get fak
[carveJwlIkooP6JGAAIwe30JlM.git] / player_skate.c
1 #ifndef PLAYER_SKATE_C
2 #define PLAYER_SKATE_C
3
4 #include "player.h"
5
6 VG_STATIC void player__skate_bind( player_instance *player )
7 {
8 struct player_skate *s = &player->_skate;
9 struct player_avatar *av = player->playeravatar;
10 struct skeleton *sk = &av->sk;
11
12 rb_update_transform( &player->rb );
13 s->anim_stand = skeleton_get_anim( sk, "pose_stand" );
14 s->anim_highg = skeleton_get_anim( sk, "pose_highg" );
15 s->anim_air = skeleton_get_anim( sk, "pose_air" );
16 s->anim_slide = skeleton_get_anim( sk, "pose_slide" );
17 s->anim_push = skeleton_get_anim( sk, "push" );
18 s->anim_push_reverse = skeleton_get_anim( sk, "push_reverse" );
19 s->anim_ollie = skeleton_get_anim( sk, "ollie" );
20 s->anim_ollie_reverse = skeleton_get_anim( sk, "ollie_reverse" );
21 s->anim_grabs = skeleton_get_anim( sk, "grabs" );
22 }
23
24 /*
25 * Collision detection routines
26 *
27 *
28 */
29
30 /*
31 * Does collision detection on a sphere vs world, and applies some smoothing
32 * filters to the manifold afterwards
33 */
34 VG_STATIC int skate_collide_smooth( player_instance *player,
35 m4x3f mtx, rb_sphere *sphere,
36 rb_ct *man )
37 {
38 int len = 0;
39 len = rb_sphere__scene( mtx, sphere, NULL, &world.rb_geo.inf.scene, man );
40
41 for( int i=0; i<len; i++ )
42 {
43 man[i].rba = &player->rb;
44 man[i].rbb = NULL;
45 }
46
47 return len;
48
49 rb_manifold_filter_coplanar( man, len, 0.05f );
50
51 if( len > 1 )
52 {
53 rb_manifold_filter_backface( man, len );
54 rb_manifold_filter_joint_edges( man, len, 0.05f );
55 rb_manifold_filter_pairs( man, len, 0.05f );
56 }
57 int new_len = rb_manifold_apply_filtered( man, len );
58 if( len && !new_len )
59 len = 1;
60 else
61 len = new_len;
62
63 return len;
64 }
65 /*
66 * Gets the closest grindable edge to the player within max_dist
67 */
68 VG_STATIC struct grind_edge *skate_collect_grind_edge( v3f p0, v3f p1,
69 v3f c0, v3f c1,
70 float max_dist )
71 {
72 bh_iter it;
73 bh_iter_init( 0, &it );
74
75 boxf region;
76
77 box_init_inf( region );
78 box_addpt( region, p0 );
79 box_addpt( region, p1 );
80
81 float k_r = max_dist;
82 v3_add( (v3f){ k_r, k_r, k_r}, region[1], region[1] );
83 v3_add( (v3f){-k_r,-k_r,-k_r}, region[0], region[0] );
84
85 float closest = k_r*k_r;
86 struct grind_edge *closest_edge = NULL;
87
88 int idx;
89 while( bh_next( world.grind_bh, &it, region, &idx ) )
90 {
91 struct grind_edge *edge = &world.grind_edges[ idx ];
92
93 float s,t;
94 v3f pa, pb;
95
96 float d2 =
97 closest_segment_segment( p0, p1, edge->p0, edge->p1, &s,&t, pa, pb );
98
99 if( d2 < closest )
100 {
101 closest = d2;
102 closest_edge = edge;
103 v3_copy( pa, c0 );
104 v3_copy( pb, c1 );
105 }
106 }
107
108 return closest_edge;
109 }
110
111 VG_STATIC int skate_grind_collide( player_instance *player, rb_ct *contact )
112 {
113 v3f p0, p1, c0, c1;
114 v3_muladds( player->rb.co, player->rb.to_world[2], 0.5f, p0 );
115 v3_muladds( player->rb.co, player->rb.to_world[2], -0.5f, p1 );
116 v3_muladds( p0, player->rb.to_world[1], 0.08f, p0 );
117 v3_muladds( p1, player->rb.to_world[1], 0.08f, p1 );
118
119 float const k_r = 0.25f;
120 struct grind_edge *closest_edge = skate_collect_grind_edge( p0, p1,
121 c0, c1, k_r );
122
123 if( closest_edge )
124 {
125 v3f delta;
126 v3_sub( c1, c0, delta );
127
128 if( v3_dot( delta, player->rb.to_world[1] ) > 0.0001f )
129 {
130 contact->p = v3_length( delta );
131 contact->type = k_contact_type_edge;
132 contact->element_id = 0;
133 v3_copy( c1, contact->co );
134 contact->rba = NULL;
135 contact->rbb = NULL;
136
137 v3f edge_dir, axis_dir;
138 v3_sub( closest_edge->p1, closest_edge->p0, edge_dir );
139 v3_normalize( edge_dir );
140 v3_cross( (v3f){0.0f,1.0f,0.0f}, edge_dir, axis_dir );
141 v3_cross( edge_dir, axis_dir, contact->n );
142
143 return 1;
144 }
145 else
146 return 0;
147 }
148
149 return 0;
150 }
151
152 VG_STATIC int skate_grind_scansq( player_instance *player, v3f ra )
153 {
154 v3f pos;
155 m4x3_mulv( player->rb.to_world, ra, pos );
156
157 v4f plane;
158 v3_copy( player->rb.to_world[2], plane );
159 v3_normalize( plane );
160 plane[3] = v3_dot( plane, pos );
161
162 boxf box;
163 float r = 0.3f;
164 v3_add( pos, (v3f){ r, r, r }, box[1] );
165 v3_sub( pos, (v3f){ r, r, r }, box[0] );
166
167 #if 0
168 vg_line_boxf( box, VG__BLUE );
169 #endif
170
171 m4x3f mtx;
172 m3x3_copy( player->rb.to_world, mtx );
173 v3_copy( pos, mtx[3] );
174
175 #if 0
176 debug_sphere( mtx, r, VG__CYAN );
177 #endif
178
179 bh_iter it;
180 bh_iter_init( 0, &it );
181 int idx;
182
183 struct grind_sample
184 {
185 v2f co;
186 v2f normal;
187 v3f normal3,
188 centroid;
189 }
190 samples[48];
191
192 int sample_count = 0;
193
194 v2f support_min,
195 support_max;
196
197 v3f support_axis;
198 v3_cross( plane, (v3f){0.0f,1.0f,0.0f}, support_axis );
199 v3_normalize( support_axis );
200
201 while( bh_next( world.geo_bh, &it, box, &idx ) )
202 {
203 u32 *ptri = &world.scene_geo->arrindices[ idx*3 ];
204 v3f tri[3];
205
206 for( int j=0; j<3; j++ )
207 v3_copy( world.scene_geo->arrvertices[ptri[j]].co, tri[j] );
208
209 for( int j=0; j<3; j++ )
210 {
211 int i0 = j,
212 i1 = (j+1) % 3;
213
214 struct grind_sample *sample = &samples[ sample_count ];
215 v3f co;
216
217 if( plane_segment( plane, tri[i0], tri[i1], co ) )
218 {
219 v3f d;
220 v3_sub( co, pos, d );
221 if( v3_length2( d ) > r*r )
222 continue;
223
224 v3f va, vb, normal;
225 v3_sub( tri[1], tri[0], va );
226 v3_sub( tri[2], tri[0], vb );
227 v3_cross( va, vb, normal );
228
229 sample->normal[0] = v3_dot( support_axis, normal );
230 sample->normal[1] = normal[1];
231 sample->co[0] = v3_dot( support_axis, d );
232 sample->co[1] = d[1];
233
234 v3_copy( normal, sample->normal3 ); /* normalize later
235 if we want to us it */
236
237 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
238 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
239 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
240
241 v2_normalize( sample->normal );
242 sample_count ++;
243
244 if( sample_count == vg_list_size( samples ) )
245 {
246 break;
247 }
248 }
249 }
250 }
251
252 if( sample_count < 2 )
253 return 0;
254
255 v3f average_position,
256 average_direction;
257
258 v3_zero( average_position );
259 v3_zero( average_direction );
260
261 int passed_samples = 0;
262
263 for( int i=0; i<sample_count-1; i++ )
264 {
265 struct grind_sample *si, *sj;
266
267 si = &samples[i];
268
269 for( int j=i+1; j<sample_count; j++ )
270 {
271 if( i == j )
272 continue;
273
274 sj = &samples[j];
275
276 /* non overlapping */
277 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
278 continue;
279
280 /* not sharp angle */
281 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
282 continue;
283
284 /* not convex */
285 v3f v0;
286 v3_sub( sj->centroid, si->centroid, v0 );
287 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
288 v3_dot( v0, sj->normal3 ) <= 0.0f )
289 continue;
290
291 v3f p0;
292 v3_muls( support_axis, sj->co[0], p0 );
293 p0[1] += sj->co[1];
294
295 v3_add( average_position, p0, average_position );
296
297 v3f n0, n1, dir;
298 v3_copy( si->normal3, n0 );
299 v3_copy( sj->normal3, n1 );
300 v3_cross( n0, n1, dir );
301 v3_normalize( dir );
302
303 /* make sure the directions all face a common hemisphere */
304 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
305
306 v3_add( average_direction, dir, average_direction );
307 passed_samples ++;
308 }
309 }
310
311 if( !passed_samples )
312 return 0;
313
314 float div = 1.0f/(float)passed_samples;
315 v3_muls( average_position, div, average_position );
316 v3_muls( average_direction, div, average_direction ); /* !! not normed */
317
318 v3_add( pos, average_position, average_position );
319 vg_line_pt3( average_position, 0.02f, VG__GREEN );
320
321 v3f p0, p1;
322 v3_muladds( average_position, average_direction, 0.35f, p0 );
323 v3_muladds( average_position, average_direction, -0.35f, p1 );
324 vg_line( p0, p1, VG__PINK );
325
326 #if 0
327 if( passed_samples )
328 {
329 v3f displacement, dir;
330 v3_sub( pos, average_position, displacement );
331 v3_copy( displacement, dir );
332 v3_normalize( dir );
333
334 v3f rv, raW;
335 q_mulv( player->rb.q, ra, raW );
336
337 v3_cross( player->rb.w, raW, rv );
338 v3_add( player->rb.v, rv, rv );
339
340 v3_muladds( rv, player->rb.to_world[2],
341 -v3_dot( rv, player->rb.to_world[2] ), rv );
342
343 v3f Fd, Fs, F;
344 v3_muls( displacement, -k_grind_spring, Fs );
345 v3_muls( rv, -k_grind_dampener, Fd );
346
347 v3_add( Fd, Fs, F );
348 v3_muls( F, k_rb_delta, F );
349
350 v3_add( player->rb.v, F, player->rb.v );
351 v3f wa;
352 v3_cross( raW, F, wa );
353 v3_add( player->rb.w, wa, player->rb.w );
354
355 /* Constraint based */
356 }
357 #endif
358
359 return passed_samples;
360 }
361
362 /*
363 *
364 * Prediction system
365 *
366 *
367 */
368
369 /*
370 * Trace a path given a velocity rotation.
