co1, co1 );
404
405 float launch_vy = v3_dot( launch_v,player->basis[1] );
406 if( !grind_located && (launch_vy - gravity*t < 0.0f) )
407 {
408 v3f closest;
409 if( bh_closest_point( world->geo_bh, co1, closest, 1.0f ) != -1 )
410 {
411 v3f ve;
412 v3_copy( launch_v, ve );
413 v3_muladds( ve, player->basis[1], -gravity * t, ve );
414
415 if( skate_grind_scansq( player, closest, ve, 0.5f, &grind ) )
416 {
417 /* check alignment */
418 v2f v0 = { v3_dot( ve, player->basis[0] ),
419 v3_dot( ve, player->basis[2] ) },
420 v1 = { v3_dot( grind.dir, player->basis[0] ),
421 v3_dot( grind.dir, player->basis[2] ) };
422
423 v2_normalize( v0 );
424 v2_normalize( v1 );
425
426 float a = v2_dot( v0, v1 );
427
428 if( a >= cosf( VG_PIf * 0.185f ) )
429 {
430 grind_located = 1;
431 }
432 }
433 }
434 }
435
436 float t1;
437 v3f n;
438
439 int idx = spherecast_world( world, co0, co1, k_board_radius, &t1, n );
440 if( idx != -1 )
441 {
442 v3f co;
443 v3_lerp( co0, co1, t1, co );
444 v3_copy( co, p->log[ p->log_length ++ ] );
445
446 v3_copy( n, p->n );
447 p->type = k_prediction_land;
448
449 v3f ve;
450 v3_copy( launch_v, ve );
451 v3_muladds( ve, player->basis[1], -gravity * t, ve );
452
453 struct grind_info replace_grind;
454 if( skate_grind_scansq( player, co, ve, 0.3f, &replace_grind ) )
455 {
456 v3_copy( replace_grind.n, p->n );
457 p->type = k_prediction_grind;
458 }
459
460 p->score = -v3_dot( ve, p->n );
461 p->land_dist = t + k_trace_delta * t1;
462
463 u32 vert_index = world->scene_geo->arrindices[ idx*3 ];
464 struct world_surface *surf =
465 world_tri_index_surface( world, vert_index );
466
467 /* Bias prediction towords ramps */
468 if( !(surf->info.flags & k_material_flag_skate_surface) )
469 p->score *= 10.0f;
470
471 break;
472 }
473
474 if( i % 3 == 0 )
475 v3_copy( co1, p->log[ p->log_length ++ ] );
476
477 v3_copy( co1, co0 );
478 }
479
480 if( p->type == k_prediction_none )
481 s->prediction_count --;
482 }
483
484 if( grind_located ){
485 /* calculate the exact solution(s) to jump onto that grind spot */
486 struct land_prediction *p = &s->predictions[ s->prediction_count ];
487 p->gravity = k_gravity;
488
489 if( solve_prediction_for_target( player, grind.co, 0.125f*VG_PIf, p ) ){
490 v3_copy( grind.n, p->n );
491
492 /* determine score */
493 v3f ve;
494 v3_copy( p->v, ve );
495 v3_muladds( ve, player->basis[1], -p->gravity * p->land_dist, ve );
496 p->score = -v3_dot( ve, grind.n ) * 0.85f;
497
498 s->prediction_count ++;
499 }
500 }
501
502
503 float score_min = INFINITY,
504 score_max = -INFINITY;
505
506 struct land_prediction *best = NULL;
507
508 for( int i=0; i<s->prediction_count; i ++ ){
509 struct land_prediction *p = &s->predictions[i];
510
511 if( p->score < score_min )
512 best = p;
513
514 score_min = vg_minf( score_min, p->score );
515 score_max = vg_maxf( score_max, p->score );
516 }
517
518 for( int i=0; i<s->prediction_count; i ++ ){
519 struct land_prediction *p = &s->predictions[i];
520 float s = p->score;
521
522 s -= score_min;
523 s /= (score_max-score_min);
524 s = 1.0f - s;
525
526 p->score = s;
527 p->colour = s * 255.0f;
528
529 if( p == best )
530 p->colour <<= 16;
531 else if( p->type == k_prediction_land )
532 p->colour <<= 8;
533
534 p->colour |= 0xff000000;
535 }
536
537 if( best ){
538 v3_copy( best->n, s->land_normal );
539 v3_copy( best->v, player->rb.v );
540 s->land_dist = best->land_dist;
541
542 v2f steer = { player->input_js1h->axis.value,
543 player->input_js1v->axis.value };
544 v2_normalize_clamp( steer );
545 s->state.gravity_bias = best->gravity;
546
547 if( (fabsf(steer[1]) > 0.5f) && (s->land_dist >= 1.5f) ){
548 s->state.flip_rate = (1.0f/s->land_dist) * vg_signf(steer[1]) *
549 s->state.reverse ;
550 s->state.flip_time = 0.0f;
551 v3_copy( player->rb.to_world[0], s->state.flip_axis );
552 }
553 else{
554 s->state.flip_rate = 0.0f;
555 v3_zero( s->state.flip_axis );
556 }
557 }
558 else{
559 v3_copy( player->basis[1], s->land_normal );
560 }
561 }
562
563 /*
564 *
565 * Varius physics models
566 * ------------------------------------------------
567 */
568
569 /*
570 * Air control, no real physics
571 */
572 VG_STATIC void skate_apply_air_model( player_instance *player )
573 {
574 struct player_skate *s = &player->_skate;
575
576 if( s->state.activity_prev != k_skate_activity_air )
577 player__approximate_best_trajectory( player );
578
579 float angle = v3_dot( player->rb.to_world[1], s->land_normal );
580 angle = vg_clampf( angle, -1.0f, 1.0f );
581 v3f axis;
582 v3_cross( player->rb.to_world[1], s->land_normal, axis );
583
584 v4f correction;
585 q_axis_angle( correction, axis,
586 acosf(angle)*2.0f*VG_TIMESTEP_FIXED );
587 q_mul( correction, player->rb.q, player->rb.q );
588
589 v2f steer = { player->input_js1h->axis.value,
590 player->input_js1v->axis.value };
591 v2_normalize_clamp( steer );
592 }
593
594 VG_STATIC int player_skate_trick_input( player_instance *player );
595 VG_STATIC void skate_apply_trick_model( player_instance *player )
596 {
597 struct player_skate *s = &player->_skate;
598
599 v3f Fd, Fs, F;
600 v3f strength = { 3.7f, 3.6f, 8.0f };
601
602 v3_muls( s->board_trick_residualv, -4.0f , Fd );
603 v3_muls( s->board_trick_residuald, -10.0f, Fs );
604 v3_add( Fd, Fs, F );
605 v3_mul( strength, F, F );
606
607 v3_muladds( s->board_trick_residualv, F, k_rb_delta,
608 s->board_trick_residualv );
609 v3_muladds( s->board_trick_residuald, s->board_trick_residualv,
610 k_rb_delta, s->board_trick_residuald );
611
612 if( s->state.activity == k_skate_activity_air ){
613 if( v3_length2( s->state.trick_vel ) < 0.0001f )
614 return;
615
616 int carry_on = player_skate_trick_input( player );
617
618 /* we assume velocities share a common divisor, in which case the
619 * interval is the minimum value (if not zero) */
620
621 float min_rate = 99999.0f;
622
623 for( int i=0; i<3; i++ ){
624 float v = s->state.trick_vel[i];
625 if( (v > 0.0f) && (v < min_rate) )
626 min_rate = v;
627 }
628
629 float interval = 1.0f / min_rate,
630 current = floorf( s->state.trick_time / interval ),
631 next_end = (current+1.0f) * interval;
632
633
634 /* integrate trick velocities */
635 v3_muladds( s->state.trick_euler, s->state.trick_vel, k_rb_delta,
636 s->state.trick_euler );
637
638 if( !carry_on && (s->state.trick_time + k_rb_delta >= next_end) ){
639 s->state.trick_time = 0.0f;
640 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
641 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
642 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
643 v3_copy( s->state.trick_vel, s->board_trick_residualv );
644 v3_zero( s->state.trick_vel );
645 }
646
647 s->state.trick_time += k_rb_delta;
648 }
649 else{
650 if( (v3_length2(s->state.trick_vel) >= 0.0001f ) &&
651 s->state.trick_time > 0.2f)
652 {
653 player__skate_kill_audio( player );
654 player__dead_transition( player );
655 }
656
657 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
658 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
659 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
660 s->state.trick_time = 0.0f;
661 v3_zero( s->state.trick_vel );
662 }
663 }
664
665 VG_STATIC void skate_apply_grab_model( player_instance *player )
666 {
667 struct player_skate *s = &player->_skate;
668
669 float grabt = player->input_grab->axis.value;
670
671 if( grabt > 0.5f ){
672 v2_muladds( s->state.grab_mouse_delta, vg.mouse_delta, 0.02f,
673 s->state.grab_mouse_delta );
674
675 v2_normalize_clamp( s->state.grab_mouse_delta );
676 }
677 else
678 v2_zero( s->state.grab_mouse_delta );
679
680 s->state.grabbing = vg_lerpf( s->state.grabbing, grabt, 8.4f*k_rb_delta );
681 }
682
683 VG_STATIC void skate_apply_steering_model( player_instance *player )
684 {
685 struct player_skate *s = &player->_skate;
686
687 /* Steering */
688 float steer = player->input_js1h->axis.value,
689 grab = player->input_grab->axis.value;
690
691 steer = vg_signf( steer ) * steer*steer * k_steer_ground;
692
693 v3f steer_axis;
694 v3_muls( player->rb.to_world[1], -vg_signf( steer ), steer_axis );
695
696 float rate = 26.0f,
697 top = 1.0f;
698
699 if( s->state.activity == k_skate_activity_air ){
700 rate = 6.0f * fabsf(steer);
701 top = 1.5f;
702 }
703 else{
704 /* rotate slower when grabbing on ground */
705 steer *= (1.0f-(s->state.jump_charge+grab)*0.4f);
706
707 if( s->state.activity == k_skate_activity_grind_5050 ){
708 rate = 0.0f;
709 top = 0.0f;
710 }
711
712 else if( s->state.activity >= k_skate_activity_grind_any ){
713 rate *= fabsf(steer);
714
715 float a = 0.8f * -steer * k_rb_delta;
716
717 v4f q;
718 q_axis_angle( q, player->rb.to_world[1], a );
719 q_mulv( q, s->grind_vec, s->grind_vec );
720
721 v3_normalize( s->grind_vec );
722 }
723
724 else if( s->state.manual_direction ){
725 rate = 35.0f;
726 top = 1.5f;
727 }
728 }
729
730 float current = v3_dot( player->rb.to_world[1], player->rb.w ),
