better? grinds
[carveJwlIkooP6JGAAIwe30JlM.git] / player_skate.c
1 #ifndef PLAYER_SKATE_C
2 #define PLAYER_SKATE_C
3
4 #include "player.h"
5
6 VG_STATIC void player__skate_bind( player_instance *player )
7 {
8 struct player_skate *s = &player->_skate;
9 struct player_avatar *av = player->playeravatar;
10 struct skeleton *sk = &av->sk;
11
12 rb_update_transform( &player->rb );
13 s->anim_stand = skeleton_get_anim( sk, "pose_stand" );
14 s->anim_highg = skeleton_get_anim( sk, "pose_highg" );
15 s->anim_air = skeleton_get_anim( sk, "pose_air" );
16 s->anim_slide = skeleton_get_anim( sk, "pose_slide" );
17 s->anim_push = skeleton_get_anim( sk, "push" );
18 s->anim_push_reverse = skeleton_get_anim( sk, "push_reverse" );
19 s->anim_ollie = skeleton_get_anim( sk, "ollie" );
20 s->anim_ollie_reverse = skeleton_get_anim( sk, "ollie_reverse" );
21 s->anim_grabs = skeleton_get_anim( sk, "grabs" );
22 }
23
24 /*
25 * Collision detection routines
26 *
27 *
28 */
29
30 /*
31 * Does collision detection on a sphere vs world, and applies some smoothing
32 * filters to the manifold afterwards
33 */
34 VG_STATIC int skate_collide_smooth( player_instance *player,
35 m4x3f mtx, rb_sphere *sphere,
36 rb_ct *man )
37 {
38 int len = 0;
39 len = rb_sphere__scene( mtx, sphere, NULL, &world.rb_geo.inf.scene, man );
40
41 for( int i=0; i<len; i++ )
42 {
43 man[i].rba = &player->rb;
44 man[i].rbb = NULL;
45 }
46
47 rb_manifold_filter_coplanar( man, len, 0.05f );
48
49 if( len > 1 )
50 {
51 rb_manifold_filter_backface( man, len );
52 rb_manifold_filter_joint_edges( man, len, 0.05f );
53 rb_manifold_filter_pairs( man, len, 0.05f );
54 }
55 int new_len = rb_manifold_apply_filtered( man, len );
56 if( len && !new_len )
57 len = 1;
58 else
59 len = new_len;
60
61 return len;
62 }
63 /*
64 * Gets the closest grindable edge to the player within max_dist
65 */
66 VG_STATIC struct grind_edge *skate_collect_grind_edge( v3f p0, v3f p1,
67 v3f c0, v3f c1,
68 float max_dist )
69 {
70 bh_iter it;
71 bh_iter_init( 0, &it );
72
73 boxf region;
74
75 box_init_inf( region );
76 box_addpt( region, p0 );
77 box_addpt( region, p1 );
78
79 float k_r = max_dist;
80 v3_add( (v3f){ k_r, k_r, k_r}, region[1], region[1] );
81 v3_add( (v3f){-k_r,-k_r,-k_r}, region[0], region[0] );
82
83 float closest = k_r*k_r;
84 struct grind_edge *closest_edge = NULL;
85
86 int idx;
87 while( bh_next( world.grind_bh, &it, region, &idx ) )
88 {
89 struct grind_edge *edge = &world.grind_edges[ idx ];
90
91 float s,t;
92 v3f pa, pb;
93
94 float d2 =
95 closest_segment_segment( p0, p1, edge->p0, edge->p1, &s,&t, pa, pb );
96
97 if( d2 < closest )
98 {
99 closest = d2;
100 closest_edge = edge;
101 v3_copy( pa, c0 );
102 v3_copy( pb, c1 );
103 }
104 }
105
106 return closest_edge;
107 }
108
109 VG_STATIC int skate_grind_collide( player_instance *player, rb_ct *contact )
110 {
111 v3f p0, p1, c0, c1;
112 v3_muladds( player->rb.co, player->rb.to_world[2], 0.5f, p0 );
113 v3_muladds( player->rb.co, player->rb.to_world[2], -0.5f, p1 );
114 v3_muladds( p0, player->rb.to_world[1], 0.08f, p0 );
115 v3_muladds( p1, player->rb.to_world[1], 0.08f, p1 );
116
117 float const k_r = 0.25f;
118 struct grind_edge *closest_edge = skate_collect_grind_edge( p0, p1,
119 c0, c1, k_r );
120
121 if( closest_edge )
122 {
123 v3f delta;
124 v3_sub( c1, c0, delta );
125
126 if( v3_dot( delta, player->rb.to_world[1] ) > 0.0001f )
127 {
128 contact->p = v3_length( delta );
129 contact->type = k_contact_type_edge;
130 contact->element_id = 0;
131 v3_copy( c1, contact->co );
132 contact->rba = NULL;
133 contact->rbb = NULL;
134
135 v3f edge_dir, axis_dir;
136 v3_sub( closest_edge->p1, closest_edge->p0, edge_dir );
137 v3_normalize( edge_dir );
138 v3_cross( (v3f){0.0f,1.0f,0.0f}, edge_dir, axis_dir );
139 v3_cross( edge_dir, axis_dir, contact->n );
140
141 return 1;
142 }
143 else
144 return 0;
145 }
146
147 return 0;
148 }
149
150 struct grind_info
151 {
152 v3f co, dir, n;
153 };
154
155 VG_STATIC int skate_grind_scansq( player_instance *player,
156 v3f pos, v3f dir, float r,
157 struct grind_info *inf )
158 {
159 v4f plane;
160 v3_copy( dir, plane );
161 v3_normalize( plane );
162 plane[3] = v3_dot( plane, pos );
163
164 boxf box;
165 v3_add( pos, (v3f){ r, r, r }, box[1] );
166 v3_sub( pos, (v3f){ r, r, r }, box[0] );
167
168 vg_line_boxf( box, VG__BLACK );
169
170 m4x3f mtx;
171 m3x3_copy( player->rb.to_world, mtx );
172 v3_copy( pos, mtx[3] );
173
174 bh_iter it;
175 bh_iter_init( 0, &it );
176 int idx;
177
178 struct grind_sample
179 {
180 v2f co;
181 v2f normal;
182 v3f normal3,
183 centroid;
184 }
185 samples[48];
186 int sample_count = 0;
187
188 v2f support_min,
189 support_max;
190
191 v3f support_axis;
192 v3_cross( plane, (v3f){0.0f,1.0f,0.0f}, support_axis );
193 v3_normalize( support_axis );
194
195 while( bh_next( world.geo_bh, &it, box, &idx ) )
196 {
197 u32 *ptri = &world.scene_geo->arrindices[ idx*3 ];
198 v3f tri[3];
199
200 for( int j=0; j<3; j++ )
201 v3_copy( world.scene_geo->arrvertices[ptri[j]].co, tri[j] );
202
203 for( int j=0; j<3; j++ )
204 {
205 int i0 = j,
206 i1 = (j+1) % 3;
207
208 struct grind_sample *sample = &samples[ sample_count ];
209 v3f co;
210
211 if( plane_segment( plane, tri[i0], tri[i1], co ) )
212 {
213 v3f d;
214 v3_sub( co, pos, d );
215 if( v3_length2( d ) > r*r )
216 continue;
217
218 v3f va, vb, normal;
219 v3_sub( tri[1], tri[0], va );
220 v3_sub( tri[2], tri[0], vb );
221 v3_cross( va, vb, normal );
222
223 sample->normal[0] = v3_dot( support_axis, normal );
224 sample->normal[1] = normal[1];
225 sample->co[0] = v3_dot( support_axis, d );
226 sample->co[1] = d[1];
227
228 v3_copy( normal, sample->normal3 ); /* normalize later
229 if we want to us it */
230
231 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
232 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
233 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
234
235 v2_normalize( sample->normal );
236 sample_count ++;
237
238 if( sample_count == vg_list_size( samples ) )
239 {
240 break;
241 }
242 }
243 }
244 }
245
246 if( sample_count < 2 )
247 return 0;
248
249 v3f
250 average_direction,
251 average_normal;
252
253 v2f min_co, max_co;
254 v2_fill( min_co, INFINITY );
255 v2_fill( max_co, -INFINITY );
256
257 v3_zero( average_direction );
258 v3_zero( average_normal );
259
260 int passed_samples = 0;
261
262 for( int i=0; i<sample_count-1; i++ )
263 {
264 struct grind_sample *si, *sj;
265
266 si = &samples[i];
267
268 for( int j=i+1; j<sample_count; j++ )
269 {
270 if( i == j )
271 continue;
272
273 sj = &samples[j];
274
275 /* non overlapping */
276 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
277 continue;
278
279 /* not sharp angle */
280 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
281 continue;
282
283 /* not convex */
284 v3f v0;
285 v3_sub( sj->centroid, si->centroid, v0 );
286 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
287 v3_dot( v0, sj->normal3 ) <= 0.0f )
288 continue;
289
290 v2_minv( sj->co, min_co, min_co );
291 v2_maxv( sj->co, max_co, max_co );
292
293 v3f n0, n1, dir;
294 v3_copy( si->normal3, n0 );
295 v3_copy( sj->normal3, n1 );
296 v3_cross( n0, n1, dir );
297 v3_normalize( dir );
298
299 /* make sure the directions all face a common hemisphere */
300 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
301 v3_add( average_direction, dir, average_direction );
302
303 if( si->normal3[1] > sj->normal3[1] )
304 v3_add( si->normal3, average_normal, average_normal );
305 else
306 v3_add( sj->normal3, average_normal, average_normal );
307
308 passed_samples ++;
309 }
310 }
311
312 if( !passed_samples )
313 return 0;
314
315 if( (v3_length2( average_direction ) <= 0.001f) ||
316 (v3_length2( average_normal ) <= 0.001f ) )
317 return 0;
318
319 float div = 1.0f/(float)passed_samples;
320 v3_normalize( average_direction );
321 v3_normalize( average_normal );
322
323 v2f average_coord;
324 v2_add( min_co, max_co, average_coord );
325 v2_muls( average_coord, 0.5f, average_coord );
326
327 v3_muls( support_axis, average_coord[0], inf->co );
328 inf->co[1] += average_coord[1];
329 v3_add( pos, inf->co, inf->co );
330 v3_copy( average_normal, inf->n );
331 v3_copy( average_direction, inf->dir );
332
333 vg_line_pt3( inf->co, 0.02f, VG__GREEN );
334 vg_line_arrow( inf->co, average_direction, 0.3f, VG__GREEN );
335 vg_line_arrow( inf->co, inf->n, 0.2f, VG__CYAN );
336
337 return passed_samples;
338 }
339
340 #if 0
341 static inline void skate_grind_coordv2i( v2f co, v2i d )
342 {
343 const float k_inv_res = 1.0f/0.01f;
344 d[0] = floorf( co[0] * k_inv_res );
345 d[1] = floorf( co[1] * k_inv_res );
346 }
347
348 static inline u32 skate_grind_hashv2i( v2i d )
349 {
350 return (d[0] * 92837111) ^ (d[1] * 689287499);
351 }
352
353 static inline u32 skate_grind_hashv2f( v2f co )
354 {
355 v2i d;
356 skate_grind_coordv2i( co, d );
357 return skate_grind_hashv2i( d );
358 }
359
360 VG_STATIC int skate_grind_scansq( player_instance *player, v3f pos,
361 v3f result_co, v3f result_dir, v3f result_n )
362 {
363 v4f plane;
364 v3_copy( player->rb.v, plane );
365 v3_normalize( plane );
366 plane[3] = v3_dot( plane, pos );
367
368 boxf box;
369 float r = k_board_length;
370 v3_add( pos, (v3f){ r, r, r }, box[1] );
371 v3_sub( pos, (v3f){ r, r, r }, box[0] );
372
373 vg_line_boxf( box, VG__BLACK );
374
375 m4x3f mtx;
376 m3x3_copy( player->rb.to_world, mtx );
377 v3_copy( pos, mtx[3] );
378
379 bh_iter it;
380 bh_iter_init( 0, &it );
381 int idx;
382
383 struct grind_sample
384 {
385 v2f co;
386 v2f normal;
387 v3f normal3,
388 centroid;
389 }
390 samples[48];
391
392 int sample_count = 0;
393
394 v2f support_min,
395 support_max;
396
397 v3f support_axis;
398 v3_cross( plane, (v3f){0.0f,1.0f,0.0f}, support_axis );
399 v3_normalize( support_axis );
400
401 while( bh_next( world.geo_bh, &it, box, &idx ) )
402 {
403 u32 *ptri = &world.scene_geo->arrindices[ idx*3 ];
404 v3f tri[3];
405
406 for( int j=0; j<3; j++ )
407 v3_copy( world.scene_geo->arrvertices[ptri[j]].co, tri[j] );
408
409 for( int j=0; j<3; j++ )
410 {
411 int i0 = j,
412 i1 = (j+1) % 3;
413
414 struct grind_sample *sample = &samples[ sample_count ];
415 v3f co;
416
417 if( plane_segment( plane, tri[i0], tri[i1], co ) )
418 {
419 v3f d;
420 v3_sub( co, pos, d );
421 if( v3_length2( d ) > r*r )
422 continue;
423
424 v3f va, vb, normal;
425 v3_sub( tri[1], tri[0], va );
426 v3_sub( tri[2], tri[0], vb );
427 v3_cross( va, vb, normal );
428
429 sample->normal[0] = v3_dot( support_axis, normal );
430 sample->normal[1] = normal[1];
431 sample->co[0] = v3_dot( support_axis, d );
432 sample->co[1] = d[1];
433
434 v3_copy( normal, sample->normal3 ); /* normalize later
435 if we want to us it */
436
437 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