371 *
372 * TODO: this MIGHT be worth doing RK4 on the gravity field.
373 */
374 VG_STATIC void skate_score_biased_path( v3f co, v3f v, m3x3f vr,
375 struct land_prediction *prediction )
376 {
377 float pstep = VG_TIMESTEP_FIXED * 10.0f;
378 float k_bias = 0.96f;
379
380 v3f pco, pco1, pv;
381 v3_copy( co, pco );
382 v3_muls( v, k_bias, pv );
383
384 m3x3_mulv( vr, pv, pv );
385 v3_muladds( pco, pv, pstep, pco );
386
387 struct grind_edge *best_grind = NULL;
388 float closest_grind = INFINITY;
389
390 float grind_score = INFINITY,
391 air_score = INFINITY,
392 time_to_impact = 0.0f;
393
394 prediction->log_length = 0;
395 v3_copy( pco, prediction->apex );
396
397 for( int i=0; i<vg_list_size(prediction->log); i++ )
398 {
399 v3_copy( pco, pco1 );
400
401 pv[1] += -k_gravity * pstep;
402
403 m3x3_mulv( vr, pv, pv );
404 v3_muladds( pco, pv, pstep, pco );
405
406 if( pco[1] > prediction->apex[1] )
407 v3_copy( pco, prediction->apex );
408
409 v3f vdir;
410
411 v3_sub( pco, pco1, vdir );
412
413 float l = v3_length( vdir );
414 v3_muls( vdir, 1.0f/l, vdir );
415
416 v3f c0, c1;
417 struct grind_edge *ge = skate_collect_grind_edge( pco, pco1,
418 c0, c1, 0.4f );
419
420 if( ge && (v3_dot((v3f){0.0f,1.0f,0.0f},vdir) < -0.2f ) )
421 {
422 float d2 = v3_dist2( c0, c1 );
423 if( d2 < closest_grind )
424 {
425 closest_grind = d2;
426 best_grind = ge;
427 grind_score = closest_grind * 0.05f;
428 }
429 }
430
431 v3f n1;
432
433 float t1;
434 int idx = spherecast_world( pco1, pco, 0.4f, &t1, n1 );
435 if( idx != -1 )
436 {
437 v3_copy( n1, prediction->n );
438 air_score = -v3_dot( pv, n1 );
439
440 u32 vert_index = world.scene_geo->arrindices[ idx*3 ];
441 struct world_material *mat = world_tri_index_material( vert_index );
442
443 /* Bias prediction towords ramps */
444 if( mat->info.flags & k_material_flag_skate_surface )
445 air_score *= 0.1f;
446
447 v3_lerp( pco1, pco, t1, prediction->log[ prediction->log_length ++ ] );
448 time_to_impact += t1 * pstep;
449 break;
450 }
451
452 time_to_impact += pstep;
453 v3_copy( pco, prediction->log[ prediction->log_length ++ ] );
454 }
455
456 if( grind_score < air_score )
457 {
458 prediction->score = grind_score;
459 prediction->type = k_prediction_grind;
460 }
461 else if( air_score < INFINITY )
462 {
463 prediction->score = air_score;
464 prediction->type = k_prediction_land;
465 }
466 else
467 {
468 prediction->score = INFINITY;
469 prediction->type = k_prediction_none;
470 }
471
472 prediction->land_dist = time_to_impact;
473 }
474
475 VG_STATIC
476 void player__approximate_best_trajectory( player_instance *player )
477 {
478 struct player_skate *s = &player->_skate;
479
480 float pstep = VG_TIMESTEP_FIXED * 10.0f;
481 float best_velocity_delta = -9999.9f;
482
483 v3f axis;
484 v3_cross( player->rb.to_world[1], player->rb.v, axis );
485 v3_normalize( axis );
486
487 s->prediction_count = 0;
488 m3x3_identity( s->state.velocity_bias );
489
490 float best_vmod = 0.0f,
491 min_score = INFINITY,
492 max_score = -INFINITY;
493
494 v3_zero( s->state.apex );
495 s->land_dist = 0.0f;
496
497 /*
498 * Search a broad selection of futures
499 */
500 for( int m=-3;m<=12; m++ )
501 {
502 struct land_prediction *p = &s->predictions[ s->prediction_count ++ ];
503
504 float vmod = ((float)m / 15.0f)*0.09f;
505
506 m3x3f bias;
507 v4f bias_q;
508
509 q_axis_angle( bias_q, axis, vmod );
510 q_m3x3( bias_q, bias );
511
512 skate_score_biased_path( player->rb.co, player->rb.v, bias, p );
513
514 if( p->type != k_prediction_none )
515 {
516 if( p->score < min_score )
517 {
518 min_score = p->score;
519 best_vmod = vmod;
520 s->land_dist = p->land_dist;
521 v3_copy( p->apex, s->state.apex );
522 }
523
524 if( p->score > max_score )
525 max_score = p->score;
526 }
527 }
528
529 v4f vr_q;
530 q_axis_angle( vr_q, axis, best_vmod*0.1f );
531 q_m3x3( vr_q, s->state.velocity_bias );
532
533 q_axis_angle( vr_q, axis, best_vmod );
534 q_m3x3( vr_q, s->state.velocity_bias_pstep );
535
536 /*
537 * Logging
538 */
539 for( int i=0; i<s->prediction_count; i ++ )
540 {
541 struct land_prediction *p = &s->predictions[i];
542
543 float l = p->score;
544
545 if( l < 0.0f )
546 {
547 vg_error( "negative score! (%f)\n", l );
548 }
549
550 l -= min_score;
551 l /= (max_score-min_score);
552 l = 1.0f - l;
553 l *= 255.0f;
554
555 p->colour = l;
556 p->colour <<= 8;
557 p->colour |= 0xff000000;
558 }
559
560
561 v2f steer = { player->input_js1h->axis.value,
562 player->input_js1v->axis.value };
563 v2_normalize_clamp( steer );
564
565 if( (fabsf(steer[1]) > 0.5f) && (s->land_dist >= 1.0f) )
566 {
567 s->state.flip_rate = (1.0f/s->land_dist) * vg_signf(steer[1]) *
568 s->state.reverse ;
569 s->state.flip_time = 0.0f;
570 v3_copy( player->rb.to_world[0], s->state.flip_axis );
571 }
572 else
573 {
574 s->state.flip_rate = 0.0f;
575 v3_zero( s->state.flip_axis );
576 }
577 }
578
579 /*
580 *
581 * Varius physics models
582 * ------------------------------------------------
583 */
584
585 VG_STATIC void skate_apply_grind_model( player_instance *player,
586 rb_ct *manifold, int len )
587 {
588 struct player_skate *s = &player->_skate;
589
590 /* FIXME: Queue audio events instead */
591 if( len == 0 )
592 {
593 if( s->state.activity == k_skate_activity_grind )
594 {
595 #if 0
596 audio_lock();
597 audio_player_set_flags( &audio_player_extra,
598 AUDIO_FLAG_SPACIAL_3D );
599 audio_player_set_position( &audio_player_extra, player.rb.co );
600 audio_player_set_vol( &audio_player_extra, 20.0f );
601 audio_player_playclip( &audio_player_extra, &audio_board[6] );
602 audio_unlock();
603 #endif
604
605 s->state.activity = k_skate_activity_air;
606 }
607 return;
608 }
609
610 v2f steer = { player->input_js1h->axis.value,
611 player->input_js1v->axis.value };
612 v2_normalize_clamp( steer );
613
614 #if 0
615 s->state.steery -= steer[0] * k_steer_air * k_rb_delta;
616 s->state.steerx += steer[1] * s->state.reverse * k_steer_air * k_rb_delta;
617 #endif
618
619 #if 0
620 v4f rotate;
621 q_axis_angle( rotate, player->rb.to_world[0], siX );
622 q_mul( rotate, player.rb.q, player.rb.q );
623 #endif
624
625 s->state.slip = 0.0f;
626 s->state.activity = k_skate_activity_grind;
627
628 /* TODO: Compression */
629 v3f up = { 0.0f, 1.0f, 0.0f };
630 float angle = v3_dot( player->rb.to_world[1], up );
631
632 if( fabsf(angle) < 0.99f )
633 {
634 v3f axis;
635 v3_cross( player->rb.to_world[1], up, axis );
636
637 v4f correction;
638 q_axis_angle( correction, axis, k_rb_delta * 10.0f * acosf(angle) );
639 q_mul( correction, player->rb.q, player->rb.q );
640 }
641
642 float const DOWNFORCE = -k_downforce*1.2f*VG_TIMESTEP_FIXED;
643 v3_muladds( player->rb.v, manifold->n, DOWNFORCE, player->rb.v );
644 m3x3_identity( s->state.velocity_bias );
645 m3x3_identity( s->state.velocity_bias_pstep );
646
647 if( s->state.activity_prev != k_skate_activity_grind )
648 {
649 /* FIXME: Queue audio events instead */
650 #if 0
651 audio_lock();
652 audio_player_set_flags( &audio_player_extra,
653 AUDIO_FLAG_SPACIAL_3D );
654 audio_player_set_position( &audio_player_extra, player.rb.co );
655 audio_player_set_vol( &audio_player_extra, 20.0f );
656 audio_player_playclip( &audio_player_extra, &audio_board[5] );
657 audio_unlock();
658 #endif
659 }
660 }
661
662 /*
663 * Air control, no real physics
664 */
665 VG_STATIC void skate_apply_air_model( player_instance *player )
666 {
667 struct player_skate *s = &player->_skate;
668
669 if( s->state.activity != k_skate_activity_air )
670 return;
671
672 if( s->state.activity_prev != k_skate_activity_air )
673 player__approximate_best_trajectory( player );
674
675 m3x3_mulv( s->state.velocity_bias, player->rb.v, player->rb.v );
676 ray_hit hit;
677
678 /*
679 * Prediction
680 */
681 float pstep = VG_TIMESTEP_FIXED * 1.0f;
682 float k_bias = 0.98f;
683
684 v3f pco, pco1, pv;
685 v3_copy( player->rb.co, pco );
686 v3_muls( player->rb.v, 1.0f, pv );
687
688 float time_to_impact = 0.0f;
689 float limiter = 1.0f;
690
691 struct grind_edge *best_grind = NULL;
692 float closest_grind = INFINITY;
693
694 v3f target_normal = { 0.0f, 1.0f, 0.0f };
695 int has_target = 0;
696
697 for( int i=0; i<250; i++ )
698 {
699 v3_copy( pco, pco1 );
700 m3x3_mulv( s->state.velocity_bias, pv, pv );
701
702 pv[1] += -k_gravity * pstep;
703 v3_muladds( pco, pv, pstep, pco );
704
705 ray_hit contact;
706 v3f vdir;
707
708 v3_sub( pco, pco1, vdir );
709 contact.dist = v3_length( vdir );
710 v3_divs( vdir, contact.dist, vdir);
711
712 v3f c0, c1;
713 struct grind_edge *ge = skate_collect_grind_edge( pco, pco1,
714 c0, c1, 0.4f );
715
