i hope your hapy
[carveJwlIkooP6JGAAIwe30JlM.git] / player_skate.c
1 #ifndef PLAYER_SKATE_C
2 #define PLAYER_SKATE_C
3
4 #include "player.h"
5 #include "audio.h"
6
7 VG_STATIC void player__skate_bind( player_instance *player )
8 {
9 struct player_skate *s = &player->_skate;
10 struct player_avatar *av = player->playeravatar;
11 struct skeleton *sk = &av->sk;
12
13 rb_update_transform( &player->rb );
14 s->anim_stand = skeleton_get_anim( sk, "pose_stand" );
15 s->anim_highg = skeleton_get_anim( sk, "pose_highg" );
16 s->anim_air = skeleton_get_anim( sk, "pose_air" );
17 s->anim_slide = skeleton_get_anim( sk, "pose_slide" );
18 s->anim_push = skeleton_get_anim( sk, "push" );
19 s->anim_push_reverse = skeleton_get_anim( sk, "push_reverse" );
20 s->anim_ollie = skeleton_get_anim( sk, "ollie" );
21 s->anim_ollie_reverse = skeleton_get_anim( sk, "ollie_reverse" );
22 s->anim_grabs = skeleton_get_anim( sk, "grabs" );
23 }
24
25 /*
26 * Collision detection routines
27 *
28 *
29 */
30
31 /*
32 * Does collision detection on a sphere vs world, and applies some smoothing
33 * filters to the manifold afterwards
34 */
35 VG_STATIC int skate_collide_smooth( player_instance *player,
36 m4x3f mtx, rb_sphere *sphere,
37 rb_ct *man )
38 {
39 world_instance *world = get_active_world();
40
41 int len = 0;
42 len = rb_sphere__scene( mtx, sphere, NULL, &world->rb_geo.inf.scene, man );
43
44 for( int i=0; i<len; i++ )
45 {
46 man[i].rba = &player->rb;
47 man[i].rbb = NULL;
48 }
49
50 rb_manifold_filter_coplanar( man, len, 0.03f );
51
52 if( len > 1 )
53 {
54 rb_manifold_filter_backface( man, len );
55 rb_manifold_filter_joint_edges( man, len, 0.03f );
56 rb_manifold_filter_pairs( man, len, 0.03f );
57 }
58 int new_len = rb_manifold_apply_filtered( man, len );
59 if( len && !new_len )
60 len = 1;
61 else
62 len = new_len;
63
64 return len;
65 }
66
67 struct grind_info
68 {
69 v3f co, dir, n;
70 };
71
72 VG_STATIC int skate_grind_scansq( player_instance *player,
73 v3f pos, v3f dir, float r,
74 struct grind_info *inf )
75 {
76 world_instance *world = get_active_world();
77
78 v4f plane;
79 v3_copy( dir, plane );
80 v3_normalize( plane );
81 plane[3] = v3_dot( plane, pos );
82
83 boxf box;
84 v3_add( pos, (v3f){ r, r, r }, box[1] );
85 v3_sub( pos, (v3f){ r, r, r }, box[0] );
86
87 bh_iter it;
88 bh_iter_init( 0, &it );
89 int idx;
90
91 struct grind_sample
92 {
93 v2f co;
94 v2f normal;
95 v3f normal3,
96 centroid;
97 }
98 samples[48];
99 int sample_count = 0;
100
101 v2f support_min,
102 support_max;
103
104 v3f support_axis;
105 v3_cross( plane, player->basis[1], support_axis );
106 v3_normalize( support_axis );
107
108 while( bh_next( world->geo_bh, &it, box, &idx ) ){
109 u32 *ptri = &world->scene_geo->arrindices[ idx*3 ];
110 v3f tri[3];
111
112 struct world_surface *surf = world_tri_index_surface(world,ptri[0]);
113 if( !(surf->info.flags & k_material_flag_skate_surface) )
114 continue;
115
116 for( int j=0; j<3; j++ )
117 v3_copy( world->scene_geo->arrvertices[ptri[j]].co, tri[j] );
118
119 for( int j=0; j<3; j++ ){
120 int i0 = j,
121 i1 = (j+1) % 3;
122
123 struct grind_sample *sample = &samples[ sample_count ];
124 v3f co;
125
126 if( plane_segment( plane, tri[i0], tri[i1], co ) ){
127 v3f d;
128 v3_sub( co, pos, d );
129 if( v3_length2( d ) > r*r )
130 continue;
131
132 v3f va, vb, normal;
133 v3_sub( tri[1], tri[0], va );
134 v3_sub( tri[2], tri[0], vb );
135 v3_cross( va, vb, normal );
136
137 sample->normal[0] = v3_dot( support_axis, normal );
138 sample->normal[1] = v3_dot( player->basis[1], normal );
139 sample->co[0] = v3_dot( support_axis, d );
140 sample->co[1] = v3_dot( player->basis[1], d );
141
142 v3_copy( normal, sample->normal3 ); /* normalize later
143 if we want to us it */
144
145 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
146 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
147 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
148
149 v2_normalize( sample->normal );
150 sample_count ++;
151
152 if( sample_count == vg_list_size( samples ) )
153 goto too_many_samples;
154 }
155 }
156 }
157
158 too_many_samples:
159
160 if( sample_count < 2 )
161 return 0;
162
163 v3f
164 average_direction,
165 average_normal;
166
167 v2f min_co, max_co;
168 v2_fill( min_co, INFINITY );
169 v2_fill( max_co, -INFINITY );
170
171 v3_zero( average_direction );
172 v3_zero( average_normal );
173
174 int passed_samples = 0;
175
176 for( int i=0; i<sample_count-1; i++ ){
177 struct grind_sample *si, *sj;
178
179 si = &samples[i];
180
181 for( int j=i+1; j<sample_count; j++ ){
182 if( i == j )
183 continue;
184
185 sj = &samples[j];
186
187 /* non overlapping */
188 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
189 continue;
190
191 /* not sharp angle */
192 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
193 continue;
194
195 /* not convex */
196 v3f v0;
197 v3_sub( sj->centroid, si->centroid, v0 );
198 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
199 v3_dot( v0, sj->normal3 ) <= 0.0f )
200 continue;
201
202 v2_minv( sj->co, min_co, min_co );
203 v2_maxv( sj->co, max_co, max_co );
204
205 v3f n0, n1, dir;
206 v3_copy( si->normal3, n0 );
207 v3_copy( sj->normal3, n1 );
208 v3_cross( n0, n1, dir );
209 v3_normalize( dir );
210
211 /* make sure the directions all face a common hemisphere */
212 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
213 v3_add( average_direction, dir, average_direction );
214
215 float yi = v3_dot( player->basis[1], si->normal3 ),
216 yj = v3_dot( player->basis[1], sj->normal3 );
217
218 if( yi > yj )
219 v3_add( si->normal3, average_normal, average_normal );
220 else
221 v3_add( sj->normal3, average_normal, average_normal );
222
223 passed_samples ++;
224 }
225 }
226
227 if( !passed_samples )
228 return 0;
229
230 if( (v3_length2( average_direction ) <= 0.001f) ||
231 (v3_length2( average_normal ) <= 0.001f ) )
232 return 0;
233
234 float div = 1.0f/(float)passed_samples;
235 v3_normalize( average_direction );
236 v3_normalize( average_normal );
237
238 v2f average_coord;
239 v2_add( min_co, max_co, average_coord );
240 v2_muls( average_coord, 0.5f, average_coord );
241
242 v3_muls( support_axis, average_coord[0], inf->co );
243 inf->co[1] += average_coord[1];
244 v3_add( pos, inf->co, inf->co );
245 v3_copy( average_normal, inf->n );
246 v3_copy( average_direction, inf->dir );
247
248 vg_line_pt3( inf->co, 0.02f, VG__GREEN );
249 vg_line_arrow( inf->co, average_direction, 0.3f, VG__GREEN );
250 vg_line_arrow( inf->co, inf->n, 0.2f, VG__CYAN );
251
252 return passed_samples;
253 }
254
255 VG_STATIC int solve_prediction_for_target( player_instance *player,
256 v3f target, float max_angle,
257 struct land_prediction *p )
258 {
259 /* calculate the exact solution(s) to jump onto that grind spot */
260
261 v3f v0;
262 v3_sub( target, player->rb.co, v0 );
263 m3x3_mulv( player->invbasis, v0, v0 );
264
265 v3f ax;
266 v3_copy( v0, ax );
267 ax[1] = 0.0f;
268 v3_normalize( ax );
269
270 v3f v_local;
271 m3x3_mulv( player->invbasis, player->rb.v, v_local );
272
273 v2f d = { v3_dot( ax, v0 ), v0[1] },
274 v = { v3_dot( ax, player->rb.v ), v_local[1] };
275
276 float a = atan2f( v[1], v[0] ),
277 m = v2_length( v ),
278 root = m*m*m*m - p->gravity*(p->gravity*d[0]*d[0] + 2.0f*d[1]*m*m);
279
280 if( root > 0.0f )
281 {
282 root = sqrtf( root );
283 float a0 = atanf( (m*m + root) / (p->gravity * d[0]) ),
284 a1 = atanf( (m*m - root) / (p->gravity * d[0]) );
285
286 if( fabsf(a0-a) > fabsf(a1-a) )
287 a0 = a1;
288
289 if( fabsf(a0-a) > max_angle )
290 return 0;
291
292 /* TODO: sweep the path before chosing the smallest dist */
293
294 p->log_length = 0;
295 p->land_dist = 0.0f;
296 v3_zero( p->apex );
297 p->type = k_prediction_grind;
298
299 v3_muls( ax, cosf( a0 ) * m, p->v );
300 p->v[1] += sinf( a0 ) * m;
301 m3x3_mulv( player->basis, p->v, p->v );
302
303 p->land_dist = d[0] / (cosf(a0)*m);
304
305 /* add a trace */
306 for( int i=0; i<=20; i++ )
307 {
308 float t = (float)i * (1.0f/20.0f) * p->land_dist;
309
310 v3f p0;
311 v3_muls( p->v, t, p0 );
312 v3_muladds( p0, player->basis[1], -0.5f * p->gravity * t*t, p0 );
313
314 v3_add( player->rb.co, p0, p->log[ p->log_length ++ ] );
315 }
316
317 return 1;
318 }
319 else
320 return 0;
321 }
322
323 VG_STATIC
324 void player__approximate_best_trajectory( player_instance *player )
325 {
326 world_instance *world = get_active_world();
327
328 struct player_skate *s = &player->_skate;
329 float k_trace_delta = k_rb_delta * 10.0f;
330
331 s->state.air_start = vg.time;
332 v3_copy( player->rb.v, s->state.air_init_v );
333 v3_copy( player->rb.co, s->state.air_init_co );
334
335 s->prediction_count = 0;
336
337 v3f axis;
338 v3_cross( player->rb.v, player->rb.to_world[1], axis );
339 v3_normalize( axis );
340
341 /* at high slopes, Y component is low */
342 float upness = v3_dot( player->rb.to_world[1], player->basis[1] ),
343 angle_begin = -(1.0f-fabsf( upness )),
344 angle_end = 1.0f;
345
346 struct grind_info grind;
347 int grind_located = 0;
348
349 for( int m=0;m<=30; m++ )
350 {
351 struct land_prediction *p = &s->predictions[ s->prediction_count ++ ];
352
353 p->log_length = 0;
354 p->land_dist = 0.0f;
355 v3_zero( p->apex );
356 p->type = k_prediction_none;
357
358 v3f launch_co, launch_v, co0, co1;
359 v3_copy( player->rb.co, launch_co );
360 v3_copy( player->rb.v, launch_v );
361 v3_copy( launch_co, co0 );
362
363 float vt = (float)m * (1.0f/30.0f),
364 ang = vg_lerpf( angle_begin, angle_end, vt ) * 0.15f;
365
366 v4f qbias;
367 q_axis_angle( qbias, axis, ang );
368 q_mulv( qbias, launch_v, launch_v );
369
370 float yaw_sketch = 1.0f-fabsf(upness);
371
372 float yaw_bias = ((float)(m%3) - 1.0f) * 0.08f * yaw_sketch;
373 q_axis_angle( qbias, player->rb.to_world[1], yaw_bias );
374 q_mulv( qbias, launch_v, launch_v );
375
376
377 float gravity_bias = vg_lerpf( 0.85f, 1.4f, vt ),
378 gravity = k_gravity * gravity_bias;
379 p->gravity = gravity;
380
381 v3_copy( launch_v, p->v );
382
383 for( int i=1; i<=50; i++ )
384 {
385 float t = (float)i * k_trace_delta;
386
387 v3_muls( launch_v, t, co1 );
388 v3_muladds( co1, player->basis[1], -0.5f * gravity * t*t, co1 );
389 v3_add( launch_co, co1, co1 );
390
391 float launch_vy = v3_dot( launch_v,player->basis[1] );
392 if( !grind_located && (launch_vy - gravity*t < 0.0f) )
393 {
394 v3f closest;
395 if( bh_closest_point( world->geo_bh, co1, closest, 1.0f ) != -1 )
396 {
397 v3f ve;
398 v3_copy( launch_v, ve );
399 v3_muladds( ve, player->basis[1], -gravity * t, ve );