438 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
439 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
440
441 v2_normalize( sample->normal );
442 sample_count ++;
443
444 if( sample_count == vg_list_size( samples ) )
445 {
446 break;
447 }
448 }
449 }
450 }
451
452 if( sample_count < 2 )
453 return 0;
454
455
456
457 /* spacial hashing */
458
459 const int k_hashmap_size = 128;
460 u32 hashmap[k_hashmap_size+1];
461 u32 entries[48];
462
463 for( int i=0; i<k_hashmap_size+1; i++ )
464 hashmap[i] = 0;
465
466 for( int i=0; i<sample_count; i++ )
467 {
468 u32 h = skate_grind_hashv2f( samples[i].co ) % k_hashmap_size;
469 hashmap[ h ] ++;
470 }
471
472 /* partial sums */
473 for( int i=0; i<k_hashmap_size; i++ )
474 {
475 hashmap[i+1] += hashmap[i];
476 }
477
478 /* trash compactor */
479 for( int i=0; i<sample_count; i++ )
480 {
481 u32 h = skate_grind_hashv2f( samples[i].co ) % k_hashmap_size;
482 hashmap[ h ] --;
483
484 entries[ hashmap[h] ] = i;
485 }
486
487
488 v3f
489 average_direction,
490 average_normal;
491
492 v2f min_co, max_co;
493 v2_fill( min_co, INFINITY );
494 v2_fill( max_co, -INFINITY );
495
496 v3_zero( average_direction );
497 v3_zero( average_normal );
498
499 int passed_samples = 0;
500
501 for( int i=0; i<sample_count; i++ )
502 {
503 struct grind_sample *si, *sj;
504 si = &samples[i];
505
506 v2i start;
507 skate_grind_coordv2i( si->co, start );
508
509 v2i offsets[] = { {-1,-1},{ 0,-1},{ 1,-1},
510 {-1, 0},{ 0, 0},{ 1, 0},
511 {-1, 1},{ 0, 1},{ 1, 1} };
512
513 for( int j=0; j<vg_list_size(offsets); j++ )
514 {
515 v2i cell;
516 v2i_add( start, offsets[j], cell );
517
518 u32 h = skate_grind_hashv2i( cell ) % k_hashmap_size;
519
520 int start = hashmap[ h ],
521 end = hashmap[ h+1 ];
522
523 for( int k=start; k<end; k++ )
524 {
525 int idx = entries[ k ];
526 if( idx <= i )
527 continue;
528
529 sj = &samples[idx];
530
531 /* non overlapping */
532 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
533 continue;
534
535 /* not sharp angle */
536 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
537 continue;
538
539 /* not convex */
540 v3f v0;
541 v3_sub( sj->centroid, si->centroid, v0 );
542 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
543 v3_dot( v0, sj->normal3 ) <= 0.0f )
544 continue;
545
546 v2_minv( sj->co, min_co, min_co );
547 v2_maxv( sj->co, max_co, max_co );
548
549 v3f n0, n1, dir;
550 v3_copy( si->normal3, n0 );
551 v3_copy( sj->normal3, n1 );
552 v3_cross( n0, n1, dir );
553 v3_normalize( dir );
554
555 /* make sure the directions all face a common hemisphere */
556 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
557 v3_add( average_direction, dir, average_direction );
558
559 if( si->normal3[1] > sj->normal3[1] )
560 v3_add( si->normal3, average_normal, average_normal );
561 else
562 v3_add( sj->normal3, average_normal, average_normal );
563
564 passed_samples ++;
565 }
566 }
567 }
568
569 if( !passed_samples )
570 return 0;
571
572 if( (v3_length2( average_direction ) <= 0.001f) ||
573 (v3_length2( average_normal ) <= 0.001f ) )
574 return 0;
575
576 float div = 1.0f/(float)passed_samples;
577 v3_normalize( average_direction );
578 v3_normalize( average_normal );
579
580 v2f average_coord;
581 v2_add( min_co, max_co, average_coord );
582 v2_muls( average_coord, 0.5f, average_coord );
583
584
585 v3_muls( support_axis, average_coord[0], result_co );
586 result_co[1] += average_coord[1];
587 v3_add( pos, result_co, result_co );
588
589 #if 0
590 vg_line_pt3( result_co, 0.02f, VG__GREEN );
591
592 v3f p0, p1;
593 v3_muladds( result_co, average_direction, 0.35f, p0 );
594 v3_muladds( result_co, average_direction, -0.35f, p1 );
595 vg_line( p0, p1, VG__PINK );
596 #endif
597
598 v3_copy( average_normal, result_n );
599 v3_copy( average_direction, result_dir );
600
601 return passed_samples;
602 }
603
604 #endif
605
606 /*
607 *
608 * Prediction system
609 *
610 *
611 */
612
613 /*
614 * Trace a path given a velocity rotation.
615 *
616 * TODO: this MIGHT be worth doing RK4 on the gravity field.
617 */
618 VG_STATIC void skate_score_biased_path( v3f co, v3f v, m3x3f vr,
619 struct land_prediction *prediction )
620 {
621 float pstep = VG_TIMESTEP_FIXED * 10.0f;
622 float k_bias = 0.96f;
623
624 v3f pco, pco1, pv;
625 v3_copy( co, pco );
626 v3_muls( v, k_bias, pv );
627
628 m3x3_mulv( vr, pv, pv );
629 v3_muladds( pco, pv, pstep, pco );
630
631 struct grind_edge *best_grind = NULL;
632 float closest_grind = INFINITY;
633
634 float grind_score = INFINITY,
635 air_score = INFINITY,
636 time_to_impact = 0.0f;
637
638 prediction->log_length = 0;
639 v3_copy( pco, prediction->apex );
640
641 for( int i=0; i<vg_list_size(prediction->log); i++ )
642 {
643 v3_copy( pco, pco1 );
644
645 pv[1] += -k_gravity * pstep;
646
647 m3x3_mulv( vr, pv, pv );
648 v3_muladds( pco, pv, pstep, pco );
649
650 if( pco[1] > prediction->apex[1] )
651 v3_copy( pco, prediction->apex );
652
653 v3f vdir;
654
655 v3_sub( pco, pco1, vdir );
656
657 float l = v3_length( vdir );
658 v3_muls( vdir, 1.0f/l, vdir );
659
660 v3f c0, c1;
661 struct grind_edge *ge = skate_collect_grind_edge( pco, pco1,
662 c0, c1, 0.4f );
663
664 if( ge && (v3_dot((v3f){0.0f,1.0f,0.0f},vdir) < -0.2f ) )
665 {
666 float d2 = v3_dist2( c0, c1 );
667 if( d2 < closest_grind )
668 {
669 closest_grind = d2;
670 best_grind = ge;
671 grind_score = closest_grind * 0.05f;
672 }
673 }
674
675 v3f n1;
676
677 float t1;
678 int idx = spherecast_world( pco1, pco, 0.4f, &t1, n1 );
679 if( idx != -1 )
680 {
681 v3_copy( n1, prediction->n );
682 air_score = -v3_dot( pv, n1 );
683
684 u32 vert_index = world.scene_geo->arrindices[ idx*3 ];
685 struct world_material *mat = world_tri_index_material( vert_index );
686
687 /* Bias prediction towords ramps */
688 if( mat->info.flags & k_material_flag_skate_surface )
689 air_score *= 0.1f;
690
691 v3_lerp( pco1, pco, t1, prediction->log[ prediction->log_length ++ ] );
692 time_to_impact += t1 * pstep;
693 break;
694 }
695
696 time_to_impact += pstep;
697 v3_copy( pco, prediction->log[ prediction->log_length ++ ] );
698 }
699
700 if( grind_score < air_score )
701 {
702 prediction->score = grind_score;
703 prediction->type = k_prediction_grind;
704 }
705 else if( air_score < INFINITY )
706 {
707 prediction->score = air_score;
708 prediction->type = k_prediction_land;
709 }
710 else
711 {
712 prediction->score = INFINITY;
713 prediction->type = k_prediction_none;
714 }
715
716 prediction->land_dist = time_to_impact;
717 }
718
719 VG_STATIC
720 void player__approximate_best_trajectory( player_instance *player )
721 {
722 struct player_skate *s = &player->_skate;
723
724 float pstep = VG_TIMESTEP_FIXED * 10.0f;
725 float best_velocity_delta = -9999.9f;
726
727 v3f axis;
728 v3_cross( player->rb.to_world[1], player->rb.v, axis );
729 v3_normalize( axis );
730
731 s->prediction_count = 0;
732 m3x3_identity( s->state.velocity_bias );
733
734 float best_vmod = 0.0f,
735 min_score = INFINITY,
736 max_score = -INFINITY;
737
738 v3_zero( s->state.apex );
739 s->land_dist = 0.0f;
740
741 /*
742 * Search a broad selection of futures
743 */
744 for( int m=-3;m<=12; m++ )
745 {
746 struct land_prediction *p = &s->predictions[ s->prediction_count ++ ];
747
748 float vmod = ((float)m / 15.0f)*0.09f;
749
750 m3x3f bias;
751 v4f bias_q;
752
753 q_axis_angle( bias_q, axis, vmod );
754 q_m3x3( bias_q, bias );
755
756 skate_score_biased_path( player->rb.co, player->rb.v, bias, p );
757
758 if( p->type != k_prediction_none )
759 {
760 if( p->score < min_score )
761 {
762 min_score = p->score;
763 best_vmod = vmod;
764 s->land_dist = p->land_dist;
765 v3_copy( p->apex, s->state.apex );
766 }
767
768 if( p->score > max_score )
769 max_score = p->score;
770 }
771 }
772
773 v4f vr_q;
774 q_axis_angle( vr_q, axis, best_vmod*0.1f );
775 q_m3x3( vr_q, s->state.velocity_bias );
776
777 q_axis_angle( vr_q, axis, best_vmod );
778 q_m3x3( vr_q, s->state.velocity_bias_pstep );
779
780 /*
781 * Logging
782 */
783 for( int i=0; i<s->prediction_count; i ++ )
784 {
785 struct land_prediction *p = &s->predictions[i];
786
787 float l = p->score;
788
789 if( l < 0.0f )
790 {
791 vg_error( "negative score! (%f)\n", l );
792 }
793
794 l -= min_score;
795 l /= (max_score-min_score);
796 l = 1.0f - l;
797 l *= 255.0f;
798
799 p->colour = l;
800 p->colour <<= 8;
801 p->colour |= 0xff000000;
802 }
803
804
805 v2f steer = { player->input_js1h->axis.value,
806 player->input_js1v->axis.value };
807 v2_normalize_clamp( steer );
808
809 if( (fabsf(steer[1]) > 0.5f) && (s->land_dist >= 1.0f) )
810 {
811 s->state.flip_rate = (1.0f/s->land_dist) * vg_signf(steer[1]) *
812 s->state.reverse ;
813 s->state.flip_time = 0.0f;
814 v3_copy( player->rb.to_world[0], s->state.flip_axis );
815 }
816 else
817 {
818 s->state.flip_rate = 0.0f;
819 v3_zero( s->state.flip_axis );
820 }
821 }
822
823 /*
824 *
825 * Varius physics models
826 * ------------------------------------------------
827 */
828
829 #if 0
830 VG_STATIC void skate_apply_grind_model( player_instance *player,
831 rb_ct *manifold, int len )
832 {
833 struct player_skate *s = &player->_skate;
834
835 /* FIXME: Queue audio events instead */
836 if( len == 0 )
837 {
838 if( s->state.activity == k_skate_activity_grind )
839 {
840 #if 0
841 audio_lock();
842 audio_player_set_flags( &audio_player_extra,
843 AUDIO_FLAG_SPACIAL_3D );
844 audio_player_set_position( &audio_player_extra, player.rb.co );
845 audio_player_set_vol( &audio_player_extra, 20.0f );
846 audio_player_playclip( &audio_player_extra, &audio_board[6] );
847 audio_unlock();
848 #endif
849
850 s->state.activity = k_skate_activity_air;
851 }
852 return;
853 }
854
855 v2f steer = { player->input_js1h->axis.value,
856 player->input_js1v->axis.value };
857 v2_normalize_clamp( steer );
858
859 #if 0
860 s->state.steery -= steer[0] * k_steer_air * k_rb_delta;
861 s->state.steerx += steer[1] * s->state.reverse * k_steer_air * k_rb_delta;
862 #endif
863
864 #if 0
865 v4f rotate;
866 q_axis_angle( rotate, player->rb.to_world[0], siX );
867 q_mul( rotate, player.rb.q, player.rb.q );
868 #endif
869
870 s->state.slip = 0.0f;
871 s->state.activity = k_skate_activity_grind;
872
873 /* TODO: Compression */
874 v3f up = { 0.0f, 1.0f, 0.0f };
875 float angle = v3_dot( player->rb.to_world[1], up );
876
877 if( fabsf(angle) < 0.99f )
878 {
879 v3f axis;
880 v3_cross( player->rb.to_world[1], up, axis );
881
882 v4f correction;
883 q_axis_angle( correction, axis, k_rb_delta * 10.0f * acosf(angle) );
884 q_mul( correction, player->rb.q, player->rb.q );
885 }
886
887 float const DOWNFORCE = -k_downforce*1.2f*VG_TIMESTEP_FIXED;
888 v3_muladds( player->rb.v, manifold->n, DOWNFORCE, player->rb.v );
889 m3x3_identity( s->state.velocity_bias );
890 m3x3_identity( s->state.velocity_bias_pstep );
891