716 if( ge && (v3_dot((v3f){0.0f,1.0f,0.0f},vdir) < -0.2f ) )
717 {
718 vg_line( ge->p0, ge->p1, 0xff0000ff );
719 vg_line_cross( pco, 0xff0000ff, 0.25f );
720 has_target = 1;
721 break;
722 }
723
724 float orig_dist = contact.dist;
725 if( ray_world( pco1, vdir, &contact ) )
726 {
727 v3_copy( contact.normal, target_normal );
728 has_target = 1;
729 time_to_impact += (contact.dist/orig_dist)*pstep;
730 vg_line_cross( contact.pos, 0xffff0000, 0.25f );
731 break;
732 }
733 time_to_impact += pstep;
734 }
735
736 if( has_target )
737 {
738 float angle = v3_dot( player->rb.to_world[1], target_normal );
739 v3f axis;
740 v3_cross( player->rb.to_world[1], target_normal, axis );
741
742 limiter = vg_minf( 5.0f, time_to_impact )/5.0f;
743 limiter = 1.0f-limiter;
744 limiter *= limiter;
745 limiter = 1.0f-limiter;
746
747 if( fabsf(angle) < 0.9999f )
748 {
749 v4f correction;
750 q_axis_angle( correction, axis,
751 acosf(angle)*(1.0f-limiter)*2.0f*VG_TIMESTEP_FIXED );
752 q_mul( correction, player->rb.q, player->rb.q );
753 }
754 }
755
756 v2f steer = { player->input_js1h->axis.value,
757 player->input_js1v->axis.value };
758 v2_normalize_clamp( steer );
759
760 #if 0
761 s->state.steery -= steer[0] * k_steer_air * VG_TIMESTEP_FIXED;
762 s->state.steerx += steer[1] * s->state.reverse * k_steer_air
763 * limiter * k_rb_delta;
764 #endif
765 s->land_dist = time_to_impact;
766 v3_copy( target_normal, s->land_normal );
767 }
768
769 VG_STATIC void skate_get_board_points( player_instance *player,
770 v3f front, v3f back )
771 {
772 v3f pos_front = {0.0f,0.0f,-k_board_length},
773 pos_back = {0.0f,0.0f, k_board_length};
774
775 m4x3_mulv( player->rb.to_world, pos_front, front );
776 m4x3_mulv( player->rb.to_world, pos_back, back );
777 }
778
779 /*
780 * Casts and pushes a sphere-spring model into the world
781 */
782 VG_STATIC int skate_simulate_spring( player_instance *player,
783 v3f pos )
784 {
785 struct player_skate *s = &player->_skate;
786
787 float mod = 0.7f * player->input_grab->axis.value + 0.3f,
788 spring_k = mod * k_spring_force,
789 damp_k = mod * k_spring_dampener,
790 disp_k = 0.4f;
791
792 v3f start, end;
793 v3_copy( pos, start );
794 v3_muladds( pos, player->rb.to_world[1], -disp_k, end );
795
796 float t;
797 v3f n;
798 int hit_info = spherecast_world( start, end, 0.2f, &t, n );
799
800 if( hit_info != -1 )
801 {
802 v3f F, delta;
803 v3_sub( start, player->rb.co, delta );
804
805 float displacement = vg_clampf( 1.0f-t, 0.0f, 1.0f ),
806 damp =
807 vg_maxf( 0.0f, v3_dot( player->rb.to_world[1], player->rb.v ) );
808
809 v3_muls( player->rb.to_world[1], displacement*spring_k*k_rb_delta -
810 damp*damp_k*k_rb_delta, F );
811
812 v3_muladds( player->rb.v, F, 1.0f, player->rb.v );
813
814 /* Angular velocity */
815 v3f wa;
816 v3_cross( delta, F, wa );
817 v3_muladds( player->rb.w, wa, k_spring_angular, player->rb.w );
818
819 v3_lerp( start, end, t, pos );
820 return 1;
821 }
822 else
823 {
824 v3_copy( end, pos );
825 return 0;
826 }
827 }
828
829
830 /*
831 * Handles connection between the player and the ground
832 *
833 * TODO: Must save original velocity to use here
834 */
835 VG_STATIC void skate_apply_interface_model( player_instance *player,
836 rb_ct *manifold, int len )
837 {
838 struct player_skate *s = &player->_skate;
839
840 if( !((s->state.activity == k_skate_activity_ground) ||
841 (s->state.activity == k_skate_activity_air )) )
842 return;
843
844 if( s->state.activity == k_skate_activity_air )
845 s->debug_normal_pressure = 0.0f;
846 else
847 s->debug_normal_pressure = v3_dot( player->rb.to_world[1], player->rb.v );
848
849 /* springs */
850 v3f spring0, spring1;
851
852 skate_get_board_points( player, spring1, spring0 );
853 int spring_hit0 = 0, //skate_simulate_spring( player, s, spring0 ),
854 spring_hit1 = 0; //skate_simulate_spring( player, s, spring1 );
855
856 v3f animavg, animdelta;
857 v3_add( spring0, spring1, animavg );
858 v3_muls( animavg, 0.5f, animavg );
859
860 v3_sub( spring1, spring0, animdelta );
861 v3_normalize( animdelta );
862
863 m4x3_mulv( player->rb.to_local, animavg, s->board_offset );
864
865 float dx = -v3_dot( animdelta, player->rb.to_world[2] ),
866 dy = v3_dot( animdelta, player->rb.to_world[1] );
867
868 float angle = -atan2f( dy, dx );
869 q_axis_angle( s->board_rotation, (v3f){1.0f,0.0f,0.0f}, angle );
870
871 int lift_frames_limit = 6;
872
873 /* Surface connection */
874 if( len == 0 && !(spring_hit0 && spring_hit1) )
875 {
876 s->state.lift_frames ++;
877
878 if( s->state.lift_frames >= lift_frames_limit )
879 s->state.activity = k_skate_activity_air;
880 }
881 else
882 {
883 v3f surface_avg;
884 v3_zero( surface_avg );
885
886 for( int i=0; i<len; i++ )
887 v3_add( surface_avg, manifold[i].n, surface_avg );
888 v3_normalize( surface_avg );
889
890 if( v3_dot( player->rb.v, surface_avg ) > 0.7f )
891 {
892 s->state.lift_frames ++;
893
894 if( s->state.lift_frames >= lift_frames_limit )
895 s->state.activity = k_skate_activity_air;
896 }
897 else
898 {
899 s->state.activity = k_skate_activity_ground;
900 s->state.lift_frames = 0;
901 v3f projected, axis;
902
903 if( s->state.activity_prev == k_skate_activity_air )
904 {
905 player->cam_land_punch_v += v3_dot( player->rb.v, surface_avg ) *
906 k_cam_punch;
907 }
908
909 float const DOWNFORCE = -k_downforce*VG_TIMESTEP_FIXED;
910 v3_muladds( player->rb.v, player->rb.to_world[1],
911 DOWNFORCE, player->rb.v );
912
913 float d = v3_dot( player->rb.to_world[2], surface_avg );
914 v3_muladds( surface_avg, player->rb.to_world[2], -d, projected );
915 v3_normalize( projected );
916
917 float angle = v3_dot( player->rb.to_world[1], projected );
918 v3_cross( player->rb.to_world[1], projected, axis );
919
920 #if 0
921 if( fabsf(angle) < 0.9999f )
922 {
923 v4f correction;
924 q_axis_angle( correction, axis,
925 acosf(angle)*4.0f*VG_TIMESTEP_FIXED );
926 q_mul( correction, player->rb.q, player->rb.q );
927 }
928 #endif
929 }
930 }
931 }
932
933 VG_STATIC int player_skate_trick_input( player_instance *player );
934 VG_STATIC void skate_apply_trick_model( player_instance *player )
935 {
936 struct player_skate *s = &player->_skate;
937
938 v3f Fd, Fs, F;
939 v3f strength = { 3.7f, 3.6f, 8.0f };
940
941 v3_muls( s->board_trick_residualv, -4.0f , Fd );
942 v3_muls( s->board_trick_residuald, -10.0f, Fs );
943 v3_add( Fd, Fs, F );
944 v3_mul( strength, F, F );
945
946 v3_muladds( s->board_trick_residualv, F, k_rb_delta,
947 s->board_trick_residualv );
948 v3_muladds( s->board_trick_residuald, s->board_trick_residualv,
949 k_rb_delta, s->board_trick_residuald );
950
951 if( s->state.activity == k_skate_activity_air )
952 {
953 if( v3_length2( s->state.trick_vel ) < 0.0001f )
954 return;
955
956 int carry_on = player_skate_trick_input( player );
957
958 /* we assume velocities share a common divisor, in which case the
959 * interval is the minimum value (if not zero) */
960
961 float min_rate = 99999.0f;
962
963 for( int i=0; i<3; i++ )
964 {
965 float v = s->state.trick_vel[i];
966 if( (v > 0.0f) && (v < min_rate) )
967 min_rate = v;
968 }
969
970 float interval = 1.0f / min_rate,
971 current = floorf( s->state.trick_time / interval ),
972 next_end = (current+1.0f) * interval;
973
974
975 /* integrate trick velocities */
976 v3_muladds( s->state.trick_euler, s->state.trick_vel, k_rb_delta,
977 s->state.trick_euler );
978
979 if( !carry_on && (s->state.trick_time + k_rb_delta >= next_end) )
980 {
981 s->state.trick_time = 0.0f;
982 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
983 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
984 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
985 v3_copy( s->state.trick_vel, s->board_trick_residualv );
986 v3_zero( s->state.trick_vel );
987 }
988
989 s->state.trick_time += k_rb_delta;
990 }
991 else
992 {
993 if( (s->state.lift_frames == 0)
994 && (v3_length2(s->state.trick_vel) >= 0.0001f ) &&
995 s->state.trick_time > 0.2f)
996 {
997 player__dead_transition( player );
998 }
999
1000 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
1001 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
1002 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
1003 s->state.trick_time = 0.0f;
1004 v3_zero( s->state.trick_vel );
1005 }
1006 }
1007
1008 VG_STATIC void skate_apply_grab_model( player_instance *player )
1009 {
1010 struct player_skate *s = &player->_skate;
1011
1012 float grabt = player->input_grab->axis.value;
1013
1014 if( grabt > 0.5f )
1015 {
1016 v2_muladds( s->state.grab_mouse_delta, vg.mouse_delta, 0.02f,
1017 s->state.grab_mouse_delta );
1018
1019 v2_normalize_clamp( s->state.grab_mouse_delta );