400
401 if( skate_grind_scansq( player, closest, ve, 0.5f, &grind ) )
402 {
403 /* check alignment */
404 v2f v0 = { v3_dot( ve, player->basis[0] ),
405 v3_dot( ve, player->basis[2] ) },
406 v1 = { v3_dot( grind.dir, player->basis[0] ),
407 v3_dot( grind.dir, player->basis[2] ) };
408
409 v2_normalize( v0 );
410 v2_normalize( v1 );
411
412 float a = v2_dot( v0, v1 );
413
414 if( a >= cosf( VG_PIf * 0.185f ) )
415 {
416 grind_located = 1;
417 }
418 }
419 }
420 }
421
422 float t1;
423 v3f n;
424
425 int idx = spherecast_world( world, co0, co1, k_board_radius, &t1, n );
426 if( idx != -1 )
427 {
428 v3f co;
429 v3_lerp( co0, co1, t1, co );
430 v3_copy( co, p->log[ p->log_length ++ ] );
431
432 v3_copy( n, p->n );
433 p->type = k_prediction_land;
434
435 v3f ve;
436 v3_copy( launch_v, ve );
437 v3_muladds( ve, player->basis[1], -gravity * t, ve );
438
439 struct grind_info replace_grind;
440 if( skate_grind_scansq( player, co, ve, 0.3f, &replace_grind ) )
441 {
442 v3_copy( replace_grind.n, p->n );
443 p->type = k_prediction_grind;
444 }
445
446 p->score = -v3_dot( ve, p->n );
447 p->land_dist = t + k_trace_delta * t1;
448
449 u32 vert_index = world->scene_geo->arrindices[ idx*3 ];
450 struct world_surface *surf =
451 world_tri_index_surface( world, vert_index );
452
453 /* Bias prediction towords ramps */
454 if( !(surf->info.flags & k_material_flag_skate_surface) )
455 p->score *= 10.0f;
456
457 break;
458 }
459
460 if( i % 3 == 0 )
461 v3_copy( co1, p->log[ p->log_length ++ ] );
462
463 v3_copy( co1, co0 );
464 }
465
466 if( p->type == k_prediction_none )
467 s->prediction_count --;
468 }
469
470 if( grind_located ){
471 /* calculate the exact solution(s) to jump onto that grind spot */
472 struct land_prediction *p = &s->predictions[ s->prediction_count ];
473 p->gravity = k_gravity;
474
475 if( solve_prediction_for_target( player, grind.co, 0.125f*VG_PIf, p ) ){
476 v3_copy( grind.n, p->n );
477
478 /* determine score */
479 v3f ve;
480 v3_copy( p->v, ve );
481 v3_muladds( ve, player->basis[1], -p->gravity * p->land_dist, ve );
482 p->score = -v3_dot( ve, grind.n ) * 0.85f;
483
484 s->prediction_count ++;
485 }
486 }
487
488
489 float score_min = INFINITY,
490 score_max = -INFINITY;
491
492 struct land_prediction *best = NULL;
493
494 for( int i=0; i<s->prediction_count; i ++ ){
495 struct land_prediction *p = &s->predictions[i];
496
497 if( p->score < score_min )
498 best = p;
499
500 score_min = vg_minf( score_min, p->score );
501 score_max = vg_maxf( score_max, p->score );
502 }
503
504 for( int i=0; i<s->prediction_count; i ++ ){
505 struct land_prediction *p = &s->predictions[i];
506 float s = p->score;
507
508 s -= score_min;
509 s /= (score_max-score_min);
510 s = 1.0f - s;
511
512 p->score = s;
513 p->colour = s * 255.0f;
514
515 if( p == best )
516 p->colour <<= 16;
517 else if( p->type == k_prediction_land )
518 p->colour <<= 8;
519
520 p->colour |= 0xff000000;
521 }
522
523 if( best ){
524 v3_copy( best->n, s->land_normal );
525 v3_copy( best->v, player->rb.v );
526 s->land_dist = best->land_dist;
527
528 v2f steer = { player->input_js1h->axis.value,
529 player->input_js1v->axis.value };
530 v2_normalize_clamp( steer );
531 s->state.gravity_bias = best->gravity;
532
533 if( (fabsf(steer[1]) > 0.5f) && (s->land_dist >= 1.5f) ){
534 s->state.flip_rate = (1.0f/s->land_dist) * vg_signf(steer[1]) *
535 s->state.reverse ;
536 s->state.flip_time = 0.0f;
537 v3_copy( player->rb.to_world[0], s->state.flip_axis );
538 }
539 else{
540 s->state.flip_rate = 0.0f;
541 v3_zero( s->state.flip_axis );
542 }
543 }
544 else{
545 v3_copy( player->basis[1], s->land_normal );
546 }
547 }
548
549 /*
550 *
551 * Varius physics models
552 * ------------------------------------------------
553 */
554
555 /*
556 * Air control, no real physics
557 */
558 VG_STATIC void skate_apply_air_model( player_instance *player )
559 {
560 struct player_skate *s = &player->_skate;
561
562 if( s->state.activity_prev != k_skate_activity_air )
563 player__approximate_best_trajectory( player );
564
565 float angle = v3_dot( player->rb.to_world[1], s->land_normal );
566 angle = vg_clampf( angle, -1.0f, 1.0f );
567 v3f axis;
568 v3_cross( player->rb.to_world[1], s->land_normal, axis );
569
570 v4f correction;
571 q_axis_angle( correction, axis,
572 acosf(angle)*2.0f*VG_TIMESTEP_FIXED );
573 q_mul( correction, player->rb.q, player->rb.q );
574
575 v2f steer = { player->input_js1h->axis.value,
576 player->input_js1v->axis.value };
577 v2_normalize_clamp( steer );
578 }
579
580 VG_STATIC int player_skate_trick_input( player_instance *player );
581 VG_STATIC void skate_apply_trick_model( player_instance *player )
582 {
583 struct player_skate *s = &player->_skate;
584
585 v3f Fd, Fs, F;
586 v3f strength = { 3.7f, 3.6f, 8.0f };
587
588 v3_muls( s->board_trick_residualv, -4.0f , Fd );
589 v3_muls( s->board_trick_residuald, -10.0f, Fs );
590 v3_add( Fd, Fs, F );
591 v3_mul( strength, F, F );
592
593 v3_muladds( s->board_trick_residualv, F, k_rb_delta,
594 s->board_trick_residualv );
595 v3_muladds( s->board_trick_residuald, s->board_trick_residualv,
596 k_rb_delta, s->board_trick_residuald );
597
598 if( s->state.activity == k_skate_activity_air ){
599 if( v3_length2( s->state.trick_vel ) < 0.0001f )
600 return;
601
602 int carry_on = player_skate_trick_input( player );
603
604 /* we assume velocities share a common divisor, in which case the
605 * interval is the minimum value (if not zero) */
606
607 float min_rate = 99999.0f;
608
609 for( int i=0; i<3; i++ ){
610 float v = s->state.trick_vel[i];
611 if( (v > 0.0f) && (v < min_rate) )
612 min_rate = v;
613 }
614
615 float interval = 1.0f / min_rate,
616 current = floorf( s->state.trick_time / interval ),
617 next_end = (current+1.0f) * interval;
618
619
620 /* integrate trick velocities */
621 v3_muladds( s->state.trick_euler, s->state.trick_vel, k_rb_delta,
622 s->state.trick_euler );
623
624 if( !carry_on && (s->state.trick_time + k_rb_delta >= next_end) ){
625 s->state.trick_time = 0.0f;
626 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
627 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
628 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
629 v3_copy( s->state.trick_vel, s->board_trick_residualv );
630 v3_zero( s->state.trick_vel );
631 }
632
633 s->state.trick_time += k_rb_delta;
634 }
635 else{
636 if( (v3_length2(s->state.trick_vel) >= 0.0001f ) &&
637 s->state.trick_time > 0.2f)
638 {
639 player__dead_transition( player );
640 }
641
642 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
643 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
644 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
645 s->state.trick_time = 0.0f;
646 v3_zero( s->state.trick_vel );
647 }
648 }
649
650 VG_STATIC void skate_apply_grab_model( player_instance *player )
651 {
652 struct player_skate *s = &player->_skate;
653
654 float grabt = player->input_grab->axis.value;
655
656 if( grabt > 0.5f ){
657 v2_muladds( s->state.grab_mouse_delta, vg.mouse_delta, 0.02f,
658 s->state.grab_mouse_delta );
659
660 v2_normalize_clamp( s->state.grab_mouse_delta );
661 }
662 else
663 v2_zero( s->state.grab_mouse_delta );
664
665 s->state.grabbing = vg_lerpf( s->state.grabbing, grabt, 8.4f*k_rb_delta );
666 }
667
668 VG_STATIC void skate_apply_steering_model( player_instance *player )
669 {
670 struct player_skate *s = &player->_skate;
671
672 /* Steering */
673 float steer = player->input_js1h->axis.value,
674 grab = player->input_grab->axis.value;
675
676 steer = vg_signf( steer ) * steer*steer * k_steer_ground;
677
678 v3f steer_axis;
679 v3_muls( player->rb.to_world[1], -vg_signf( steer ), steer_axis );
680
681 float rate = 26.0f,
682 top = 1.0f;
683
684 if( s->state.activity == k_skate_activity_air ){
685 rate = 6.0f * fabsf(steer);
686 top = 1.5f;
687 }
688 else{
689 /* rotate slower when grabbing on ground */
690 steer *= (1.0f-(s->state.jump_charge+grab)*0.4f);
691
692 if( s->state.activity == k_skate_activity_grind_5050 ){
693 rate = 0.0f;
694 top = 0.0f;
695 }
696
697 else if( s->state.activity >= k_skate_activity_grind_any ){
698 rate *= fabsf(steer);
699
700 float a = 0.8f * -steer * k_rb_delta;
701
702 v4f q;
703 q_axis_angle( q, player->rb.to_world[1], a );
704 q_mulv( q, s->grind_vec, s->grind_vec );
705
706 v3_normalize( s->grind_vec );
707 }
708
709 else if( s->state.manual_direction ){
710 rate = 35.0f;
711 top = 1.5f;
712 }
713 }
714
715 float current = v3_dot( player->rb.to_world[1], player->rb.w ),
716 addspeed = (steer * -top) - current,
717 maxaccel = rate * k_rb_delta,
718 accel = vg_clampf( addspeed, -maxaccel, maxaccel );
719
720 v3_muladds( player->rb.w, player->rb.to_world[1], accel, player->rb.w );
721 }
722
723 /*
724 * Computes friction and surface interface model
725 */
726 VG_STATIC void skate_apply_friction_model( player_instance *player )
727 {
728 struct player_skate *s = &player->_skate;
729
730 /*
731 * Computing localized friction forces for controlling the character
732 * Friction across X is significantly more than Z
733 */
734
735 v3f vel;
736 m3x3_mulv( player->rb.to_local, player->rb.v, vel );
737 float slip = 0.0f;
738
739 if( fabsf(vel[2]) > 0.01f )
740 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
741
742 if( fabsf( slip ) > 1.2f )
743 slip = vg_signf( slip ) * 1.2f;
744
745 s->state.slip = slip;
746 s->state.reverse = -vg_signf(vel[2]);
747
748 vel[0] += vg_cfrictf( vel[0], k_friction_lat * k_rb_delta );
749 vel[2] += vg_cfrictf( vel[2], k_friction_resistance * k_rb_delta );
750
751 /* Pushing additive force */
752
753 if( !player->input_jump->button.value ){
754 if( player->input_push->button.value ||
755 (vg.time-s->state.start_push<0.75) )
756 {
757 if( (vg.time - s->state.cur_push) > 0.25 )
758 s->state.start_push = vg.time;
759
760 s->state.cur_push = vg.time;
761
762 double push_time = vg.time - s->state.start_push;
763
764 float cycle_time = push_time*k_push_cycle_rate,
765 accel = k_push_accel * (sinf(cycle_time)*0.5f+0.5f),
766 amt = accel * VG_TIMESTEP_FIXED,
767 current = v3_length( vel ),
768 new_vel = vg_minf( current + amt, k_max_push_speed ),
769 delta = new_vel - vg_minf( current, k_max_push_speed );
770
771 vel[2] += delta * -s->state.reverse;
772 }
773 }
774
775 /* Send back to velocity */
776 m3x3_mulv( player->rb.to_world, vel, player->rb.v );
777 }
778
779 VG_STATIC void skate_apply_jump_model( player_instance *player )
780 {
781 struct player_skate *s = &player->_skate;
782 int charging_jump_prev = s->state.charging_jump;