892 if( s->state.activity_prev != k_skate_activity_grind )
893 {
894 /* FIXME: Queue audio events instead */
895 #if 0
896 audio_lock();
897 audio_player_set_flags( &audio_player_extra,
898 AUDIO_FLAG_SPACIAL_3D );
899 audio_player_set_position( &audio_player_extra, player.rb.co );
900 audio_player_set_vol( &audio_player_extra, 20.0f );
901 audio_player_playclip( &audio_player_extra, &audio_board[5] );
902 audio_unlock();
903 #endif
904 }
905 }
906 #endif
907
908 /*
909 * Air control, no real physics
910 */
911 VG_STATIC void skate_apply_air_model( player_instance *player )
912 {
913 struct player_skate *s = &player->_skate;
914
915 if( s->state.activity_prev != k_skate_activity_air )
916 player__approximate_best_trajectory( player );
917
918 m3x3_mulv( s->state.velocity_bias, player->rb.v, player->rb.v );
919 ray_hit hit;
920
921 /*
922 * Prediction
923 */
924 float pstep = VG_TIMESTEP_FIXED * 1.0f;
925 float k_bias = 0.98f;
926
927 v3f pco, pco1, pv;
928 v3_copy( player->rb.co, pco );
929 v3_muls( player->rb.v, 1.0f, pv );
930
931 float time_to_impact = 0.0f;
932 float limiter = 1.0f;
933
934 struct grind_edge *best_grind = NULL;
935 float closest_grind = INFINITY;
936
937 v3f target_normal = { 0.0f, 1.0f, 0.0f };
938 int has_target = 0;
939
940 for( int i=0; i<250; i++ )
941 {
942 v3_copy( pco, pco1 );
943 m3x3_mulv( s->state.velocity_bias, pv, pv );
944
945 pv[1] += -k_gravity * pstep;
946 v3_muladds( pco, pv, pstep, pco );
947
948 ray_hit contact;
949 v3f vdir;
950
951 v3_sub( pco, pco1, vdir );
952 contact.dist = v3_length( vdir );
953 v3_divs( vdir, contact.dist, vdir);
954
955 v3f c0, c1;
956 struct grind_edge *ge = skate_collect_grind_edge( pco, pco1,
957 c0, c1, 0.4f );
958
959 if( ge && (v3_dot((v3f){0.0f,1.0f,0.0f},vdir) < -0.2f ) )
960 {
961 vg_line( ge->p0, ge->p1, 0xff0000ff );
962 vg_line_cross( pco, 0xff0000ff, 0.25f );
963 has_target = 1;
964 break;
965 }
966
967 float orig_dist = contact.dist;
968 if( ray_world( pco1, vdir, &contact ) )
969 {
970 v3_copy( contact.normal, target_normal );
971 has_target = 1;
972 time_to_impact += (contact.dist/orig_dist)*pstep;
973 vg_line_cross( contact.pos, 0xffff0000, 0.25f );
974 break;
975 }
976 time_to_impact += pstep;
977 }
978
979 if( has_target )
980 {
981 float angle = v3_dot( player->rb.to_world[1], target_normal );
982 v3f axis;
983 v3_cross( player->rb.to_world[1], target_normal, axis );
984
985 limiter = vg_minf( 5.0f, time_to_impact )/5.0f;
986 limiter = 1.0f-limiter;
987 limiter *= limiter;
988 limiter = 1.0f-limiter;
989
990 #if 0
991 if( fabsf(angle) < 0.9999f )
992 {
993 v4f correction;
994 q_axis_angle( correction, axis,
995 acosf(angle)*(1.0f-limiter)*2.0f*VG_TIMESTEP_FIXED );
996 q_mul( correction, player->rb.q, player->rb.q );
997 }
998 #endif
999 }
1000
1001 v2f steer = { player->input_js1h->axis.value,
1002 player->input_js1v->axis.value };
1003 v2_normalize_clamp( steer );
1004
1005 s->land_dist = time_to_impact;
1006 v3_copy( target_normal, s->land_normal );
1007 }
1008
1009 #if 0
1010 VG_STATIC void skate_get_board_points( player_instance *player,
1011 v3f front, v3f back )
1012 {
1013 v3f pos_front = {0.0f,0.0f,-k_board_length},
1014 pos_back = {0.0f,0.0f, k_board_length};
1015
1016 m4x3_mulv( player->rb.to_world, pos_front, front );
1017 m4x3_mulv( player->rb.to_world, pos_back, back );
1018 }
1019 #endif
1020
1021 #if 0
1022 /*
1023 * Casts and pushes a sphere-spring model into the world
1024 */
1025 VG_STATIC int skate_simulate_spring( player_instance *player,
1026 v3f pos )
1027 {
1028 struct player_skate *s = &player->_skate;
1029
1030 float mod = 0.7f * player->input_grab->axis.value + 0.3f,
1031 spring_k = mod * k_spring_force,
1032 damp_k = mod * k_spring_dampener,
1033 disp_k = 0.4f;
1034
1035 v3f start, end;
1036 v3_copy( pos, start );
1037 v3_muladds( pos, player->rb.to_world[1], -disp_k, end );
1038
1039 float t;
1040 v3f n;
1041 int hit_info = spherecast_world( start, end, 0.2f, &t, n );
1042
1043 if( hit_info != -1 )
1044 {
1045 v3f F, delta;
1046 v3_sub( start, player->rb.co, delta );
1047
1048 float displacement = vg_clampf( 1.0f-t, 0.0f, 1.0f ),
1049 damp =
1050 vg_maxf( 0.0f, v3_dot( player->rb.to_world[1], player->rb.v ) );
1051
1052 v3_muls( player->rb.to_world[1], displacement*spring_k*k_rb_delta -
1053 damp*damp_k*k_rb_delta, F );
1054
1055 v3_muladds( player->rb.v, F, 1.0f, player->rb.v );
1056
1057 /* Angular velocity */
1058 v3f wa;
1059 v3_cross( delta, F, wa );
1060 v3_muladds( player->rb.w, wa, k_spring_angular, player->rb.w );
1061
1062 v3_lerp( start, end, t, pos );
1063 return 1;
1064 }
1065 else
1066 {
1067 v3_copy( end, pos );
1068 return 0;
1069 }
1070 }
1071 #endif
1072
1073
1074 /*
1075 * Handles connection between the player and the ground
1076 *
1077 * TODO: Must save original velocity to use here
1078 */
1079 VG_STATIC void skate_apply_interface_model( player_instance *player,
1080 rb_ct *manifold, int len )
1081 {
1082 struct player_skate *s = &player->_skate;
1083
1084 /* springs */
1085
1086 #if 0
1087 v3f spring0, spring1;
1088
1089 skate_get_board_points( player, spring1, spring0 );
1090 int spring_hit0 = 0, //skate_simulate_spring( player, s, spring0 ),
1091 spring_hit1 = 0; //skate_simulate_spring( player, s, spring1 );
1092
1093 v3f animavg, animdelta;
1094 v3_add( spring0, spring1, animavg );
1095 v3_muls( animavg, 0.5f, animavg );
1096
1097 v3_sub( spring1, spring0, animdelta );
1098 v3_normalize( animdelta );
1099
1100 m4x3_mulv( player->rb.to_local, animavg, s->board_offset );
1101
1102 float dx = -v3_dot( animdelta, player->rb.to_world[2] ),
1103 dy = v3_dot( animdelta, player->rb.to_world[1] );
1104
1105 float angle = -atan2f( dy, dx );
1106 q_axis_angle( s->board_rotation, (v3f){1.0f,0.0f,0.0f}, angle );
1107
1108 int lift_frames_limit = 6;
1109
1110 /* Surface connection */
1111 if( len == 0 && !(spring_hit0 && spring_hit1) )
1112 {
1113 s->state.lift_frames ++;
1114
1115 if( s->state.lift_frames >= lift_frames_limit )
1116 s->state.activity = k_skate_activity_air;
1117 }
1118 else
1119 {
1120 v3f surface_avg;
1121 v3_zero( surface_avg );
1122
1123 for( int i=0; i<len; i++ )
1124 v3_add( surface_avg, manifold[i].n, surface_avg );
1125 v3_normalize( surface_avg );
1126
1127 if( v3_dot( player->rb.v, surface_avg ) > 0.7f )
1128 {
1129 s->state.lift_frames ++;
1130
1131 if( s->state.lift_frames >= lift_frames_limit )
1132 s->state.activity = k_skate_activity_air;
1133 }
1134 else
1135 {
1136 s->state.activity = k_skate_activity_ground;
1137 s->state.lift_frames = 0;
1138 v3f projected, axis;
1139
1140 if( s->state.activity_prev == k_skate_activity_air )
1141 {
1142 player->cam_land_punch_v += v3_dot( player->rb.v, surface_avg ) *
1143 k_cam_punch;
1144 }
1145
1146 float const DOWNFORCE = -k_downforce*VG_TIMESTEP_FIXED;
1147 v3_muladds( player->rb.v, player->rb.to_world[1],
1148 DOWNFORCE, player->rb.v );
1149
1150 float d = v3_dot( player->rb.to_world[2], surface_avg );
1151 v3_muladds( surface_avg, player->rb.to_world[2], -d, projected );
1152 v3_normalize( projected );
1153
1154 float angle = v3_dot( player->rb.to_world[1], projected );
1155 v3_cross( player->rb.to_world[1], projected, axis );
1156
1157 #if 0
1158 if( fabsf(angle) < 0.9999f )
1159 {
1160 v4f correction;
1161 q_axis_angle( correction, axis,
1162 acosf(angle)*4.0f*VG_TIMESTEP_FIXED );
1163 q_mul( correction, player->rb.q, player->rb.q );
1164 }
1165 #endif
1166 }
1167 }
1168 #endif
1169 }
1170
1171 VG_STATIC int player_skate_trick_input( player_instance *player );
1172 VG_STATIC void skate_apply_trick_model( player_instance *player )
1173 {
1174 struct player_skate *s = &player->_skate;
1175
1176 v3f Fd, Fs, F;
1177 v3f strength = { 3.7f, 3.6f, 8.0f };
1178
1179 v3_muls( s->board_trick_residualv, -4.0f , Fd );
1180 v3_muls( s->board_trick_residuald, -10.0f, Fs );
1181 v3_add( Fd, Fs, F );
1182 v3_mul( strength, F, F );
1183
1184 v3_muladds( s->board_trick_residualv, F, k_rb_delta,
1185 s->board_trick_residualv );
1186 v3_muladds( s->board_trick_residuald, s->board_trick_residualv,
1187 k_rb_delta, s->board_trick_residuald );
1188
1189 if( s->state.activity == k_skate_activity_air )
1190 {
1191 if( v3_length2( s->state.trick_vel ) < 0.0001f )
1192 return;
1193
1194 int carry_on = player_skate_trick_input( player );
1195
1196 /* we assume velocities share a common divisor, in which case the
1197 * interval is the minimum value (if not zero) */
1198
1199 float min_rate = 99999.0f;
1200
1201 for( int i=0; i<3; i++ )
1202 {
1203 float v = s->state.trick_vel[i];
1204 if( (v > 0.0f) && (v < min_rate) )
1205 min_rate = v;
1206 }
1207
1208 float interval = 1.0f / min_rate,
1209 current = floorf( s->state.trick_time / interval ),
1210 next_end = (current+1.0f) * interval;
1211
1212
1213 /* integrate trick velocities */
1214 v3_muladds( s->state.trick_euler, s->state.trick_vel, k_rb_delta,
1215 s->state.trick_euler );
1216
1217 if( !carry_on && (s->state.trick_time + k_rb_delta >= next_end) )
1218 {
1219 s->state.trick_time = 0.0f;
1220 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
1221 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
1222 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
1223 v3_copy( s->state.trick_vel, s->board_trick_residualv );
1224 v3_zero( s->state.trick_vel );
1225 }
1226
1227 s->state.trick_time += k_rb_delta;
1228 }
1229 else
1230 {
1231 if( (v3_length2(s->state.trick_vel) >= 0.0001f ) &&
1232 s->state.trick_time > 0.2f)
1233 {
1234 player__dead_transition( player );
1235 }
1236
1237 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
1238 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
1239 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
1240 s->state.trick_time = 0.0f;
1241 v3_zero( s->state.trick_vel );
1242 }
1243 }
1244
1245 VG_STATIC void skate_apply_grab_model( player_instance *player )
1246 {
1247 struct player_skate *s = &player->_skate;
1248
1249 float grabt = player->input_grab->axis.value;
1250
1251 if( grabt > 0.5f )
1252 {
1253 v2_muladds( s->state.grab_mouse_delta, vg.mouse_delta, 0.02f,
1254 s->state.grab_mouse_delta );
1255
1256 v2_normalize_clamp( s->state.grab_mouse_delta );
1257 }
1258 else
1259 v2_zero( s->state.grab_mouse_delta );
1260
1261 s->state.grabbing = vg_lerpf( s->state.grabbing, grabt, 8.4f*k_rb_delta );
1262 }
1263
1264 VG_STATIC void skate_apply_steering_model( player_instance *player )
1265 {
1266 struct player_skate *s = &player->_skate;
1267
1268 /* Steering */
1269 float input = player->input_js1h->axis.value,
1270 grab = player->input_grab->axis.value,
1271 steer = input * (1.0f-(s->state.jump_charge+grab)*0.4f),
1272 steer_scaled = vg_signf(steer) * powf(steer,2.0f) * k_steer_ground;
1273
1274 v3f steer_axis;
1275 v3_muls( player->rb.to_world[1], -vg_signf( steer_scaled ), steer_axis );
1276