1020 }
1021 else
1022 v2_zero( s->state.grab_mouse_delta );
1023
1024 s->state.grabbing = vg_lerpf( s->state.grabbing, grabt, 8.4f*k_rb_delta );
1025 }
1026
1027 /*
1028 * Computes friction and surface interface model
1029 */
1030 VG_STATIC void skate_apply_friction_model( player_instance *player )
1031 {
1032 struct player_skate *s = &player->_skate;
1033
1034 if( s->state.activity != k_skate_activity_ground )
1035 return;
1036
1037 /*
1038 * Computing localized friction forces for controlling the character
1039 * Friction across X is significantly more than Z
1040 */
1041
1042 v3f vel;
1043 m3x3_mulv( player->rb.to_local, player->rb.v, vel );
1044 float slip = 0.0f;
1045
1046 if( fabsf(vel[2]) > 0.01f )
1047 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
1048
1049 if( fabsf( slip ) > 1.2f )
1050 slip = vg_signf( slip ) * 1.2f;
1051
1052 s->state.slip = slip;
1053 s->state.reverse = -vg_signf(vel[2]);
1054
1055 vel[0] += vg_cfrictf( vel[0], k_friction_lat * k_rb_delta );
1056 vel[2] += vg_cfrictf( vel[2], k_friction_resistance * k_rb_delta );
1057
1058 /* Pushing additive force */
1059
1060 if( !player->input_jump->button.value )
1061 {
1062 if( player->input_push->button.value )
1063 {
1064 if( (vg.time - s->state.cur_push) > 0.25 )
1065 s->state.start_push = vg.time;
1066
1067 s->state.cur_push = vg.time;
1068
1069 double push_time = vg.time - s->state.start_push;
1070
1071 float cycle_time = push_time*k_push_cycle_rate,
1072 accel = k_push_accel * (sinf(cycle_time)*0.5f+0.5f),
1073 amt = accel * VG_TIMESTEP_FIXED,
1074 current = v3_length( vel ),
1075 new_vel = vg_minf( current + amt, k_max_push_speed ),
1076 delta = new_vel - vg_minf( current, k_max_push_speed );
1077
1078 vel[2] += delta * -s->state.reverse;
1079 }
1080 }
1081
1082 /* Send back to velocity */
1083 m3x3_mulv( player->rb.to_world, vel, player->rb.v );
1084
1085 /* Steering */
1086 float input = player->input_js1h->axis.value,
1087 grab = player->input_grab->axis.value,
1088 steer = input * (1.0f-(s->state.jump_charge+grab)*0.4f),
1089 steer_scaled = vg_signf(steer) * powf(steer,2.0f) * k_steer_ground;
1090
1091 v3f steer_axis;
1092 v3_muls( player->rb.to_world[1], -vg_signf( steer_scaled ), steer_axis );
1093
1094 float current = v3_dot( player->rb.to_world[1], player->rb.w ),
1095 addspeed = (steer_scaled * -1.0f) - current,
1096 maxaccel = 26.0f * k_rb_delta,
1097 accel = vg_clampf( addspeed, -maxaccel, maxaccel );
1098
1099 v3_muladds( player->rb.w, player->rb.to_world[1], accel, player->rb.w );
1100
1101
1102 #if 0
1103 player_accelerate( player->rb.w, steer_axis,
1104 fabsf(steer_scaled) * 1.0f, 30.0f );
1105
1106 //s->state.steery -= steer_scaled * k_rb_delta;
1107 #endif
1108 }
1109
1110 VG_STATIC void skate_apply_jump_model( player_instance *player )
1111 {
1112 struct player_skate *s = &player->_skate;
1113 int charging_jump_prev = s->state.charging_jump;
1114 s->state.charging_jump = player->input_jump->button.value;
1115
1116 /* Cannot charge this in air */
1117 if( s->state.activity != k_skate_activity_ground )
1118 s->state.charging_jump = 0;
1119
1120 if( s->state.charging_jump )
1121 {
1122 s->state.jump_charge += k_rb_delta * k_jump_charge_speed;
1123
1124 if( !charging_jump_prev )
1125 s->state.jump_dir = s->state.reverse>0.0f? 1: 0;
1126 }
1127 else
1128 {
1129 s->state.jump_charge -= k_jump_charge_speed * VG_TIMESTEP_FIXED;
1130 }
1131
1132 s->state.jump_charge = vg_clampf( s->state.jump_charge, 0.0f, 1.0f );
1133
1134 if( s->state.activity == k_skate_activity_air )
1135 return;
1136
1137 /* player let go after charging past 0.2: trigger jump */
1138 if( (!s->state.charging_jump) && (s->state.jump_charge > 0.2f) )
1139 {
1140 v3f jumpdir;
1141
1142 /* Launch more up if alignment is up else improve velocity */
1143 float aup = v3_dot( (v3f){0.0f,1.0f,0.0f}, player->rb.to_world[1] ),
1144 mod = 0.5f,
1145 dir = mod + fabsf(aup)*(1.0f-mod);
1146
1147 v3_copy( player->rb.v, jumpdir );
1148 v3_normalize( jumpdir );
1149 v3_muls( jumpdir, 1.0f-dir, jumpdir );
1150 v3_muladds( jumpdir, player->rb.to_world[1], dir, jumpdir );
1151 v3_normalize( jumpdir );
1152
1153 float force = k_jump_force*s->state.jump_charge;
1154 v3_muladds( player->rb.v, jumpdir, force, player->rb.v );
1155 s->state.jump_charge = 0.0f;
1156 s->state.jump_time = vg.time;
1157
1158 v2f steer = { player->input_js1h->axis.value,
1159 player->input_js1v->axis.value };
1160 v2_normalize_clamp( steer );
1161
1162 #if 0
1163 float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
1164 s->state.steery_s = -steer[0] * maxspin;
1165 s->state.steerx = s->state.steerx_s;
1166 #endif
1167 s->state.lift_frames ++;
1168
1169 /* FIXME audio events */
1170 #if 0
1171 audio_lock();
1172 audio_player_set_flags( &audio_player_extra, AUDIO_FLAG_SPACIAL_3D );
1173 audio_player_set_position( &audio_player_extra, player.rb.co );
1174 audio_player_set_vol( &audio_player_extra, 20.0f );
1175 audio_player_playclip( &audio_player_extra, &audio_jumps[rand()%2] );
1176 audio_unlock();
1177 #endif
1178 }
1179 }
1180
1181 VG_STATIC void skate_apply_pump_model( player_instance *player )
1182 {
1183 struct player_skate *s = &player->_skate;
1184
1185 /* Throw / collect routine
1186 *
1187 * TODO: Max speed boost
1188 */
1189 if( player->input_grab->axis.value > 0.5f )
1190 {
1191 if( s->state.activity == k_skate_activity_ground )
1192 {
1193 /* Throw */
1194 v3_muls( player->rb.to_world[1], k_mmthrow_scale, s->state.throw_v );
1195 }
1196 }
1197 else
1198 {
1199 /* Collect */
1200 float doty = v3_dot( player->rb.to_world[1], s->state.throw_v );
1201
1202 v3f Fl, Fv;
1203 v3_muladds( s->state.throw_v, player->rb.to_world[1], -doty, Fl);
1204
1205 if( s->state.activity == k_skate_activity_ground )
1206 {
1207 v3_muladds( player->rb.v, Fl, k_mmcollect_lat, player->rb.v );
1208 v3_muladds( s->state.throw_v, Fl, -k_mmcollect_lat, s->state.throw_v );
1209 }
1210
1211 v3_muls( player->rb.to_world[1], -doty, Fv );
1212 v3_muladds( player->rb.v, Fv, k_mmcollect_vert, player->rb.v );
1213 v3_muladds( s->state.throw_v, Fv, k_mmcollect_vert, s->state.throw_v );
1214 }
1215
1216 /* Decay */
1217 if( v3_length2( s->state.throw_v ) > 0.0001f )
1218 {
1219 v3f dir;
1220 v3_copy( s->state.throw_v, dir );
1221 v3_normalize( dir );
1222
1223 float max = v3_dot( dir, s->state.throw_v ),
1224 amt = vg_minf( k_mmdecay * k_rb_delta, max );
1225 v3_muladds( s->state.throw_v, dir, -amt, s->state.throw_v );
1226 }
1227 }
1228
1229 VG_STATIC void skate_apply_cog_model( player_instance *player )
1230 {
1231 struct player_skate *s = &player->_skate;
1232
1233 v3f ideal_cog, ideal_diff;
1234 v3_muladds( player->rb.co, player->rb.to_world[1],
1235 1.0f-player->input_grab->axis.value, ideal_cog );
1236 v3_sub( ideal_cog, s->state.cog, ideal_diff );
1237
1238 /* Apply velocities */
1239 v3f rv;
1240 v3_sub( player->rb.v, s->state.cog_v, rv );
1241
1242 v3f F;
1243 v3_muls( ideal_diff, -k_cog_spring * k_rb_rate, F );
1244 v3_muladds( F, rv, -k_cog_damp * k_rb_rate, F );
1245
1246 float ra = k_cog_mass_ratio,
1247 rb = 1.0f-k_cog_mass_ratio;
1248
1249 /* Apply forces & intergrate */
1250 v3_muladds( s->state.cog_v, F, -rb, s->state.cog_v );
1251 s->state.cog_v[1] += -9.8f * k_rb_delta;
1252 v3_muladds( s->state.cog, s->state.cog_v, k_rb_delta, s->state.cog );
1253 }
1254
1255 VG_STATIC void skate_collision_response( player_instance *player,
1256 rb_ct *manifold, int len )
1257 {
1258 struct player_skate *s = &player->_skate;
1259
1260 for( int j=0; j<10; j++ )
1261 {
1262 for( int i=0; i<len; i++ )
1263 {
1264 struct contact *ct = &manifold[i];
1265
1266 v3f rv, delta;
1267 v3_sub( ct->co, player->rb.co, delta );
1268 v3_cross( player->rb.w, delta, rv );
1269 v3_add( player->rb.v, rv, rv );
1270
1271 v3f raCn;
1272 v3_cross( delta, ct->n, raCn );
1273
1274 float normal_mass = 1.0f / (1.0f + v3_dot(raCn,raCn));
1275 float vn = v3_dot( rv, ct->n );
1276 float lambda = normal_mass * ( -vn + ct->bias );
1277
1278 float temp = ct->norm_impulse;
1279 ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
1280 lambda = ct->norm_impulse - temp;
1281
1282 v3f impulse;
1283 v3_muls( ct->n, lambda, impulse );
1284
1285 if( fabsf(v3_dot( impulse, player->rb.to_world[2] )) > 10.0f ||
1286 fabsf(v3_dot( impulse, player->rb.to_world[1] )) > 50.0f )
1287 {
1288 player__dead_transition( player );
1289 return;
1290 }
1291
1292 v3_add( impulse, player->rb.v, player->rb.v );
1293 v3_cross( delta, impulse, impulse );
1294
1295 /*
1296 * W Impulses are limited to the Y and X axises, we don't really want
1297 * roll angular velocities being included.