731 addspeed = (steer * -top) - current,
732 maxaccel = rate * k_rb_delta,
733 accel = vg_clampf( addspeed, -maxaccel, maxaccel );
734
735 v3_muladds( player->rb.w, player->rb.to_world[1], accel, player->rb.w );
736 }
737
738 /*
739 * Computes friction and surface interface model
740 */
741 VG_STATIC void skate_apply_friction_model( player_instance *player )
742 {
743 struct player_skate *s = &player->_skate;
744
745 /*
746 * Computing localized friction forces for controlling the character
747 * Friction across X is significantly more than Z
748 */
749
750 v3f vel;
751 m3x3_mulv( player->rb.to_local, player->rb.v, vel );
752 float slip = 0.0f;
753
754 if( fabsf(vel[2]) > 0.01f )
755 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
756
757 if( fabsf( slip ) > 1.2f )
758 slip = vg_signf( slip ) * 1.2f;
759
760 s->state.slip = slip;
761 s->state.reverse = -vg_signf(vel[2]);
762
763 vel[0] += vg_cfrictf( vel[0], k_friction_lat * k_rb_delta );
764 vel[2] += vg_cfrictf( vel[2], k_friction_resistance * k_rb_delta );
765
766 /* Pushing additive force */
767
768 if( !player->input_jump->button.value ){
769 if( player->input_push->button.value ||
770 (vg.time-s->state.start_push<0.75) )
771 {
772 if( (vg.time - s->state.cur_push) > 0.25 )
773 s->state.start_push = vg.time;
774
775 s->state.cur_push = vg.time;
776
777 double push_time = vg.time - s->state.start_push;
778
779 float cycle_time = push_time*k_push_cycle_rate,
780 accel = k_push_accel * (sinf(cycle_time)*0.5f+0.5f),
781 amt = accel * VG_TIMESTEP_FIXED,
782 current = v3_length( vel ),
783 new_vel = vg_minf( current + amt, k_max_push_speed ),
784 delta = new_vel - vg_minf( current, k_max_push_speed );
785
786 vel[2] += delta * -s->state.reverse;
787 }
788 }
789
790 /* Send back to velocity */
791 m3x3_mulv( player->rb.to_world, vel, player->rb.v );
792 }
793
794 VG_STATIC void skate_apply_jump_model( player_instance *player )
795 {
796 struct player_skate *s = &player->_skate;
797 int charging_jump_prev = s->state.charging_jump;
798 s->state.charging_jump = player->input_jump->button.value;
799
800 /* Cannot charge this in air */
801 if( s->state.activity == k_skate_activity_air ){
802 s->state.charging_jump = 0;
803 return;
804 }
805
806 if( s->state.charging_jump ){
807 s->state.jump_charge += k_rb_delta * k_jump_charge_speed;
808
809 if( !charging_jump_prev )
810 s->state.jump_dir = s->state.reverse>0.0f? 1: 0;
811 }
812 else{
813 s->state.jump_charge -= k_jump_charge_speed * k_rb_delta;
814 }
815
816 s->state.jump_charge = vg_clampf( s->state.jump_charge, 0.0f, 1.0f );
817
818 /* player let go after charging past 0.2: trigger jump */
819 if( (!s->state.charging_jump) && (s->state.jump_charge > 0.2f) ){
820 v3f jumpdir;
821
822 /* Launch more up if alignment is up else improve velocity */
823 float aup = v3_dot( player->basis[1], player->rb.to_world[1] ),
824 mod = 0.5f,
825 dir = mod + fabsf(aup)*(1.0f-mod);
826
827 v3_copy( player->rb.v, jumpdir );
828 v3_normalize( jumpdir );
829 v3_muls( jumpdir, 1.0f-dir, jumpdir );
830 v3_muladds( jumpdir, player->rb.to_world[1], dir, jumpdir );
831 v3_normalize( jumpdir );
832
833 float force = k_jump_force*s->state.jump_charge;
834 v3_muladds( player->rb.v, jumpdir, force, player->rb.v );
835 s->state.jump_charge = 0.0f;
836 s->state.jump_time = vg.time;
837 s->state.activity = k_skate_activity_air;
838
839 v2f steer = { player->input_js1h->axis.value,
840 player->input_js1v->axis.value };
841 v2_normalize_clamp( steer );
842 skate_apply_air_model( player );
843
844 #if 0
845 float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
846 s->state.steery_s = -steer[0] * maxspin;
847 s->state.steerx = s->state.steerx_s;
848 s->state.lift_frames ++;
849 #endif
850
851 audio_lock();
852 audio_oneshot_3d( &audio_jumps[rand()%2], player->rb.co, 40.0f, 1.0f );
853 audio_unlock();
854 }
855 }
856
857 VG_STATIC void skate_apply_pump_model( player_instance *player )
858 {
859 struct player_skate *s = &player->_skate;
860
861 if( s->state.activity != k_skate_activity_ground ){
862 v3_zero( s->state.throw_v );
863 return;
864 }
865
866 /* Throw / collect routine
867 *
868 * TODO: Max speed boost
869 */
870 if( player->input_grab->axis.value > 0.5f ){
871 if( s->state.activity == k_skate_activity_ground ){
872 /* Throw */
873 v3_muls( player->rb.to_world[1], k_mmthrow_scale, s->state.throw_v );
874 }
875 }
876 else{
877 /* Collect */
878 float doty = v3_dot( player->rb.to_world[1], s->state.throw_v );
879
880 v3f Fl, Fv;
881 v3_muladds( s->state.throw_v, player->rb.to_world[1], -doty, Fl);
882
883 if( s->state.activity == k_skate_activity_ground ){
884 v3_muladds( player->rb.v, Fl, k_mmcollect_lat, player->rb.v );
885 v3_muladds( s->state.throw_v, Fl, -k_mmcollect_lat, s->state.throw_v );
886 }
887
888 v3_muls( player->rb.to_world[1], -doty, Fv );
889 v3_muladds( player->rb.v, Fv, k_mmcollect_vert, player->rb.v );
890 v3_muladds( s->state.throw_v, Fv, k_mmcollect_vert, s->state.throw_v );
891 }
892
893 /* Decay */
894 if( v3_length2( s->state.throw_v ) > 0.0001f ){
895 v3f dir;
896 v3_copy( s->state.throw_v, dir );
897 v3_normalize( dir );
898
899 float max = v3_dot( dir, s->state.throw_v ),
900 amt = vg_minf( k_mmdecay * k_rb_delta, max );
901 v3_muladds( s->state.throw_v, dir, -amt, s->state.throw_v );
902 }
903 }
904
905 VG_STATIC void skate_apply_cog_model( player_instance *player )
906 {
907 struct player_skate *s = &player->_skate;
908
909 v3f ideal_cog, ideal_diff, ideal_dir;
910 v3_copy( s->state.up_dir, ideal_dir );
911 v3_normalize( ideal_dir );
912
913 v3_muladds( player->rb.co, ideal_dir,
914 1.0f-player->input_grab->axis.value, ideal_cog );
915 v3_sub( ideal_cog, s->state.cog, ideal_diff );
916
917 /* Apply velocities */
918 v3f rv;
919 v3_sub( player->rb.v, s->state.cog_v, rv );
920
921 v3f F;
922 v3_muls( ideal_diff, -k_cog_spring * k_rb_rate, F );
923 v3_muladds( F, rv, -k_cog_damp * k_rb_rate, F );
924
925 float ra = k_cog_mass_ratio,
926 rb = 1.0f-k_cog_mass_ratio;
927
928 /* Apply forces & intergrate */
929 v3_muladds( s->state.cog_v, F, -rb, s->state.cog_v );
930 v3_muladds( s->state.cog_v, player->basis[1], -9.8f * k_rb_delta,
931 s->state.cog_v );
932
933 v3_muladds( s->state.cog, s->state.cog_v, k_rb_delta, s->state.cog );
934 }
935
936
937 VG_STATIC void skate_integrate( player_instance *player )
938 {
939 struct player_skate *s = &player->_skate;
940
941 float decay_rate = 1.0f - (k_rb_delta * 3.0f),
942 decay_rate_y = 1.0f;
943
944 if( s->state.activity >= k_skate_activity_grind_any ){
945 decay_rate = 1.0f-vg_lerpf( 3.0f, 20.0f, s->grind_strength ) * k_rb_delta;
946 decay_rate_y = decay_rate;
947 }
948
949 float wx = v3_dot( player->rb.w, player->rb.to_world[0] ) * decay_rate,
950 wy = v3_dot( player->rb.w, player->rb.to_world[1] ) * decay_rate_y,
951 wz = v3_dot( player->rb.w, player->rb.to_world[2] ) * decay_rate;
952
953 v3_muls( player->rb.to_world[0], wx, player->rb.w );
954 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
955 v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
956
957 s->state.flip_time += s->state.flip_rate * k_rb_delta;
958 rb_update_transform( &player->rb );
959 }
960
961 /*
962 * 1 2 or 3
963 */
964
965 VG_STATIC int player_skate_trick_input( player_instance *player )
966 {
967 return (player->input_trick0->button.value) |
968 (player->input_trick1->button.value << 1) |
969 (player->input_trick2->button.value << 1) |
970 (player->input_trick2->button.value);
971 }
972
973 VG_STATIC void player__skate_pre_update( player_instance *player )
974 {
975 struct player_skate *s = &player->_skate;
976
977 if( vg_input_button_down( player->input_use ) ){
978 player->subsystem = k_player_subsystem_walk;
979
980 v3f angles;
981 v3_copy( player->cam.angles, angles );
982 angles[2] = 0.0f;
983
984 player->holdout_time = 0.25f;
985 player__skate_kill_audio( player );
986 player__walk_transition( player, angles );
987 return;
988 }
989
990 if( vg_input_button_down( player->input_reset ) ){
991 player->rb.co[1] += 2.0f;
992 s->state.cog[1] += 2.0f;
993 q_axis_angle( player->rb.q, (v3f){1.0f,0.0f,0.0f}, VG_PIf * 0.25f );
994 v3_zero( player->rb.w );
995 v3_zero( player->rb.v );
996
997 rb_update_transform( &player->rb );
998 }
999
1000 int trick_id;
1001 if( (s->state.activity == k_skate_activity_air) &&
1002 (trick_id = player_skate_trick_input( player )) )
1003 {
1004 if( (vg.time - s->state.jump_time) < 0.1f ){
1005 v3_zero( s->state.trick_vel );
1006 s->state.trick_time = 0.0f;
1007
1008 if( trick_id == 1 ){
1009 s->state.trick_vel[0] = 3.0f;
1010 }
1011 else if( trick_id == 2 ){
1012 s->state.trick_vel[2] = 3.0f;
1013 }
1014 else if( trick_id == 3 ){
1015 s->state.trick_vel[0] = 2.0f;
1016 s->state.trick_vel[2] = 2.0f;
1017 }
1018 }
1019 }
1020 }
1021
1022 VG_STATIC void player__skate_post_update( player_instance *player )