783 s->state.charging_jump = player->input_jump->button.value;
784
785 /* Cannot charge this in air */
786 if( s->state.activity == k_skate_activity_air ){
787 s->state.charging_jump = 0;
788 return;
789 }
790
791 if( s->state.charging_jump ){
792 s->state.jump_charge += k_rb_delta * k_jump_charge_speed;
793
794 if( !charging_jump_prev )
795 s->state.jump_dir = s->state.reverse>0.0f? 1: 0;
796 }
797 else{
798 s->state.jump_charge -= k_jump_charge_speed * k_rb_delta;
799 }
800
801 s->state.jump_charge = vg_clampf( s->state.jump_charge, 0.0f, 1.0f );
802
803 /* player let go after charging past 0.2: trigger jump */
804 if( (!s->state.charging_jump) && (s->state.jump_charge > 0.2f) ){
805 v3f jumpdir;
806
807 /* Launch more up if alignment is up else improve velocity */
808 float aup = v3_dot( player->basis[1], player->rb.to_world[1] ),
809 mod = 0.5f,
810 dir = mod + fabsf(aup)*(1.0f-mod);
811
812 v3_copy( player->rb.v, jumpdir );
813 v3_normalize( jumpdir );
814 v3_muls( jumpdir, 1.0f-dir, jumpdir );
815 v3_muladds( jumpdir, player->rb.to_world[1], dir, jumpdir );
816 v3_normalize( jumpdir );
817
818 float force = k_jump_force*s->state.jump_charge;
819 v3_muladds( player->rb.v, jumpdir, force, player->rb.v );
820 s->state.jump_charge = 0.0f;
821 s->state.jump_time = vg.time;
822 s->state.activity = k_skate_activity_air;
823
824 v2f steer = { player->input_js1h->axis.value,
825 player->input_js1v->axis.value };
826 v2_normalize_clamp( steer );
827 skate_apply_air_model( player );
828
829 #if 0
830 float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
831 s->state.steery_s = -steer[0] * maxspin;
832 s->state.steerx = s->state.steerx_s;
833 s->state.lift_frames ++;
834 #endif
835
836 audio_lock();
837 audio_oneshot_3d( &audio_jumps[rand()%2], player->rb.co, 40.0f, 1.0f );
838 audio_unlock();
839 }
840 }
841
842 VG_STATIC void skate_apply_pump_model( player_instance *player )
843 {
844 struct player_skate *s = &player->_skate;
845
846 if( s->state.activity != k_skate_activity_ground ){
847 v3_zero( s->state.throw_v );
848 return;
849 }
850
851 /* Throw / collect routine
852 *
853 * TODO: Max speed boost
854 */
855 if( player->input_grab->axis.value > 0.5f ){
856 if( s->state.activity == k_skate_activity_ground ){
857 /* Throw */
858 v3_muls( player->rb.to_world[1], k_mmthrow_scale, s->state.throw_v );
859 }
860 }
861 else{
862 /* Collect */
863 float doty = v3_dot( player->rb.to_world[1], s->state.throw_v );
864
865 v3f Fl, Fv;
866 v3_muladds( s->state.throw_v, player->rb.to_world[1], -doty, Fl);
867
868 if( s->state.activity == k_skate_activity_ground ){
869 v3_muladds( player->rb.v, Fl, k_mmcollect_lat, player->rb.v );
870 v3_muladds( s->state.throw_v, Fl, -k_mmcollect_lat, s->state.throw_v );
871 }
872
873 v3_muls( player->rb.to_world[1], -doty, Fv );
874 v3_muladds( player->rb.v, Fv, k_mmcollect_vert, player->rb.v );
875 v3_muladds( s->state.throw_v, Fv, k_mmcollect_vert, s->state.throw_v );
876 }
877
878 /* Decay */
879 if( v3_length2( s->state.throw_v ) > 0.0001f ){
880 v3f dir;
881 v3_copy( s->state.throw_v, dir );
882 v3_normalize( dir );
883
884 float max = v3_dot( dir, s->state.throw_v ),
885 amt = vg_minf( k_mmdecay * k_rb_delta, max );
886 v3_muladds( s->state.throw_v, dir, -amt, s->state.throw_v );
887 }
888 }
889
890 VG_STATIC void skate_apply_cog_model( player_instance *player )
891 {
892 struct player_skate *s = &player->_skate;
893
894 v3f ideal_cog, ideal_diff, ideal_dir;
895 v3_copy( s->state.up_dir, ideal_dir );
896 v3_normalize( ideal_dir );
897
898 v3_muladds( player->rb.co, ideal_dir,
899 1.0f-player->input_grab->axis.value, ideal_cog );
900 v3_sub( ideal_cog, s->state.cog, ideal_diff );
901
902 /* Apply velocities */
903 v3f rv;
904 v3_sub( player->rb.v, s->state.cog_v, rv );
905
906 v3f F;
907 v3_muls( ideal_diff, -k_cog_spring * k_rb_rate, F );
908 v3_muladds( F, rv, -k_cog_damp * k_rb_rate, F );
909
910 float ra = k_cog_mass_ratio,
911 rb = 1.0f-k_cog_mass_ratio;
912
913 /* Apply forces & intergrate */
914 v3_muladds( s->state.cog_v, F, -rb, s->state.cog_v );
915 v3_muladds( s->state.cog_v, player->basis[1], -9.8f * k_rb_delta,
916 s->state.cog_v );
917
918 v3_muladds( s->state.cog, s->state.cog_v, k_rb_delta, s->state.cog );
919 }
920
921
922 VG_STATIC void skate_integrate( player_instance *player )
923 {
924 struct player_skate *s = &player->_skate;
925
926 float decay_rate = 1.0f - (k_rb_delta * 3.0f),
927 decay_rate_y = 1.0f;
928
929 if( s->state.activity >= k_skate_activity_grind_any ){
930 decay_rate = 1.0f-vg_lerpf( 3.0f, 20.0f, s->grind_strength ) * k_rb_delta;
931 decay_rate_y = decay_rate;
932 }
933
934 float wx = v3_dot( player->rb.w, player->rb.to_world[0] ) * decay_rate,
935 wy = v3_dot( player->rb.w, player->rb.to_world[1] ) * decay_rate_y,
936 wz = v3_dot( player->rb.w, player->rb.to_world[2] ) * decay_rate;
937
938 v3_muls( player->rb.to_world[0], wx, player->rb.w );
939 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
940 v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
941
942 s->state.flip_time += s->state.flip_rate * k_rb_delta;
943 rb_update_transform( &player->rb );
944 }
945
946 /*
947 * 1 2 or 3
948 */
949
950 VG_STATIC int player_skate_trick_input( player_instance *player )
951 {
952 return (player->input_trick0->button.value) |
953 (player->input_trick1->button.value << 1) |
954 (player->input_trick2->button.value << 1) |
955 (player->input_trick2->button.value);
956 }
957
958 VG_STATIC void player__skate_pre_update( player_instance *player )
959 {
960 struct player_skate *s = &player->_skate;
961
962 if( vg_input_button_down( player->input_use ) ){
963 player->subsystem = k_player_subsystem_walk;
964
965 v3f angles;
966 v3_copy( player->cam.angles, angles );
967 angles[2] = 0.0f;
968
969 player->holdout_time = 0.25f;
970 player__walk_transition( player, angles );
971 return;
972 }
973
974 if( vg_input_button_down( player->input_reset ) ){
975 player->rb.co[1] += 2.0f;
976 s->state.cog[1] += 2.0f;
977 q_axis_angle( player->rb.q, (v3f){1.0f,0.0f,0.0f}, VG_PIf * 0.25f );
978 v3_zero( player->rb.w );
979 v3_zero( player->rb.v );
980
981 rb_update_transform( &player->rb );
982 }
983
984 int trick_id;
985 if( (s->state.activity == k_skate_activity_air) &&
986 (trick_id = player_skate_trick_input( player )) )
987 {
988 if( (vg.time - s->state.jump_time) < 0.1f ){
989 v3_zero( s->state.trick_vel );
990 s->state.trick_time = 0.0f;
991
992 if( trick_id == 1 ){
993 s->state.trick_vel[0] = 3.0f;
994 }
995 else if( trick_id == 2 ){
996 s->state.trick_vel[2] = 3.0f;
997 }
998 else if( trick_id == 3 ){
999 s->state.trick_vel[0] = 2.0f;
1000 s->state.trick_vel[2] = 2.0f;
1001 }
1002 }
1003 }
1004 }
1005
1006 VG_STATIC void player__skate_post_update( player_instance *player )
1007 {
1008 struct player_skate *s = &player->_skate;
1009
1010 for( int i=0; i<s->prediction_count; i++ )
1011 {
1012 struct land_prediction *p = &s->predictions[i];
1013
1014 for( int j=0; j<p->log_length - 1; j ++ )
1015 {
1016 float brightness = p->score*p->score*p->score;
1017 v3f p1;
1018 v3_lerp( p->log[j], p->log[j+1], brightness, p1 );
1019 vg_line( p->log[j], p1, p->colour );
1020 }
1021
1022 vg_line_cross( p->log[p->log_length-1], p->colour, 0.25f );
1023
1024 v3f p1;
1025 v3_add( p->log[p->log_length-1], p->n, p1 );
1026 vg_line( p->log[p->log_length-1], p1, 0xffffffff );
1027
1028 vg_line_pt3( p->apex, 0.02f, 0xffffffff );
1029 }
1030
1031 #if 0
1032 vg_line_pt3( s->state.apex, 0.030f, 0xff0000ff );
1033 #endif
1034
1035 audio_lock();
1036
1037 float air = s->state.activity == k_skate_activity_air? 1.0f: 0.0f,
1038 speed = v3_length( player->rb.v ),
1039 attn = vg_minf( 1.0f, speed*0.1f ),
1040 slide = vg_clampf( fabsf(s->state.slip), 0.0f, 1.0f ),
1041
1042 vol_main = sqrtf( (1.0f-air)*attn*(1.0f-slide) * 0.4f ),
1043 vol_air = sqrtf( air *attn * 0.5f ),
1044 vol_slide = sqrtf( (1.0f-air)*attn*slide * 0.25f );
1045
1046 const u32 flags = AUDIO_FLAG_SPACIAL_3D|AUDIO_FLAG_LOOP;
1047 if( !s->aud_main )
1048 s->aud_main = audio_request_channel( &audio_board[0], flags );
1049
1050 if( !s->aud_air )
1051 s->aud_air = audio_request_channel( &audio_board[1], flags );
1052
1053 if( !s->aud_slide )
1054 s->aud_slide = audio_request_channel( &audio_board[2], flags );
1055
1056
1057 /* brrrrrrrrrrrt sound for tiles and stuff
1058 * --------------------------------------------------------*/
1059 float sidechain_amt = 0.0f,
1060 hz = speed * 2.0f;
1061
1062 if( s->surface == k_surface_prop_tiles )
1063 sidechain_amt = 1.0f;
1064 else
1065 sidechain_amt = 0.0f;
1066
1067 audio_set_lfo_frequency( 0, hz );
1068 audio_set_lfo_wave( 0, k_lfo_polynomial_bipolar,
1069 vg_lerpf( 250.0f, 80.0f, attn ) );
1070
1071 if( s->aud_main ){
1072 s->aud_main->colour = 0x00103efe;
1073 audio_channel_set_spacial( s->aud_main, player->rb.co, 40.0f );
1074 audio_channel_slope_volume( s->aud_main, 0.05f, vol_main );
1075 audio_channel_sidechain_lfo( s->aud_main, 0, sidechain_amt );
1076
1077 float rate = 1.0f + (attn-0.5f)*0.2f;
1078 audio_channel_set_sampling_rate( s->aud_main, rate );
1079 }
1080
1081 if( s->aud_slide ){
1082 s->aud_slide->colour = 0x00103efe;
1083 audio_channel_set_spacial( s->aud_slide, player->rb.co, 40.0f );
1084 audio_channel_slope_volume( s->aud_slide, 0.05f, vol_slide );
1085 audio_channel_sidechain_lfo( s->aud_slide, 0, sidechain_amt );
1086 }
1087
1088 if( s->aud_air ){
1089 s->aud_air->colour = 0x00103efe;
1090 audio_channel_set_spacial( s->aud_air, player->rb.co, 40.0f );
1091 audio_channel_slope_volume( s->aud_air, 0.05f, vol_air );
1092 }
1093
1094 audio_unlock();
1095 }
1096
1097 /*
1098 * truck alignment model at ra(local)
1099 * returns 1 if valid surface:
1100 * surface_normal will be filled out with an averaged normal vector
1101 * axel_dir will be the direction from left to right wheels
1102 *
1103 * returns 0 if no good surface found
1104 */
1105 VG_STATIC
1106 int skate_compute_surface_alignment( player_instance *player,
1107 v3f ra, u32 colour,
1108 v3f surface_normal, v3f axel_dir )
1109 {
1110 struct player_skate *s = &player->_skate;
1111 world_instance *world = get_active_world();
1112
1113 v3f truck, left, right;
1114 m4x3_mulv( player->rb.to_world, ra, truck );
1115
1116 v3_muladds( truck, player->rb.to_world[0], -k_board_width, left );
1117 v3_muladds( truck, player->rb.to_world[0], k_board_width, right );
1118 vg_line( left, right, colour );
1119
1120 float k_max_truck_flex = VG_PIf * 0.25f;
1121
1122 ray_hit ray_l, ray_r;
1123
1124 v3f dir;