1277 float rate = 26.0f;
1278
1279 if( s->state.activity == k_skate_activity_air )
1280 {
1281 rate = 6.0f * fabsf(steer_scaled);
1282 }
1283
1284 else if( s->state.activity >= k_skate_activity_grind_any )
1285 {
1286 rate *= fabsf(steer_scaled);
1287 }
1288
1289 float current = v3_dot( player->rb.to_world[1], player->rb.w ),
1290 addspeed = (steer_scaled * -1.0f) - current,
1291 maxaccel = rate * k_rb_delta,
1292 accel = vg_clampf( addspeed, -maxaccel, maxaccel );
1293
1294 v3_muladds( player->rb.w, player->rb.to_world[1], accel, player->rb.w );
1295 }
1296
1297 /*
1298 * Computes friction and surface interface model
1299 */
1300 VG_STATIC void skate_apply_friction_model( player_instance *player )
1301 {
1302 struct player_skate *s = &player->_skate;
1303
1304 /*
1305 * Computing localized friction forces for controlling the character
1306 * Friction across X is significantly more than Z
1307 */
1308
1309 v3f vel;
1310 m3x3_mulv( player->rb.to_local, player->rb.v, vel );
1311 float slip = 0.0f;
1312
1313 if( fabsf(vel[2]) > 0.01f )
1314 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
1315
1316 if( fabsf( slip ) > 1.2f )
1317 slip = vg_signf( slip ) * 1.2f;
1318
1319 s->state.slip = slip;
1320 s->state.reverse = -vg_signf(vel[2]);
1321
1322 vel[0] += vg_cfrictf( vel[0], k_friction_lat * k_rb_delta );
1323 vel[2] += vg_cfrictf( vel[2], k_friction_resistance * k_rb_delta );
1324
1325 /* Pushing additive force */
1326
1327 if( !player->input_jump->button.value )
1328 {
1329 if( player->input_push->button.value )
1330 {
1331 if( (vg.time - s->state.cur_push) > 0.25 )
1332 s->state.start_push = vg.time;
1333
1334 s->state.cur_push = vg.time;
1335
1336 double push_time = vg.time - s->state.start_push;
1337
1338 float cycle_time = push_time*k_push_cycle_rate,
1339 accel = k_push_accel * (sinf(cycle_time)*0.5f+0.5f),
1340 amt = accel * VG_TIMESTEP_FIXED,
1341 current = v3_length( vel ),
1342 new_vel = vg_minf( current + amt, k_max_push_speed ),
1343 delta = new_vel - vg_minf( current, k_max_push_speed );
1344
1345 vel[2] += delta * -s->state.reverse;
1346 }
1347 }
1348
1349 /* Send back to velocity */
1350 m3x3_mulv( player->rb.to_world, vel, player->rb.v );
1351 }
1352
1353 VG_STATIC void skate_apply_jump_model( player_instance *player )
1354 {
1355 struct player_skate *s = &player->_skate;
1356 int charging_jump_prev = s->state.charging_jump;
1357 s->state.charging_jump = player->input_jump->button.value;
1358
1359 /* Cannot charge this in air */
1360 if( s->state.activity == k_skate_activity_air )
1361 {
1362 s->state.charging_jump = 0;
1363 return;
1364 }
1365
1366 if( s->state.charging_jump )
1367 {
1368 s->state.jump_charge += k_rb_delta * k_jump_charge_speed;
1369
1370 if( !charging_jump_prev )
1371 s->state.jump_dir = s->state.reverse>0.0f? 1: 0;
1372 }
1373 else
1374 {
1375 s->state.jump_charge -= k_jump_charge_speed * k_rb_delta;
1376 }
1377
1378 s->state.jump_charge = vg_clampf( s->state.jump_charge, 0.0f, 1.0f );
1379
1380 /* player let go after charging past 0.2: trigger jump */
1381 if( (!s->state.charging_jump) && (s->state.jump_charge > 0.2f) )
1382 {
1383 v3f jumpdir;
1384
1385 /* Launch more up if alignment is up else improve velocity */
1386 float aup = v3_dot( (v3f){0.0f,1.0f,0.0f}, player->rb.to_world[1] ),
1387 mod = 0.5f,
1388 dir = mod + fabsf(aup)*(1.0f-mod);
1389
1390 v3_copy( player->rb.v, jumpdir );
1391 v3_normalize( jumpdir );
1392 v3_muls( jumpdir, 1.0f-dir, jumpdir );
1393 v3_muladds( jumpdir, player->rb.to_world[1], dir, jumpdir );
1394 v3_normalize( jumpdir );
1395
1396 float force = k_jump_force*s->state.jump_charge;
1397 v3_muladds( player->rb.v, jumpdir, force, player->rb.v );
1398 s->state.jump_charge = 0.0f;
1399 s->state.jump_time = vg.time;
1400 s->state.activity = k_skate_activity_air;
1401
1402 v2f steer = { player->input_js1h->axis.value,
1403 player->input_js1v->axis.value };
1404 v2_normalize_clamp( steer );
1405
1406
1407 #if 0
1408 float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
1409 s->state.steery_s = -steer[0] * maxspin;
1410 s->state.steerx = s->state.steerx_s;
1411 s->state.lift_frames ++;
1412 #endif
1413
1414 /* FIXME audio events */
1415 #if 0
1416 audio_lock();
1417 audio_player_set_flags( &audio_player_extra, AUDIO_FLAG_SPACIAL_3D );
1418 audio_player_set_position( &audio_player_extra, player.rb.co );
1419 audio_player_set_vol( &audio_player_extra, 20.0f );
1420 audio_player_playclip( &audio_player_extra, &audio_jumps[rand()%2] );
1421 audio_unlock();
1422 #endif
1423 }
1424 }
1425
1426 VG_STATIC void skate_apply_pump_model( player_instance *player )
1427 {
1428 struct player_skate *s = &player->_skate;
1429
1430 /* Throw / collect routine
1431 *
1432 * TODO: Max speed boost
1433 */
1434 if( player->input_grab->axis.value > 0.5f )
1435 {
1436 if( s->state.activity == k_skate_activity_ground )
1437 {
1438 /* Throw */
1439 v3_muls( player->rb.to_world[1], k_mmthrow_scale, s->state.throw_v );
1440 }
1441 }
1442 else
1443 {
1444 /* Collect */
1445 float doty = v3_dot( player->rb.to_world[1], s->state.throw_v );
1446
1447 v3f Fl, Fv;
1448 v3_muladds( s->state.throw_v, player->rb.to_world[1], -doty, Fl);
1449
1450 if( s->state.activity == k_skate_activity_ground )
1451 {
1452 v3_muladds( player->rb.v, Fl, k_mmcollect_lat, player->rb.v );
1453 v3_muladds( s->state.throw_v, Fl, -k_mmcollect_lat, s->state.throw_v );
1454 }
1455
1456 v3_muls( player->rb.to_world[1], -doty, Fv );
1457 v3_muladds( player->rb.v, Fv, k_mmcollect_vert, player->rb.v );
1458 v3_muladds( s->state.throw_v, Fv, k_mmcollect_vert, s->state.throw_v );
1459 }
1460
1461 /* Decay */
1462 if( v3_length2( s->state.throw_v ) > 0.0001f )
1463 {
1464 v3f dir;
1465 v3_copy( s->state.throw_v, dir );
1466 v3_normalize( dir );
1467
1468 float max = v3_dot( dir, s->state.throw_v ),
1469 amt = vg_minf( k_mmdecay * k_rb_delta, max );
1470 v3_muladds( s->state.throw_v, dir, -amt, s->state.throw_v );
1471 }
1472 }
1473
1474 VG_STATIC void skate_apply_cog_model( player_instance *player )
1475 {
1476 struct player_skate *s = &player->_skate;
1477
1478 v3f ideal_cog, ideal_diff, ideal_dir;
1479 v3_copy( s->state.up_dir, ideal_dir );
1480 v3_normalize( ideal_dir );
1481
1482 v3_muladds( player->rb.co, ideal_dir,
1483 1.0f-player->input_grab->axis.value, ideal_cog );
1484 v3_sub( ideal_cog, s->state.cog, ideal_diff );
1485
1486 /* Apply velocities */
1487 v3f rv;
1488 v3_sub( player->rb.v, s->state.cog_v, rv );
1489
1490 v3f F;
1491 v3_muls( ideal_diff, -k_cog_spring * k_rb_rate, F );
1492 v3_muladds( F, rv, -k_cog_damp * k_rb_rate, F );
1493
1494 float ra = k_cog_mass_ratio,
1495 rb = 1.0f-k_cog_mass_ratio;
1496
1497 /* Apply forces & intergrate */
1498 v3_muladds( s->state.cog_v, F, -rb, s->state.cog_v );
1499 s->state.cog_v[1] += -9.8f * k_rb_delta;
1500 v3_muladds( s->state.cog, s->state.cog_v, k_rb_delta, s->state.cog );
1501 }
1502
1503
1504 VG_STATIC void skate_integrate( player_instance *player )
1505 {
1506 struct player_skate *s = &player->_skate;
1507
1508 float decay_rate = 1.0f - (k_rb_delta * 3.0f),
1509 decay_rate_y = 1.0f;
1510
1511 if( s->state.activity >= k_skate_activity_grind_any )
1512 {
1513 decay_rate = 1.0f-vg_lerpf( 3.0f, 20.0f, s->grind_strength ) * k_rb_delta;
1514 decay_rate_y = decay_rate;
1515 }
1516
1517 float wx = v3_dot( player->rb.w, player->rb.to_world[0] ) * decay_rate,
1518 wy = v3_dot( player->rb.w, player->rb.to_world[1] ) * decay_rate_y,
1519 wz = v3_dot( player->rb.w, player->rb.to_world[2] ) * decay_rate;
1520
1521 v3_muls( player->rb.to_world[0], wx, player->rb.w );
1522 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
1523 v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
1524
1525 s->state.flip_time += s->state.flip_rate * k_rb_delta;
1526 rb_update_transform( &player->rb );
1527 }
1528
1529 /*
1530 * 1 2 or 3
1531 */
1532
1533 VG_STATIC int player_skate_trick_input( player_instance *player )
1534 {
1535 return (player->input_trick0->button.value) |
1536 (player->input_trick1->button.value << 1) |
1537 (player->input_trick2->button.value << 1) |
1538 (player->input_trick2->button.value);
1539 }
1540
1541 VG_STATIC void player__skate_pre_update( player_instance *player )
1542 {
1543 struct player_skate *s = &player->_skate;
1544
1545 if( vg_input_button_down( player->input_use ) )
1546 {
1547 player->subsystem = k_player_subsystem_walk;
1548
1549 v3f angles;
1550 v3_copy( player->cam.angles, angles );
1551 angles[2] = 0.0f;
1552
1553 player__walk_transition( player, angles );
1554 return;
1555 }
1556
1557 if( vg_input_button_down( player->input_reset ) )
1558 {
1559 player->rb.co[1] += 2.0f;
1560 s->state.cog[1] += 2.0f;
1561 q_axis_angle( player->rb.q, (v3f){1.0f,0.0f,0.0f}, VG_PIf * 0.25f );
1562 v3_zero( player->rb.w );
1563 v3_zero( player->rb.v );
1564
1565 rb_update_transform( &player->rb );
1566 }
1567
1568 int trick_id;
1569 if( (s->state.activity == k_skate_activity_air) &&
1570 (trick_id = player_skate_trick_input( player )) )
1571 {
1572 if( (vg.time - s->state.jump_time) < 0.1f )
1573 {
1574 v3_zero( s->state.trick_vel );
1575 s->state.trick_time = 0.0f;
1576
1577 if( trick_id == 1 )
1578 {
1579 s->state.trick_vel[0] = 3.0f;
1580 }
1581 else if( trick_id == 2 )
1582 {
1583 s->state.trick_vel[2] = 3.0f;
1584 }
1585 else if( trick_id == 3 )
1586 {
1587 s->state.trick_vel[0] = 2.0f;
1588 s->state.trick_vel[2] = 2.0f;
1589 }
1590 }
1591 }
1592 }
1593
1594 VG_STATIC void player__skate_post_update( player_instance *player )
1595 {
1596 struct player_skate *s = &player->_skate;
1597
1598 #if 0
1599 for( int i=0; i<s->prediction_count; i++ )
1600 {
1601 struct land_prediction *p = &s->predictions[i];
1602
1603 for( int j=0; j<p->log_length - 1; j ++ )
1604 vg_line( p->log[j], p->log[j+1], p->colour );
1605
1606 vg_line_cross( p->log[p->log_length-1], p->colour, 0.25f );
1607
1608 v3f p1;
1609 v3_add( p->log[p->log_length-1], p->n, p1 );
1610 vg_line( p->log[p->log_length-1], p1, 0xffffffff );
1611
1612 vg_line_pt3( p->apex, 0.02f, 0xffffffff );
1613 }
1614
1615 vg_line_pt3( s->state.apex, 0.200f, 0xff0000ff );
1616 vg_line_pt3( s->state.apex, 0.201f, 0xff00ffff );
1617 #endif
1618 }
1619
1620 /*
1621 * truck alignment model at ra(local)
1622 * returns 1 if valid surface:
1623 * surface_normal will be filled out with an averaged normal vector
1624 * axel_dir will be the direction from left to right wheels
1625 *
1626 * returns 0 if no good surface found
1627 */
1628 VG_STATIC
1629 int skate_compute_surface_alignment( player_instance *player,
1630 v3f ra, u32 colour,
1631 v3f surface_normal, v3f axel_dir )
1632 {
1633 struct player_skate *s = &player->_skate;
1634
1635 v3f truck, left, right;
1636 m4x3_mulv( player->rb.to_world, ra, truck );
1637 v3_muladds( truck, player->rb.to_world[0], -k_board_width, left );