1023 {
1024 struct player_skate *s = &player->_skate;
1025
1026 for( int i=0; i<s->prediction_count; i++ )
1027 {
1028 struct land_prediction *p = &s->predictions[i];
1029
1030 for( int j=0; j<p->log_length - 1; j ++ )
1031 {
1032 float brightness = p->score*p->score*p->score;
1033 v3f p1;
1034 v3_lerp( p->log[j], p->log[j+1], brightness, p1 );
1035 vg_line( p->log[j], p1, p->colour );
1036 }
1037
1038 vg_line_cross( p->log[p->log_length-1], p->colour, 0.25f );
1039
1040 v3f p1;
1041 v3_add( p->log[p->log_length-1], p->n, p1 );
1042 vg_line( p->log[p->log_length-1], p1, 0xffffffff );
1043
1044 vg_line_pt3( p->apex, 0.02f, 0xffffffff );
1045 }
1046
1047 #if 0
1048 vg_line_pt3( s->state.apex, 0.030f, 0xff0000ff );
1049 #endif
1050
1051 audio_lock();
1052
1053 float air = s->state.activity == k_skate_activity_air? 1.0f: 0.0f,
1054 speed = v3_length( player->rb.v ),
1055 attn = vg_minf( 1.0f, speed*0.1f ),
1056 slide = vg_clampf( fabsf(s->state.slip), 0.0f, 1.0f ),
1057
1058 vol_main = sqrtf( (1.0f-air)*attn*(1.0f-slide) * 0.4f ),
1059 vol_air = sqrtf( air *attn * 0.5f ),
1060 vol_slide = sqrtf( (1.0f-air)*attn*slide * 0.25f );
1061
1062 const u32 flags = AUDIO_FLAG_SPACIAL_3D|AUDIO_FLAG_LOOP;
1063 if( !s->aud_main )
1064 s->aud_main = audio_request_channel( &audio_board[0], flags );
1065
1066 if( !s->aud_air )
1067 s->aud_air = audio_request_channel( &audio_board[1], flags );
1068
1069 if( !s->aud_slide )
1070 s->aud_slide = audio_request_channel( &audio_board[2], flags );
1071
1072
1073 /* brrrrrrrrrrrt sound for tiles and stuff
1074 * --------------------------------------------------------*/
1075 float sidechain_amt = 0.0f,
1076 hz = speed * 2.0f;
1077
1078 if( s->surface == k_surface_prop_tiles )
1079 sidechain_amt = 1.0f;
1080 else
1081 sidechain_amt = 0.0f;
1082
1083 audio_set_lfo_frequency( 0, hz );
1084 audio_set_lfo_wave( 0, k_lfo_polynomial_bipolar,
1085 vg_lerpf( 250.0f, 80.0f, attn ) );
1086
1087 if( s->aud_main ){
1088 s->aud_main->colour = 0x00103efe;
1089 audio_channel_set_spacial( s->aud_main, player->rb.co, 40.0f );
1090 audio_channel_slope_volume( s->aud_main, 0.05f, vol_main );
1091 audio_channel_sidechain_lfo( s->aud_main, 0, sidechain_amt );
1092
1093 float rate = 1.0f + (attn-0.5f)*0.2f;
1094 audio_channel_set_sampling_rate( s->aud_main, rate );
1095 }
1096
1097 if( s->aud_slide ){
1098 s->aud_slide->colour = 0x00103efe;
1099 audio_channel_set_spacial( s->aud_slide, player->rb.co, 40.0f );
1100 audio_channel_slope_volume( s->aud_slide, 0.05f, vol_slide );
1101 audio_channel_sidechain_lfo( s->aud_slide, 0, sidechain_amt );
1102 }
1103
1104 if( s->aud_air ){
1105 s->aud_air->colour = 0x00103efe;
1106 audio_channel_set_spacial( s->aud_air, player->rb.co, 40.0f );
1107 audio_channel_slope_volume( s->aud_air, 0.05f, vol_air );
1108 }
1109
1110 audio_unlock();
1111 }
1112
1113 /*
1114 * truck alignment model at ra(local)
1115 * returns 1 if valid surface:
1116 * surface_normal will be filled out with an averaged normal vector
1117 * axel_dir will be the direction from left to right wheels
1118 *
1119 * returns 0 if no good surface found
1120 */
1121 VG_STATIC
1122 int skate_compute_surface_alignment( player_instance *player,
1123 v3f ra, u32 colour,
1124 v3f surface_normal, v3f axel_dir )
1125 {
1126 struct player_skate *s = &player->_skate;
1127 world_instance *world = get_active_world();
1128
1129 v3f truck, left, right;
1130 m4x3_mulv( player->rb.to_world, ra, truck );
1131
1132 v3_muladds( truck, player->rb.to_world[0], -k_board_width, left );
1133 v3_muladds( truck, player->rb.to_world[0], k_board_width, right );
1134 vg_line( left, right, colour );
1135
1136 float k_max_truck_flex = VG_PIf * 0.25f;
1137
1138 ray_hit ray_l, ray_r;
1139
1140 v3f dir;
1141 v3_muls( player->rb.to_world[1], -1.0f, dir );
1142
1143 int res_l = 0, res_r = 0;
1144
1145 for( int i=0; i<8; i++ )
1146 {
1147 float t = 1.0f - (float)i * (1.0f/8.0f);
1148 v3_muladds( truck, player->rb.to_world[0], -k_board_radius*t, left );
1149 v3_muladds( left, player->rb.to_world[1], k_board_radius, left );
1150 ray_l.dist = 2.1f * k_board_radius;
1151
1152 res_l = ray_world( world, left, dir, &ray_l );
1153
1154 if( res_l )
1155 break;
1156 }
1157
1158 for( int i=0; i<8; i++ )
1159 {
1160 float t = 1.0f - (float)i * (1.0f/8.0f);
1161 v3_muladds( truck, player->rb.to_world[0], k_board_radius*t, right );
1162 v3_muladds( right, player->rb.to_world[1], k_board_radius, right );
1163 ray_r.dist = 2.1f * k_board_radius;
1164
1165 res_r = ray_world( world, right, dir, &ray_r );
1166
1167 if( res_r )
1168 break;
1169 }
1170
1171 v3f v0;
1172 v3f midpoint;
1173 v3f tangent_average;
1174 v3_muladds( truck, player->rb.to_world[1], -k_board_radius, midpoint );
1175 v3_zero( tangent_average );
1176
1177 if( res_l || res_r )
1178 {
1179 v3f p0, p1, t;
1180 v3_copy( midpoint, p0 );
1181 v3_copy( midpoint, p1 );
1182
1183 if( res_l )
1184 {
1185 v3_copy( ray_l.pos, p0 );
1186 v3_cross( ray_l.normal, player->rb.to_world[0], t );
1187 v3_add( t, tangent_average, tangent_average );
1188 }
1189 if( res_r )
1190 {
1191 v3_copy( ray_r.pos, p1 );
1192 v3_cross( ray_r.normal, player->rb.to_world[0], t );
1193 v3_add( t, tangent_average, tangent_average );
1194 }
1195
1196 v3_sub( p1, p0, v0 );
1197 v3_normalize( v0 );
1198 }
1199 else
1200 {
1201 /* fallback: use the closes point to the trucks */
1202 v3f closest;
1203 int idx = bh_closest_point( world->geo_bh, midpoint, closest, 0.1f );
1204
1205 if( idx != -1 )
1206 {
1207 u32 *tri = &world->scene_geo->arrindices[ idx * 3 ];
1208 v3f verts[3];
1209
1210 for( int j=0; j<3; j++ )
1211 v3_copy( world->scene_geo->arrvertices[ tri[j] ].co, verts[j] );
1212
1213 v3f vert0, vert1, n;
1214 v3_sub( verts[1], verts[0], vert0 );
1215 v3_sub( verts[2], verts[0], vert1 );
1216 v3_cross( vert0, vert1, n );
1217 v3_normalize( n );
1218
1219 if( v3_dot( n, player->rb.to_world[1] ) < 0.3f )
1220 return 0;
1221
1222 v3_cross( n, player->rb.to_world[2], v0 );
1223 v3_muladds( v0, player->rb.to_world[2],
1224 -v3_dot( player->rb.to_world[2], v0 ), v0 );
1225 v3_normalize( v0 );
1226
1227 v3f t;
1228 v3_cross( n, player->rb.to_world[0], t );
1229 v3_add( t, tangent_average, tangent_average );
1230 }
1231 else
1232 return 0;
1233 }
1234
1235 v3_muladds( truck, v0, k_board_width, right );
1236 v3_muladds( truck, v0, -k_board_width, left );
1237
1238 vg_line( left, right, VG__WHITE );
1239
1240 v3_normalize( tangent_average );
1241 v3_cross( v0, tangent_average, surface_normal );
1242 v3_copy( v0, axel_dir );
1243
1244 return 1;
1245 }
1246
1247 VG_STATIC void skate_weight_distribute( player_instance *player )
1248 {
1249 struct player_skate *s = &player->_skate;
1250 v3_zero( s->weight_distribution );
1251
1252 int reverse_dir = v3_dot( player->rb.to_world[2], player->rb.v ) < 0.0f?1:-1;
1253
1254 if( s->state.manual_direction == 0 )
1255 {
1256 if( (player->input_js1v->axis.value > 0.7f) &&
1257 (s->state.activity == k_skate_activity_ground) &&
1258 (s->state.jump_charge <= 0.01f) )
1259 s->state.manual_direction = reverse_dir;
1260 }
1261 else
1262 {
1263 if( player->input_js1v->axis.value < 0.1f )
1264 {
1265 s->state.manual_direction = 0;
1266 }
1267 else
1268 {
1269 if( reverse_dir != s->state.manual_direction )
1270 {
1271 return;
1272 }
1273 }
1274 }
1275
1276 if( s->state.manual_direction )
1277 {
1278 float amt = vg_minf( player->input_js1v->axis.value * 8.0f, 1.0f );
1279 s->weight_distribution[2] = k_board_length * amt *
1280 (float)s->state.manual_direction;
1281 }
1282
1283 /* TODO: Fall back on land normal */
1284 /* TODO: Lerp weight distribution */
1285 if( s->state.manual_direction )
1286 {
1287 v3f plane_z;
1288
1289 m3x3_mulv( player->rb.to_world, s->weight_distribution, plane_z );
1290 v3_negate( plane_z, plane_z );
1291
1292 v3_muladds( plane_z, s->surface_picture,
1293 -v3_dot( plane_z, s->surface_picture ), plane_z );
1294 v3_normalize( plane_z );
1295
1296 v3_muladds( plane_z, s->surface_picture, 0.3f, plane_z );
1297 v3_normalize( plane_z );
1298
1299 v3f p1;
1300 v3_muladds( player->rb.co, plane_z, 1.5f, p1 );
1301 vg_line( player->rb.co, p1, VG__GREEN );
1302
1303 v3f refdir;
1304 v3_muls( player->rb.to_world[2], -(float)s->state.manual_direction,
1305 refdir );
1306
1307 rb_effect_spring_target_vector( &player->rb, refdir, plane_z,
1308 k_manul_spring, k_manul_dampener,
1309 s->substep_delta );
1310 }
1311 }
1312
1313 VG_STATIC void skate_adjust_up_direction( player_instance *player )
1314 {
1315 struct player_skate *s = &player->_skate;
1316
1317 if( s->state.activity == k_skate_activity_ground )
1318 {
1319 v3f target;
1320 v3_copy( s->surface_picture, target );
1321
1322 target[1] += 2.0f * s->surface_picture[1];
1323 v3_normalize( target );
1324
1325 v3_lerp( s->state.up_dir, target,
1326 8.0f * s->substep_delta, s->state.up_dir );