1298 *
1299 * Can also tweak the resistance of each axis here by scaling the wx,wy
1300 * components.
1301 */
1302
1303 float wy = v3_dot( player->rb.to_world[1], impulse ) * 1.0f,
1304 wx = v3_dot( player->rb.to_world[0], impulse ) * 1.0f,
1305 wz = v3_dot( player->rb.to_world[2], impulse ) * 1.0f;
1306
1307 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
1308 v3_muladds( player->rb.w, player->rb.to_world[0], wx, player->rb.w );
1309 v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
1310
1311
1312 v3_cross( player->rb.w, delta, rv );
1313 v3_add( player->rb.v, rv, rv );
1314 vn = v3_dot( rv, ct->n );
1315 }
1316 }
1317 }
1318
1319 VG_STATIC void skate_integrate( player_instance *player )
1320 {
1321 struct player_skate *s = &player->_skate;
1322
1323 /* integrate rigidbody velocities */
1324 #ifndef SKATE_CCD
1325 v3f gravity = { 0.0f, -9.6f, 0.0f };
1326 v3_muladds( player->rb.v, gravity, k_rb_delta, player->rb.v );
1327 v3_muladds( player->rb.co, player->rb.v, k_rb_delta, player->rb.co );
1328 #endif
1329
1330 float decay_rate = 1.0f - (k_rb_delta * 3.0f);
1331
1332 #if 0
1333 if( s->state.activity == k_skate_activity_air )
1334 {
1335 float dist = 1.0f-(s->land_dist/4.0f);
1336 decay_rate = 0.5f * vg_maxf( dist*dist, 0.0f );
1337 }
1338 #endif
1339
1340 float wx = v3_dot( player->rb.w, player->rb.to_world[0] ) * decay_rate,
1341 wy = v3_dot( player->rb.w, player->rb.to_world[1] ),
1342 wz = v3_dot( player->rb.w, player->rb.to_world[2] ) * decay_rate;
1343
1344 v3_muls( player->rb.to_world[0], wx, player->rb.w );
1345 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
1346 v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
1347
1348 #ifndef SKATE_CCD
1349 if( v3_length2( player->rb.w ) > 0.0f )
1350 {
1351 v4f rotation;
1352 v3f axis;
1353 v3_copy( player->rb.w, axis );
1354
1355 float mag = v3_length( axis );
1356 v3_divs( axis, mag, axis );
1357 q_axis_angle( rotation, axis, mag*k_rb_delta );
1358 q_mul( rotation, player->rb.q, player->rb.q );
1359 }
1360 #endif
1361
1362 /* integrate steering velocities */
1363 #if 0
1364 v4f rotate;
1365 float l = (s->state.activity == k_skate_activity_air)? 0.04f: 0.24f;
1366
1367 s->state.steery_s = vg_lerpf( s->state.steery_s, s->state.steery, l );
1368 s->state.steerx_s = vg_lerpf( s->state.steerx_s, s->state.steerx, l );
1369
1370 q_axis_angle( rotate, player->rb.to_world[1], s->state.steery_s );
1371 q_mul( rotate, player->rb.q, player->rb.q );
1372
1373 q_axis_angle( rotate, player->rb.to_world[0], s->state.steerx_s );
1374 q_mul( rotate, player->rb.q, player->rb.q );
1375
1376 s->state.steerx = 0.0f;
1377 s->state.steery = 0.0f;
1378 #endif
1379
1380 s->state.flip_time += s->state.flip_rate * k_rb_delta;
1381 rb_update_transform( &player->rb );
1382 }
1383
1384 /*
1385 * 1 2 or 3
1386 */
1387
1388 VG_STATIC int player_skate_trick_input( player_instance *player )
1389 {
1390 return (player->input_trick0->button.value) |
1391 (player->input_trick1->button.value << 1) |
1392 (player->input_trick2->button.value << 1) |
1393 (player->input_trick2->button.value);
1394 }
1395
1396 VG_STATIC void player__skate_pre_update( player_instance *player )
1397 {
1398 struct player_skate *s = &player->_skate;
1399
1400 if( vg_input_button_down( player->input_use ) )
1401 {
1402 player->subsystem = k_player_subsystem_walk;
1403
1404 v3f angles;
1405 v3_copy( player->cam.angles, angles );
1406 angles[2] = 0.0f;
1407
1408 player__walk_transition( player, angles );
1409 return;
1410 }
1411
1412 if( vg_input_button_down( player->input_reset ) )
1413 {
1414 player->rb.co[1] += 2.0f;
1415 s->state.cog[1] += 2.0f;
1416 q_axis_angle( player->rb.q, (v3f){1.0f,0.0f,0.0f}, VG_PIf * 0.25f );
1417 v3_zero( player->rb.w );
1418 v3_zero( player->rb.v );
1419
1420 rb_update_transform( &player->rb );
1421 }
1422
1423 int trick_id;
1424 if( (s->state.lift_frames > 0) &&
1425 (trick_id = player_skate_trick_input( player )) )
1426 {
1427 if( (vg.time - s->state.jump_time) < 0.1f )
1428 {
1429 v3_zero( s->state.trick_vel );
1430 s->state.trick_time = 0.0f;
1431
1432 if( trick_id == 1 )
1433 {
1434 s->state.trick_vel[0] = 3.0f;
1435 }
1436 else if( trick_id == 2 )
1437 {
1438 s->state.trick_vel[2] = 3.0f;
1439 }
1440 else if( trick_id == 3 )
1441 {
1442 s->state.trick_vel[0] = 2.0f;
1443 s->state.trick_vel[2] = 2.0f;
1444 }
1445 }
1446 }
1447 }
1448
1449 VG_STATIC void player__skate_post_update( player_instance *player )
1450 {
1451 struct player_skate *s = &player->_skate;
1452 for( int i=0; i<s->prediction_count; i++ )
1453 {
1454 struct land_prediction *p = &s->predictions[i];
1455
1456 for( int j=0; j<p->log_length - 1; j ++ )
1457 vg_line( p->log[j], p->log[j+1], p->colour );
1458
1459 vg_line_cross( p->log[p->log_length-1], p->colour, 0.25f );
1460
1461 v3f p1;
1462 v3_add( p->log[p->log_length-1], p->n, p1 );
1463 vg_line( p->log[p->log_length-1], p1, 0xffffffff );
1464
1465 vg_line_pt3( p->apex, 0.02f, 0xffffffff );
1466 }
1467
1468 vg_line_pt3( s->state.apex, 0.200f, 0xff0000ff );
1469 vg_line_pt3( s->state.apex, 0.201f, 0xff00ffff );
1470 }
1471
1472 VG_STATIC void player__skate_update( player_instance *player )
1473 {
1474 struct player_skate *s = &player->_skate;
1475 v3_copy( player->rb.co, s->state.prev_pos );
1476 s->state.activity_prev = s->state.activity;
1477
1478 struct board_collider
1479 {
1480 v3f pos;
1481 float radius;
1482
1483 int apply_angular;
1484 u32 colour;
1485
1486 enum board_collider_state
1487 {
1488 k_collider_state_default,
1489 k_collider_state_disabled,
1490 k_collider_state_colliding
1491 }
1492 state;
1493 }
1494 wheels[] =
1495 {
1496 {
1497 { 0.0f, 0.0f, -k_board_length },
1498 .radius = 0.07f,
1499 .apply_angular = 1,
1500 .colour = VG__RED
1501 },
1502 {
1503 { 0.0f, 0.0f, k_board_length },
1504 .radius = 0.07f,
1505 .apply_angular = 1,
1506 .colour = VG__GREEN
1507 },
1508 {
1509 { 0.0f, k_board_end_radius, -k_board_length - k_board_end_radius },
1510 .radius = k_board_end_radius,
1511 .apply_angular = 0,
1512 .colour = VG__YELOW
1513 },
1514 {
1515 { 0.0f, k_board_end_radius, k_board_length + k_board_end_radius },
1516 .radius = k_board_end_radius,
1517 .apply_angular = 0,
1518 .colour = VG__YELOW
1519 },
1520 };
1521
1522 const int k_wheel_count = 4;
1523
1524 if( skate_grind_scansq( player, (v3f){ 0.0f, 0.0f, -k_board_length } ) )
1525 {
1526 #if 0
1527 wheel_states[0] = 0;
1528 wheel_states[1] = 0;
1529 #endif
1530 }
1531
1532 if( skate_grind_scansq( player, (v3f){ 0.0f, 0.0f, k_board_length } ) )
1533 {
1534 #if 0
1535 wheel_states[2] = 0;
1536 wheel_states[3] = 0;
1537 #endif
1538 }
1539
1540 s->substep = k_rb_delta;
1541 int substep_count = 0;
1542
1543 v3f original_velocity;
1544 v3_muladds( player->rb.v, (v3f){0.0f,-k_gravity,0.0f},
1545 k_rb_delta, original_velocity );
1546
1547 begin_collision:;
1548
1549 /*
1550 * Phase 0: Continous collision detection
1551 * --------------------------------------------------------------------------
1552 */
1553
1554 for( int i=0; i<k_wheel_count; i++ )
1555 wheels[i].state = k_collider_state_default;
1556
1557 /* calculate transform one step into future */
1558 v3f future_co;
1559 v4f future_q;
1560 v3_muladds( player->rb.co, player->rb.v, s->substep, future_co );
1561
1562 if( v3_length2( player->rb.w ) > 0.0f )
1563 {
1564 v4f rotation;
1565 v3f axis;
1566 v3_copy( player->rb.w, axis );
1567
1568 float mag = v3_length( axis );
1569 v3_divs( axis, mag, axis );
1570 q_axis_angle( rotation, axis, mag*s->substep );
1571 q_mul( rotation, player->rb.q, future_q );
1572 q_normalize( future_q );
1573 }
1574
1575 /* calculate the minimum time we can move */
1576 float max_time = s->substep;
1577
1578 for( int i=0; i<k_wheel_count; i++ )
1579 {
1580 if( wheels[i].state == k_collider_state_disabled )
1581 continue;
1582
1583 v3f current, future;
1584 q_mulv( future_q, wheels[i].pos, future );
1585 v3_add( future, future_co, future );
1586
1587 q_mulv( player->rb.q, wheels[i].pos, current );
1588 v3_add( current, player->rb.co, current );
1589
1590 float t;
1591 v3f n;
1592
1593 float cast_radius = wheels[i].radius - k_penetration_slop * 1.2f;
1594 if( spherecast_world( current, future, cast_radius, &t, n ) != -1)
1595 max_time = vg_minf( max_time, t * s->substep );
1596 }
1597
1598 /* clamp to a fraction of delta, to prevent locking */
1599 float rate_lock = substep_count;
1600 rate_lock *= k_rb_delta * 0.1f;
1601 rate_lock *= rate_lock;
1602
1603 max_time = vg_maxf( max_time, rate_lock );
1604 s->substep_delta = max_time;
1605
1606 /* integrate */
1607 v3_muladds( player->rb.co, player->rb.v, s->substep_delta, player->rb.co );
1608 if( v3_length2( player->rb.w ) > 0.0f )
1609 {
1610 v4f rotation;
1611 v3f axis;
1612 v3_copy( player->rb.w, axis );
1613
1614 float mag = v3_length( axis );
1615 v3_divs( axis, mag, axis );
1616 q_axis_angle( rotation, axis, mag*s->substep_delta );
1617 q_mul( rotation, player->rb.q, player->rb.q );
1618 }
1619
1620 rb_update_transform( &player->rb );
1621
1622 v3f gravity = { 0.0f, -9.6f, 0.0f };
1623 v3_muladds( player->rb.v, gravity, s->substep_delta, player->rb.v );
1624
1625 s->substep -= s->substep_delta;
1626
1627 /*
1628 * Phase 1: Regular collision detection
1629 * TODO: Me might want to automatically add contacts from CCD,
1630 * since at high angular velocities, theres a small change
1631 * that discreet detection will miss.