1638 v3_muladds( truck, player->rb.to_world[0], k_board_width, right );
1639
1640 vg_line( left, right, colour );
1641
1642 v3_muladds( left, player->rb.to_world[1], 0.1f, left );
1643 v3_muladds( right, player->rb.to_world[1], 0.1f, right );
1644
1645 float k_max_truck_flex = VG_PIf * 0.25f;
1646
1647 ray_hit ray_l, ray_r;
1648 ray_l.dist = 0.2f;
1649 ray_r.dist = 0.2f;
1650
1651 v3f dir;
1652 v3_muls( player->rb.to_world[1], -1.0f, dir );
1653
1654 int res_l = ray_world( left, dir, &ray_l ),
1655 res_r = ray_world( right, dir, &ray_r );
1656
1657 /* ignore bad normals */
1658 if( res_l )
1659 if( v3_dot( ray_l.normal, player->rb.to_world[1] ) < 0.7071f )
1660 res_l = 0;
1661
1662 if( res_r )
1663 if( v3_dot( ray_r.normal, player->rb.to_world[1] ) < 0.7071f )
1664 res_r = 0;
1665
1666 v3f v0;
1667 v3f midpoint;
1668 v3f tangent_average;
1669 v3_muladds( truck, player->rb.to_world[1], -k_board_radius, midpoint );
1670 v3_zero( tangent_average );
1671
1672 if( res_l || res_r )
1673 {
1674 v3f p0, p1, t;
1675 v3_copy( midpoint, p0 );
1676 v3_copy( midpoint, p1 );
1677
1678 if( res_l )
1679 {
1680 v3_copy( ray_l.pos, p0 );
1681 v3_cross( ray_l.normal, player->rb.to_world[0], t );
1682 v3_add( t, tangent_average, tangent_average );
1683 }
1684 if( res_r )
1685 {
1686 v3_copy( ray_r.pos, p1 );
1687 v3_cross( ray_r.normal, player->rb.to_world[0], t );
1688 v3_add( t, tangent_average, tangent_average );
1689 }
1690
1691 v3_sub( p1, p0, v0 );
1692 v3_normalize( v0 );
1693 }
1694 else
1695 {
1696 /* fallback: use the closes point to the trucks */
1697 v3f closest;
1698 int idx = bh_closest_point( world.geo_bh, midpoint, closest, 0.1f );
1699
1700 if( idx != -1 )
1701 {
1702 u32 *tri = &world.scene_geo->arrindices[ idx * 3 ];
1703 v3f verts[3];
1704
1705 for( int j=0; j<3; j++ )
1706 v3_copy( world.scene_geo->arrvertices[ tri[j] ].co, verts[j] );
1707
1708 v3f vert0, vert1, n;
1709 v3_sub( verts[1], verts[0], vert0 );
1710 v3_sub( verts[2], verts[0], vert1 );
1711 v3_cross( vert0, vert1, n );
1712 v3_normalize( n );
1713
1714 if( v3_dot( n, player->rb.to_world[1] ) < 0.3f )
1715 return 0;
1716
1717 v3_cross( n, player->rb.to_world[2], v0 );
1718 v3_muladds( v0, player->rb.to_world[2],
1719 -v3_dot( player->rb.to_world[2], v0 ), v0 );
1720 v3_normalize( v0 );
1721
1722 v3f t;
1723 v3_cross( n, player->rb.to_world[0], t );
1724 v3_add( t, tangent_average, tangent_average );
1725 }
1726 else
1727 return 0;
1728 }
1729
1730 v3_muladds( truck, v0, k_board_width, right );
1731 v3_muladds( truck, v0, -k_board_width, left );
1732
1733 vg_line( left, right, VG__WHITE );
1734
1735 v3_normalize( tangent_average );
1736 v3_cross( v0, tangent_average, surface_normal );
1737 v3_copy( v0, axel_dir );
1738
1739 return 1;
1740 }
1741
1742 VG_STATIC void skate_weight_distribute( player_instance *player )
1743 {
1744 struct player_skate *s = &player->_skate;
1745 v3_zero( s->weight_distribution );
1746
1747 int reverse_dir = v3_dot( player->rb.to_world[2], player->rb.v ) < 0.0f?1:-1;
1748
1749 if( s->state.manual_direction == 0 )
1750 {
1751 if( (player->input_js1v->axis.value > 0.7f) &&
1752 (s->state.activity == k_skate_activity_ground) &&
1753 (s->state.jump_charge <= 0.01f) )
1754 s->state.manual_direction = reverse_dir;
1755 }
1756 else
1757 {
1758 if( player->input_js1v->axis.value < 0.1f )
1759 {
1760 s->state.manual_direction = 0;
1761 }
1762 else
1763 {
1764 if( reverse_dir != s->state.manual_direction )
1765 {
1766 #if 0
1767 player__dead_transition( player );
1768 #endif
1769 return;
1770 }
1771 }
1772 }
1773
1774 if( s->state.manual_direction )
1775 {
1776 float amt = vg_minf( player->input_js1v->axis.value * 8.0f, 1.0f );
1777 s->weight_distribution[2] = k_board_length * amt *
1778 (float)s->state.manual_direction;
1779 }
1780
1781 /* TODO: Fall back on land normal */
1782 /* TODO: Lerp weight distribution */
1783 /* TODO: Can start manual only if not charge jump */
1784 if( s->state.manual_direction )
1785 {
1786 v3f plane_z;
1787
1788 m3x3_mulv( player->rb.to_world, s->weight_distribution, plane_z );
1789 v3_negate( plane_z, plane_z );
1790
1791 v3_muladds( plane_z, s->surface_picture,
1792 -v3_dot( plane_z, s->surface_picture ), plane_z );
1793 v3_normalize( plane_z );
1794
1795 v3_muladds( plane_z, s->surface_picture, 0.3f, plane_z );
1796 v3_normalize( plane_z );
1797
1798 v3f p1;
1799 v3_muladds( player->rb.co, plane_z, 1.5f, p1 );
1800 vg_line( player->rb.co, p1, VG__GREEN );
1801
1802 v3f refdir;
1803 v3_muls( player->rb.to_world[2], -(float)s->state.manual_direction,
1804 refdir );
1805
1806 rb_effect_spring_target_vector( &player->rb, refdir, plane_z,
1807 k_manul_spring, k_manul_dampener,
1808 s->substep_delta );
1809 }
1810 }
1811
1812 VG_STATIC void skate_adjust_up_direction( player_instance *player )
1813 {
1814 struct player_skate *s = &player->_skate;
1815
1816 if( s->state.activity == k_skate_activity_ground )
1817 {
1818 v3f target;
1819 v3_copy( s->surface_picture, target );
1820
1821 target[1] += 2.0f * s->surface_picture[1];
1822 v3_normalize( target );
1823
1824 v3_lerp( s->state.up_dir, target,
1825 8.0f * s->substep_delta, s->state.up_dir );
1826 }
1827 else if( s->state.activity == k_skate_activity_air )
1828 {
1829 v3_lerp( s->state.up_dir, player->rb.to_world[1],
1830 8.0f * s->substep_delta, s->state.up_dir );
1831 }
1832 else
1833 {
1834 /* FIXME UNDEFINED! */
1835 vg_warn( "Undefined up target!\n" );
1836
1837 v3_lerp( s->state.up_dir, (v3f){0.0f,1.0f,0.0f},
1838 12.0f * s->substep_delta, s->state.up_dir );
1839 }
1840 }
1841
1842 VG_STATIC int skate_point_visible( v3f origin, v3f target )
1843 {
1844 v3f dir;
1845 v3_sub( target, origin, dir );
1846
1847 ray_hit ray;
1848 ray.dist = v3_length( dir );
1849 v3_muls( dir, 1.0f/ray.dist, dir );
1850 ray.dist -= 0.025f;
1851
1852 if( ray_world( origin, dir, &ray ) )
1853 return 0;
1854
1855 return 1;
1856 }
1857
1858 VG_STATIC void skate_grind_orient( struct grind_info *inf, m3x3f mtx )
1859 {
1860 /* TODO: Is N and Dir really orthogonal? */
1861 v3_copy( inf->dir, mtx[0] );
1862 v3_copy( inf->n, mtx[1] );
1863 v3_cross( mtx[0], mtx[1], mtx[2] );
1864 }
1865
1866 VG_STATIC void skate_grind_truck_apply( player_instance *player,
1867 v3f grind_co, struct grind_info *inf,
1868 float strength )
1869 {
1870 struct player_skate *s = &player->_skate;
1871
1872 v3f delta;
1873 v3_sub( inf->co, grind_co, delta );
1874
1875 m3x3f mtx, mtx_inv;
1876 skate_grind_orient( inf, mtx );
1877 m3x3_transpose( mtx, mtx_inv );
1878
1879 /* decay 'force' */
1880 v3f v_grind;
1881 m3x3_mulv( mtx_inv, player->rb.v, v_grind );
1882
1883 float decay = 1.0f - ( k_rb_delta * k_grind_decayxy * strength );
1884 v3_mul( v_grind, (v3f){ 1.0f, decay, decay }, v_grind );
1885 m3x3_mulv( mtx, v_grind, player->rb.v );
1886
1887 /* spring force */
1888 v3_muladds( player->rb.v, delta, k_spring_force*strength*k_rb_delta,
1889 player->rb.v );
1890
1891 /* friction force */
1892 float a = 1.0f-fabsf( v3_dot( player->rb.to_world[2], inf->dir ) ),
1893 dir = vg_signf( v3_dot( player->rb.v, inf->dir ) ),
1894 F = a * -dir * k_grind_max_friction;
1895
1896 v3_muladds( player->rb.v, inf->dir, F*k_rb_delta*strength, player->rb.v );
1897
1898 /* orientation */
1899 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[1],
1900 inf->n,
1901 k_grind_spring,
1902 k_grind_dampener,
1903 k_rb_delta );
1904 vg_line_arrow( player->rb.co, inf->n, 1.0f, VG__GREEN );
1905
1906 /* TODO: This was a nice idea, but we should just apply steering to the
1907 * target vector instead of this strange feedback loop thing! */
1908 v3f target_fwd;
1909 m3x3_mulv( mtx, s->grind_vec, target_fwd );
1910
1911 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[2],
1912 target_fwd,
1913 k_grind_spring*strength,
1914 k_grind_dampener*strength,
1915 k_rb_delta );
1916
1917 vg_line_arrow( player->rb.co, target_fwd, 1.0f, VG__YELOW );
1918
1919 v3f new_target;
1920 m3x3_mulv( mtx_inv, player->rb.to_world[2], new_target );
1921 v3_lerp( s->grind_vec, new_target, k_rb_delta * 0.1f, s->grind_vec );
1922
1923 s->grind_strength = strength;
1924
1925 /* Fake contact */
1926 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1927 m4x3_mulv( player->rb.to_local, grind_co, limit->ra );
1928 m3x3_mulv( player->rb.to_local, inf->n, limit->n );
1929 limit->p = 0.0f;
1930 }
1931
1932 VG_STATIC int skate_grind_truck_singular( player_instance *player, float sign )
1933 {
1934 struct grind_info inf;
1935
1936 v3f wheel_co = { 0.0f, 0.0f, sign * k_board_length },
1937 grind_co = { 0.0f, -k_board_radius, sign * k_board_length };
1938
1939 m4x3_mulv( player->rb.to_world, wheel_co, wheel_co );
1940 m4x3_mulv( player->rb.to_world, grind_co, grind_co );
1941
1942 /* Exit condition: lost grind tracking */
1943 if( !skate_grind_scansq( player, grind_co, player->rb.v, 0.3f, &inf ) )
1944 return 0;
1945
1946 /* Exit condition: cant see grind target directly */
1947 if( !skate_point_visible( wheel_co, inf.co ) )
1948 return 0;
1949
1950 /* Exit condition: minimum velocity not reached, but allow a bit of error */
1951 float dv = fabsf(v3_dot( player->rb.v, inf.dir )),
1952 minv = k_grind_axel_min_vel*0.8f;
1953
1954 if( dv < minv )
1955 return 0;
1956
1957 float t = vg_clampf( (dv-minv)/(k_grind_axel_min_vel-minv), 0.0f, 1.0f );
1958 skate_grind_truck_apply( player, grind_co, &inf, t );
1959 return 1;
1960 }
1961
1962 VG_STATIC int skate_truck_entry_condition( player_instance *player, float sign )
1963 {
1964 struct player_skate *s = &player->_skate;
1965 struct grind_info inf;
1966
1967 /* TODO: Trash compactor this */
1968 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1969
1970 v3f raw, wsp;
1971 m3x3_mulv( player->rb.to_world, ra, raw );
1972 v3_add( player->rb.co, raw, wsp );
1973
1974 if( skate_grind_scansq( player,
1975 wsp, player->rb.v, 0.3,
1976 &inf ) )
1977 {
1978 if( fabsf(v3_dot( player->rb.v, inf.dir )) < k_grind_axel_min_vel )
1979 return 0;
1980
1981 /* velocity should be at least 60% aligned */
1982 v3f pv, axis;
1983 v3_cross( inf.n, inf.dir, axis );
1984 v3_muladds( player->rb.v, inf.n, -v3_dot( player->rb.v, inf.n ), pv );
1985
1986 if( v3_length2( pv ) < 0.0001f )
1987 return 0;
1988 v3_normalize( pv );
1989
1990 if( fabsf(v3_dot( pv, inf.dir )) < k_grind_axel_max_angle )
1991 return 0;
1992
1993
1994 v3f local_co, local_dir, local_n;
1995 m4x3_mulv( player->rb.to_local, inf.co, local_co );
1996 m3x3_mulv( player->rb.to_local, inf.dir, local_dir );
1997 m3x3_mulv( player->rb.to_local, inf.n, local_n );
1998
1999 v2f delta = { local_co[0], local_co[2] - k_board_length*sign };
2000
2001 float truck_height = -(k_board_radius+0.03f);
2002
2003 v3f rv;
2004 v3_cross( player->rb.w, raw, rv );
2005 v3_add( player->rb.v, rv, rv );
2006
2007 if( (local_co[1] >= truck_height) &&