1327 }
1328 else if( s->state.activity == k_skate_activity_air )
1329 {
1330 v3_lerp( s->state.up_dir, player->rb.to_world[1],
1331 8.0f * s->substep_delta, s->state.up_dir );
1332 }
1333 else
1334 {
1335 v3_lerp( s->state.up_dir, player->basis[1],
1336 12.0f * s->substep_delta, s->state.up_dir );
1337 }
1338 }
1339
1340 VG_STATIC int skate_point_visible( v3f origin, v3f target )
1341 {
1342 v3f dir;
1343 v3_sub( target, origin, dir );
1344
1345 ray_hit ray;
1346 ray.dist = v3_length( dir );
1347 v3_muls( dir, 1.0f/ray.dist, dir );
1348 ray.dist -= 0.025f;
1349
1350 if( ray_world( get_active_world(), origin, dir, &ray ) )
1351 return 0;
1352
1353 return 1;
1354 }
1355
1356 VG_STATIC void skate_grind_orient( struct grind_info *inf, m3x3f mtx )
1357 {
1358 /* TODO: Is N and Dir really orthogonal? */
1359 v3_copy( inf->dir, mtx[0] );
1360 v3_copy( inf->n, mtx[1] );
1361 v3_cross( mtx[0], mtx[1], mtx[2] );
1362 }
1363
1364 VG_STATIC void skate_grind_friction( player_instance *player,
1365 struct grind_info *inf, float strength )
1366 {
1367 v3f v2;
1368 v3_muladds( player->rb.to_world[2], inf->n,
1369 -v3_dot( player->rb.to_world[2], inf->n ), v2 );
1370
1371 float a = 1.0f-fabsf( v3_dot( v2, inf->dir ) ),
1372 dir = vg_signf( v3_dot( player->rb.v, inf->dir ) ),
1373 F = a * -dir * k_grind_max_friction;
1374
1375 v3_muladds( player->rb.v, inf->dir, F*k_rb_delta*strength, player->rb.v );
1376 }
1377
1378 VG_STATIC void skate_grind_decay( player_instance *player,
1379 struct grind_info *inf, float strength )
1380 {
1381 m3x3f mtx, mtx_inv;
1382 skate_grind_orient( inf, mtx );
1383 m3x3_transpose( mtx, mtx_inv );
1384
1385 v3f v_grind;
1386 m3x3_mulv( mtx_inv, player->rb.v, v_grind );
1387
1388 float decay = 1.0f - ( k_rb_delta * k_grind_decayxy * strength );
1389 v3_mul( v_grind, (v3f){ 1.0f, decay, decay }, v_grind );
1390 m3x3_mulv( mtx, v_grind, player->rb.v );
1391 }
1392
1393 VG_STATIC void skate_grind_truck_apply( player_instance *player,
1394 float sign, struct grind_info *inf,
1395 float strength )
1396 {
1397 struct player_skate *s = &player->_skate;
1398
1399 /* TODO: Trash compactor this */
1400 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1401 v3f raw, wsp;
1402 m3x3_mulv( player->rb.to_world, ra, raw );
1403 v3_add( player->rb.co, raw, wsp );
1404
1405 v3_copy( ra, s->weight_distribution );
1406
1407 v3f delta;
1408 v3_sub( inf->co, wsp, delta );
1409
1410 /* spring force */
1411 v3_muladds( player->rb.v, delta, k_spring_force*strength*k_rb_delta,
1412 player->rb.v );
1413
1414 skate_grind_decay( player, inf, strength );
1415 skate_grind_friction( player, inf, strength );
1416
1417 /* yeah yeah yeah yeah */
1418 v3f raw_nplane, axis;
1419 v3_muladds( raw, inf->n, -v3_dot( inf->n, raw ), raw_nplane );
1420 v3_cross( raw_nplane, inf->n, axis );
1421 v3_normalize( axis );
1422
1423 /* orientation */
1424 m3x3f mtx;
1425 skate_grind_orient( inf, mtx );
1426 v3f target_fwd, fwd, up, target_up;
1427 m3x3_mulv( mtx, s->grind_vec, target_fwd );
1428 v3_copy( raw_nplane, fwd );
1429 v3_copy( player->rb.to_world[1], up );
1430 v3_copy( inf->n, target_up );
1431
1432 v3_muladds( target_fwd, inf->n, -v3_dot(inf->n,target_fwd), target_fwd );
1433 v3_muladds( fwd, inf->n, -v3_dot(inf->n,fwd), fwd );
1434
1435 v3_normalize( target_fwd );
1436 v3_normalize( fwd );
1437
1438
1439 float way = player->input_js1v->axis.value *
1440 vg_signf( v3_dot( raw_nplane, player->rb.v ) );
1441
1442 v4f q;
1443 q_axis_angle( q, axis, VG_PIf*0.125f * way );
1444 q_mulv( q, target_up, target_up );
1445 q_mulv( q, target_fwd, target_fwd );
1446
1447 rb_effect_spring_target_vector( &player->rb, up, target_up,
1448 k_grind_spring,
1449 k_grind_dampener,
1450 k_rb_delta );
1451
1452 rb_effect_spring_target_vector( &player->rb, fwd, target_fwd,
1453 k_grind_spring*strength,
1454 k_grind_dampener*strength,
1455 k_rb_delta );
1456
1457 vg_line_arrow( player->rb.co, target_up, 1.0f, VG__GREEN );
1458 vg_line_arrow( player->rb.co, fwd, 0.8f, VG__RED );
1459 vg_line_arrow( player->rb.co, target_fwd, 1.0f, VG__YELOW );
1460
1461 s->grind_strength = strength;
1462
1463 /* Fake contact */
1464 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1465 m4x3_mulv( player->rb.to_local, wsp, limit->ra );
1466 m3x3_mulv( player->rb.to_local, inf->n, limit->n );
1467 limit->p = 0.0f;
1468
1469 v3_copy( inf->dir, s->grind_dir );
1470 }
1471
1472 VG_STATIC void skate_5050_apply( player_instance *player,
1473 struct grind_info *inf_front,
1474 struct grind_info *inf_back )
1475 {
1476 struct player_skate *s = &player->_skate;
1477 struct grind_info inf_avg;
1478
1479 v3_sub( inf_front->co, inf_back->co, inf_avg.dir );
1480 v3_muladds( inf_back->co, inf_avg.dir, 0.5f, inf_avg.co );
1481 v3_normalize( inf_avg.dir );
1482
1483 v3f axis_front, axis_back, axis;
1484 v3_cross( inf_front->dir, inf_front->n, axis_front );
1485 v3_cross( inf_back->dir, inf_back->n, axis_back );
1486 v3_add( axis_front, axis_back, axis );
1487 v3_normalize( axis );
1488
1489 v3_cross( axis, inf_avg.dir, inf_avg.n );
1490
1491 skate_grind_decay( player, &inf_avg, 1.0f );
1492
1493
1494 float way = player->input_js1v->axis.value *
1495 vg_signf( v3_dot( player->rb.to_world[2], player->rb.v ) );
1496 v4f q;
1497 v3f up, target_up;
1498 v3_copy( player->rb.to_world[1], up );
1499 v3_copy( inf_avg.n, target_up );
1500 q_axis_angle( q, player->rb.to_world[0], VG_PIf*0.25f * -way );
1501 q_mulv( q, target_up, target_up );
1502
1503 v3_zero( s->weight_distribution );
1504 s->weight_distribution[2] = k_board_length * -way;
1505
1506 rb_effect_spring_target_vector( &player->rb, up, target_up,
1507 k_grind_spring,
1508 k_grind_dampener,
1509 k_rb_delta );
1510
1511 v3f fwd_nplane, dir_nplane;
1512 v3_muladds( player->rb.to_world[2], inf_avg.n,
1513 -v3_dot( player->rb.to_world[2], inf_avg.n ), fwd_nplane );
1514
1515 v3f dir;
1516 v3_muls( inf_avg.dir, v3_dot( fwd_nplane, inf_avg.dir ), dir );
1517 v3_muladds( dir, inf_avg.n, -v3_dot( dir, inf_avg.n ), dir_nplane );
1518
1519 v3_normalize( fwd_nplane );
1520 v3_normalize( dir_nplane );
1521
1522 rb_effect_spring_target_vector( &player->rb, fwd_nplane, dir_nplane,
1523 1000.0f,
1524 k_grind_dampener,
1525 k_rb_delta );
1526
1527 v3f pos_front = { 0.0f, -k_board_radius, -1.0f * k_board_length },
1528 pos_back = { 0.0f, -k_board_radius, 1.0f * k_board_length },
1529 delta_front, delta_back, delta_total;
1530
1531 m4x3_mulv( player->rb.to_world, pos_front, pos_front );
1532 m4x3_mulv( player->rb.to_world, pos_back, pos_back );
1533
1534 v3_sub( inf_front->co, pos_front, delta_front );
1535 v3_sub( inf_back->co, pos_back, delta_back );
1536 v3_add( delta_front, delta_back, delta_total );
1537
1538 v3_muladds( player->rb.v, delta_total, 50.0f * k_rb_delta, player->rb.v );
1539
1540 /* Fake contact */
1541 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1542 v3_zero( limit->ra );
1543 m3x3_mulv( player->rb.to_local, inf_avg.n, limit->n );
1544 limit->p = 0.0f;
1545
1546 v3_copy( inf_avg.dir, s->grind_dir );
1547 }
1548
1549 VG_STATIC int skate_grind_truck_renew( player_instance *player, float sign,
1550 struct grind_info *inf )
1551 {
1552 struct player_skate *s = &player->_skate;
1553
1554 v3f wheel_co = { 0.0f, 0.0f, sign * k_board_length },
1555 grind_co = { 0.0f, -k_board_radius, sign * k_board_length };
1556
1557 m4x3_mulv( player->rb.to_world, wheel_co, wheel_co );
1558 m4x3_mulv( player->rb.to_world, grind_co, grind_co );
1559
1560 /* Exit condition: lost grind tracking */
1561 if( !skate_grind_scansq( player, grind_co, player->rb.v, 0.3f, inf ) )
1562 return 0;
1563
1564 /* Exit condition: cant see grind target directly */
1565 if( !skate_point_visible( wheel_co, inf->co ) )
1566 return 0;
1567
1568 /* Exit condition: minimum velocity not reached, but allow a bit of error */
1569 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1570 minv = k_grind_axel_min_vel*0.8f;
1571
1572 if( dv < minv )
1573 return 0;
1574
1575 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1576 return 0;
1577
1578 v3_copy( inf->dir, s->grind_dir );
1579 return 1;
1580 }
1581
1582 VG_STATIC int skate_grind_truck_entry( player_instance *player, float sign,
1583 struct grind_info *inf )
1584 {
1585 struct player_skate *s = &player->_skate;
1586
1587 /* TODO: Trash compactor this */
1588 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1589
1590 v3f raw, wsp;
1591 m3x3_mulv( player->rb.to_world, ra, raw );
1592 v3_add( player->rb.co, raw, wsp );
1593
1594 if( skate_grind_scansq( player, wsp, player->rb.v, 0.3, inf ) )
1595 {
1596 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1597 return 0;
1598
1599 /* velocity should be at least 60% aligned */
1600 v3f pv, axis;
1601 v3_cross( inf->n, inf->dir, axis );
1602 v3_muladds( player->rb.v, inf->n, -v3_dot( player->rb.v, inf->n ), pv );
1603