1125 v3_muls( player->rb.to_world[1], -1.0f, dir );
1126
1127 int res_l = 0, res_r = 0;
1128
1129 for( int i=0; i<8; i++ )
1130 {
1131 float t = 1.0f - (float)i * (1.0f/8.0f);
1132 v3_muladds( truck, player->rb.to_world[0], -k_board_radius*t, left );
1133 v3_muladds( left, player->rb.to_world[1], k_board_radius, left );
1134 ray_l.dist = 2.1f * k_board_radius;
1135
1136 res_l = ray_world( world, left, dir, &ray_l );
1137
1138 if( res_l )
1139 break;
1140 }
1141
1142 for( int i=0; i<8; i++ )
1143 {
1144 float t = 1.0f - (float)i * (1.0f/8.0f);
1145 v3_muladds( truck, player->rb.to_world[0], k_board_radius*t, right );
1146 v3_muladds( right, player->rb.to_world[1], k_board_radius, right );
1147 ray_r.dist = 2.1f * k_board_radius;
1148
1149 res_r = ray_world( world, right, dir, &ray_r );
1150
1151 if( res_r )
1152 break;
1153 }
1154
1155 v3f v0;
1156 v3f midpoint;
1157 v3f tangent_average;
1158 v3_muladds( truck, player->rb.to_world[1], -k_board_radius, midpoint );
1159 v3_zero( tangent_average );
1160
1161 if( res_l || res_r )
1162 {
1163 v3f p0, p1, t;
1164 v3_copy( midpoint, p0 );
1165 v3_copy( midpoint, p1 );
1166
1167 if( res_l )
1168 {
1169 v3_copy( ray_l.pos, p0 );
1170 v3_cross( ray_l.normal, player->rb.to_world[0], t );
1171 v3_add( t, tangent_average, tangent_average );
1172 }
1173 if( res_r )
1174 {
1175 v3_copy( ray_r.pos, p1 );
1176 v3_cross( ray_r.normal, player->rb.to_world[0], t );
1177 v3_add( t, tangent_average, tangent_average );
1178 }
1179
1180 v3_sub( p1, p0, v0 );
1181 v3_normalize( v0 );
1182 }
1183 else
1184 {
1185 /* fallback: use the closes point to the trucks */
1186 v3f closest;
1187 int idx = bh_closest_point( world->geo_bh, midpoint, closest, 0.1f );
1188
1189 if( idx != -1 )
1190 {
1191 u32 *tri = &world->scene_geo->arrindices[ idx * 3 ];
1192 v3f verts[3];
1193
1194 for( int j=0; j<3; j++ )
1195 v3_copy( world->scene_geo->arrvertices[ tri[j] ].co, verts[j] );
1196
1197 v3f vert0, vert1, n;
1198 v3_sub( verts[1], verts[0], vert0 );
1199 v3_sub( verts[2], verts[0], vert1 );
1200 v3_cross( vert0, vert1, n );
1201 v3_normalize( n );
1202
1203 if( v3_dot( n, player->rb.to_world[1] ) < 0.3f )
1204 return 0;
1205
1206 v3_cross( n, player->rb.to_world[2], v0 );
1207 v3_muladds( v0, player->rb.to_world[2],
1208 -v3_dot( player->rb.to_world[2], v0 ), v0 );
1209 v3_normalize( v0 );
1210
1211 v3f t;
1212 v3_cross( n, player->rb.to_world[0], t );
1213 v3_add( t, tangent_average, tangent_average );
1214 }
1215 else
1216 return 0;
1217 }
1218
1219 v3_muladds( truck, v0, k_board_width, right );
1220 v3_muladds( truck, v0, -k_board_width, left );
1221
1222 vg_line( left, right, VG__WHITE );
1223
1224 v3_normalize( tangent_average );
1225 v3_cross( v0, tangent_average, surface_normal );
1226 v3_copy( v0, axel_dir );
1227
1228 return 1;
1229 }
1230
1231 VG_STATIC void skate_weight_distribute( player_instance *player )
1232 {
1233 struct player_skate *s = &player->_skate;
1234 v3_zero( s->weight_distribution );
1235
1236 int reverse_dir = v3_dot( player->rb.to_world[2], player->rb.v ) < 0.0f?1:-1;
1237
1238 if( s->state.manual_direction == 0 )
1239 {
1240 if( (player->input_js1v->axis.value > 0.7f) &&
1241 (s->state.activity == k_skate_activity_ground) &&
1242 (s->state.jump_charge <= 0.01f) )
1243 s->state.manual_direction = reverse_dir;
1244 }
1245 else
1246 {
1247 if( player->input_js1v->axis.value < 0.1f )
1248 {
1249 s->state.manual_direction = 0;
1250 }
1251 else
1252 {
1253 if( reverse_dir != s->state.manual_direction )
1254 {
1255 return;
1256 }
1257 }
1258 }
1259
1260 if( s->state.manual_direction )
1261 {
1262 float amt = vg_minf( player->input_js1v->axis.value * 8.0f, 1.0f );
1263 s->weight_distribution[2] = k_board_length * amt *
1264 (float)s->state.manual_direction;
1265 }
1266
1267 /* TODO: Fall back on land normal */
1268 /* TODO: Lerp weight distribution */
1269 if( s->state.manual_direction )
1270 {
1271 v3f plane_z;
1272
1273 m3x3_mulv( player->rb.to_world, s->weight_distribution, plane_z );
1274 v3_negate( plane_z, plane_z );
1275
1276 v3_muladds( plane_z, s->surface_picture,
1277 -v3_dot( plane_z, s->surface_picture ), plane_z );
1278 v3_normalize( plane_z );
1279
1280 v3_muladds( plane_z, s->surface_picture, 0.3f, plane_z );
1281 v3_normalize( plane_z );
1282
1283 v3f p1;
1284 v3_muladds( player->rb.co, plane_z, 1.5f, p1 );
1285 vg_line( player->rb.co, p1, VG__GREEN );
1286
1287 v3f refdir;
1288 v3_muls( player->rb.to_world[2], -(float)s->state.manual_direction,
1289 refdir );
1290
1291 rb_effect_spring_target_vector( &player->rb, refdir, plane_z,
1292 k_manul_spring, k_manul_dampener,
1293 s->substep_delta );
1294 }
1295 }
1296
1297 VG_STATIC void skate_adjust_up_direction( player_instance *player )
1298 {
1299 struct player_skate *s = &player->_skate;
1300
1301 if( s->state.activity == k_skate_activity_ground )
1302 {
1303 v3f target;
1304 v3_copy( s->surface_picture, target );
1305
1306 target[1] += 2.0f * s->surface_picture[1];
1307 v3_normalize( target );
1308
1309 v3_lerp( s->state.up_dir, target,
1310 8.0f * s->substep_delta, s->state.up_dir );
1311 }
1312 else if( s->state.activity == k_skate_activity_air )
1313 {
1314 v3_lerp( s->state.up_dir, player->rb.to_world[1],
1315 8.0f * s->substep_delta, s->state.up_dir );
1316 }
1317 else
1318 {
1319 v3_lerp( s->state.up_dir, player->basis[1],
1320 12.0f * s->substep_delta, s->state.up_dir );
1321 }
1322 }
1323
1324 VG_STATIC int skate_point_visible( v3f origin, v3f target )
1325 {
1326 v3f dir;
1327 v3_sub( target, origin, dir );
1328
1329 ray_hit ray;
1330 ray.dist = v3_length( dir );
1331 v3_muls( dir, 1.0f/ray.dist, dir );
1332 ray.dist -= 0.025f;
1333
1334 if( ray_world( get_active_world(), origin, dir, &ray ) )
1335 return 0;
1336
1337 return 1;
1338 }
1339
1340 VG_STATIC void skate_grind_orient( struct grind_info *inf, m3x3f mtx )
1341 {
1342 /* TODO: Is N and Dir really orthogonal? */
1343 v3_copy( inf->dir, mtx[0] );
1344 v3_copy( inf->n, mtx[1] );
1345 v3_cross( mtx[0], mtx[1], mtx[2] );
1346 }
1347
1348 VG_STATIC void skate_grind_friction( player_instance *player,
1349 struct grind_info *inf, float strength )
1350 {
1351 v3f v2;
1352 v3_muladds( player->rb.to_world[2], inf->n,
1353 -v3_dot( player->rb.to_world[2], inf->n ), v2 );
1354
1355 float a = 1.0f-fabsf( v3_dot( v2, inf->dir ) ),
1356 dir = vg_signf( v3_dot( player->rb.v, inf->dir ) ),
1357 F = a * -dir * k_grind_max_friction;
1358
1359 v3_muladds( player->rb.v, inf->dir, F*k_rb_delta*strength, player->rb.v );
1360 }
1361
1362 VG_STATIC void skate_grind_decay( player_instance *player,
1363 struct grind_info *inf, float strength )
1364 {
1365 m3x3f mtx, mtx_inv;
1366 skate_grind_orient( inf, mtx );
1367 m3x3_transpose( mtx, mtx_inv );
1368
1369 v3f v_grind;
1370 m3x3_mulv( mtx_inv, player->rb.v, v_grind );
1371
1372 float decay = 1.0f - ( k_rb_delta * k_grind_decayxy * strength );
1373 v3_mul( v_grind, (v3f){ 1.0f, decay, decay }, v_grind );
1374 m3x3_mulv( mtx, v_grind, player->rb.v );
1375 }
1376
1377 VG_STATIC void skate_grind_truck_apply( player_instance *player,
1378 float sign, struct grind_info *inf,
1379 float strength )
1380 {
1381 struct player_skate *s = &player->_skate;
1382
1383 /* TODO: Trash compactor this */
1384 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1385 v3f raw, wsp;
1386 m3x3_mulv( player->rb.to_world, ra, raw );
1387 v3_add( player->rb.co, raw, wsp );
1388
1389 v3_copy( ra, s->weight_distribution );
1390
1391 v3f delta;
1392 v3_sub( inf->co, wsp, delta );
1393
1394 /* spring force */
1395 v3_muladds( player->rb.v, delta, k_spring_force*strength*k_rb_delta,
1396 player->rb.v );
1397
1398 skate_grind_decay( player, inf, strength );
1399 skate_grind_friction( player, inf, strength );
1400
1401 /* yeah yeah yeah yeah */
1402 v3f raw_nplane, axis;
1403 v3_muladds( raw, inf->n, -v3_dot( inf->n, raw ), raw_nplane );
1404 v3_cross( raw_nplane, inf->n, axis );
1405 v3_normalize( axis );
1406
1407 /* orientation */
1408 m3x3f mtx;
1409 skate_grind_orient( inf, mtx );
1410 v3f target_fwd, fwd, up, target_up;
1411 m3x3_mulv( mtx, s->grind_vec, target_fwd );
1412 v3_copy( raw_nplane, fwd );
1413 v3_copy( player->rb.to_world[1], up );
1414 v3_copy( inf->n, target_up );
1415
1416 v3_muladds( target_fwd, inf->n, -v3_dot(inf->n,target_fwd), target_fwd );
1417 v3_muladds( fwd, inf->n, -v3_dot(inf->n,fwd), fwd );
1418
1419 v3_normalize( target_fwd );
1420 v3_normalize( fwd );
1421
1422
1423 float way = player->input_js1v->axis.value *
1424 vg_signf( v3_dot( raw_nplane, player->rb.v ) );
1425
1426 v4f q;
1427 q_axis_angle( q, axis, VG_PIf*0.125f * way );
1428 q_mulv( q, target_up, target_up );
1429 q_mulv( q, target_fwd, target_fwd );
1430
1431 rb_effect_spring_target_vector( &player->rb, up, target_up,
1432 k_grind_spring,
1433 k_grind_dampener,
1434 k_rb_delta );
1435
1436 rb_effect_spring_target_vector( &player->rb, fwd, target_fwd,
1437 k_grind_spring*strength,
1438 k_grind_dampener*strength,
1439 k_rb_delta );
1440
1441 vg_line_arrow( player->rb.co, target_up, 1.0f, VG__GREEN );
1442 vg_line_arrow( player->rb.co, fwd, 0.8f, VG__RED );
1443 vg_line_arrow( player->rb.co, target_fwd, 1.0f, VG__YELOW );
1444
1445 s->grind_strength = strength;
1446
1447 /* Fake contact */
1448 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1449 m4x3_mulv( player->rb.to_local, wsp, limit->ra );
1450 m3x3_mulv( player->rb.to_local, inf->n, limit->n );
1451 limit->p = 0.0f;
1452
1453 v3_copy( inf->dir, s->grind_dir );
1454 }
1455
1456 VG_STATIC void skate_5050_apply( player_instance *player,
1457 struct grind_info *inf_front,
1458 struct grind_info *inf_back )
1459 {
1460 struct player_skate *s = &player->_skate;
1461 struct grind_info inf_avg;
1462
1463 v3_sub( inf_front->co, inf_back->co, inf_avg.dir );
1464 v3_muladds( inf_back->co, inf_avg.dir, 0.5f, inf_avg.co );
1465 v3_normalize( inf_avg.dir );
1466
1467 v3f axis_front, axis_back, axis;
1468 v3_cross( inf_front->dir, inf_front->n, axis_front );
1469 v3_cross( inf_back->dir, inf_back->n, axis_back );
1470 v3_add( axis_front, axis_back, axis );
1471 v3_normalize( axis );
1472
1473 v3_cross( axis, inf_avg.dir, inf_avg.n );
1474
1475 skate_grind_decay( player, &inf_avg, 1.0f );
1476
1477
1478 float way = player->input_js1v->axis.value *
1479 vg_signf( v3_dot( player->rb.to_world[2], player->rb.v ) );
1480 v4f q;
1481 v3f up, target_up;
1482 v3_copy( player->rb.to_world[1], up );
1483 v3_copy( inf_avg.n, target_up );
1484 q_axis_angle( q, player->rb.to_world[0], VG_PIf*0.25f * -way );
1485 q_mulv( q, target_up, target_up );