2008 (v2_length2( delta ) <= k_board_radius*k_board_radius) &&
2009 (v3_dot( rv, inf.n ) < 0.1f) )
2010 {
2011 m3x3f mtx;
2012 skate_grind_orient( &inf, mtx );
2013 m3x3_transpose( mtx, mtx );
2014 m3x3_mulv( mtx, player->rb.to_world[2], s->grind_vec );
2015
2016 skate_grind_truck_apply( player, wsp, &inf, 1.0f );
2017 return 1;
2018 }
2019 }
2020
2021 return 0;
2022 }
2023
2024 VG_STATIC enum skate_activity skate_availible_grind( player_instance *player )
2025 {
2026 struct player_skate *s = &player->_skate;
2027
2028 /*
2029 * BOARDSLIDE
2030 * ------------------------------------
2031 */
2032
2033 struct grind_info grind_center;
2034 if( skate_grind_scansq( player,
2035 player->rb.co,
2036 player->rb.to_world[0], k_board_length,
2037 &grind_center ) )
2038 {
2039 v3f local_co, local_dir, local_n;
2040 m4x3_mulv( player->rb.to_local, grind_center.co, local_co );
2041 m3x3_mulv( player->rb.to_local, grind_center.dir, local_dir );
2042 m3x3_mulv( player->rb.to_local, grind_center.n, local_n );
2043
2044 if( (fabsf(local_co[2]) <= k_board_length) && /* within wood area */
2045 (local_co[1] >= 0.0f) && /* at deck level */
2046 (fabsf(local_dir[0]) >= 0.5f) ) /* perpendicular to us */
2047 {
2048 /* compute position on center line */
2049
2050 v3f intersection;
2051 v3_muladds( local_co, local_dir, local_co[0]/-local_dir[0],
2052 intersection );
2053 v3_copy( intersection, s->weight_distribution );
2054
2055
2056 /* TODO: alignment & strengths should be proportional to speed */
2057 /* dont apply correction in connecting velocities */
2058 /* friciton */
2059
2060 v3f ideal_v, diff;
2061 v3_muls( grind_center.dir,
2062 v3_dot( player->rb.v, grind_center.dir ), ideal_v );
2063
2064 v3_sub( ideal_v, player->rb.v, diff );
2065 v3_muladds( player->rb.v, diff, k_grind_aligment * k_rb_delta,
2066 player->rb.v );
2067
2068
2069 /* direction alignment */
2070 v3f dir, perp;
2071 v3_cross( local_dir, local_n, perp );
2072 v3_muls( local_dir, vg_signf(local_dir[0]), dir );
2073 v3_muls( perp, vg_signf(perp[2]), perp );
2074
2075 m3x3_mulv( player->rb.to_world, dir, dir );
2076 m3x3_mulv( player->rb.to_world, perp, perp );
2077
2078 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
2079 dir,
2080 k_grind_spring, k_grind_dampener,
2081 k_rb_delta );
2082
2083 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[2],
2084 perp,
2085 k_grind_spring, k_grind_dampener,
2086 k_rb_delta );
2087
2088 vg_line_arrow( player->rb.co, dir, 0.5f, VG__GREEN );
2089 vg_line_arrow( player->rb.co, perp, 0.5f, VG__BLUE );
2090
2091 return k_skate_activity_grind_boardslide;
2092 }
2093 }
2094
2095 if( s->state.activity == k_skate_activity_grind_back50 )
2096 {
2097 int result = skate_grind_truck_singular( player, 1.0f ),
2098 front = skate_truck_entry_condition( player, -1.0f );
2099
2100 const enum skate_activity table[] =
2101 { /* result | front */
2102 k_skate_activity_undefined, /* 0 0 */
2103 k_skate_activity_grind_front50, /* 0 1 */
2104 k_skate_activity_grind_back50, /* 1 0 */
2105 k_skate_activity_grind_5050 /* 1 1 */
2106 };
2107
2108 return table[ result<<1 | front ];
2109 }
2110 else if( s->state.activity == k_skate_activity_grind_front50 )
2111 {
2112 int result = skate_grind_truck_singular( player, -1.0f ),
2113 back = skate_truck_entry_condition( player, 1.0f );
2114
2115 const enum skate_activity table[] =
2116 { /* result | back */
2117 k_skate_activity_undefined, /* 0 0 */
2118 k_skate_activity_grind_back50, /* 0 1 */
2119 k_skate_activity_grind_front50, /* 1 0 */
2120 k_skate_activity_grind_5050 /* 1 1 */
2121 };
2122
2123 return table[ result<<1 | back ];
2124 }
2125 else if( s->state.activity == k_skate_activity_grind_5050 )
2126 {
2127 /* FIXME */
2128 return k_skate_activity_grind_back50;
2129 }
2130 else
2131 {
2132 int front = skate_truck_entry_condition( player, -1.0f ),
2133 back = skate_truck_entry_condition( player, 1.0f );
2134
2135 const enum skate_activity table[] =
2136 { /* front | back */
2137 k_skate_activity_undefined, /* 0 0 */
2138 k_skate_activity_grind_back50, /* 0 1 */
2139 k_skate_activity_grind_front50, /* 1 0 */
2140 k_skate_activity_grind_5050 /* 1 1 */
2141 };
2142
2143 return table[ front<<1 | back ];
2144 }
2145
2146 return 0;
2147 }
2148
2149 VG_STATIC void skate_grind_boardslide( player_instance *player )
2150 {
2151
2152 }
2153
2154 VG_STATIC void player__skate_update( player_instance *player )
2155 {
2156 struct player_skate *s = &player->_skate;
2157 v3_copy( player->rb.co, s->state.prev_pos );
2158 s->state.activity_prev = s->state.activity;
2159
2160 struct board_collider
2161 {
2162 v3f pos;
2163 float radius;
2164
2165 int apply_angular;
2166 u32 colour;
2167
2168 enum board_collider_state
2169 {
2170 k_collider_state_default,
2171 k_collider_state_disabled,
2172 k_collider_state_colliding
2173 }
2174 state;
2175 }
2176 wheels[] =
2177 {
2178 {
2179 { 0.0f, 0.0f, -k_board_length },
2180 .radius = k_board_radius,
2181 .apply_angular = 1,
2182 .colour = VG__RED
2183 },
2184 {
2185 { 0.0f, 0.0f, k_board_length },
2186 .radius = k_board_radius,
2187 .apply_angular = 1,
2188 .colour = VG__GREEN
2189 },
2190 {
2191 { 0.0f, 0.2f, -k_board_length - k_board_end_radius },
2192 .radius = k_board_end_radius,
2193 .apply_angular = 0,
2194 .colour = VG__YELOW
2195 },
2196 {
2197 { 0.0f, 0.2f, k_board_length + k_board_end_radius },
2198 .radius = k_board_end_radius,
2199 .apply_angular = 0,
2200 .colour = VG__YELOW
2201 },
2202 };
2203
2204 const int k_wheel_count = 2;
2205
2206 s->substep = k_rb_delta;
2207 s->substep_delta = s->substep;
2208 s->limit_count = 0;
2209
2210 int substep_count = 0;
2211
2212 v3_zero( s->surface_picture );
2213
2214 for( int i=0; i<k_wheel_count; i++ )
2215 wheels[i].state = k_collider_state_default;
2216
2217 /* check if we can enter or continue grind */
2218 enum skate_activity grindable_activity = skate_availible_grind( player );
2219 if( grindable_activity != k_skate_activity_undefined )
2220 {
2221 s->state.activity = grindable_activity;
2222 goto grinding;
2223 }
2224
2225 int contact_count = 0;
2226 for( int i=0; i<2; i++ )
2227 {
2228 v3f normal, axel;
2229 if( skate_compute_surface_alignment( player, wheels[i].pos,
2230 wheels[i].colour, normal, axel ) )
2231 {
2232 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
2233 axel,
2234 k_board_spring, k_board_dampener,
2235 s->substep_delta );
2236
2237 v3_add( normal, s->surface_picture, s->surface_picture );
2238 contact_count ++;
2239 }
2240 }
2241
2242 if( contact_count )
2243 {
2244 s->state.activity = k_skate_activity_ground;
2245 v3_normalize( s->surface_picture );
2246
2247 skate_apply_friction_model( player );
2248 skate_weight_distribute( player );
2249 skate_apply_pump_model( player );
2250 }
2251 else
2252 {
2253 s->state.activity = k_skate_activity_air;
2254 skate_apply_air_model( player );
2255 }
2256
2257 grinding:;
2258
2259 if( s->state.activity == k_skate_activity_grind_back50 )
2260 wheels[1].state = k_collider_state_disabled;
2261 if( s->state.activity == k_skate_activity_grind_front50 )
2262 wheels[0].state = k_collider_state_disabled;
2263 if( s->state.activity == k_skate_activity_grind_5050 )
2264 {
2265 wheels[0].state = k_collider_state_disabled;
2266 wheels[1].state = k_collider_state_disabled;
2267 }
2268
2269 /* all activities */
2270 skate_apply_steering_model( player );
2271 skate_adjust_up_direction( player );
2272 skate_apply_cog_model( player );
2273 skate_apply_jump_model( player );
2274 skate_apply_grab_model( player );
2275 skate_apply_trick_model( player );
2276
2277
2278 begin_collision:;
2279
2280 /*
2281 * Phase 0: Continous collision detection
2282 * --------------------------------------------------------------------------
2283 */
2284
2285 v3f head_wp0, head_wp1, start_co;
2286 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp0 );
2287 v3_copy( player->rb.co, start_co );
2288
2289 /* calculate transform one step into future */
2290 v3f future_co;
2291 v4f future_q;
2292 v3_muladds( player->rb.co, player->rb.v, s->substep, future_co );
2293
2294 if( v3_length2( player->rb.w ) > 0.0f )
2295 {
2296 v4f rotation;
2297 v3f axis;
2298 v3_copy( player->rb.w, axis );
2299
2300 float mag = v3_length( axis );
2301 v3_divs( axis, mag, axis );
2302 q_axis_angle( rotation, axis, mag*s->substep );
2303 q_mul( rotation, player->rb.q, future_q );
2304 q_normalize( future_q );
2305 }
2306
2307 /* calculate the minimum time we can move */
2308 float max_time = s->substep;
2309
2310 for( int i=0; i<k_wheel_count; i++ )
2311 {
2312 if( wheels[i].state == k_collider_state_disabled )
2313 continue;
2314
2315 v3f current, future;
2316 q_mulv( future_q, wheels[i].pos, future );
2317 v3_add( future, future_co, future );
2318
2319 q_mulv( player->rb.q, wheels[i].pos, current );
2320 v3_add( current, player->rb.co, current );
2321
2322 float t;
2323 v3f n;
2324
2325 float cast_radius = wheels[i].radius - k_penetration_slop * 2.0f;
2326 if( spherecast_world( current, future, cast_radius, &t, n ) != -1)
2327 max_time = vg_minf( max_time, t * s->substep );
2328 }
2329
2330 /* clamp to a fraction of delta, to prevent locking */
2331 float rate_lock = substep_count;
2332 rate_lock *= k_rb_delta * 0.1f;
2333 rate_lock *= rate_lock;
2334
2335 max_time = vg_maxf( max_time, rate_lock );
2336 s->substep_delta = max_time;
2337
2338 /* integrate */
2339 v3_muladds( player->rb.co, player->rb.v, s->substep_delta, player->rb.co );
2340 if( v3_length2( player->rb.w ) > 0.0f )
2341 {
2342 v4f rotation;
2343 v3f axis;
2344 v3_copy( player->rb.w, axis );
2345
2346 float mag = v3_length( axis );
2347 v3_divs( axis, mag, axis );
2348 q_axis_angle( rotation, axis, mag*s->substep_delta );
2349 q_mul( rotation, player->rb.q, player->rb.q );
2350 }
2351
2352 rb_update_transform( &player->rb );
2353
2354 v3f gravity = { 0.0f, -9.6f, 0.0f };
2355 v3_muladds( player->rb.v, gravity, s->substep_delta, player->rb.v );
2356
2357 s->substep -= s->substep_delta;
2358
2359
2360 rb_ct manifold[128];
2361 int manifold_len = 0;
2362
2363 /*
2364 * Phase -1: head detection
2365 * --------------------------------------------------------------------------
2366 */
2367 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp1 );
2368
2369 #if 0
2370 float t;
2371 v3f n;
2372 if( (v3_dist2( head_wp0, head_wp1 ) > 0.001f) &&
2373 (spherecast_world( head_wp0, head_wp1, 0.2f, &t, n ) != -1) )
2374 {
2375 v3_lerp( start_co, player->rb.co, t, player->rb.co );
2376 rb_update_transform( &player->rb );
2377
2378 player__dead_transition( player );
2379 return;
2380 }
2381 #endif
2382
2383 /*
2384 * Phase 1: Regular collision detection
2385 * TODO: Me might want to automatically add contacts from CCD,
2386 * since at high angular velocities, theres a small change
2387 * that discreet detection will miss.