1632 * --------------------------------------------------------------------------
1633 */
1634
1635 rb_ct manifold[128];
1636
1637 int manifold_len = 0;
1638
1639 for( int i=0; i<k_wheel_count; i++ )
1640 {
1641 if( wheels[i].state == k_collider_state_disabled )
1642 continue;
1643
1644 m4x3f mtx;
1645 m3x3_identity( mtx );
1646 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
1647
1648 rb_sphere collider = { .radius = wheels[i].radius };
1649
1650 rb_ct *man = &manifold[ manifold_len ];
1651
1652 int l = skate_collide_smooth( player, mtx, &collider, man );
1653 if( l )
1654 wheels[i].state = k_collider_state_colliding;
1655
1656 /* for non-angular contacts we just want Y. contact positions are
1657 * snapped to the local xz plane */
1658 if( !wheels[i].apply_angular )
1659 {
1660 for( int j=0; j<l; j++ )
1661 {
1662 v3f ra;
1663 v3_sub( man[j].co, player->rb.co, ra );
1664
1665 float dy = v3_dot( player->rb.to_world[1], ra );
1666 v3_muladds( man[j].co, player->rb.to_world[1], -dy, man[j].co );
1667 }
1668 }
1669
1670 manifold_len += l;
1671 }
1672
1673 /*
1674 * Phase 2: Truck alignment (spring/dampener model)
1675 * it uses the first two colliders as truck positions
1676 * --------------------------------------------------------------------------
1677 */
1678
1679 v3f surface_picture;
1680 v3_zero( surface_picture );
1681
1682 for( int i=0; i<2; i++ )
1683 {
1684 v3f truck, left, right;
1685 m4x3_mulv( player->rb.to_world, wheels[i].pos, truck );
1686 v3_muladds( truck, player->rb.to_world[0], -k_board_width, left );
1687 v3_muladds( truck, player->rb.to_world[0], k_board_width, right );
1688
1689 vg_line( left, right, wheels[i].colour );
1690
1691 v3_muladds( left, player->rb.to_world[1], 0.1f, left );
1692 v3_muladds( right, player->rb.to_world[1], 0.1f, right );
1693
1694 float k_max_truck_flex = VG_PIf * 0.25f;
1695
1696 ray_hit ray_l, ray_r;
1697 ray_l.dist = 0.2f;
1698 ray_r.dist = 0.2f;
1699
1700 v3f dir;
1701 v3_muls( player->rb.to_world[1], -1.0f, dir );
1702
1703 int res_l = ray_world( left, dir, &ray_l ),
1704 res_r = ray_world( right, dir, &ray_r );
1705
1706 /* ignore bad normals */
1707 if( res_l )
1708 {
1709 if( v3_dot( ray_l.normal, player->rb.to_world[1] ) < 0.7071f )
1710 res_l = 0;
1711 else
1712 v3_add( ray_l.normal, surface_picture, surface_picture );
1713 }
1714
1715 if( res_r )
1716 {
1717 if( v3_dot( ray_r.normal, player->rb.to_world[1] ) < 0.7071f )
1718 res_r = 0;
1719 else
1720 v3_add( ray_l.normal, surface_picture, surface_picture );
1721 }
1722
1723 v3f v0;
1724 v3f midpoint;
1725 v3_muladds( truck, player->rb.to_world[1], -wheels[i].radius, midpoint );
1726
1727 if( res_l || res_r )
1728 {
1729 v3f p0, p1;
1730 v3_copy( midpoint, p0 );
1731 v3_copy( midpoint, p1 );
1732
1733 if( res_l ) v3_copy( ray_l.pos, p0 );
1734 if( res_r ) v3_copy( ray_r.pos, p1 );
1735
1736 v3_sub( p1, p0, v0 );
1737 v3_normalize( v0 );
1738 }
1739 else
1740 {
1741 /* fallback: use the closes point to the trucks */
1742 v3f closest;
1743 int idx = bh_closest_point( world.geo_bh, midpoint, closest, 0.1f );
1744
1745 if( idx != -1 )
1746 {
1747 u32 *tri = &world.scene_geo->arrindices[ idx * 3 ];
1748 v3f verts[3];
1749
1750 for( int j=0; j<3; j++ )
1751 v3_copy( world.scene_geo->arrvertices[ tri[j] ].co, verts[j] );
1752
1753 v3f v0, v1, n;
1754 v3_sub( verts[1], verts[0], v0 );
1755 v3_sub( verts[2], verts[0], v1 );
1756 v3_cross( v0, v1, n );
1757 v3_normalize( n );
1758
1759 if( v3_dot( n, player->rb.to_world[1] ) < 0.7071f )
1760 continue;
1761
1762 continue;
1763 }
1764 else
1765 continue;
1766 }
1767
1768 float a = vg_clampf( v3_dot( v0, player->rb.to_world[0] ), -1.0f, 1.0f );
1769 a = acosf( a );
1770
1771 v3_muladds( truck, v0, k_board_width, right );
1772 v3_muladds( truck, v0, -k_board_width, left );
1773
1774 vg_line( left, right, VG__WHITE );
1775
1776 v3f axis;
1777 v3_cross( v0, player->rb.to_world[0], axis );
1778
1779 float Fs = -a * k_board_spring,
1780 Fd = -v3_dot( player->rb.w, axis ) * k_board_dampener;
1781
1782 v3_muladds( player->rb.w, axis, (Fs+Fd) * s->substep_delta,
1783 player->rb.w );
1784 }
1785
1786 /*
1787 * Phase 2a: Manual alignment (spring/dampener model)
1788 * --------------------------------------------------------------------------
1789 */
1790
1791 v3f weight, world_cog;
1792 v3_zero( weight );
1793
1794 int reverse_dir = v3_dot( player->rb.to_world[2], player->rb.v ) < 0.0f?1:-1;
1795
1796 if( s->state.manual_direction == 0 )
1797 {
1798 if( (player->input_js1v->axis.value > 0.7f) &&
1799 s->state.activity == k_skate_activity_ground )
1800 s->state.manual_direction = reverse_dir;
1801 }
1802 else
1803 {
1804 if( player->input_js1v->axis.value < 0.1f )
1805 {
1806 s->state.manual_direction = 0;
1807 }
1808 else
1809 {
1810 if( reverse_dir != s->state.manual_direction )
1811 {
1812 player__dead_transition( player );
1813 return;
1814 }
1815 }
1816 }
1817
1818 if( s->state.manual_direction )
1819 {
1820 float amt = vg_minf( player->input_js1v->axis.value * 8.0f, 1.0f );
1821 weight[2] = k_board_length * amt * (float)s->state.manual_direction;
1822 }
1823
1824 m4x3_mulv( player->rb.to_world, weight, world_cog );
1825 vg_line_pt3( world_cog, 0.1f, VG__BLACK );
1826
1827 /* TODO: Fall back on land normal */
1828 /* TODO: Lerp weight distribution */
1829
1830 if( v3_length2( surface_picture ) > 0.001f &&
1831 v3_length2( weight ) > 0.001f &&
1832 s->state.manual_direction )
1833 {
1834 v3_normalize( surface_picture );
1835 v3f plane_z;
1836
1837 m3x3_mulv( player->rb.to_world, weight, plane_z );
1838 v3_negate( plane_z, plane_z );
1839
1840 v3_muladds( plane_z, surface_picture,
1841 -v3_dot( plane_z, surface_picture ), plane_z );
1842 v3_normalize( plane_z );
1843
1844 v3_muladds( plane_z, surface_picture, 0.3f, plane_z );
1845 v3_normalize( plane_z );
1846
1847 v3f p1;
1848 v3_muladds( player->rb.co, plane_z, 1.5f, p1 );
1849 vg_line( player->rb.co, p1, VG__GREEN );
1850
1851 v3f refdir;
1852 v3_muls( player->rb.to_world[2], -(float)s->state.manual_direction,
1853 refdir );
1854
1855 float a = v3_dot( plane_z, refdir );
1856 a = acosf( vg_clampf( a, -1.0f, 1.0f ) );
1857
1858 v3f axis;
1859 v3_cross( plane_z, refdir, axis );
1860
1861 float Fs = -a * k_manul_spring,
1862 Fd = -v3_dot( player->rb.w, axis ) * k_manul_dampener;
1863
1864 v3_muladds( player->rb.w, axis, (Fs+Fd) * s->substep_delta,
1865 player->rb.w );
1866 }
1867
1868 /*
1869 * Phase 3: Dynamics
1870 * --------------------------------------------------------------------------
1871 */
1872
1873 for( int i=0; i<manifold_len; i ++ )
1874 rb_prepare_contact( &manifold[i], s->substep_delta );
1875
1876 /* yes, we are currently rebuilding mass matrices every frame. too bad! */
1877 v3f extent = { k_board_width, 0.1f, k_board_length };
1878 float ex2 = k_board_interia*extent[0]*extent[0],
1879 ey2 = k_board_interia*extent[1]*extent[1],
1880 ez2 = k_board_interia*extent[2]*extent[2];
1881
1882 float mass = 2.0f * (extent[0]*extent[1]*extent[2]);
1883 float inv_mass = 1.0f/mass;
1884
1885 v3f I;
1886 I[0] = ((1.0f/12.0f) * mass * (ey2+ez2));
1887 I[1] = ((1.0f/12.0f) * mass * (ex2+ez2));
1888 I[2] = ((1.0f/12.0f) * mass * (ex2+ey2));
1889
1890 m3x3f iI;
1891 m3x3_identity( iI );
1892 iI[0][0] = I[0];
1893 iI[1][1] = I[1];
1894 iI[2][2] = I[2];
1895 m3x3_inv( iI, iI );
1896
1897 m3x3f iIw;
1898 m3x3_mul( iI, player->rb.to_local, iIw );
1899 m3x3_mul( player->rb.to_world, iIw, iIw );
1900
1901 for( int j=0; j<10; j++ )
1902 {
1903 for( int i=0; i<manifold_len; i++ )
1904 {
1905 /*
1906 * regular dance; calculate velocity & total mass, apply impulse.