1604 if( v3_length2( pv ) < 0.0001f )
1605 return 0;
1606 v3_normalize( pv );
1607
1608 if( fabsf(v3_dot( pv, inf->dir )) < k_grind_axel_max_angle )
1609 return 0;
1610
1611 if( v3_dot( player->rb.v, inf->n ) > 0.5f )
1612 return 0;
1613
1614 #if 0
1615 /* check for vertical alignment */
1616 if( v3_dot( player->rb.to_world[1], inf->n ) < k_grind_axel_max_vangle )
1617 return 0;
1618 #endif
1619
1620 v3f local_co, local_dir, local_n;
1621 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1622 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1623 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1624
1625 v2f delta = { local_co[0], local_co[2] - k_board_length*sign };
1626
1627 float truck_height = -(k_board_radius+0.03f);
1628
1629 v3f rv;
1630 v3_cross( player->rb.w, raw, rv );
1631 v3_add( player->rb.v, rv, rv );
1632
1633 if( (local_co[1] >= truck_height) &&
1634 (v2_length2( delta ) <= k_board_radius*k_board_radius) )
1635 {
1636 return 1;
1637 }
1638 }
1639
1640 return 0;
1641 }
1642
1643 VG_STATIC void skate_boardslide_apply( player_instance *player,
1644 struct grind_info *inf )
1645 {
1646 struct player_skate *s = &player->_skate;
1647
1648 v3f local_co, local_dir, local_n;
1649 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1650 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1651 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1652
1653 v3f intersection;
1654 v3_muladds( local_co, local_dir, local_co[0]/-local_dir[0],
1655 intersection );
1656 v3_copy( intersection, s->weight_distribution );
1657
1658 skate_grind_decay( player, inf, 0.1f );
1659 skate_grind_friction( player, inf, 0.25f );
1660
1661 /* direction alignment */
1662 v3f dir, perp;
1663 v3_cross( local_dir, local_n, perp );
1664 v3_muls( local_dir, vg_signf(local_dir[0]), dir );
1665 v3_muls( perp, vg_signf(perp[2]), perp );
1666
1667 m3x3_mulv( player->rb.to_world, dir, dir );
1668 m3x3_mulv( player->rb.to_world, perp, perp );
1669
1670 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1671 dir,
1672 k_grind_spring, k_grind_dampener,
1673 k_rb_delta );
1674
1675 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[2],
1676 perp,
1677 k_grind_spring, k_grind_dampener,
1678 k_rb_delta );
1679
1680 vg_line_arrow( player->rb.co, dir, 0.5f, VG__GREEN );
1681 vg_line_arrow( player->rb.co, perp, 0.5f, VG__BLUE );
1682
1683 v3_copy( inf->dir, s->grind_dir );
1684 }
1685
1686 VG_STATIC int skate_boardslide_entry( player_instance *player,
1687 struct grind_info *inf )
1688 {
1689 struct player_skate *s = &player->_skate;
1690
1691 if( skate_grind_scansq( player, player->rb.co,
1692 player->rb.to_world[0], k_board_length,
1693 inf ) )
1694 {
1695 v3f local_co, local_dir;
1696 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1697 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1698
1699 if( (fabsf(local_co[2]) <= k_board_length) && /* within wood area */
1700 (local_co[1] >= 0.0f) && /* at deck level */
1701 (fabsf(local_dir[0]) >= 0.5f) ) /* perpendicular to us */
1702 {
1703 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1704 return 0;
1705
1706 return 1;
1707 }
1708 }
1709
1710 return 0;
1711 }
1712
1713 VG_STATIC int skate_boardslide_renew( player_instance *player,
1714 struct grind_info *inf )
1715 {
1716 struct player_skate *s = &player->_skate;
1717
1718 if( !skate_grind_scansq( player, player->rb.co,
1719 player->rb.to_world[0], k_board_length,
1720 inf ) )
1721 return 0;
1722
1723 /* Exit condition: cant see grind target directly */
1724 v3f vis;
1725 v3_muladds( player->rb.co, player->rb.to_world[1], 0.2f, vis );
1726 if( !skate_point_visible( vis, inf->co ) )
1727 return 0;
1728
1729 /* Exit condition: minimum velocity not reached, but allow a bit of error
1730 * TODO: trash compactor */
1731 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1732 minv = k_grind_axel_min_vel*0.8f;
1733
1734 if( dv < minv )
1735 return 0;
1736
1737 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1738 return 0;
1739
1740 return 1;
1741 }
1742
1743 VG_STATIC void skate_store_grind_vec( player_instance *player,
1744 struct grind_info *inf )
1745 {
1746 struct player_skate *s = &player->_skate;
1747
1748 m3x3f mtx;
1749 skate_grind_orient( inf, mtx );
1750 m3x3_transpose( mtx, mtx );
1751
1752 v3f raw;
1753 v3_sub( inf->co, player->rb.co, raw );
1754
1755 m3x3_mulv( mtx, raw, s->grind_vec );
1756 v3_normalize( s->grind_vec );
1757 v3_copy( inf->dir, s->grind_dir );
1758 }
1759
1760 VG_STATIC enum skate_activity skate_availible_grind( player_instance *player )
1761 {
1762 struct player_skate *s = &player->_skate;
1763
1764 /* debounces this state manager a little bit */
1765 if( s->frames_since_activity_change < 10 )
1766 {
1767 s->frames_since_activity_change ++;
1768 return k_skate_activity_undefined;
1769 }
1770
1771 struct grind_info inf_back50,
1772 inf_front50,
1773 inf_slide;
1774
1775 int res_back50 = 0,
1776 res_front50 = 0,
1777 res_slide = 0;
1778
1779 if( s->state.activity == k_skate_activity_grind_boardslide )
1780 {
1781 res_slide = skate_boardslide_renew( player, &inf_slide );
1782 }
1783 else if( s->state.activity == k_skate_activity_grind_back50 )
1784 {
1785 res_back50 = skate_grind_truck_renew( player, 1.0f, &inf_back50 );
1786 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1787 }
1788 else if( s->state.activity == k_skate_activity_grind_front50 )
1789 {
1790 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1791 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1792 }
1793 else if( s->state.activity == k_skate_activity_grind_5050 )
1794 {
1795 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1796 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1797 }
1798 else
1799 {
1800 res_slide = skate_boardslide_entry( player, &inf_slide );
1801 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1802 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1803
1804 if( res_back50 != res_front50 )
1805 {
1806 int wants_to_do_that = fabsf(player->input_js1v->axis.value) >= 0.25f;
1807
1808 res_back50 &= wants_to_do_that;
1809 res_front50 &= wants_to_do_that;
1810 }
1811 }
1812
1813 const enum skate_activity table[] =
1814 { /* slide | back | front */
1815 k_skate_activity_undefined, /* 0 0 0 */
1816 k_skate_activity_grind_front50, /* 0 0 1 */
1817 k_skate_activity_grind_back50, /* 0 1 0 */
1818 k_skate_activity_grind_5050, /* 0 1 1 */
1819
1820 /* slide has priority always */
1821 k_skate_activity_grind_boardslide, /* 1 0 0 */
1822 k_skate_activity_grind_boardslide, /* 1 0 1 */
1823 k_skate_activity_grind_boardslide, /* 1 1 0 */
1824 k_skate_activity_grind_boardslide, /* 1 1 1 */
1825 }
1826 , new_activity = table[ res_slide << 2 | res_back50 << 1 | res_front50 ];
1827
1828 if( new_activity == k_skate_activity_undefined )
1829 {
1830 if( s->state.activity >= k_skate_activity_grind_any )
1831 s->frames_since_activity_change = 0;
1832 }
1833 else if( new_activity == k_skate_activity_grind_boardslide )
1834 {
1835 skate_boardslide_apply( player, &inf_slide );
1836 }
1837 else if( new_activity == k_skate_activity_grind_back50 )
1838 {
1839 if( s->state.activity != k_skate_activity_grind_back50 )
1840 skate_store_grind_vec( player, &inf_back50 );
1841
1842 skate_grind_truck_apply( player, 1.0f, &inf_back50, 1.0f );
1843 }
1844 else if( new_activity == k_skate_activity_grind_front50 )
1845 {
1846 if( s->state.activity != k_skate_activity_grind_front50 )
1847 skate_store_grind_vec( player, &inf_front50 );
1848
1849 skate_grind_truck_apply( player, -1.0f, &inf_front50, 1.0f );
1850 }
1851 else if( new_activity == k_skate_activity_grind_5050 )
1852 skate_5050_apply( player, &inf_front50, &inf_back50 );
1853
1854 return new_activity;
1855 }
1856
1857 VG_STATIC void player__skate_update( player_instance *player )
1858 {
1859 struct player_skate *s = &player->_skate;
1860 world_instance *world = get_active_world();
1861
1862 v3_copy( player->rb.co, s->state.prev_pos );
1863 s->state.activity_prev = s->state.activity;
1864
1865 struct board_collider
1866 {
1867 v3f pos;
1868 float radius;
1869
1870 u32 colour;
1871
1872 enum board_collider_state
1873 {
1874 k_collider_state_default,
1875 k_collider_state_disabled,
1876 k_collider_state_colliding
1877 }
1878 state;
1879 }
1880 wheels[] =
1881 {
1882 {
1883 { 0.0f, 0.0f, -k_board_length },
1884 .radius = k_board_radius,
1885 .colour = VG__RED
1886 },
1887 {
1888 { 0.0f, 0.0f, k_board_length },
1889 .radius = k_board_radius,
1890 .colour = VG__GREEN
1891 }
1892 };
1893
1894 const int k_wheel_count = 2;
1895
1896 s->substep = k_rb_delta;
1897 s->substep_delta = s->substep;
1898 s->limit_count = 0;
1899
1900 int substep_count = 0;
1901
1902 v3_zero( s->surface_picture );
1903
1904 for( int i=0; i<k_wheel_count; i++ )
1905 wheels[i].state = k_collider_state_default;
1906
1907 /* check if we can enter or continue grind */