1486
1487 v3_zero( s->weight_distribution );
1488 s->weight_distribution[2] = k_board_length * -way;
1489
1490 rb_effect_spring_target_vector( &player->rb, up, target_up,
1491 k_grind_spring,
1492 k_grind_dampener,
1493 k_rb_delta );
1494
1495 v3f fwd_nplane, dir_nplane;
1496 v3_muladds( player->rb.to_world[2], inf_avg.n,
1497 -v3_dot( player->rb.to_world[2], inf_avg.n ), fwd_nplane );
1498
1499 v3f dir;
1500 v3_muls( inf_avg.dir, v3_dot( fwd_nplane, inf_avg.dir ), dir );
1501 v3_muladds( dir, inf_avg.n, -v3_dot( dir, inf_avg.n ), dir_nplane );
1502
1503 v3_normalize( fwd_nplane );
1504 v3_normalize( dir_nplane );
1505
1506 rb_effect_spring_target_vector( &player->rb, fwd_nplane, dir_nplane,
1507 1000.0f,
1508 k_grind_dampener,
1509 k_rb_delta );
1510
1511 v3f pos_front = { 0.0f, -k_board_radius, -1.0f * k_board_length },
1512 pos_back = { 0.0f, -k_board_radius, 1.0f * k_board_length },
1513 delta_front, delta_back, delta_total;
1514
1515 m4x3_mulv( player->rb.to_world, pos_front, pos_front );
1516 m4x3_mulv( player->rb.to_world, pos_back, pos_back );
1517
1518 v3_sub( inf_front->co, pos_front, delta_front );
1519 v3_sub( inf_back->co, pos_back, delta_back );
1520 v3_add( delta_front, delta_back, delta_total );
1521
1522 v3_muladds( player->rb.v, delta_total, 50.0f * k_rb_delta, player->rb.v );
1523
1524 /* Fake contact */
1525 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1526 v3_zero( limit->ra );
1527 m3x3_mulv( player->rb.to_local, inf_avg.n, limit->n );
1528 limit->p = 0.0f;
1529
1530 v3_copy( inf_avg.dir, s->grind_dir );
1531 }
1532
1533 VG_STATIC int skate_grind_truck_renew( player_instance *player, float sign,
1534 struct grind_info *inf )
1535 {
1536 struct player_skate *s = &player->_skate;
1537
1538 v3f wheel_co = { 0.0f, 0.0f, sign * k_board_length },
1539 grind_co = { 0.0f, -k_board_radius, sign * k_board_length };
1540
1541 m4x3_mulv( player->rb.to_world, wheel_co, wheel_co );
1542 m4x3_mulv( player->rb.to_world, grind_co, grind_co );
1543
1544 /* Exit condition: lost grind tracking */
1545 if( !skate_grind_scansq( player, grind_co, player->rb.v, 0.3f, inf ) )
1546 return 0;
1547
1548 /* Exit condition: cant see grind target directly */
1549 if( !skate_point_visible( wheel_co, inf->co ) )
1550 return 0;
1551
1552 /* Exit condition: minimum velocity not reached, but allow a bit of error */
1553 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1554 minv = k_grind_axel_min_vel*0.8f;
1555
1556 if( dv < minv )
1557 return 0;
1558
1559 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1560 return 0;
1561
1562 v3_copy( inf->dir, s->grind_dir );
1563 return 1;
1564 }
1565
1566 VG_STATIC int skate_grind_truck_entry( player_instance *player, float sign,
1567 struct grind_info *inf )
1568 {
1569 struct player_skate *s = &player->_skate;
1570
1571 /* TODO: Trash compactor this */
1572 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1573
1574 v3f raw, wsp;
1575 m3x3_mulv( player->rb.to_world, ra, raw );
1576 v3_add( player->rb.co, raw, wsp );
1577
1578 if( skate_grind_scansq( player, wsp, player->rb.v, 0.3, inf ) )
1579 {
1580 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1581 return 0;
1582
1583 /* velocity should be at least 60% aligned */
1584 v3f pv, axis;
1585 v3_cross( inf->n, inf->dir, axis );
1586 v3_muladds( player->rb.v, inf->n, -v3_dot( player->rb.v, inf->n ), pv );
1587
1588 if( v3_length2( pv ) < 0.0001f )
1589 return 0;
1590 v3_normalize( pv );
1591
1592 if( fabsf(v3_dot( pv, inf->dir )) < k_grind_axel_max_angle )
1593 return 0;
1594
1595 if( v3_dot( player->rb.v, inf->n ) > 0.5f )
1596 return 0;
1597
1598 #if 0
1599 /* check for vertical alignment */
1600 if( v3_dot( player->rb.to_world[1], inf->n ) < k_grind_axel_max_vangle )
1601 return 0;
1602 #endif
1603
1604 v3f local_co, local_dir, local_n;
1605 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1606 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1607 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1608
1609 v2f delta = { local_co[0], local_co[2] - k_board_length*sign };
1610
1611 float truck_height = -(k_board_radius+0.03f);
1612
1613 v3f rv;
1614 v3_cross( player->rb.w, raw, rv );
1615 v3_add( player->rb.v, rv, rv );
1616
1617 if( (local_co[1] >= truck_height) &&
1618 (v2_length2( delta ) <= k_board_radius*k_board_radius) )
1619 {
1620 return 1;
1621 }
1622 }
1623
1624 return 0;
1625 }
1626
1627 VG_STATIC void skate_boardslide_apply( player_instance *player,
1628 struct grind_info *inf )
1629 {
1630 struct player_skate *s = &player->_skate;
1631
1632 v3f local_co, local_dir, local_n;
1633 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1634 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1635 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1636
1637 v3f intersection;
1638 v3_muladds( local_co, local_dir, local_co[0]/-local_dir[0],
1639 intersection );
1640 v3_copy( intersection, s->weight_distribution );
1641
1642 skate_grind_decay( player, inf, 0.1f );
1643 skate_grind_friction( player, inf, 0.25f );
1644
1645 /* direction alignment */
1646 v3f dir, perp;
1647 v3_cross( local_dir, local_n, perp );
1648 v3_muls( local_dir, vg_signf(local_dir[0]), dir );
1649 v3_muls( perp, vg_signf(perp[2]), perp );
1650
1651 m3x3_mulv( player->rb.to_world, dir, dir );
1652 m3x3_mulv( player->rb.to_world, perp, perp );
1653
1654 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1655 dir,
1656 k_grind_spring, k_grind_dampener,
1657 k_rb_delta );
1658
1659 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[2],
1660 perp,
1661 k_grind_spring, k_grind_dampener,
1662 k_rb_delta );
1663
1664 vg_line_arrow( player->rb.co, dir, 0.5f, VG__GREEN );
1665 vg_line_arrow( player->rb.co, perp, 0.5f, VG__BLUE );
1666
1667 v3_copy( inf->dir, s->grind_dir );
1668 }
1669
1670 VG_STATIC int skate_boardslide_entry( player_instance *player,
1671 struct grind_info *inf )
1672 {
1673 struct player_skate *s = &player->_skate;
1674
1675 if( skate_grind_scansq( player, player->rb.co,
1676 player->rb.to_world[0], k_board_length,
1677 inf ) )
1678 {
1679 v3f local_co, local_dir;
1680 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1681 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1682
1683 if( (fabsf(local_co[2]) <= k_board_length) && /* within wood area */
1684 (local_co[1] >= 0.0f) && /* at deck level */
1685 (fabsf(local_dir[0]) >= 0.5f) ) /* perpendicular to us */
1686 {
1687 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1688 return 0;
1689
1690 return 1;
1691 }
1692 }
1693
1694 return 0;
1695 }
1696
1697 VG_STATIC int skate_boardslide_renew( player_instance *player,
1698 struct grind_info *inf )
1699 {
1700 struct player_skate *s = &player->_skate;
1701
1702 if( !skate_grind_scansq( player, player->rb.co,
1703 player->rb.to_world[0], k_board_length,
1704 inf ) )
1705 return 0;
1706
1707 /* Exit condition: cant see grind target directly */
1708 v3f vis;
1709 v3_muladds( player->rb.co, player->rb.to_world[1], 0.2f, vis );
1710 if( !skate_point_visible( vis, inf->co ) )
1711 return 0;
1712
1713 /* Exit condition: minimum velocity not reached, but allow a bit of error
1714 * TODO: trash compactor */
1715 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1716 minv = k_grind_axel_min_vel*0.8f;
1717
1718 if( dv < minv )
1719 return 0;
1720
1721 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1722 return 0;
1723
1724 return 1;
1725 }
1726
1727 VG_STATIC void skate_store_grind_vec( player_instance *player,
1728 struct grind_info *inf )
1729 {
1730 struct player_skate *s = &player->_skate;
1731
1732 m3x3f mtx;
1733 skate_grind_orient( inf, mtx );
1734 m3x3_transpose( mtx, mtx );
1735
1736 v3f raw;
1737 v3_sub( inf->co, player->rb.co, raw );
1738
1739 m3x3_mulv( mtx, raw, s->grind_vec );
1740 v3_normalize( s->grind_vec );
1741 v3_copy( inf->dir, s->grind_dir );
1742 }
1743
1744 VG_STATIC enum skate_activity skate_availible_grind( player_instance *player )
1745 {
1746 struct player_skate *s = &player->_skate;
1747
1748 /* debounces this state manager a little bit */
1749 if( s->frames_since_activity_change < 10 )
1750 {
1751 s->frames_since_activity_change ++;
1752 return k_skate_activity_undefined;
1753 }
1754
1755 struct grind_info inf_back50,
1756 inf_front50,
1757 inf_slide;
1758
1759 int res_back50 = 0,
1760 res_front50 = 0,
1761 res_slide = 0;
1762
1763 if( s->state.activity == k_skate_activity_grind_boardslide )
1764 {
1765 res_slide = skate_boardslide_renew( player, &inf_slide );
1766 }
1767 else if( s->state.activity == k_skate_activity_grind_back50 )
1768 {
1769 res_back50 = skate_grind_truck_renew( player, 1.0f, &inf_back50 );
1770 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1771 }
1772 else if( s->state.activity == k_skate_activity_grind_front50 )
1773 {
1774 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1775 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1776 }
1777 else if( s->state.activity == k_skate_activity_grind_5050 )
1778 {
1779 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1780 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1781 }
1782 else
1783 {
1784 res_slide = skate_boardslide_entry( player, &inf_slide );
1785 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1786 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1787
1788 if( res_back50 != res_front50 )
1789 {
1790 int wants_to_do_that = fabsf(player->input_js1v->axis.value) >= 0.25f;
1791
1792 res_back50 &= wants_to_do_that;
1793 res_front50 &= wants_to_do_that;
1794 }
1795 }
1796
1797 const enum skate_activity table[] =
1798 { /* slide | back | front */
1799 k_skate_activity_undefined, /* 0 0 0 */
1800 k_skate_activity_grind_front50, /* 0 0 1 */
1801 k_skate_activity_grind_back50, /* 0 1 0 */
1802 k_skate_activity_grind_5050, /* 0 1 1 */
1803
1804 /* slide has priority always */
1805 k_skate_activity_grind_boardslide, /* 1 0 0 */
1806 k_skate_activity_grind_boardslide, /* 1 0 1 */
1807 k_skate_activity_grind_boardslide, /* 1 1 0 */
1808 k_skate_activity_grind_boardslide, /* 1 1 1 */
1809 }
1810 , new_activity = table[ res_slide << 2 | res_back50 << 1 | res_front50 ];
1811
1812 if( new_activity == k_skate_activity_undefined )
1813 {
1814 if( s->state.activity >= k_skate_activity_grind_any )
1815 s->frames_since_activity_change = 0;
1816 }
1817 else if( new_activity == k_skate_activity_grind_boardslide )
1818 {
1819 skate_boardslide_apply( player, &inf_slide );
1820 }
1821 else if( new_activity == k_skate_activity_grind_back50 )
1822 {