1907 */
1908
1909 struct contact *ct = &manifold[i];
1910
1911 v3f rv, delta;
1912 v3_sub( ct->co, world_cog, delta );
1913 v3_cross( player->rb.w, delta, rv );
1914 v3_add( player->rb.v, rv, rv );
1915
1916 v3f raCn;
1917 v3_cross( delta, ct->n, raCn );
1918
1919 v3f raCnI, rbCnI;
1920 m3x3_mulv( iIw, raCn, raCnI );
1921
1922 float normal_mass = 1.0f / (inv_mass + v3_dot(raCn,raCnI)),
1923 vn = v3_dot( rv, ct->n ),
1924 lambda = normal_mass * ( -vn + ct->bias );
1925
1926 float temp = ct->norm_impulse;
1927 ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
1928 lambda = ct->norm_impulse - temp;
1929
1930 v3f impulse;
1931 v3_muls( ct->n, lambda, impulse );
1932
1933 v3_muladds( player->rb.v, impulse, inv_mass, player->rb.v );
1934 v3_cross( delta, impulse, impulse );
1935 m3x3_mulv( iIw, impulse, impulse );
1936 v3_add( impulse, player->rb.w, player->rb.w );
1937
1938 v3_cross( player->rb.w, delta, rv );
1939 v3_add( player->rb.v, rv, rv );
1940 vn = v3_dot( rv, ct->n );
1941 }
1942 }
1943
1944 substep_count ++;
1945
1946 if( s->substep >= 0.0001f )
1947 goto begin_collision; /* again! */
1948
1949 /*
1950 * End of collision and dynamics routine
1951 * --------------------------------------------------------------------------
1952 */
1953
1954 for( int i=0; i<k_wheel_count; i++ )
1955 {
1956 m4x3f mtx;
1957 m3x3_copy( player->rb.to_world, mtx );
1958 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
1959 debug_sphere( mtx, wheels[i].radius,
1960 (u32[]){ VG__WHITE, VG__BLACK,
1961 wheels[i].colour }[ wheels[i].state ]);
1962 }
1963
1964 v3f velocity_change, p1;
1965 v3_sub( player->rb.v, original_velocity, velocity_change );
1966
1967 v3_normalize( velocity_change );
1968 v3_muladds( player->rb.co, velocity_change, 2.0f, p1 );
1969 vg_line( player->rb.co, p1, VG__PINK );
1970
1971 #if 0
1972 skate_apply_grind_model( player, &manifold[manifold_len], grind_len );
1973 #endif
1974
1975 skate_apply_interface_model( player, manifold, manifold_len );
1976
1977 skate_apply_pump_model( player );
1978 skate_apply_cog_model( player );
1979
1980 skate_apply_grab_model( player );
1981 skate_apply_friction_model( player );
1982 skate_apply_jump_model( player );
1983 skate_apply_air_model( player );
1984 skate_apply_trick_model( player );
1985
1986 skate_integrate( player );
1987
1988 vg_line_pt3( s->state.cog, 0.1f, VG__WHITE );
1989 vg_line_pt3( s->state.cog, 0.11f, VG__WHITE );
1990 vg_line_pt3( s->state.cog, 0.12f, VG__WHITE );
1991 vg_line_pt3( s->state.cog, 0.13f, VG__WHITE );
1992 vg_line_pt3( s->state.cog, 0.14f, VG__WHITE );
1993
1994 vg_line( player->rb.co, s->state.cog, VG__RED );
1995
1996 teleport_gate *gate;
1997 if( (gate = world_intersect_gates( player->rb.co, s->state.prev_pos )) )
1998 {
1999 m4x3_mulv( gate->transport, player->rb.co, player->rb.co );
2000 m3x3_mulv( gate->transport, player->rb.v, player->rb.v );
2001 m4x3_mulv( gate->transport, s->state.cog, s->state.cog );
2002 m3x3_mulv( gate->transport, s->state.cog_v, s->state.cog_v );
2003 m3x3_mulv( gate->transport, s->state.throw_v, s->state.throw_v );
2004
2005 v4f transport_rotation;
2006 m3x3_q( gate->transport, transport_rotation );
2007 q_mul( transport_rotation, player->rb.q, player->rb.q );
2008 rb_update_transform( &player->rb );
2009
2010 s->state_gate_storage = s->state;
2011 player__pass_gate( player, gate );
2012 }
2013 }
2014
2015 VG_STATIC void player__skate_im_gui( player_instance *player )
2016 {
2017 struct player_skate *s = &player->_skate;
2018
2019 /* FIXME: Compression */
2020 player__debugtext( 1, "V: %5.2f %5.2f %5.2f",player->rb.v[0],
2021 player->rb.v[1],
2022 player->rb.v[2] );
2023 player__debugtext( 1, "CO: %5.2f %5.2f %5.2f",player->rb.co[0],
2024 player->rb.co[1],
2025 player->rb.co[2] );
2026 player__debugtext( 1, "W: %5.2f %5.2f %5.2f",player->rb.w[0],
2027 player->rb.w[1],
2028 player->rb.w[2] );
2029
2030 player__debugtext( 1, "activity: %s",
2031 (const char *[]){ "k_skate_activity_air",
2032 "k_skate_activity_ground",
2033 "k_skate_activity_grind }" }
2034 [s->state.activity] );
2035 #if 0
2036 player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
2037 s->state.steerx_s, s->state.steery_s,
2038 k_steer_ground, k_steer_air );
2039 #endif
2040 player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
2041 s->state.flip_time );
2042 player__debugtext( 1, "trickv: %.2f %.2f %.2f",
2043 s->state.trick_vel[0],
2044 s->state.trick_vel[1],
2045 s->state.trick_vel[2] );
2046 player__debugtext( 1, "tricke: %.2f %.2f %.2f",
2047 s->state.trick_euler[0],
2048 s->state.trick_euler[1],
2049 s->state.trick_euler[2] );
2050 }
2051
2052 VG_STATIC void player__skate_animate( player_instance *player,
2053 player_animation *dest )
2054 {
2055 struct player_skate *s = &player->_skate;
2056 struct player_avatar *av = player->playeravatar;
2057 struct skeleton *sk = &av->sk;
2058
2059 /* Head */
2060 float kheight = 2.0f,
2061 kleg = 0.6f;
2062
2063 v3f offset;
2064 v3_zero( offset );
2065
2066 m4x3_mulv( player->rb.to_local, s->state.cog, offset );
2067 v3_muls( offset, -4.0f, offset );
2068
2069 float curspeed = v3_length( player->rb.v ),
2070 kickspeed = vg_clampf( curspeed*(1.0f/40.0f), 0.0f, 1.0f ),
2071 kicks = (vg_randf()-0.5f)*2.0f*kickspeed,
2072 sign = vg_signf( kicks );
2073
2074 s->wobble[0] = vg_lerpf( s->wobble[0], kicks*kicks*sign, 6.0f*vg.time_delta);
2075 s->wobble[1] = vg_lerpf( s->wobble[1], s->wobble[0], 2.4f*vg.time_delta);
2076
2077 offset[0] *= 0.26f;
2078 offset[0] += s->wobble[1]*3.0f;
2079
2080 offset[1] *= -0.3f;
2081 offset[2] *= 0.01f;
2082
2083 offset[0]=vg_clampf(offset[0],-0.8f,0.8f)*(1.0f-fabsf(s->blend_slide)*0.9f);
2084 offset[1]=vg_clampf(offset[1],-0.5f,0.0f);
2085
2086 /*
2087 * Animation blending
2088 * ===========================================
2089 */
2090
2091 /* sliding */
2092 {
2093 float desired = vg_clampf( fabsf( s->state.slip ), 0.0f, 1.0f );
2094 s->blend_slide = vg_lerpf( s->blend_slide, desired, 2.4f*vg.time_delta);
2095 }
2096
2097 /* movement information */
2098 {
2099 int iair = (s->state.activity == k_skate_activity_air) ||
2100 (s->state.activity == k_skate_activity_grind );
2101
2102 float dirz = s->state.reverse > 0.0f? 0.0f: 1.0f,
2103 dirx = s->state.slip < 0.0f? 0.0f: 1.0f,
2104 fly = iair? 1.0f: 0.0f;
2105
2106 s->blend_z = vg_lerpf( s->blend_z, dirz, 2.4f*vg.time_delta );
2107 s->blend_x = vg_lerpf( s->blend_x, dirx, 0.6f*vg.time_delta );
2108 s->blend_fly = vg_lerpf( s->blend_fly, fly, 2.4f*vg.time_delta );
2109 }
2110
2111 mdl_keyframe apose[32], bpose[32];
2112 mdl_keyframe ground_pose[32];
2113 {
2114 /* when the player is moving fast he will crouch down a little bit */
2115 float stand = 1.0f - vg_clampf( curspeed * 0.03f, 0.0f, 1.0f );
2116 s->blend_stand = vg_lerpf( s->blend_stand, stand, 6.0f*vg.time_delta );
2117
2118 /* stand/crouch */
2119 float dir_frame = s->blend_z * (15.0f/30.0f),
2120 stand_blend = offset[1]*-2.0f;
2121
2122 v3f local_cog;
2123 m4x3_mulv( player->rb.to_local, s->state.cog, local_cog );
2124
2125 stand_blend = vg_clampf( 1.0f-local_cog[1], 0, 1 );
2126
2127 skeleton_sample_anim( sk, s->anim_stand, dir_frame, apose );
2128 skeleton_sample_anim( sk, s->anim_highg, dir_frame, bpose );
2129 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
2130
2131 /* sliding */
2132 float slide_frame = s->blend_x * (15.0f/30.0f);
2133 skeleton_sample_anim( sk, s->anim_slide, slide_frame, bpose );
2134 skeleton_lerp_pose( sk, apose, bpose, s->blend_slide, apose );
2135
2136 /* pushing */
2137 double push_time = vg.time - s->state.start_push;
2138 s->blend_push = vg_lerpf( s->blend_push,
2139 (vg.time - s->state.cur_push) < 0.125,
2140 6.0f*vg.time_delta );
2141
2142 float pt = push_time + vg.accumulator;
2143 if( s->state.reverse > 0.0f )
2144 skeleton_sample_anim( sk, s->anim_push, pt, bpose );
2145 else
2146 skeleton_sample_anim( sk, s->anim_push_reverse, pt, bpose );
2147
2148 skeleton_lerp_pose( sk, apose, bpose, s->blend_push, apose );
2149
2150 /* trick setup */
2151 float jump_start_frame = 14.0f/30.0f;
2152
2153 float charge = s->state.jump_charge;
2154 s->blend_jump = vg_lerpf( s->blend_jump, charge, 8.4f*vg.time_delta );
2155
2156 float setup_frame = charge * jump_start_frame,
2157 setup_blend = vg_minf( s->blend_jump, 1.0f );
2158
2159 float jump_frame = (vg.time - s->state.jump_time) + jump_start_frame;
2160 if( jump_frame >= jump_start_frame && jump_frame <= (40.0f/30.0f) )
2161 setup_frame = jump_frame;
2162
2163 struct skeleton_anim *jump_anim = s->state.jump_dir?