1908 enum skate_activity grindable_activity = skate_availible_grind( player );
1909 if( grindable_activity != k_skate_activity_undefined )
1910 {
1911 s->state.activity = grindable_activity;
1912 goto grinding;
1913 }
1914
1915 int contact_count = 0;
1916 for( int i=0; i<2; i++ )
1917 {
1918 v3f normal, axel;
1919 v3_copy( player->rb.to_world[0], axel );
1920
1921 if( skate_compute_surface_alignment( player, wheels[i].pos,
1922 wheels[i].colour, normal, axel ) )
1923 {
1924 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1925 axel,
1926 k_surface_spring, k_surface_dampener,
1927 s->substep_delta );
1928
1929 v3_add( normal, s->surface_picture, s->surface_picture );
1930 contact_count ++;
1931 }
1932
1933 m3x3_mulv( player->rb.to_local, axel, s->truckv0[i] );
1934 }
1935
1936 if( contact_count )
1937 {
1938 s->state.activity = k_skate_activity_ground;
1939 s->state.gravity_bias = k_gravity;
1940 v3_normalize( s->surface_picture );
1941
1942 skate_apply_friction_model( player );
1943 skate_weight_distribute( player );
1944 }
1945 else
1946 {
1947 s->state.activity = k_skate_activity_air;
1948 v3_zero( s->weight_distribution );
1949 skate_apply_air_model( player );
1950 }
1951
1952 grinding:;
1953
1954 if( s->state.activity == k_skate_activity_grind_back50 )
1955 wheels[1].state = k_collider_state_disabled;
1956 if( s->state.activity == k_skate_activity_grind_front50 )
1957 wheels[0].state = k_collider_state_disabled;
1958 if( s->state.activity == k_skate_activity_grind_5050 )
1959 {
1960 wheels[0].state = k_collider_state_disabled;
1961 wheels[1].state = k_collider_state_disabled;
1962 }
1963
1964 /* all activities */
1965 skate_apply_steering_model( player );
1966 skate_adjust_up_direction( player );
1967 skate_apply_cog_model( player );
1968 skate_apply_jump_model( player );
1969 skate_apply_grab_model( player );
1970 skate_apply_trick_model( player );
1971 skate_apply_pump_model( player );
1972
1973 begin_collision:;
1974
1975 /*
1976 * Phase 0: Continous collision detection
1977 * --------------------------------------------------------------------------
1978 */
1979
1980 v3f head_wp0, head_wp1, start_co;
1981 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp0 );
1982 v3_copy( player->rb.co, start_co );
1983
1984 /* calculate transform one step into future */
1985 v3f future_co;
1986 v4f future_q;
1987 v3_muladds( player->rb.co, player->rb.v, s->substep, future_co );
1988
1989 if( v3_length2( player->rb.w ) > 0.0f )
1990 {
1991 v4f rotation;
1992 v3f axis;
1993 v3_copy( player->rb.w, axis );
1994
1995 float mag = v3_length( axis );
1996 v3_divs( axis, mag, axis );
1997 q_axis_angle( rotation, axis, mag*s->substep );
1998 q_mul( rotation, player->rb.q, future_q );
1999 q_normalize( future_q );
2000 }
2001 else
2002 v4_copy( player->rb.q, future_q );
2003
2004 v3f future_cg, current_cg, cg_offset;
2005 q_mulv( player->rb.q, s->weight_distribution, current_cg );
2006 q_mulv( future_q, s->weight_distribution, future_cg );
2007 v3_sub( future_cg, current_cg, cg_offset );
2008
2009 /* calculate the minimum time we can move */
2010 float max_time = s->substep;
2011
2012 for( int i=0; i<k_wheel_count; i++ )
2013 {
2014 if( wheels[i].state == k_collider_state_disabled )
2015 continue;
2016
2017 v3f current, future, r_cg;
2018
2019 q_mulv( future_q, wheels[i].pos, future );
2020 v3_add( future, future_co, future );
2021 v3_add( cg_offset, future, future );
2022
2023 q_mulv( player->rb.q, wheels[i].pos, current );
2024 v3_add( current, player->rb.co, current );
2025
2026 float t;
2027 v3f n;
2028
2029 float cast_radius = wheels[i].radius - k_penetration_slop * 2.0f;
2030 if( spherecast_world( world, current, future, cast_radius, &t, n ) != -1)
2031 max_time = vg_minf( max_time, t * s->substep );
2032 }
2033
2034 /* clamp to a fraction of delta, to prevent locking */
2035 float rate_lock = substep_count;
2036 rate_lock *= k_rb_delta * 0.1f;
2037 rate_lock *= rate_lock;
2038
2039 max_time = vg_maxf( max_time, rate_lock );
2040 s->substep_delta = max_time;
2041
2042 /* integrate */
2043 v3_muladds( player->rb.co, player->rb.v, s->substep_delta, player->rb.co );
2044 if( v3_length2( player->rb.w ) > 0.0f )
2045 {
2046 v4f rotation;
2047 v3f axis;
2048 v3_copy( player->rb.w, axis );
2049
2050 float mag = v3_length( axis );
2051 v3_divs( axis, mag, axis );
2052 q_axis_angle( rotation, axis, mag*s->substep_delta );
2053 q_mul( rotation, player->rb.q, player->rb.q );
2054 q_normalize( player->rb.q );
2055
2056 q_mulv( player->rb.q, s->weight_distribution, future_cg );
2057 v3_sub( current_cg, future_cg, cg_offset );
2058 v3_add( player->rb.co, cg_offset, player->rb.co );
2059 }
2060
2061 rb_update_transform( &player->rb );
2062 v3_muladds( player->rb.v, player->basis[1],
2063 -s->state.gravity_bias * s->substep_delta, player->rb.v );
2064
2065 s->substep -= s->substep_delta;
2066
2067 rb_ct manifold[128];
2068 int manifold_len = 0;
2069
2070 /*
2071 * Phase -1: head detection
2072 * --------------------------------------------------------------------------
2073 */
2074 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp1 );
2075
2076 float t;
2077 v3f n;
2078 if( (v3_dist2( head_wp0, head_wp1 ) > 0.001f) &&
2079 (spherecast_world( world, head_wp0, head_wp1, 0.2f, &t, n ) != -1) )
2080 {
2081 v3_lerp( start_co, player->rb.co, t, player->rb.co );
2082 rb_update_transform( &player->rb );
2083
2084 player__skate_kill_audio( player );
2085 player__dead_transition( player );
2086 return;
2087 }
2088
2089 /*
2090 * Phase 1: Regular collision detection
2091 * --------------------------------------------------------------------------
2092 */
2093
2094 for( int i=0; i<k_wheel_count; i++ )
2095 {
2096 if( wheels[i].state == k_collider_state_disabled )
2097 continue;
2098
2099 m4x3f mtx;
2100 m3x3_identity( mtx );
2101 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2102
2103 rb_sphere collider = { .radius = wheels[i].radius };
2104
2105 rb_ct *man = &manifold[ manifold_len ];
2106
2107 int l = skate_collide_smooth( player, mtx, &collider, man );
2108 if( l )
2109 wheels[i].state = k_collider_state_colliding;
2110
2111 manifold_len += l;
2112 }
2113
2114 float grind_radius = k_board_radius * 0.75f;
2115 rb_capsule capsule = { .height = (k_board_length+0.2f)*2.0f,
2116 .radius=grind_radius };
2117 m4x3f mtx;
2118 v3_muls( player->rb.to_world[0], 1.0f, mtx[0] );
2119 v3_muls( player->rb.to_world[2], -1.0f, mtx[1] );
2120 v3_muls( player->rb.to_world[1], 1.0f, mtx[2] );
2121 v3_muladds( player->rb.to_world[3], player->rb.to_world[1],
2122 grind_radius + k_board_radius*0.25f, mtx[3] );
2123
2124 rb_ct *cman = &manifold[manifold_len];
2125
2126 int l = rb_capsule__scene( mtx, &capsule, NULL, &world->rb_geo.inf.scene,
2127 cman );
2128
2129 /* weld joints */
2130 for( int i=0; i<l; i ++ )
2131 cman[l].type = k_contact_type_edge;
2132 rb_manifold_filter_joint_edges( cman, l, 0.03f );
2133 l = rb_manifold_apply_filtered( cman, l );
2134
2135 manifold_len += l;
2136
2137 debug_capsule( mtx, capsule.radius, capsule.height, VG__WHITE );
2138
2139 /* add limits */
2140 for( int i=0; i<s->limit_count; i++ )
2141 {
2142 struct grind_limit *limit = &s->limits[i];
2143 rb_ct *ct = &manifold[ manifold_len ++ ];
2144 m4x3_mulv( player->rb.to_world, limit->ra, ct->co );
2145 m3x3_mulv( player->rb.to_world, limit->n, ct->n );
2146 ct->p = limit->p;
2147 ct->type = k_contact_type_default;
2148 }
2149
2150 /*
2151 * Phase 3: Dynamics
2152 * --------------------------------------------------------------------------
2153 */
2154
2155
2156 v3f world_cog;
2157 m4x3_mulv( player->rb.to_world, s->weight_distribution, world_cog );
2158 vg_line_pt3( world_cog, 0.02f, VG__BLACK );
2159
2160 for( int i=0; i<manifold_len; i ++ )
2161 {
2162 rb_prepare_contact( &manifold[i], s->substep_delta );
2163 rb_debug_contact( &manifold[i] );
2164 }
2165
2166 /* yes, we are currently rebuilding mass matrices every frame. too bad! */
2167 v3f extent = { k_board_width, 0.1f, k_board_length };
2168 float ex2 = k_board_interia*extent[0]*extent[0],
2169 ey2 = k_board_interia*extent[1]*extent[1],
2170 ez2 = k_board_interia*extent[2]*extent[2];
2171
2172 float mass = 2.0f * (extent[0]*extent[1]*extent[2]);
2173 float inv_mass = 1.0f/mass;
2174
2175 v3f I;
2176 I[0] = ((1.0f/12.0f) * mass * (ey2+ez2));
2177 I[1] = ((1.0f/12.0f) * mass * (ex2+ez2));
2178 I[2] = ((1.0f/12.0f) * mass * (ex2+ey2));
2179
2180 m3x3f iI;
2181 m3x3_identity( iI );
2182 iI[0][0] = I[0];
2183 iI[1][1] = I[1];
2184 iI[2][2] = I[2];
2185 m3x3_inv( iI, iI );
2186
2187 m3x3f iIw;
2188 m3x3_mul( iI, player->rb.to_local, iIw );
2189 m3x3_mul( player->rb.to_world, iIw, iIw );
2190
2191 for( int j=0; j<10; j++ )
2192 {
2193 for( int i=0; i<manifold_len; i++ )
2194 {
2195 /*
2196 * regular dance; calculate velocity & total mass, apply impulse.