2388 * --------------------------------------------------------------------------
2389 */
2390
2391 for( int i=0; i<k_wheel_count; i++ )
2392 {
2393 if( wheels[i].state == k_collider_state_disabled )
2394 continue;
2395
2396 m4x3f mtx;
2397 m3x3_identity( mtx );
2398 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2399
2400 rb_sphere collider = { .radius = wheels[i].radius };
2401
2402 rb_ct *man = &manifold[ manifold_len ];
2403
2404 int l = skate_collide_smooth( player, mtx, &collider, man );
2405 if( l )
2406 wheels[i].state = k_collider_state_colliding;
2407
2408 /* for non-angular contacts we just want Y. contact positions are
2409 * snapped to the local xz plane */
2410 if( !wheels[i].apply_angular )
2411 {
2412 for( int j=0; j<l; j++ )
2413 {
2414 v3f ra;
2415 v3_sub( man[j].co, player->rb.co, ra );
2416
2417 float dy = v3_dot( player->rb.to_world[1], ra );
2418 v3_muladds( man[j].co, player->rb.to_world[1], -dy, man[j].co );
2419 }
2420 }
2421
2422 manifold_len += l;
2423 }
2424
2425 float grind_radius = k_board_radius * 0.75f;
2426 rb_capsule capsule = { .height = (k_board_length+0.2f)*2.0f,
2427 .radius=grind_radius };
2428 m4x3f mtx;
2429 v3_muls( player->rb.to_world[0], 1.0f, mtx[0] );
2430 v3_muls( player->rb.to_world[2], -1.0f, mtx[1] );
2431 v3_muls( player->rb.to_world[1], 1.0f, mtx[2] );
2432 v3_muladds( player->rb.to_world[3], player->rb.to_world[1],
2433 grind_radius + k_board_radius*0.25f, mtx[3] );
2434
2435 rb_ct *cman = &manifold[manifold_len];
2436
2437 int l = rb_capsule__scene( mtx, &capsule, NULL, &world.rb_geo.inf.scene,
2438 cman );
2439 manifold_len += l;
2440
2441 debug_capsule( mtx, capsule.radius, capsule.height, VG__WHITE );
2442
2443 /* add limits */
2444 for( int i=0; i<s->limit_count; i++ )
2445 {
2446 struct grind_limit *limit = &s->limits[i];
2447 rb_ct *ct = &manifold[ manifold_len ++ ];
2448 m4x3_mulv( player->rb.to_world, limit->ra, ct->co );
2449 m3x3_mulv( player->rb.to_world, limit->n, ct->n );
2450 ct->p = limit->p;
2451 ct->type = k_contact_type_default;
2452 }
2453
2454 /*
2455 * Phase 3: Dynamics
2456 * --------------------------------------------------------------------------
2457 */
2458
2459 for( int i=0; i<manifold_len; i ++ )
2460 {
2461 rb_prepare_contact( &manifold[i], s->substep_delta );
2462 rb_debug_contact( &manifold[i] );
2463 }
2464
2465 /* yes, we are currently rebuilding mass matrices every frame. too bad! */
2466 v3f extent = { k_board_width, 0.1f, k_board_length };
2467 float ex2 = k_board_interia*extent[0]*extent[0],
2468 ey2 = k_board_interia*extent[1]*extent[1],
2469 ez2 = k_board_interia*extent[2]*extent[2];
2470
2471 float mass = 2.0f * (extent[0]*extent[1]*extent[2]);
2472 float inv_mass = 1.0f/mass;
2473
2474 v3f I;
2475 I[0] = ((1.0f/12.0f) * mass * (ey2+ez2));
2476 I[1] = ((1.0f/12.0f) * mass * (ex2+ez2));
2477 I[2] = ((1.0f/12.0f) * mass * (ex2+ey2));
2478
2479 m3x3f iI;
2480 m3x3_identity( iI );
2481 iI[0][0] = I[0];
2482 iI[1][1] = I[1];
2483 iI[2][2] = I[2];
2484 m3x3_inv( iI, iI );
2485
2486 m3x3f iIw;
2487 m3x3_mul( iI, player->rb.to_local, iIw );
2488 m3x3_mul( player->rb.to_world, iIw, iIw );
2489
2490 v3f world_cog;
2491 m4x3_mulv( player->rb.to_world, s->weight_distribution, world_cog );
2492 vg_line_pt3( world_cog, 0.02f, VG__BLACK );
2493
2494 for( int j=0; j<10; j++ )
2495 {
2496 for( int i=0; i<manifold_len; i++ )
2497 {
2498 /*
2499 * regular dance; calculate velocity & total mass, apply impulse.
2500 */
2501
2502 struct contact *ct = &manifold[i];
2503
2504 v3f rv, delta;
2505 v3_sub( ct->co, world_cog, delta );
2506 v3_cross( player->rb.w, delta, rv );
2507 v3_add( player->rb.v, rv, rv );
2508
2509 v3f raCn;
2510 v3_cross( delta, ct->n, raCn );
2511
2512 v3f raCnI, rbCnI;
2513 m3x3_mulv( iIw, raCn, raCnI );
2514
2515 float normal_mass = 1.0f / (inv_mass + v3_dot(raCn,raCnI)),
2516 vn = v3_dot( rv, ct->n ),
2517 lambda = normal_mass * ( -vn );
2518
2519 float temp = ct->norm_impulse;
2520 ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
2521 lambda = ct->norm_impulse - temp;
2522
2523 v3f impulse;
2524 v3_muls( ct->n, lambda, impulse );
2525
2526 v3_muladds( player->rb.v, impulse, inv_mass, player->rb.v );
2527 v3_cross( delta, impulse, impulse );
2528 m3x3_mulv( iIw, impulse, impulse );
2529 v3_add( impulse, player->rb.w, player->rb.w );
2530
2531 v3_cross( player->rb.w, delta, rv );
2532 v3_add( player->rb.v, rv, rv );
2533 vn = v3_dot( rv, ct->n );
2534 }
2535 }
2536
2537 v3f dt;
2538 rb_depenetrate( manifold, manifold_len, dt );
2539 v3_add( dt, player->rb.co, player->rb.co );
2540 rb_update_transform( &player->rb );
2541
2542 substep_count ++;
2543
2544 if( s->substep >= 0.0001f )
2545 goto begin_collision; /* again! */
2546
2547 /*
2548 * End of collision and dynamics routine
2549 * --------------------------------------------------------------------------
2550 */
2551
2552 for( int i=0; i<k_wheel_count; i++ )
2553 {
2554 m4x3f mtx;
2555 m3x3_copy( player->rb.to_world, mtx );
2556 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2557 debug_sphere( mtx, wheels[i].radius,
2558 (u32[]){ VG__WHITE, VG__BLACK,
2559 wheels[i].colour }[ wheels[i].state ]);
2560 }
2561
2562 skate_integrate( player );
2563 vg_line_pt3( s->state.cog, 0.02f, VG__WHITE );
2564
2565 teleport_gate *gate;
2566 if( (gate = world_intersect_gates( player->rb.co, s->state.prev_pos )) )
2567 {
2568 m4x3_mulv( gate->transport, player->rb.co, player->rb.co );
2569 m3x3_mulv( gate->transport, player->rb.v, player->rb.v );
2570 m4x3_mulv( gate->transport, s->state.cog, s->state.cog );
2571 m3x3_mulv( gate->transport, s->state.cog_v, s->state.cog_v );
2572 m3x3_mulv( gate->transport, s->state.throw_v, s->state.throw_v );
2573 m3x3_mulv( gate->transport, s->state.head_position,
2574 s->state.head_position );
2575
2576 v4f transport_rotation;
2577 m3x3_q( gate->transport, transport_rotation );
2578 q_mul( transport_rotation, player->rb.q, player->rb.q );
2579 rb_update_transform( &player->rb );
2580
2581 s->state_gate_storage = s->state;
2582 player__pass_gate( player, gate );
2583 }
2584 }
2585
2586 VG_STATIC void player__skate_im_gui( player_instance *player )
2587 {
2588 struct player_skate *s = &player->_skate;
2589
2590 /* FIXME: Compression */
2591 player__debugtext( 1, "V: %5.2f %5.2f %5.2f",player->rb.v[0],
2592 player->rb.v[1],
2593 player->rb.v[2] );
2594 player__debugtext( 1, "CO: %5.2f %5.2f %5.2f",player->rb.co[0],
2595 player->rb.co[1],
2596 player->rb.co[2] );
2597 player__debugtext( 1, "W: %5.2f %5.2f %5.2f",player->rb.w[0],
2598 player->rb.w[1],
2599 player->rb.w[2] );
2600
2601 const char *activity_txt[] =
2602 {
2603 "air",
2604 "ground",
2605 "undefined (INVALID)",
2606 "grind_any (INVALID)",
2607 "grind_boardslide",
2608 "grind_noseslide",
2609 "grind_tailslide",
2610 "grind_back50",
2611 "grind_front50",
2612 "grind_5050"
2613 };
2614
2615 player__debugtext( 1, "activity: %s", activity_txt[s->state.activity] );
2616 #if 0
2617 player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
2618 s->state.steerx_s, s->state.steery_s,
2619 k_steer_ground, k_steer_air );
2620 #endif
2621 player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
2622 s->state.flip_time );
2623 player__debugtext( 1, "trickv: %.2f %.2f %.2f",
2624 s->state.trick_vel[0],
2625 s->state.trick_vel[1],
2626 s->state.trick_vel[2] );
2627 player__debugtext( 1, "tricke: %.2f %.2f %.2f",
2628 s->state.trick_euler[0],
2629 s->state.trick_euler[1],
2630 s->state.trick_euler[2] );
2631 }
2632
2633 VG_STATIC void player__skate_animate( player_instance *player,
2634 player_animation *dest )
2635 {
2636 struct player_skate *s = &player->_skate;
2637 struct player_avatar *av = player->playeravatar;
2638 struct skeleton *sk = &av->sk;
2639
2640 /* Head */
2641 float kheight = 2.0f,
2642 kleg = 0.6f;
2643
2644 v3f offset;
2645 v3_zero( offset );
2646
2647 v3f cog_local, cog_ideal;
2648 m4x3_mulv( player->rb.to_local, s->state.cog, cog_local );
2649
2650 v3_copy( s->state.up_dir, cog_ideal );
2651 v3_normalize( cog_ideal );
2652 m3x3_mulv( player->rb.to_local, cog_ideal, cog_ideal );
2653
2654 v3_sub( cog_ideal, cog_local, offset );
2655
2656
2657 v3_muls( offset, 4.0f, offset );
2658 offset[1] *= -1.0f;
2659
2660 float curspeed = v3_length( player->rb.v ),
2661 kickspeed = vg_clampf( curspeed*(1.0f/40.0f), 0.0f, 1.0f ),
2662 kicks = (vg_randf()-0.5f)*2.0f*kickspeed,
2663 sign = vg_signf( kicks );
2664
2665 s->wobble[0] = vg_lerpf( s->wobble[0], kicks*kicks*sign, 6.0f*vg.time_delta);
2666 s->wobble[1] = vg_lerpf( s->wobble[1], s->wobble[0], 2.4f*vg.time_delta);
2667
2668 offset[0] *= 0.26f;
2669 offset[0] += s->wobble[1]*3.0f;
2670
2671 offset[1] *= -0.3f;
2672 offset[2] *= 0.01f;
2673
2674 offset[0]=vg_clampf(offset[0],-0.8f,0.8f)*(1.0f-fabsf(s->blend_slide)*0.9f);
2675 offset[1]=vg_clampf(offset[1],-0.5f,0.0f);
2676
2677 /*
2678 * Animation blending
2679 * ===========================================
2680 */
2681
2682 /* sliding */
2683 {
2684 float desired = vg_clampf( fabsf( s->state.slip ), 0.0f, 1.0f );
2685 s->blend_slide = vg_lerpf( s->blend_slide, desired, 2.4f*vg.time_delta);
2686 }
2687
2688 /* movement information */
2689 {
2690 int iair = s->state.activity == k_skate_activity_air;
2691
2692 float dirz = s->state.reverse > 0.0f? 0.0f: 1.0f,
2693 dirx = s->state.slip < 0.0f? 0.0f: 1.0f,
2694 fly = iair? 1.0f: 0.0f;
2695
2696 s->blend_z = vg_lerpf( s->blend_z, dirz, 2.4f*vg.time_delta );
2697 s->blend_x = vg_lerpf( s->blend_x, dirx, 0.6f*vg.time_delta );
2698 s->blend_fly = vg_lerpf( s->blend_fly, fly, 2.4f*vg.time_delta );
2699 }
2700
2701 mdl_keyframe apose[32], bpose[32];
2702 mdl_keyframe ground_pose[32];
2703 {
2704 /* when the player is moving fast he will crouch down a little bit */
2705 float stand = 1.0f - vg_clampf( curspeed * 0.03f, 0.0f, 1.0f );
2706 s->blend_stand = vg_lerpf( s->blend_stand, stand, 6.0f*vg.time_delta );
2707
2708 /* stand/crouch */
2709 float dir_frame = s->blend_z * (15.0f/30.0f),
2710 stand_blend = offset[1]*-2.0f;
2711
2712 v3f local_cog;
2713 m4x3_mulv( player->rb.to_local, s->state.cog, local_cog );
2714
2715 stand_blend = vg_clampf( 1.0f-local_cog[1], 0, 1 );
2716
2717 skeleton_sample_anim( sk, s->anim_stand, dir_frame, apose );
2718 skeleton_sample_anim( sk, s->anim_highg, dir_frame, bpose );
2719 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
2720
2721 /* sliding */
2722 float slide_frame = s->blend_x * (15.0f/30.0f);
2723 skeleton_sample_anim( sk, s->anim_slide, slide_frame, bpose );
2724 skeleton_lerp_pose( sk, apose, bpose, s->blend_slide, apose );
2725
2726 /* pushing */
2727 double push_time = vg.time - s->state.start_push;
2728 s->blend_push = vg_lerpf( s->blend_push,
2729 (vg.time - s->state.cur_push) < 0.125,
2730 6.0f*vg.time_delta );
2731
2732 float pt = push_time + vg.accumulator;
2733 if( s->state.reverse > 0.0f )
2734 skeleton_sample_anim( sk, s->anim_push, pt, bpose );
2735 else
2736 skeleton_sample_anim( sk, s->anim_push_reverse, pt, bpose );
2737
2738 skeleton_lerp_pose( sk, apose, bpose, s->blend_push, apose );
2739
2740 /* trick setup */
2741 float jump_start_frame = 14.0f/30.0f;
2742
2743 float charge = s->state.jump_charge;
2744 s->blend_jump = vg_lerpf( s->blend_jump, charge, 8.4f*vg.time_delta );
2745
2746 float setup_frame = charge * jump_start_frame,
2747 setup_blend = vg_minf( s->blend_jump, 1.0f );
2748
2749 float jump_frame = (vg.time - s->state.jump_time) + jump_start_frame;
2750 if( jump_frame >= jump_start_frame && jump_frame <= (40.0f/30.0f) )
2751 setup_frame = jump_frame;
2752
2753 struct skeleton_anim *jump_anim = s->state.jump_dir?