1823 if( s->state.activity != k_skate_activity_grind_back50 )
1824 skate_store_grind_vec( player, &inf_back50 );
1825
1826 skate_grind_truck_apply( player, 1.0f, &inf_back50, 1.0f );
1827 }
1828 else if( new_activity == k_skate_activity_grind_front50 )
1829 {
1830 if( s->state.activity != k_skate_activity_grind_front50 )
1831 skate_store_grind_vec( player, &inf_front50 );
1832
1833 skate_grind_truck_apply( player, -1.0f, &inf_front50, 1.0f );
1834 }
1835 else if( new_activity == k_skate_activity_grind_5050 )
1836 skate_5050_apply( player, &inf_front50, &inf_back50 );
1837
1838 return new_activity;
1839 }
1840
1841 VG_STATIC void player__skate_update( player_instance *player )
1842 {
1843 struct player_skate *s = &player->_skate;
1844 world_instance *world = get_active_world();
1845
1846 v3_copy( player->rb.co, s->state.prev_pos );
1847 s->state.activity_prev = s->state.activity;
1848
1849 struct board_collider
1850 {
1851 v3f pos;
1852 float radius;
1853
1854 u32 colour;
1855
1856 enum board_collider_state
1857 {
1858 k_collider_state_default,
1859 k_collider_state_disabled,
1860 k_collider_state_colliding
1861 }
1862 state;
1863 }
1864 wheels[] =
1865 {
1866 {
1867 { 0.0f, 0.0f, -k_board_length },
1868 .radius = k_board_radius,
1869 .colour = VG__RED
1870 },
1871 {
1872 { 0.0f, 0.0f, k_board_length },
1873 .radius = k_board_radius,
1874 .colour = VG__GREEN
1875 }
1876 };
1877
1878 const int k_wheel_count = 2;
1879
1880 s->substep = k_rb_delta;
1881 s->substep_delta = s->substep;
1882 s->limit_count = 0;
1883
1884 int substep_count = 0;
1885
1886 v3_zero( s->surface_picture );
1887
1888 for( int i=0; i<k_wheel_count; i++ )
1889 wheels[i].state = k_collider_state_default;
1890
1891 /* check if we can enter or continue grind */
1892 enum skate_activity grindable_activity = skate_availible_grind( player );
1893 if( grindable_activity != k_skate_activity_undefined )
1894 {
1895 s->state.activity = grindable_activity;
1896 goto grinding;
1897 }
1898
1899 int contact_count = 0;
1900 for( int i=0; i<2; i++ )
1901 {
1902 v3f normal, axel;
1903 v3_copy( player->rb.to_world[0], axel );
1904
1905 if( skate_compute_surface_alignment( player, wheels[i].pos,
1906 wheels[i].colour, normal, axel ) )
1907 {
1908 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1909 axel,
1910 k_surface_spring, k_surface_dampener,
1911 s->substep_delta );
1912
1913 v3_add( normal, s->surface_picture, s->surface_picture );
1914 contact_count ++;
1915 }
1916
1917 m3x3_mulv( player->rb.to_local, axel, s->truckv0[i] );
1918 }
1919
1920 if( contact_count )
1921 {
1922 s->state.activity = k_skate_activity_ground;
1923 s->state.gravity_bias = k_gravity;
1924 v3_normalize( s->surface_picture );
1925
1926 skate_apply_friction_model( player );
1927 skate_weight_distribute( player );
1928 }
1929 else
1930 {
1931 s->state.activity = k_skate_activity_air;
1932 v3_zero( s->weight_distribution );
1933 skate_apply_air_model( player );
1934 }
1935
1936 grinding:;
1937
1938 if( s->state.activity == k_skate_activity_grind_back50 )
1939 wheels[1].state = k_collider_state_disabled;
1940 if( s->state.activity == k_skate_activity_grind_front50 )
1941 wheels[0].state = k_collider_state_disabled;
1942 if( s->state.activity == k_skate_activity_grind_5050 )
1943 {
1944 wheels[0].state = k_collider_state_disabled;
1945 wheels[1].state = k_collider_state_disabled;
1946 }
1947
1948 /* all activities */
1949 skate_apply_steering_model( player );
1950 skate_adjust_up_direction( player );
1951 skate_apply_cog_model( player );
1952 skate_apply_jump_model( player );
1953 skate_apply_grab_model( player );
1954 skate_apply_trick_model( player );
1955 skate_apply_pump_model( player );
1956
1957 begin_collision:;
1958
1959 /*
1960 * Phase 0: Continous collision detection
1961 * --------------------------------------------------------------------------
1962 */
1963
1964 v3f head_wp0, head_wp1, start_co;
1965 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp0 );
1966 v3_copy( player->rb.co, start_co );
1967
1968 /* calculate transform one step into future */
1969 v3f future_co;
1970 v4f future_q;
1971 v3_muladds( player->rb.co, player->rb.v, s->substep, future_co );
1972
1973 if( v3_length2( player->rb.w ) > 0.0f )
1974 {
1975 v4f rotation;
1976 v3f axis;
1977 v3_copy( player->rb.w, axis );
1978
1979 float mag = v3_length( axis );
1980 v3_divs( axis, mag, axis );
1981 q_axis_angle( rotation, axis, mag*s->substep );
1982 q_mul( rotation, player->rb.q, future_q );
1983 q_normalize( future_q );
1984 }
1985 else
1986 v4_copy( player->rb.q, future_q );
1987
1988 v3f future_cg, current_cg, cg_offset;
1989 q_mulv( player->rb.q, s->weight_distribution, current_cg );
1990 q_mulv( future_q, s->weight_distribution, future_cg );
1991 v3_sub( future_cg, current_cg, cg_offset );
1992
1993 /* calculate the minimum time we can move */
1994 float max_time = s->substep;
1995
1996 for( int i=0; i<k_wheel_count; i++ )
1997 {
1998 if( wheels[i].state == k_collider_state_disabled )
1999 continue;
2000
2001 v3f current, future, r_cg;
2002
2003 q_mulv( future_q, wheels[i].pos, future );
2004 v3_add( future, future_co, future );
2005 v3_add( cg_offset, future, future );
2006
2007 q_mulv( player->rb.q, wheels[i].pos, current );
2008 v3_add( current, player->rb.co, current );
2009
2010 float t;
2011 v3f n;
2012
2013 float cast_radius = wheels[i].radius - k_penetration_slop * 2.0f;
2014 if( spherecast_world( world, current, future, cast_radius, &t, n ) != -1)
2015 max_time = vg_minf( max_time, t * s->substep );
2016 }
2017
2018 /* clamp to a fraction of delta, to prevent locking */
2019 float rate_lock = substep_count;
2020 rate_lock *= k_rb_delta * 0.1f;
2021 rate_lock *= rate_lock;
2022
2023 max_time = vg_maxf( max_time, rate_lock );
2024 s->substep_delta = max_time;
2025
2026 /* integrate */
2027 v3_muladds( player->rb.co, player->rb.v, s->substep_delta, player->rb.co );
2028 if( v3_length2( player->rb.w ) > 0.0f )
2029 {
2030 v4f rotation;
2031 v3f axis;
2032 v3_copy( player->rb.w, axis );
2033
2034 float mag = v3_length( axis );
2035 v3_divs( axis, mag, axis );
2036 q_axis_angle( rotation, axis, mag*s->substep_delta );
2037 q_mul( rotation, player->rb.q, player->rb.q );
2038 q_normalize( player->rb.q );
2039
2040 q_mulv( player->rb.q, s->weight_distribution, future_cg );
2041 v3_sub( current_cg, future_cg, cg_offset );
2042 v3_add( player->rb.co, cg_offset, player->rb.co );
2043 }
2044
2045 rb_update_transform( &player->rb );
2046 v3_muladds( player->rb.v, player->basis[1],
2047 -s->state.gravity_bias * s->substep_delta, player->rb.v );
2048
2049 s->substep -= s->substep_delta;
2050
2051 rb_ct manifold[128];
2052 int manifold_len = 0;
2053
2054 /*
2055 * Phase -1: head detection
2056 * --------------------------------------------------------------------------
2057 */
2058 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp1 );
2059
2060 float t;
2061 v3f n;
2062 if( (v3_dist2( head_wp0, head_wp1 ) > 0.001f) &&
2063 (spherecast_world( world, head_wp0, head_wp1, 0.2f, &t, n ) != -1) )
2064 {
2065 v3_lerp( start_co, player->rb.co, t, player->rb.co );
2066 rb_update_transform( &player->rb );
2067
2068 player__dead_transition( player );
2069 return;
2070 }
2071
2072 /*
2073 * Phase 1: Regular collision detection
2074 * --------------------------------------------------------------------------
2075 */
2076
2077 for( int i=0; i<k_wheel_count; i++ )
2078 {
2079 if( wheels[i].state == k_collider_state_disabled )
2080 continue;
2081
2082 m4x3f mtx;
2083 m3x3_identity( mtx );
2084 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2085
2086 rb_sphere collider = { .radius = wheels[i].radius };
2087
2088 rb_ct *man = &manifold[ manifold_len ];
2089
2090 int l = skate_collide_smooth( player, mtx, &collider, man );
2091 if( l )
2092 wheels[i].state = k_collider_state_colliding;
2093
2094 manifold_len += l;
2095 }
2096
2097 float grind_radius = k_board_radius * 0.75f;
2098 rb_capsule capsule = { .height = (k_board_length+0.2f)*2.0f,
2099 .radius=grind_radius };
2100 m4x3f mtx;
2101 v3_muls( player->rb.to_world[0], 1.0f, mtx[0] );
2102 v3_muls( player->rb.to_world[2], -1.0f, mtx[1] );
2103 v3_muls( player->rb.to_world[1], 1.0f, mtx[2] );
2104 v3_muladds( player->rb.to_world[3], player->rb.to_world[1],
2105 grind_radius + k_board_radius*0.25f, mtx[3] );
2106
2107 rb_ct *cman = &manifold[manifold_len];
2108
2109 int l = rb_capsule__scene( mtx, &capsule, NULL, &world->rb_geo.inf.scene,
2110 cman );
2111
2112 /* weld joints */
2113 for( int i=0; i<l; i ++ )
2114 cman[l].type = k_contact_type_edge;
2115 rb_manifold_filter_joint_edges( cman, l, 0.03f );
2116 l = rb_manifold_apply_filtered( cman, l );
2117
2118 manifold_len += l;
2119
2120 debug_capsule( mtx, capsule.radius, capsule.height, VG__WHITE );
2121
2122 /* add limits */
2123 for( int i=0; i<s->limit_count; i++ )
2124 {
2125 struct grind_limit *limit = &s->limits[i];
2126 rb_ct *ct = &manifold[ manifold_len ++ ];
2127 m4x3_mulv( player->rb.to_world, limit->ra, ct->co );
2128 m3x3_mulv( player->rb.to_world, limit->n, ct->n );
2129 ct->p = limit->p;
2130 ct->type = k_contact_type_default;
2131 }
2132
2133 /*
2134 * Phase 3: Dynamics
2135 * --------------------------------------------------------------------------
2136 */
2137
2138
2139 v3f world_cog;
2140 m4x3_mulv( player->rb.to_world, s->weight_distribution, world_cog );
2141 vg_line_pt3( world_cog, 0.02f, VG__BLACK );
2142
2143 for( int i=0; i<manifold_len; i ++ )
2144 {
2145 rb_prepare_contact( &manifold[i], s->substep_delta );
2146 rb_debug_contact( &manifold[i] );
2147 }
2148
2149 /* yes, we are currently rebuilding mass matrices every frame. too bad! */
2150 v3f extent = { k_board_width, 0.1f, k_board_length };
2151 float ex2 = k_board_interia*extent[0]*extent[0],
2152 ey2 = k_board_interia*extent[1]*extent[1],
2153 ez2 = k_board_interia*extent[2]*extent[2];
2154
2155 float mass = 2.0f * (extent[0]*extent[1]*extent[2]);
2156 float inv_mass = 1.0f/mass;
2157
2158 v3f I;
2159 I[0] = ((1.0f/12.0f) * mass * (ey2+ez2));
2160 I[1] = ((1.0f/12.0f) * mass * (ex2+ez2));
2161 I[2] = ((1.0f/12.0f) * mass * (ex2+ey2));
2162
2163 m3x3f iI;
2164 m3x3_identity( iI );
2165 iI[0][0] = I[0];
2166 iI[1][1] = I[1];
2167 iI[2][2] = I[2];
2168 m3x3_inv( iI, iI );
2169
2170 m3x3f iIw;
2171 m3x3_mul( iI, player->rb.to_local, iIw );
2172 m3x3_mul( player->rb.to_world, iIw, iIw );
2173
2174 for( int j=0; j<10; j++ )
2175 {
2176 for( int i=0; i<manifold_len; i++ )
2177 {
2178 /*
2179 * regular dance; calculate velocity & total mass, apply impulse.