2197 */
2198
2199 struct contact *ct = &manifold[i];
2200
2201 v3f rv, delta;
2202 v3_sub( ct->co, world_cog, delta );
2203 v3_cross( player->rb.w, delta, rv );
2204 v3_add( player->rb.v, rv, rv );
2205
2206 v3f raCn;
2207 v3_cross( delta, ct->n, raCn );
2208
2209 v3f raCnI, rbCnI;
2210 m3x3_mulv( iIw, raCn, raCnI );
2211
2212 float normal_mass = 1.0f / (inv_mass + v3_dot(raCn,raCnI)),
2213 vn = v3_dot( rv, ct->n ),
2214 lambda = normal_mass * ( -vn );
2215
2216 float temp = ct->norm_impulse;
2217 ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
2218 lambda = ct->norm_impulse - temp;
2219
2220 v3f impulse;
2221 v3_muls( ct->n, lambda, impulse );
2222
2223 v3_muladds( player->rb.v, impulse, inv_mass, player->rb.v );
2224 v3_cross( delta, impulse, impulse );
2225 m3x3_mulv( iIw, impulse, impulse );
2226 v3_add( impulse, player->rb.w, player->rb.w );
2227
2228 v3_cross( player->rb.w, delta, rv );
2229 v3_add( player->rb.v, rv, rv );
2230 vn = v3_dot( rv, ct->n );
2231 }
2232 }
2233
2234 v3f dt;
2235 rb_depenetrate( manifold, manifold_len, dt );
2236 v3_add( dt, player->rb.co, player->rb.co );
2237 rb_update_transform( &player->rb );
2238
2239 substep_count ++;
2240
2241 if( s->substep >= 0.0001f )
2242 goto begin_collision; /* again! */
2243
2244 /*
2245 * End of collision and dynamics routine
2246 * --------------------------------------------------------------------------
2247 */
2248
2249 s->surface = k_surface_prop_concrete;
2250
2251 for( int i=0; i<manifold_len; i++ ){
2252 rb_ct *ct = &manifold[i];
2253 struct world_surface *surf = world_contact_surface( world, ct );
2254
2255 if( surf->info.surface_prop != k_surface_prop_concrete )
2256 s->surface = surf->info.surface_prop;
2257 }
2258
2259 for( int i=0; i<k_wheel_count; i++ ){
2260 m4x3f mtx;
2261 m3x3_copy( player->rb.to_world, mtx );
2262 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2263 debug_sphere( mtx, wheels[i].radius,
2264 (u32[]){ VG__WHITE, VG__BLACK,
2265 wheels[i].colour }[ wheels[i].state ]);
2266 }
2267
2268 skate_integrate( player );
2269 vg_line_pt3( s->state.cog, 0.02f, VG__WHITE );
2270
2271 ent_gate *gate =
2272 world_intersect_gates(world, player->rb.co, s->state.prev_pos );
2273
2274 if( gate ){
2275 m4x3_mulv( gate->transport, player->rb.co, player->rb.co );
2276 m3x3_mulv( gate->transport, player->rb.v, player->rb.v );
2277 m4x3_mulv( gate->transport, s->state.cog, s->state.cog );
2278 m3x3_mulv( gate->transport, s->state.cog_v, s->state.cog_v );
2279 m3x3_mulv( gate->transport, s->state.throw_v, s->state.throw_v );
2280 m3x3_mulv( gate->transport, s->state.head_position,
2281 s->state.head_position );
2282 m3x3_mulv( gate->transport, s->state.up_dir, s->state.up_dir );
2283
2284 v4f transport_rotation;
2285 m3x3_q( gate->transport, transport_rotation );
2286 q_mul( transport_rotation, player->rb.q, player->rb.q );
2287 rb_update_transform( &player->rb );
2288
2289 s->state_gate_storage = s->state;
2290 player__pass_gate( player, gate );
2291 }
2292
2293 /* FIXME: Rate limit */
2294 static int stick_frames = 0;
2295
2296 if( s->state.activity == k_skate_activity_ground )
2297 stick_frames ++;
2298 else
2299 stick_frames = 0;
2300
2301
2302 if( stick_frames == 4 )
2303 {
2304 audio_lock();
2305 if( (fabsf(s->state.slip) > 0.75f) )
2306 {
2307 audio_oneshot_3d( &audio_lands[rand()%2+3], player->rb.co,
2308 40.0f, 1.0f );
2309 }
2310 else
2311 {
2312 audio_oneshot_3d( &audio_lands[rand()%3], player->rb.co,
2313 40.0f, 1.0f );
2314 }
2315 audio_unlock();
2316 }
2317 }
2318
2319 VG_STATIC void player__skate_im_gui( player_instance *player )
2320 {
2321 struct player_skate *s = &player->_skate;
2322 player__debugtext( 1, "V: %5.2f %5.2f %5.2f",player->rb.v[0],
2323 player->rb.v[1],
2324 player->rb.v[2] );
2325 player__debugtext( 1, "CO: %5.2f %5.2f %5.2f",player->rb.co[0],
2326 player->rb.co[1],
2327 player->rb.co[2] );
2328 player__debugtext( 1, "W: %5.2f %5.2f %5.2f",player->rb.w[0],
2329 player->rb.w[1],
2330 player->rb.w[2] );
2331
2332 const char *activity_txt[] =
2333 {
2334 "air",
2335 "ground",
2336 "undefined (INVALID)",
2337 "grind_any (INVALID)",
2338 "grind_boardslide",
2339 "grind_noseslide",
2340 "grind_tailslide",
2341 "grind_back50",
2342 "grind_front50",
2343 "grind_5050"
2344 };
2345
2346 player__debugtext( 1, "activity: %s", activity_txt[s->state.activity] );
2347 #if 0
2348 player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
2349 s->state.steerx_s, s->state.steery_s,
2350 k_steer_ground, k_steer_air );
2351 #endif
2352 player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
2353 s->state.flip_time );
2354 player__debugtext( 1, "trickv: %.2f %.2f %.2f",
2355 s->state.trick_vel[0],
2356 s->state.trick_vel[1],
2357 s->state.trick_vel[2] );
2358 player__debugtext( 1, "tricke: %.2f %.2f %.2f",
2359 s->state.trick_euler[0],
2360 s->state.trick_euler[1],
2361 s->state.trick_euler[2] );
2362 }
2363
2364 VG_STATIC void player__skate_animate( player_instance *player,
2365 player_animation *dest )
2366 {
2367 struct player_skate *s = &player->_skate;
2368 struct player_avatar *av = player->playeravatar;
2369 struct skeleton *sk = &av->sk;
2370
2371 /* Head */
2372 float kheight = 2.0f,
2373 kleg = 0.6f;
2374
2375 v3f offset;
2376 v3_zero( offset );
2377
2378 v3f cog_local, cog_ideal;
2379 m4x3_mulv( player->rb.to_local, s->state.cog, cog_local );
2380
2381 v3_copy( s->state.up_dir, cog_ideal );
2382 v3_normalize( cog_ideal );
2383 m3x3_mulv( player->rb.to_local, cog_ideal, cog_ideal );
2384
2385 v3_sub( cog_ideal, cog_local, offset );
2386
2387
2388 v3_muls( offset, 4.0f, offset );
2389 offset[1] *= -1.0f;
2390
2391 float curspeed = v3_length( player->rb.v ),
2392 kickspeed = vg_clampf( curspeed*(1.0f/40.0f), 0.0f, 1.0f ),
2393 kicks = (vg_randf()-0.5f)*2.0f*kickspeed,
2394 sign = vg_signf( kicks );
2395
2396 s->wobble[0] = vg_lerpf( s->wobble[0], kicks*kicks*sign, 6.0f*vg.time_delta);
2397 s->wobble[1] = vg_lerpf( s->wobble[1], s->wobble[0], 2.4f*vg.time_delta);
2398
2399 offset[0] *= 0.26f;
2400 offset[0] += s->wobble[1]*3.0f;
2401
2402 offset[1] *= -0.3f;
2403 offset[2] *= 0.01f;
2404
2405 offset[0]=vg_clampf(offset[0],-0.8f,0.8f)*(1.0f-fabsf(s->blend_slide)*0.9f);
2406 offset[1]=vg_clampf(offset[1],-0.5f,0.0f);
2407
2408 /*
2409 * Animation blending
2410 * ===========================================
2411 */
2412
2413 /* sliding */
2414 {
2415 float desired = vg_clampf( fabsf( s->state.slip ), 0.0f, 1.0f );
2416 s->blend_slide = vg_lerpf( s->blend_slide, desired, 2.4f*vg.time_delta);
2417 }
2418
2419 /* movement information */
2420 {
2421 int iair = s->state.activity == k_skate_activity_air;
2422
2423 float dirz = s->state.reverse > 0.0f? 0.0f: 1.0f,
2424 dirx = s->state.slip < 0.0f? 0.0f: 1.0f,
2425 fly = iair? 1.0f: 0.0f,
2426 wdist= s->weight_distribution[2] / k_board_length;
2427
2428 s->blend_z = vg_lerpf( s->blend_z, dirz, 2.4f*vg.time_delta );
2429 s->blend_x = vg_lerpf( s->blend_x, dirx, 0.6f*vg.time_delta );
2430 s->blend_fly = vg_lerpf( s->blend_fly, fly, 2.4f*vg.time_delta );
2431 s->blend_weight= vg_lerpf( s->blend_weight, wdist, 9.0f*vg.time_delta );
2432 }
2433
2434 mdl_keyframe apose[32], bpose[32];
2435 mdl_keyframe ground_pose[32];
2436 {
2437 /* when the player is moving fast he will crouch down a little bit */
2438 float stand = 1.0f - vg_clampf( curspeed * 0.03f, 0.0f, 1.0f );
2439 s->blend_stand = vg_lerpf( s->blend_stand, stand, 6.0f*vg.time_delta );
2440
2441 /* stand/crouch */
2442 float dir_frame = s->blend_z * (15.0f/30.0f),
2443 stand_blend = offset[1]*-2.0f;
2444
2445 v3f local_cog;
2446 m4x3_mulv( player->rb.to_local, s->state.cog, local_cog );
2447
2448 stand_blend = vg_clampf( 1.0f-local_cog[1], 0, 1 );
2449
2450 skeleton_sample_anim( sk, s->anim_stand, dir_frame, apose );
2451 skeleton_sample_anim( sk, s->anim_highg, dir_frame, bpose );
2452 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
2453
2454 /* sliding */
2455 float slide_frame = s->blend_x * (15.0f/30.0f);
2456 skeleton_sample_anim( sk, s->anim_slide, slide_frame, bpose );
2457 skeleton_lerp_pose( sk, apose, bpose, s->blend_slide, apose );
2458
2459 /* pushing */
2460 double push_time = vg.time - s->state.start_push;
2461 s->blend_push = vg_lerpf( s->blend_push,
2462 (vg.time - s->state.cur_push) < 0.125,
2463 6.0f*vg.time_delta );
2464
2465 float pt = push_time + vg.accumulator;
2466 if( s->state.reverse > 0.0f )
2467 skeleton_sample_anim( sk, s->anim_push, pt, bpose );
2468 else
2469 skeleton_sample_anim( sk, s->anim_push_reverse, pt, bpose );
2470
2471 skeleton_lerp_pose( sk, apose, bpose, s->blend_push, apose );
2472
2473 /* trick setup */
2474 float jump_start_frame = 14.0f/30.0f;
2475
2476 float charge = s->state.jump_charge;
2477 s->blend_jump = vg_lerpf( s->blend_jump, charge, 8.4f*vg.time_delta );
2478
2479 float setup_frame = charge * jump_start_frame,
2480 setup_blend = vg_minf( s->blend_jump, 1.0f );
2481
2482 float jump_frame = (vg.time - s->state.jump_time) + jump_start_frame;
2483 if( jump_frame >= jump_start_frame && jump_frame <= (40.0f/30.0f) )
2484 setup_frame = jump_frame;
2485
2486 struct skeleton_anim *jump_anim = s->state.jump_dir?