2754 s->anim_ollie:
2755 s->anim_ollie_reverse;
2756
2757 skeleton_sample_anim_clamped( sk, jump_anim, setup_frame, bpose );
2758 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
2759 }
2760
2761 mdl_keyframe air_pose[32];
2762 {
2763 float target = -player->input_js1h->axis.value;
2764 s->blend_airdir = vg_lerpf( s->blend_airdir, target, 2.4f*vg.time_delta );
2765
2766 float air_frame = (s->blend_airdir*0.5f+0.5f) * (15.0f/30.0f);
2767 skeleton_sample_anim( sk, s->anim_air, air_frame, apose );
2768
2769 static v2f grab_choice;
2770
2771 v2f grab_input = { player->input_js2h->axis.value,
2772 player->input_js2v->axis.value };
2773 v2_add( s->state.grab_mouse_delta, grab_input, grab_input );
2774 if( v2_length2( grab_input ) <= 0.001f )
2775 grab_input[0] = -1.0f;
2776 else
2777 v2_normalize_clamp( grab_input );
2778 v2_lerp( grab_choice, grab_input, 2.4f*vg.time_delta, grab_choice );
2779
2780 float ang = atan2f( grab_choice[0], grab_choice[1] ),
2781 ang_unit = (ang+VG_PIf) * (1.0f/VG_TAUf),
2782 grab_frame = ang_unit * (15.0f/30.0f);
2783
2784 skeleton_sample_anim( sk, s->anim_grabs, grab_frame, bpose );
2785 skeleton_lerp_pose( sk, apose, bpose, s->state.grabbing, air_pose );
2786 }
2787
2788 skeleton_lerp_pose( sk, ground_pose, air_pose, s->blend_fly, dest->pose );
2789
2790 float add_grab_mod = 1.0f - s->blend_fly;
2791
2792 /* additive effects */
2793 {
2794 u32 apply_to[] = { av->id_hip,
2795 av->id_ik_hand_l,
2796 av->id_ik_hand_r,
2797 av->id_ik_elbow_l,
2798 av->id_ik_elbow_r };
2799
2800 for( int i=0; i<vg_list_size(apply_to); i ++ )
2801 {
2802 dest->pose[apply_to[i]-1].co[0] += offset[0]*add_grab_mod;
2803 dest->pose[apply_to[i]-1].co[2] += offset[2]*add_grab_mod;
2804 }
2805
2806
2807
2808
2809 /* angle correction */
2810 if( v3_length2( s->state.up_dir ) > 0.001f )
2811 {
2812 v3f ndir;
2813 m3x3_mulv( player->rb.to_local, s->state.up_dir, ndir );
2814 v3_normalize( ndir );
2815
2816 v3f up = { 0.0f, 1.0f, 0.0f };
2817
2818 float a = v3_dot( ndir, up );
2819 a = acosf( vg_clampf( a, -1.0f, 1.0f ) );
2820
2821 v3f axis;
2822 v4f q;
2823
2824 v3_cross( up, ndir, axis );
2825 q_axis_angle( q, axis, a );
2826
2827 mdl_keyframe *kf_hip = &dest->pose[av->id_hip-1];
2828
2829 for( int i=0; i<vg_list_size(apply_to); i ++ )
2830 {
2831 mdl_keyframe *kf = &dest->pose[apply_to[i]-1];
2832
2833 v3f v0;
2834 v3_sub( kf->co, kf_hip->co, v0 );
2835 q_mulv( q, v0, v0 );
2836 v3_add( v0, kf_hip->co, kf->co );
2837
2838 q_mul( q, kf->q, kf->q );
2839 q_normalize( kf->q );
2840 }
2841
2842 v3f p1, p2;
2843 m3x3_mulv( player->rb.to_world, up, p1 );
2844 m3x3_mulv( player->rb.to_world, ndir, p2 );
2845
2846 vg_line_arrow( player->rb.co, p1, 0.25f, VG__PINK );
2847 vg_line_arrow( player->rb.co, p2, 0.25f, VG__PINK );
2848 }
2849
2850
2851
2852 mdl_keyframe *kf_board = &dest->pose[av->id_board-1],
2853 *kf_foot_l = &dest->pose[av->id_ik_foot_l-1],
2854 *kf_foot_r = &dest->pose[av->id_ik_foot_r-1];
2855
2856
2857 v4f qtotal;
2858 v4f qtrickr, qyawr, qpitchr, qrollr;
2859 v3f eulerr;
2860
2861
2862 v3_muls( s->board_trick_residuald, VG_TAUf, eulerr );
2863
2864 q_axis_angle( qyawr, (v3f){0.0f,1.0f,0.0f}, eulerr[0] * 0.5f );
2865 q_axis_angle( qpitchr, (v3f){1.0f,0.0f,0.0f}, eulerr[1] );
2866 q_axis_angle( qrollr, (v3f){0.0f,0.0f,1.0f}, eulerr[2] );
2867
2868 q_mul( qpitchr, qrollr, qtrickr );
2869 q_mul( qyawr, qtrickr, qtotal );
2870 q_normalize( qtotal );
2871
2872 q_mul( qtotal, kf_board->q, kf_board->q );
2873
2874
2875 /* trick rotation */
2876 v4f qtrick, qyaw, qpitch, qroll;
2877 v3f euler;
2878 v3_muls( s->state.trick_euler, VG_TAUf, euler );
2879
2880 q_axis_angle( qyaw, (v3f){0.0f,1.0f,0.0f}, euler[0] * 0.5f );
2881 q_axis_angle( qpitch, (v3f){1.0f,0.0f,0.0f}, euler[1] );
2882 q_axis_angle( qroll, (v3f){0.0f,0.0f,1.0f}, euler[2] );
2883
2884 q_mul( qpitch, qroll, qtrick );
2885 q_mul( qyaw, qtrick, qtrick );
2886 q_mul( kf_board->q, qtrick, kf_board->q );
2887 q_normalize( kf_board->q );
2888 }
2889
2890 /* transform */
2891 rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
2892 v3_muladds( dest->root_co, player->rb.to_world[1], -0.1f, dest->root_co );
2893
2894 float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
2895 #if 0
2896 v4f qresy, qresx, qresidual;
2897 m3x3f mtx_residual;
2898 q_axis_angle( qresy, player->rb.to_world[1], s->state.steery_s*substep );
2899 q_axis_angle( qresx, player->rb.to_world[0], s->state.steerx_s*substep );
2900
2901 q_mul( qresy, qresx, qresidual );
2902 q_normalize( qresidual );
2903 q_mul( dest->root_q, qresidual, dest->root_q );
2904 q_normalize( dest->root_q );
2905 #endif
2906
2907 v4f qflip;
2908 if( (s->state.activity == k_skate_activity_air) &&
2909 (fabsf(s->state.flip_rate) > 0.01f) )
2910 {
2911 float t = s->state.flip_time + s->state.flip_rate*substep*k_rb_delta,
2912 angle = vg_clampf( t, -1.0f, 1.0f ) * VG_TAUf,
2913 distm = s->land_dist * fabsf(s->state.flip_rate) * 3.0f,
2914 blend = vg_clampf( 1.0f-distm, 0.0f, 1.0f );
2915
2916 angle = vg_lerpf( angle, vg_signf(s->state.flip_rate) * VG_TAUf, blend );
2917
2918 q_axis_angle( qflip, s->state.flip_axis, angle );
2919 q_mul( qflip, dest->root_q, dest->root_q );
2920 q_normalize( dest->root_q );
2921
2922 v3f rotation_point, rco;
2923 v3_muladds( player->rb.co, player->rb.to_world[1], 0.5f, rotation_point );
2924 v3_sub( dest->root_co, rotation_point, rco );
2925
2926 q_mulv( qflip, rco, rco );
2927 v3_add( rco, rotation_point, dest->root_co );
2928 }
2929 }
2930
2931 VG_STATIC void player__skate_post_animate( player_instance *player )
2932 {
2933 struct player_skate *s = &player->_skate;
2934 struct player_avatar *av = player->playeravatar;
2935
2936 player->cam_velocity_influence = 1.0f;
2937
2938 v3f head = { 0.0f, 1.8f, 0.0f }; /* FIXME: Viewpoint entity */
2939 m4x3_mulv( av->sk.final_mtx[ av->id_head ], head, s->state.head_position );
2940 m4x3_mulv( player->rb.to_local, s->state.head_position,
2941 s->state.head_position );
2942 }
2943
2944 VG_STATIC void player__skate_reset_animator( player_instance *player )
2945 {
2946 struct player_skate *s = &player->_skate;
2947
2948 if( s->state.activity == k_skate_activity_air )
2949 s->blend_fly = 1.0f;
2950 else
2951 s->blend_fly = 0.0f;
2952
2953 s->blend_slide = 0.0f;
2954 s->blend_z = 0.0f;
2955 s->blend_x = 0.0f;
2956 s->blend_stand = 0.0f;
2957 s->blend_push = 0.0f;
2958 s->blend_jump = 0.0f;
2959 s->blend_airdir = 0.0f;
2960 }
2961
2962 VG_STATIC void player__skate_clear_mechanics( player_instance *player )
2963 {
2964 struct player_skate *s = &player->_skate;
2965 s->state.jump_charge = 0.0f;
2966 s->state.lift_frames = 0;
2967 s->state.flip_rate = 0.0f;
2968 #if 0
2969 s->state.steery = 0.0f;
2970 s->state.steerx = 0.0f;
2971 s->state.steery_s = 0.0f;
2972 s->state.steerx_s = 0.0f;
2973 #endif
2974 s->state.reverse = 0.0f;
2975 s->state.slip = 0.0f;
2976 v3_copy( player->rb.co, s->state.prev_pos );
2977
2978 m3x3_identity( s->state.velocity_bias );
2979 m3x3_identity( s->state.velocity_bias_pstep );
2980 v3_zero( s->state.throw_v );
2981 v3_zero( s->state.trick_vel );
2982 v3_zero( s->state.trick_euler );
2983 }
2984
2985 VG_STATIC void player__skate_reset( player_instance *player,
2986 struct respawn_point *rp )
2987 {
2988 struct player_skate *s = &player->_skate;
2989 v3_muladds( player->rb.co, player->rb.to_world[1], 1.0f, s->state.cog );
2990 v3_zero( player->rb.v );
2991 v3_zero( s->state.cog_v );
2992 v4_copy( rp->q, player->rb.q );
2993
2994 s->state.activity = k_skate_activity_air;
2995 s->state.activity_prev = k_skate_activity_air;
2996
2997 player__skate_clear_mechanics( player );
2998 player__skate_reset_animator( player );
2999
3000 v3_zero( s->state.head_position );
3001 s->state.head_position[1] = 1.8f;
3002 }
3003
3004 #endif /* PLAYER_SKATE_C */