2164 s->anim_ollie:
2165 s->anim_ollie_reverse;
2166
2167 skeleton_sample_anim_clamped( sk, jump_anim, setup_frame, bpose );
2168 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
2169 }
2170
2171 mdl_keyframe air_pose[32];
2172 {
2173 float target = -player->input_js1h->axis.value;
2174 s->blend_airdir = vg_lerpf( s->blend_airdir, target, 2.4f*vg.time_delta );
2175
2176 float air_frame = (s->blend_airdir*0.5f+0.5f) * (15.0f/30.0f);
2177 skeleton_sample_anim( sk, s->anim_air, air_frame, apose );
2178
2179 static v2f grab_choice;
2180
2181 v2f grab_input = { player->input_js2h->axis.value,
2182 player->input_js2v->axis.value };
2183 v2_add( s->state.grab_mouse_delta, grab_input, grab_input );
2184 if( v2_length2( grab_input ) <= 0.001f )
2185 grab_input[0] = -1.0f;
2186 else
2187 v2_normalize_clamp( grab_input );
2188 v2_lerp( grab_choice, grab_input, 2.4f*vg.time_delta, grab_choice );
2189
2190 float ang = atan2f( grab_choice[0], grab_choice[1] ),
2191 ang_unit = (ang+VG_PIf) * (1.0f/VG_TAUf),
2192 grab_frame = ang_unit * (15.0f/30.0f);
2193
2194 skeleton_sample_anim( sk, s->anim_grabs, grab_frame, bpose );
2195 skeleton_lerp_pose( sk, apose, bpose, s->state.grabbing, air_pose );
2196 }
2197
2198 skeleton_lerp_pose( sk, ground_pose, air_pose, s->blend_fly, dest->pose );
2199
2200 float add_grab_mod = 1.0f - s->blend_fly;
2201
2202 /* additive effects */
2203 {
2204 u32 apply_to[] = { av->id_hip,
2205 av->id_ik_hand_l,
2206 av->id_ik_hand_r,
2207 av->id_ik_elbow_l,
2208 av->id_ik_elbow_r };
2209
2210 for( int i=0; i<vg_list_size(apply_to); i ++ )
2211 {
2212 dest->pose[apply_to[i]-1].co[0] += offset[0]*add_grab_mod;
2213 dest->pose[apply_to[i]-1].co[2] += offset[2]*add_grab_mod;
2214 }
2215
2216 mdl_keyframe *kf_board = &dest->pose[av->id_board-1],
2217 *kf_foot_l = &dest->pose[av->id_ik_foot_l-1],
2218 *kf_foot_r = &dest->pose[av->id_ik_foot_r-1];
2219
2220 v3f bo;
2221 v3_muls( s->board_offset, add_grab_mod, bo );
2222
2223 v3_add( bo, kf_board->co, kf_board->co );
2224 v3_add( bo, kf_foot_l->co, kf_foot_l->co );
2225 v3_add( bo, kf_foot_r->co, kf_foot_r->co );
2226
2227 #if 0
2228 m3x3f c;
2229 q_m3x3( s->board_rotation, c );
2230 #endif
2231
2232 v4f qtotal;
2233
2234 v4f qtrickr, qyawr, qpitchr, qrollr;
2235 v3f eulerr;
2236
2237
2238
2239 v3_muls( s->board_trick_residuald, VG_TAUf, eulerr );
2240
2241 q_axis_angle( qyawr, (v3f){0.0f,1.0f,0.0f}, eulerr[0] * 0.5f );
2242 q_axis_angle( qpitchr, (v3f){1.0f,0.0f,0.0f}, eulerr[1] );
2243 q_axis_angle( qrollr, (v3f){0.0f,0.0f,1.0f}, eulerr[2] );
2244
2245 q_mul( qpitchr, qrollr, qtrickr );
2246 q_mul( qyawr, qtrickr, qtrickr );
2247 q_mul( s->board_rotation, qtrickr, qtotal );
2248 q_normalize( qtotal );
2249
2250 q_mul( qtotal, kf_board->q, kf_board->q );
2251
2252
2253 v3f d;
2254 v3_sub( kf_foot_l->co, bo, d );
2255 q_mulv( qtotal, d, d );
2256 v3_add( bo, d, kf_foot_l->co );
2257
2258 v3_sub( kf_foot_r->co, bo, d );
2259 q_mulv( qtotal, d, d );
2260 v3_add( bo, d, kf_foot_r->co );
2261
2262 q_mul( s->board_rotation, kf_board->q, kf_board->q );
2263 q_normalize( kf_board->q );
2264
2265
2266 /* trick rotation */
2267 v4f qtrick, qyaw, qpitch, qroll;
2268 v3f euler;
2269 v3_muls( s->state.trick_euler, VG_TAUf, euler );
2270
2271 q_axis_angle( qyaw, (v3f){0.0f,1.0f,0.0f}, euler[0] * 0.5f );
2272 q_axis_angle( qpitch, (v3f){1.0f,0.0f,0.0f}, euler[1] );
2273 q_axis_angle( qroll, (v3f){0.0f,0.0f,1.0f}, euler[2] );
2274
2275 q_mul( qpitch, qroll, qtrick );
2276 q_mul( qyaw, qtrick, qtrick );
2277 q_mul( kf_board->q, qtrick, kf_board->q );
2278 q_normalize( kf_board->q );
2279 }
2280
2281 /* transform */
2282 rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
2283 v3_muladds( dest->root_co, player->rb.to_world[1], -0.1f, dest->root_co );
2284
2285 float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
2286 #if 0
2287 v4f qresy, qresx, qresidual;
2288 m3x3f mtx_residual;
2289 q_axis_angle( qresy, player->rb.to_world[1], s->state.steery_s*substep );
2290 q_axis_angle( qresx, player->rb.to_world[0], s->state.steerx_s*substep );
2291
2292 q_mul( qresy, qresx, qresidual );
2293 q_normalize( qresidual );
2294 q_mul( dest->root_q, qresidual, dest->root_q );
2295 q_normalize( dest->root_q );
2296 #endif
2297
2298 v4f qflip;
2299 if( (s->state.activity == k_skate_activity_air) &&
2300 (fabsf(s->state.flip_rate) > 0.01f) )
2301 {
2302 float t = s->state.flip_time + s->state.flip_rate*substep*k_rb_delta,
2303 angle = vg_clampf( t, -1.0f, 1.0f ) * VG_TAUf,
2304 distm = s->land_dist * fabsf(s->state.flip_rate) * 3.0f,
2305 blend = vg_clampf( 1.0f-distm, 0.0f, 1.0f );
2306
2307 angle = vg_lerpf( angle, vg_signf(s->state.flip_rate) * VG_TAUf, blend );
2308
2309 q_axis_angle( qflip, s->state.flip_axis, angle );
2310 q_mul( qflip, dest->root_q, dest->root_q );
2311 q_normalize( dest->root_q );
2312
2313 v3f rotation_point, rco;
2314 v3_muladds( player->rb.co, player->rb.to_world[1], 0.5f, rotation_point );
2315 v3_sub( dest->root_co, rotation_point, rco );
2316
2317 q_mulv( qflip, rco, rco );
2318 v3_add( rco, rotation_point, dest->root_co );
2319 }
2320 }
2321
2322 VG_STATIC void player__skate_post_animate( player_instance *player )
2323 {
2324 struct player_skate *s = &player->_skate;
2325 struct player_avatar *av = player->playeravatar;
2326
2327 player->cam_velocity_influence = 1.0f;
2328 }
2329
2330 VG_STATIC void player__skate_reset_animator( player_instance *player )
2331 {
2332 struct player_skate *s = &player->_skate;
2333
2334 if( s->state.activity == k_skate_activity_air )
2335 s->blend_fly = 1.0f;
2336 else
2337 s->blend_fly = 0.0f;
2338
2339 s->blend_slide = 0.0f;
2340 s->blend_z = 0.0f;
2341 s->blend_x = 0.0f;
2342 s->blend_stand = 0.0f;
2343 s->blend_push = 0.0f;
2344 s->blend_jump = 0.0f;
2345 s->blend_airdir = 0.0f;
2346 }
2347
2348 VG_STATIC void player__skate_clear_mechanics( player_instance *player )
2349 {
2350 struct player_skate *s = &player->_skate;
2351 s->state.jump_charge = 0.0f;
2352 s->state.lift_frames = 0;
2353 s->state.flip_rate = 0.0f;
2354 #if 0
2355 s->state.steery = 0.0f;
2356 s->state.steerx = 0.0f;
2357 s->state.steery_s = 0.0f;
2358 s->state.steerx_s = 0.0f;
2359 #endif
2360 s->state.reverse = 0.0f;
2361 s->state.slip = 0.0f;
2362 v3_copy( player->rb.co, s->state.prev_pos );
2363
2364 m3x3_identity( s->state.velocity_bias );
2365 m3x3_identity( s->state.velocity_bias_pstep );
2366 v3_zero( s->state.throw_v );
2367 v3_zero( s->state.trick_vel );
2368 v3_zero( s->state.trick_euler );
2369 }
2370
2371 VG_STATIC void player__skate_reset( player_instance *player,
2372 struct respawn_point *rp )
2373 {
2374 struct player_skate *s = &player->_skate;
2375 v3_muladds( player->rb.co, player->rb.to_world[1], 1.0f, s->state.cog );
2376 v3_zero( player->rb.v );
2377 v3_zero( s->state.cog_v );
2378 v4_copy( rp->q, player->rb.q );
2379
2380 s->state.activity = k_skate_activity_air;
2381 s->state.activity_prev = k_skate_activity_air;
2382
2383 player__skate_clear_mechanics( player );
2384 player__skate_reset_animator( player );
2385 }
2386
2387 #endif /* PLAYER_SKATE_C */