2487 s->anim_ollie:
2488 s->anim_ollie_reverse;
2489
2490 skeleton_sample_anim_clamped( sk, jump_anim, setup_frame, bpose );
2491 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
2492 }
2493
2494 mdl_keyframe air_pose[32];
2495 {
2496 float target = -player->input_js1h->axis.value;
2497 s->blend_airdir = vg_lerpf( s->blend_airdir, target, 2.4f*vg.time_delta );
2498
2499 float air_frame = (s->blend_airdir*0.5f+0.5f) * (15.0f/30.0f);
2500 skeleton_sample_anim( sk, s->anim_air, air_frame, apose );
2501
2502 static v2f grab_choice;
2503
2504 v2f grab_input = { player->input_js2h->axis.value,
2505 player->input_js2v->axis.value };
2506 v2_add( s->state.grab_mouse_delta, grab_input, grab_input );
2507 if( v2_length2( grab_input ) <= 0.001f )
2508 grab_input[0] = -1.0f;
2509 else
2510 v2_normalize_clamp( grab_input );
2511 v2_lerp( grab_choice, grab_input, 2.4f*vg.time_delta, grab_choice );
2512
2513 float ang = atan2f( grab_choice[0], grab_choice[1] ),
2514 ang_unit = (ang+VG_PIf) * (1.0f/VG_TAUf),
2515 grab_frame = ang_unit * (15.0f/30.0f);
2516
2517 skeleton_sample_anim( sk, s->anim_grabs, grab_frame, bpose );
2518 skeleton_lerp_pose( sk, apose, bpose, s->state.grabbing, air_pose );
2519 }
2520
2521 skeleton_lerp_pose( sk, ground_pose, air_pose, s->blend_fly, dest->pose );
2522
2523 float add_grab_mod = 1.0f - s->blend_fly;
2524
2525 /* additive effects */
2526 {
2527 u32 apply_to[] = { av->id_hip,
2528 av->id_ik_hand_l,
2529 av->id_ik_hand_r,
2530 av->id_ik_elbow_l,
2531 av->id_ik_elbow_r };
2532
2533 for( int i=0; i<vg_list_size(apply_to); i ++ )
2534 {
2535 dest->pose[apply_to[i]-1].co[0] += offset[0]*add_grab_mod;
2536 dest->pose[apply_to[i]-1].co[2] += offset[2]*add_grab_mod;
2537 }
2538
2539
2540 /* angle correction */
2541 if( v3_length2( s->state.up_dir ) > 0.001f )
2542 {
2543 v3f ndir;
2544 m3x3_mulv( player->rb.to_local, s->state.up_dir, ndir );
2545 v3_normalize( ndir );
2546
2547 v3f up = { 0.0f, 1.0f, 0.0f };
2548
2549 float a = v3_dot( ndir, up );
2550 a = acosf( vg_clampf( a, -1.0f, 1.0f ) );
2551
2552 v3f axis;
2553 v4f q;
2554
2555 v3_cross( up, ndir, axis );
2556 q_axis_angle( q, axis, a );
2557
2558 mdl_keyframe *kf_hip = &dest->pose[av->id_hip-1];
2559
2560 for( int i=0; i<vg_list_size(apply_to); i ++ )
2561 {
2562 mdl_keyframe *kf = &dest->pose[apply_to[i]-1];
2563
2564 v3f v0;
2565 v3_sub( kf->co, kf_hip->co, v0 );
2566 q_mulv( q, v0, v0 );
2567 v3_add( v0, kf_hip->co, kf->co );
2568
2569 q_mul( q, kf->q, kf->q );
2570 q_normalize( kf->q );
2571 }
2572
2573 v3f p1, p2;
2574 m3x3_mulv( player->rb.to_world, up, p1 );
2575 m3x3_mulv( player->rb.to_world, ndir, p2 );
2576
2577 vg_line_arrow( player->rb.co, p1, 0.25f, VG__PINK );
2578 vg_line_arrow( player->rb.co, p2, 0.25f, VG__PINK );
2579 }
2580
2581
2582
2583 mdl_keyframe *kf_board = &dest->pose[av->id_board-1],
2584 *kf_foot_l = &dest->pose[av->id_ik_foot_l-1],
2585 *kf_foot_r = &dest->pose[av->id_ik_foot_r-1],
2586 *kf_wheels[] = { &dest->pose[av->id_wheel_r-1],
2587 &dest->pose[av->id_wheel_l-1] };
2588
2589 v4f qtotal;
2590 v4f qtrickr, qyawr, qpitchr, qrollr;
2591 v3f eulerr;
2592
2593 v3_muls( s->board_trick_residuald, VG_TAUf, eulerr );
2594
2595 q_axis_angle( qyawr, (v3f){0.0f,1.0f,0.0f}, eulerr[0] * 0.5f );
2596 q_axis_angle( qpitchr, (v3f){1.0f,0.0f,0.0f}, eulerr[1] );
2597 q_axis_angle( qrollr, (v3f){0.0f,0.0f,1.0f}, eulerr[2] );
2598
2599 q_mul( qpitchr, qrollr, qtrickr );
2600 q_mul( qyawr, qtrickr, qtotal );
2601 q_normalize( qtotal );
2602
2603 q_mul( qtotal, kf_board->q, kf_board->q );
2604
2605
2606 /* trick rotation */
2607 v4f qtrick, qyaw, qpitch, qroll;
2608 v3f euler;
2609 v3_muls( s->state.trick_euler, VG_TAUf, euler );
2610
2611 q_axis_angle( qyaw, (v3f){0.0f,1.0f,0.0f}, euler[0] * 0.5f );
2612 q_axis_angle( qpitch, (v3f){1.0f,0.0f,0.0f}, euler[1] );
2613 q_axis_angle( qroll, (v3f){0.0f,0.0f,1.0f}, euler[2] );
2614
2615 q_mul( qpitch, qroll, qtrick );
2616 q_mul( qyaw, qtrick, qtrick );
2617 q_mul( kf_board->q, qtrick, kf_board->q );
2618 q_normalize( kf_board->q );
2619
2620 /* foot weight distribution */
2621 if( s->blend_weight > 0.0f )
2622 {
2623 kf_foot_l->co[2] += s->blend_weight * 0.2f;
2624 kf_foot_r->co[2] += s->blend_weight * 0.1f;
2625 }
2626 else
2627 {
2628 kf_foot_r->co[2] += s->blend_weight * 0.3f;
2629 kf_foot_l->co[2] += s->blend_weight * 0.1f;
2630 }
2631
2632 /* truck rotation */
2633 for( int i=0; i<2; i++ )
2634 {
2635 float a = vg_minf( s->truckv0[i][0], 1.0f );
2636 a = -acosf( a ) * vg_signf( s->truckv0[i][1] );
2637
2638 v4f q;
2639 q_axis_angle( q, (v3f){0.0f,0.0f,1.0f}, a );
2640 q_mul( q, kf_wheels[i]->q, kf_wheels[i]->q );
2641 q_normalize( kf_wheels[i]->q );
2642 }
2643 }
2644
2645 /* transform */
2646 rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
2647 v3_muladds( dest->root_co, player->rb.to_world[1], -0.1f, dest->root_co );
2648
2649 float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
2650
2651 v4f qflip;
2652 if( (s->state.activity == k_skate_activity_air) &&
2653 (fabsf(s->state.flip_rate) > 0.01f) )
2654 {
2655 float t = s->state.flip_time;
2656 sign = vg_signf( t );
2657
2658 t = 1.0f - vg_minf( 1.0f, fabsf( t * 1.1f ) );
2659 t = sign * (1.0f-t*t);
2660
2661 float angle = vg_clampf( t, -1.0f, 1.0f ) * VG_TAUf,
2662 distm = s->land_dist * fabsf(s->state.flip_rate) * 3.0f,
2663 blend = vg_clampf( 1.0f-distm, 0.0f, 1.0f );
2664
2665 angle = vg_lerpf( angle, vg_signf(s->state.flip_rate) * VG_TAUf, blend );
2666
2667 q_axis_angle( qflip, s->state.flip_axis, angle );
2668 q_mul( qflip, dest->root_q, dest->root_q );
2669 q_normalize( dest->root_q );
2670
2671 v3f rotation_point, rco;
2672 v3_muladds( player->rb.co, player->rb.to_world[1], 0.5f, rotation_point );
2673 v3_sub( dest->root_co, rotation_point, rco );
2674
2675 q_mulv( qflip, rco, rco );
2676 v3_add( rco, rotation_point, dest->root_co );
2677 }
2678
2679 skeleton_copy_pose( sk, dest->pose, player->holdout_pose );
2680 }
2681
2682 VG_STATIC void player__skate_post_animate( player_instance *player )
2683 {
2684 struct player_skate *s = &player->_skate;
2685 struct player_avatar *av = player->playeravatar;
2686
2687 player->cam_velocity_influence = 1.0f;
2688
2689 v3f head = { 0.0f, 1.8f, 0.0f };
2690 m4x3_mulv( av->sk.final_mtx[ av->id_head ], head, s->state.head_position );
2691 m4x3_mulv( player->rb.to_local, s->state.head_position,
2692 s->state.head_position );
2693 }
2694
2695 VG_STATIC void player__skate_reset_animator( player_instance *player )
2696 {
2697 struct player_skate *s = &player->_skate;
2698
2699 if( s->state.activity == k_skate_activity_air )
2700 s->blend_fly = 1.0f;
2701 else
2702 s->blend_fly = 0.0f;
2703
2704 s->blend_slide = 0.0f;
2705 s->blend_z = 0.0f;
2706 s->blend_x = 0.0f;
2707 s->blend_stand = 0.0f;
2708 s->blend_push = 0.0f;
2709 s->blend_jump = 0.0f;
2710 s->blend_airdir = 0.0f;
2711 }
2712
2713 VG_STATIC void player__skate_clear_mechanics( player_instance *player )
2714 {
2715 struct player_skate *s = &player->_skate;
2716 s->state.jump_charge = 0.0f;
2717 s->state.lift_frames = 0;
2718 s->state.flip_rate = 0.0f;
2719 #if 0
2720 s->state.steery = 0.0f;
2721 s->state.steerx = 0.0f;
2722 s->state.steery_s = 0.0f;
2723 s->state.steerx_s = 0.0f;
2724 #endif
2725 s->state.reverse = 0.0f;
2726 s->state.slip = 0.0f;
2727 v3_copy( player->rb.co, s->state.prev_pos );
2728
2729 #if 0
2730 m3x3_identity( s->state.velocity_bias );
2731 m3x3_identity( s->state.velocity_bias_pstep );
2732 #endif
2733
2734 v3_zero( s->state.throw_v );
2735 v3_zero( s->state.trick_vel );
2736 v3_zero( s->state.trick_euler );
2737 }
2738
2739 VG_STATIC void player__skate_reset( player_instance *player,
2740 ent_spawn *rp )
2741 {
2742 struct player_skate *s = &player->_skate;
2743 v3_muladds( player->rb.co, player->rb.to_world[1], 1.0f, s->state.cog );
2744 v3_zero( player->rb.v );
2745 v3_zero( s->state.cog_v );
2746 v4_copy( rp->transform.q, player->rb.q );
2747
2748 s->state.activity = k_skate_activity_air;
2749 s->state.activity_prev = k_skate_activity_air;
2750
2751 player__skate_clear_mechanics( player );
2752 player__skate_reset_animator( player );
2753
2754 v3_zero( s->state.head_position );
2755 s->state.head_position[1] = 1.8f;
2756 }
2757
2758 #endif /* PLAYER_SKATE_C */