2180 */
2181
2182 struct contact *ct = &manifold[i];
2183
2184 v3f rv, delta;
2185 v3_sub( ct->co, world_cog, delta );
2186 v3_cross( player->rb.w, delta, rv );
2187 v3_add( player->rb.v, rv, rv );
2188
2189 v3f raCn;
2190 v3_cross( delta, ct->n, raCn );
2191
2192 v3f raCnI, rbCnI;
2193 m3x3_mulv( iIw, raCn, raCnI );
2194
2195 float normal_mass = 1.0f / (inv_mass + v3_dot(raCn,raCnI)),
2196 vn = v3_dot( rv, ct->n ),
2197 lambda = normal_mass * ( -vn );
2198
2199 float temp = ct->norm_impulse;
2200 ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
2201 lambda = ct->norm_impulse - temp;
2202
2203 v3f impulse;
2204 v3_muls( ct->n, lambda, impulse );
2205
2206 v3_muladds( player->rb.v, impulse, inv_mass, player->rb.v );
2207 v3_cross( delta, impulse, impulse );
2208 m3x3_mulv( iIw, impulse, impulse );
2209 v3_add( impulse, player->rb.w, player->rb.w );
2210
2211 v3_cross( player->rb.w, delta, rv );
2212 v3_add( player->rb.v, rv, rv );
2213 vn = v3_dot( rv, ct->n );
2214 }
2215 }
2216
2217 v3f dt;
2218 rb_depenetrate( manifold, manifold_len, dt );
2219 v3_add( dt, player->rb.co, player->rb.co );
2220 rb_update_transform( &player->rb );
2221
2222 substep_count ++;
2223
2224 if( s->substep >= 0.0001f )
2225 goto begin_collision; /* again! */
2226
2227 /*
2228 * End of collision and dynamics routine
2229 * --------------------------------------------------------------------------
2230 */
2231
2232 s->surface = k_surface_prop_concrete;
2233
2234 for( int i=0; i<manifold_len; i++ ){
2235 rb_ct *ct = &manifold[i];
2236 struct world_surface *surf = world_contact_surface( world, ct );
2237
2238 if( surf->info.surface_prop != k_surface_prop_concrete )
2239 s->surface = surf->info.surface_prop;
2240 }
2241
2242 for( int i=0; i<k_wheel_count; i++ ){
2243 m4x3f mtx;
2244 m3x3_copy( player->rb.to_world, mtx );
2245 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2246 debug_sphere( mtx, wheels[i].radius,
2247 (u32[]){ VG__WHITE, VG__BLACK,
2248 wheels[i].colour }[ wheels[i].state ]);
2249 }
2250
2251 skate_integrate( player );
2252 vg_line_pt3( s->state.cog, 0.02f, VG__WHITE );
2253
2254 ent_gate *gate =
2255 world_intersect_gates(world, player->rb.co, s->state.prev_pos );
2256
2257 if( gate ){
2258 m4x3_mulv( gate->transport, player->rb.co, player->rb.co );
2259 m3x3_mulv( gate->transport, player->rb.v, player->rb.v );
2260 m4x3_mulv( gate->transport, s->state.cog, s->state.cog );
2261 m3x3_mulv( gate->transport, s->state.cog_v, s->state.cog_v );
2262 m3x3_mulv( gate->transport, s->state.throw_v, s->state.throw_v );
2263 m3x3_mulv( gate->transport, s->state.head_position,
2264 s->state.head_position );
2265 m3x3_mulv( gate->transport, s->state.up_dir, s->state.up_dir );
2266
2267 v4f transport_rotation;
2268 m3x3_q( gate->transport, transport_rotation );
2269 q_mul( transport_rotation, player->rb.q, player->rb.q );
2270 rb_update_transform( &player->rb );
2271
2272 s->state_gate_storage = s->state;
2273 player__pass_gate( player, gate );
2274 }
2275
2276 /* FIXME: Rate limit */
2277 static int stick_frames = 0;
2278
2279 if( s->state.activity == k_skate_activity_ground )
2280 stick_frames ++;
2281 else
2282 stick_frames = 0;
2283
2284
2285 if( stick_frames == 4 )
2286 {
2287 audio_lock();
2288 if( (fabsf(s->state.slip) > 0.75f) )
2289 {
2290 audio_oneshot_3d( &audio_lands[rand()%2+3], player->rb.co,
2291 40.0f, 1.0f );
2292 }
2293 else
2294 {
2295 audio_oneshot_3d( &audio_lands[rand()%3], player->rb.co,
2296 40.0f, 1.0f );
2297 }
2298 audio_unlock();
2299 }
2300 }
2301
2302 VG_STATIC void player__skate_im_gui( player_instance *player )
2303 {
2304 struct player_skate *s = &player->_skate;
2305 player__debugtext( 1, "V: %5.2f %5.2f %5.2f",player->rb.v[0],
2306 player->rb.v[1],
2307 player->rb.v[2] );
2308 player__debugtext( 1, "CO: %5.2f %5.2f %5.2f",player->rb.co[0],
2309 player->rb.co[1],
2310 player->rb.co[2] );
2311 player__debugtext( 1, "W: %5.2f %5.2f %5.2f",player->rb.w[0],
2312 player->rb.w[1],
2313 player->rb.w[2] );
2314
2315 const char *activity_txt[] =
2316 {
2317 "air",
2318 "ground",
2319 "undefined (INVALID)",
2320 "grind_any (INVALID)",
2321 "grind_boardslide",
2322 "grind_noseslide",
2323 "grind_tailslide",
2324 "grind_back50",
2325 "grind_front50",
2326 "grind_5050"
2327 };
2328
2329 player__debugtext( 1, "activity: %s", activity_txt[s->state.activity] );
2330 #if 0
2331 player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
2332 s->state.steerx_s, s->state.steery_s,
2333 k_steer_ground, k_steer_air );
2334 #endif
2335 player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
2336 s->state.flip_time );
2337 player__debugtext( 1, "trickv: %.2f %.2f %.2f",
2338 s->state.trick_vel[0],
2339 s->state.trick_vel[1],
2340 s->state.trick_vel[2] );
2341 player__debugtext( 1, "tricke: %.2f %.2f %.2f",
2342 s->state.trick_euler[0],
2343 s->state.trick_euler[1],
2344 s->state.trick_euler[2] );
2345 }
2346
2347 VG_STATIC void player__skate_animate( player_instance *player,
2348 player_animation *dest )
2349 {
2350 struct player_skate *s = &player->_skate;
2351 struct player_avatar *av = player->playeravatar;
2352 struct skeleton *sk = &av->sk;
2353
2354 /* Head */
2355 float kheight = 2.0f,
2356 kleg = 0.6f;
2357
2358 v3f offset;
2359 v3_zero( offset );
2360
2361 v3f cog_local, cog_ideal;
2362 m4x3_mulv( player->rb.to_local, s->state.cog, cog_local );
2363
2364 v3_copy( s->state.up_dir, cog_ideal );
2365 v3_normalize( cog_ideal );
2366 m3x3_mulv( player->rb.to_local, cog_ideal, cog_ideal );
2367
2368 v3_sub( cog_ideal, cog_local, offset );
2369
2370
2371 v3_muls( offset, 4.0f, offset );
2372 offset[1] *= -1.0f;
2373
2374 float curspeed = v3_length( player->rb.v ),
2375 kickspeed = vg_clampf( curspeed*(1.0f/40.0f), 0.0f, 1.0f ),
2376 kicks = (vg_randf()-0.5f)*2.0f*kickspeed,
2377 sign = vg_signf( kicks );
2378
2379 s->wobble[0] = vg_lerpf( s->wobble[0], kicks*kicks*sign, 6.0f*vg.time_delta);
2380 s->wobble[1] = vg_lerpf( s->wobble[1], s->wobble[0], 2.4f*vg.time_delta);
2381
2382 offset[0] *= 0.26f;
2383 offset[0] += s->wobble[1]*3.0f;
2384
2385 offset[1] *= -0.3f;
2386 offset[2] *= 0.01f;
2387
2388 offset[0]=vg_clampf(offset[0],-0.8f,0.8f)*(1.0f-fabsf(s->blend_slide)*0.9f);
2389 offset[1]=vg_clampf(offset[1],-0.5f,0.0f);
2390
2391 /*
2392 * Animation blending
2393 * ===========================================
2394 */
2395
2396 /* sliding */
2397 {
2398 float desired = vg_clampf( fabsf( s->state.slip ), 0.0f, 1.0f );
2399 s->blend_slide = vg_lerpf( s->blend_slide, desired, 2.4f*vg.time_delta);
2400 }
2401
2402 /* movement information */
2403 {
2404 int iair = s->state.activity == k_skate_activity_air;
2405
2406 float dirz = s->state.reverse > 0.0f? 0.0f: 1.0f,
2407 dirx = s->state.slip < 0.0f? 0.0f: 1.0f,
2408 fly = iair? 1.0f: 0.0f,
2409 wdist= s->weight_distribution[2] / k_board_length;
2410
2411 s->blend_z = vg_lerpf( s->blend_z, dirz, 2.4f*vg.time_delta );
2412 s->blend_x = vg_lerpf( s->blend_x, dirx, 0.6f*vg.time_delta );
2413 s->blend_fly = vg_lerpf( s->blend_fly, fly, 2.4f*vg.time_delta );
2414 s->blend_weight= vg_lerpf( s->blend_weight, wdist, 9.0f*vg.time_delta );
2415 }
2416
2417 mdl_keyframe apose[32], bpose[32];
2418 mdl_keyframe ground_pose[32];
2419 {
2420 /* when the player is moving fast he will crouch down a little bit */
2421 float stand = 1.0f - vg_clampf( curspeed * 0.03f, 0.0f, 1.0f );
2422 s->blend_stand = vg_lerpf( s->blend_stand, stand, 6.0f*vg.time_delta );
2423
2424 /* stand/crouch */
2425 float dir_frame = s->blend_z * (15.0f/30.0f),
2426 stand_blend = offset[1]*-2.0f;
2427
2428 v3f local_cog;
2429 m4x3_mulv( player->rb.to_local, s->state.cog, local_cog );
2430
2431 stand_blend = vg_clampf( 1.0f-local_cog[1], 0, 1 );
2432
2433 skeleton_sample_anim( sk, s->anim_stand, dir_frame, apose );
2434 skeleton_sample_anim( sk, s->anim_highg, dir_frame, bpose );
2435 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
2436
2437 /* sliding */
2438 float slide_frame = s->blend_x * (15.0f/30.0f);
2439 skeleton_sample_anim( sk, s->anim_slide, slide_frame, bpose );
2440 skeleton_lerp_pose( sk, apose, bpose, s->blend_slide, apose );
2441
2442 /* pushing */
2443 double push_time = vg.time - s->state.start_push;
2444 s->blend_push = vg_lerpf( s->blend_push,
2445 (vg.time - s->state.cur_push) < 0.125,
2446 6.0f*vg.time_delta );
2447
2448 float pt = push_time + vg.accumulator;
2449 if( s->state.reverse > 0.0f )
2450 skeleton_sample_anim( sk, s->anim_push, pt, bpose );
2451 else
2452 skeleton_sample_anim( sk, s->anim_push_reverse, pt, bpose );
2453
2454 skeleton_lerp_pose( sk, apose, bpose, s->blend_push, apose );
2455
2456 /* trick setup */
2457 float jump_start_frame = 14.0f/30.0f;
2458
2459 float charge = s->state.jump_charge;
2460 s->blend_jump = vg_lerpf( s->blend_jump, charge, 8.4f*vg.time_delta );
2461
2462 float setup_frame = charge * jump_start_frame,
2463 setup_blend = vg_minf( s->blend_jump, 1.0f );
2464
2465 float jump_frame = (vg.time - s->state.jump_time) + jump_start_frame;
2466 if( jump_frame >= jump_start_frame && jump_frame <= (40.0f/30.0f) )
2467 setup_frame = jump_frame;
2468
2469 struct skeleton_anim *jump_anim = s->state.jump_dir?
2470 s->anim_ollie:
2471 s->anim_ollie_reverse;
2472
2473 skeleton_sample_anim_clamped( sk, jump_anim, setup_frame, bpose );
2474 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
2475 }
2476
2477 mdl_keyframe air_pose[32];
2478 {
2479 float target = -player->input_js1h->axis.value;
2480 s->blend_airdir = vg_lerpf( s->blend_airdir, target, 2.4f*vg.time_delta );
2481
2482 float air_frame = (s->blend_airdir*0.5f+0.5f) * (15.0f/30.0f);
2483 skeleton_sample_anim( sk, s->anim_air, air_frame, apose );
2484
2485 static v2f grab_choice;
2486
2487 v2f grab_input = { player->input_js2h->axis.value,
2488 player->input_js2v->axis.value };
2489 v2_add( s->state.grab_mouse_delta, grab_input, grab_input );
2490 if( v2_length2( grab_input ) <= 0.001f )
2491 grab_input[0] = -1.0f;
2492 else
2493 v2_normalize_clamp( grab_input );
2494 v2_lerp( grab_choice, grab_input, 2.4f*vg.time_delta, grab_choice );
2495
2496 float ang = atan2f( grab_choice[0], grab_choice[1] ),
2497 ang_unit = (ang+VG_PIf) * (1.0f/VG_TAUf),
2498 grab_frame = ang_unit * (15.0f/30.0f);
2499
2500 skeleton_sample_anim( sk, s->anim_grabs, grab_frame, bpose );
2501 skeleton_lerp_pose( sk, apose, bpose, s->state.grabbing, air_pose );
2502 }
2503
2504 skeleton_lerp_pose( sk, ground_pose, air_pose, s->blend_fly, dest->pose );
2505
2506 float add_grab_mod = 1.0f - s->blend_fly;
2507
2508 /* additive effects */
2509 {
2510 u32 apply_to[] = { av->id_hip,
2511 av->id_ik_hand_l,
2512 av->id_ik_hand_r,
2513 av->id_ik_elbow_l,
2514 av->id_ik_elbow_r };
2515
2516 for( int i=0; i<vg_list_size(apply_to); i ++ )
2517 {
2518 dest->pose[apply_to[i]-1].co[0] += offset[0]*add_grab_mod;
2519 dest->pose[apply_to[i]-1].co[2] += offset[2]*add_grab_mod;
2520 }
2521
2522
2523 /* angle correction */
2524 if( v3_length2( s->state.up_dir ) > 0.001f )
2525 {
2526 v3f ndir;
2527 m3x3_mulv( player->rb.to_local, s->state.up_dir, ndir );
2528 v3_normalize( ndir );
2529
2530 v3f up = { 0.0f, 1.0f, 0.0f };
2531
2532 float a = v3_dot( ndir, up );
2533 a = acosf( vg_clampf( a, -1.0f, 1.0f ) );
2534
2535 v3f axis;
2536 v4f q;
2537
2538 v3_cross( up, ndir, axis );
2539 q_axis_angle( q, axis, a );
2540
2541 mdl_keyframe *kf_hip = &dest->pose[av->id_hip-1];
2542
2543 for( int i=0; i<vg_list_size(apply_to); i ++ )
2544 {
2545 mdl_keyframe *kf = &dest->pose[apply_to[i]-1];
2546
2547 v3f v0;
2548 v3_sub( kf->co, kf_hip->co, v0 );
2549 q_mulv( q, v0, v0 );
2550 v3_add( v0, kf_hip->co, kf->co );
2551
2552 q_mul( q, kf->q, kf->q );
2553 q_normalize( kf->q );
2554 }
2555
2556 v3f p1, p2;
2557 m3x3_mulv( player->rb.to_world, up, p1 );
2558 m3x3_mulv( player->rb.to_world, ndir, p2 );
2559
2560 vg_line_arrow( player->rb.co, p1, 0.25f, VG__PINK );
2561 vg_line_arrow( player->rb.co, p2, 0.25f, VG__PINK );
2562 }
2563
2564
2565
2566 mdl_keyframe *kf_board = &dest->pose[av->id_board-1],
2567 *kf_foot_l = &dest->pose[av->id_ik_foot_l-1],
2568 *kf_foot_r = &dest->pose[av->id_ik_foot_r-1],
2569 *kf_wheels[] = { &dest->pose[av->id_wheel_r-1],
2570 &dest->pose[av->id_wheel_l-1] };
2571
2572 v4f qtotal;
2573 v4f qtrickr, qyawr, qpitchr, qrollr;
2574 v3f eulerr;
2575
2576 v3_muls( s->board_trick_residuald, VG_TAUf, eulerr );
2577
2578 q_axis_angle( qyawr, (v3f){0.0f,1.0f,0.0f}, eulerr[0] * 0.5f );
2579 q_axis_angle( qpitchr, (v3f){1.0f,0.0f,0.0f}, eulerr[1] );
2580 q_axis_angle( qrollr, (v3f){0.0f,0.0f,1.0f}, eulerr[2] );
2581
2582 q_mul( qpitchr, qrollr, qtrickr );
2583 q_mul( qyawr, qtrickr, qtotal );
2584 q_normalize( qtotal );
2585
2586 q_mul( qtotal, kf_board->q, kf_board->q );
2587
2588
2589 /* trick rotation */
2590 v4f qtrick, qyaw, qpitch, qroll;
2591 v3f euler;
2592 v3_muls( s->state.trick_euler, VG_TAUf, euler );
2593
2594 q_axis_angle( qyaw, (v3f){0.0f,1.0f,0.0f}, euler[0] * 0.5f );
2595 q_axis_angle( qpitch, (v3f){1.0f,0.0f,0.0f}, euler[1] );
2596 q_axis_angle( qroll, (v3f){0.0f,0.0f,1.0f}, euler[2] );
2597
2598 q_mul( qpitch, qroll, qtrick );
2599 q_mul( qyaw, qtrick, qtrick );
2600 q_mul( kf_board->q, qtrick, kf_board->q );
2601 q_normalize( kf_board->q );
2602
2603 /* foot weight distribution */
2604 if( s->blend_weight > 0.0f )
2605 {
2606 kf_foot_l->co[2] += s->blend_weight * 0.2f;
2607 kf_foot_r->co[2] += s->blend_weight * 0.1f;
2608 }
2609 else
2610 {
2611 kf_foot_r->co[2] += s->blend_weight * 0.3f;
2612 kf_foot_l->co[2] += s->blend_weight * 0.1f;
2613 }
2614
2615 /* truck rotation */
2616 for( int i=0; i<2; i++ )
2617 {
2618 float a = vg_minf( s->truckv0[i][0], 1.0f );
2619 a = -acosf( a ) * vg_signf( s->truckv0[i][1] );
2620
2621 v4f q;
2622 q_axis_angle( q, (v3f){0.0f,0.0f,1.0f}, a );
2623 q_mul( q, kf_wheels[i]->q, kf_wheels[i]->q );
2624 q_normalize( kf_wheels[i]->q );
2625 }
2626 }
2627
2628 /* transform */
2629 rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
2630 v3_muladds( dest->root_co, player->rb.to_world[1], -0.1f, dest->root_co );
2631
2632 float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
2633
2634 v4f qflip;
2635 if( (s->state.activity == k_skate_activity_air) &&
2636 (fabsf(s->state.flip_rate) > 0.01f) )
2637 {
2638 float t = s->state.flip_time;
2639 sign = vg_signf( t );
2640
2641 t = 1.0f - vg_minf( 1.0f, fabsf( t * 1.1f ) );
2642 t = sign * (1.0f-t*t);
2643
2644 float angle = vg_clampf( t, -1.0f, 1.0f ) * VG_TAUf,
2645 distm = s->land_dist * fabsf(s->state.flip_rate) * 3.0f,
2646 blend = vg_clampf( 1.0f-distm, 0.0f, 1.0f );
2647
2648 angle = vg_lerpf( angle, vg_signf(s->state.flip_rate) * VG_TAUf, blend );
2649
2650 q_axis_angle( qflip, s->state.flip_axis, angle );
2651 q_mul( qflip, dest->root_q, dest->root_q );
2652 q_normalize( dest->root_q );
2653
2654 v3f rotation_point, rco;
2655 v3_muladds( player->rb.co, player->rb.to_world[1], 0.5f, rotation_point );
2656 v3_sub( dest->root_co, rotation_point, rco );
2657
2658 q_mulv( qflip, rco, rco );
2659 v3_add( rco, rotation_point, dest->root_co );
2660 }
2661
2662 skeleton_copy_pose( sk, dest->pose, player->holdout_pose );
2663 }
2664
2665 VG_STATIC void player__skate_post_animate( player_instance *player )
2666 {
2667 struct player_skate *s = &player->_skate;
2668 struct player_avatar *av = player->playeravatar;
2669
2670 player->cam_velocity_influence = 1.0f;
2671
2672 v3f head = { 0.0f, 1.8f, 0.0f };
2673 m4x3_mulv( av->sk.final_mtx[ av->id_head ], head, s->state.head_position );
2674 m4x3_mulv( player->rb.to_local, s->state.head_position,
2675 s->state.head_position );
2676 }
2677
2678 VG_STATIC void player__skate_reset_animator( player_instance *player )
2679 {
2680 struct player_skate *s = &player->_skate;
2681
2682 if( s->state.activity == k_skate_activity_air )
2683 s->blend_fly = 1.0f;
2684 else
2685 s->blend_fly = 0.0f;
2686
2687 s->blend_slide = 0.0f;
2688 s->blend_z = 0.0f;
2689 s->blend_x = 0.0f;
2690 s->blend_stand = 0.0f;
2691 s->blend_push = 0.0f;
2692 s->blend_jump = 0.0f;
2693 s->blend_airdir = 0.0f;
2694 }
2695
2696 VG_STATIC void player__skate_clear_mechanics( player_instance *player )
2697 {
2698 struct player_skate *s = &player->_skate;
2699 s->state.jump_charge = 0.0f;
2700 s->state.lift_frames = 0;
2701 s->state.flip_rate = 0.0f;
2702 #if 0
2703 s->state.steery = 0.0f;
2704 s->state.steerx = 0.0f;
2705 s->state.steery_s = 0.0f;
2706 s->state.steerx_s = 0.0f;
2707 #endif
2708 s->state.reverse = 0.0f;
2709 s->state.slip = 0.0f;
2710 v3_copy( player->rb.co, s->state.prev_pos );
2711
2712 #if 0
2713 m3x3_identity( s->state.velocity_bias );
2714 m3x3_identity( s->state.velocity_bias_pstep );
2715 #endif
2716
2717 v3_zero( s->state.throw_v );
2718 v3_zero( s->state.trick_vel );
2719 v3_zero( s->state.trick_euler );
2720 }
2721
2722 VG_STATIC void player__skate_reset( player_instance *player,
2723 ent_spawn *rp )
2724 {
2725 struct player_skate *s = &player->_skate;
2726 v3_muladds( player->rb.co, player->rb.to_world[1], 1.0f, s->state.cog );
2727 v3_zero( player->rb.v );
2728 v3_zero( s->state.cog_v );
2729 v4_copy( rp->transform.q, player->rb.q );
2730
2731 s->state.activity = k_skate_activity_air;
2732 s->state.activity_prev = k_skate_activity_air;
2733
2734 player__skate_clear_mechanics( player );
2735 player__skate_reset_animator( player );
2736
2737 v3_zero( s->state.head_position );
2738 s->state.head_position[1] = 1.8f;
2739 }
2740
2741 #endif /* PLAYER_SKATE_C */