6b564ef8a11dc6c819052190ecc9981597a0de98
[carveJwlIkooP6JGAAIwe30JlM.git] / player_skate.c
1 #ifndef PLAYER_SKATE_C
2 #define PLAYER_SKATE_C
3
4 #include "player.h"
5
6 VG_STATIC void player__skate_bind( player_instance *player )
7 {
8 struct player_skate *s = &player->_skate;
9 struct player_avatar *av = player->playeravatar;
10 struct skeleton *sk = &av->sk;
11
12 rb_update_transform( &player->rb );
13 s->anim_stand = skeleton_get_anim( sk, "pose_stand" );
14 s->anim_highg = skeleton_get_anim( sk, "pose_highg" );
15 s->anim_air = skeleton_get_anim( sk, "pose_air" );
16 s->anim_slide = skeleton_get_anim( sk, "pose_slide" );
17 s->anim_push = skeleton_get_anim( sk, "push" );
18 s->anim_push_reverse = skeleton_get_anim( sk, "push_reverse" );
19 s->anim_ollie = skeleton_get_anim( sk, "ollie" );
20 s->anim_ollie_reverse = skeleton_get_anim( sk, "ollie_reverse" );
21 s->anim_grabs = skeleton_get_anim( sk, "grabs" );
22 }
23
24 /*
25 * Collision detection routines
26 *
27 *
28 */
29
30 /*
31 * Does collision detection on a sphere vs world, and applies some smoothing
32 * filters to the manifold afterwards
33 */
34 VG_STATIC int skate_collide_smooth( player_instance *player,
35 m4x3f mtx, rb_sphere *sphere,
36 rb_ct *man )
37 {
38 int len = 0;
39 len = rb_sphere__scene( mtx, sphere, NULL, &world.rb_geo.inf.scene, man );
40
41 for( int i=0; i<len; i++ )
42 {
43 man[i].rba = &player->rb;
44 man[i].rbb = NULL;
45 }
46
47 rb_manifold_filter_coplanar( man, len, 0.03f );
48
49 if( len > 1 )
50 {
51 rb_manifold_filter_backface( man, len );
52 rb_manifold_filter_joint_edges( man, len, 0.03f );
53 rb_manifold_filter_pairs( man, len, 0.03f );
54 }
55 int new_len = rb_manifold_apply_filtered( man, len );
56 if( len && !new_len )
57 len = 1;
58 else
59 len = new_len;
60
61 return len;
62 }
63 /*
64 * Gets the closest grindable edge to the player within max_dist
65 */
66 VG_STATIC struct grind_edge *skate_collect_grind_edge( v3f p0, v3f p1,
67 v3f c0, v3f c1,
68 float max_dist )
69 {
70 bh_iter it;
71 bh_iter_init( 0, &it );
72
73 boxf region;
74
75 box_init_inf( region );
76 box_addpt( region, p0 );
77 box_addpt( region, p1 );
78
79 float k_r = max_dist;
80 v3_add( (v3f){ k_r, k_r, k_r}, region[1], region[1] );
81 v3_add( (v3f){-k_r,-k_r,-k_r}, region[0], region[0] );
82
83 float closest = k_r*k_r;
84 struct grind_edge *closest_edge = NULL;
85
86 int idx;
87 while( bh_next( world.grind_bh, &it, region, &idx ) )
88 {
89 struct grind_edge *edge = &world.grind_edges[ idx ];
90
91 float s,t;
92 v3f pa, pb;
93
94 float d2 =
95 closest_segment_segment( p0, p1, edge->p0, edge->p1, &s,&t, pa, pb );
96
97 if( d2 < closest )
98 {
99 closest = d2;
100 closest_edge = edge;
101 v3_copy( pa, c0 );
102 v3_copy( pb, c1 );
103 }
104 }
105
106 return closest_edge;
107 }
108
109 VG_STATIC int skate_grind_collide( player_instance *player, rb_ct *contact )
110 {
111 v3f p0, p1, c0, c1;
112 v3_muladds( player->rb.co, player->rb.to_world[2], 0.5f, p0 );
113 v3_muladds( player->rb.co, player->rb.to_world[2], -0.5f, p1 );
114 v3_muladds( p0, player->rb.to_world[1], 0.08f, p0 );
115 v3_muladds( p1, player->rb.to_world[1], 0.08f, p1 );
116
117 float const k_r = 0.25f;
118 struct grind_edge *closest_edge = skate_collect_grind_edge( p0, p1,
119 c0, c1, k_r );
120
121 if( closest_edge )
122 {
123 v3f delta;
124 v3_sub( c1, c0, delta );
125
126 if( v3_dot( delta, player->rb.to_world[1] ) > 0.0001f )
127 {
128 contact->p = v3_length( delta );
129 contact->type = k_contact_type_edge;
130 contact->element_id = 0;
131 v3_copy( c1, contact->co );
132 contact->rba = NULL;
133 contact->rbb = NULL;
134
135 v3f edge_dir, axis_dir;
136 v3_sub( closest_edge->p1, closest_edge->p0, edge_dir );
137 v3_normalize( edge_dir );
138 v3_cross( (v3f){0.0f,1.0f,0.0f}, edge_dir, axis_dir );
139 v3_cross( edge_dir, axis_dir, contact->n );
140
141 return 1;
142 }
143 else
144 return 0;
145 }
146
147 return 0;
148 }
149
150 struct grind_info
151 {
152 v3f co, dir, n;
153 };
154
155 VG_STATIC int skate_grind_scansq( v3f pos, v3f dir, float r,
156 struct grind_info *inf )
157 {
158 v4f plane;
159 v3_copy( dir, plane );
160 v3_normalize( plane );
161 plane[3] = v3_dot( plane, pos );
162
163 boxf box;
164 v3_add( pos, (v3f){ r, r, r }, box[1] );
165 v3_sub( pos, (v3f){ r, r, r }, box[0] );
166
167 bh_iter it;
168 bh_iter_init( 0, &it );
169 int idx;
170
171 struct grind_sample
172 {
173 v2f co;
174 v2f normal;
175 v3f normal3,
176 centroid;
177 }
178 samples[48];
179 int sample_count = 0;
180
181 v2f support_min,
182 support_max;
183
184 v3f support_axis;
185 v3_cross( plane, (v3f){0.0f,1.0f,0.0f}, support_axis );
186 v3_normalize( support_axis );
187
188 while( bh_next( world.geo_bh, &it, box, &idx ) )
189 {
190 u32 *ptri = &world.scene_geo->arrindices[ idx*3 ];
191 v3f tri[3];
192
193 for( int j=0; j<3; j++ )
194 v3_copy( world.scene_geo->arrvertices[ptri[j]].co, tri[j] );
195
196 for( int j=0; j<3; j++ )
197 {
198 int i0 = j,
199 i1 = (j+1) % 3;
200
201 struct grind_sample *sample = &samples[ sample_count ];
202 v3f co;
203
204 if( plane_segment( plane, tri[i0], tri[i1], co ) )
205 {
206 v3f d;
207 v3_sub( co, pos, d );
208 if( v3_length2( d ) > r*r )
209 continue;
210
211 v3f va, vb, normal;
212 v3_sub( tri[1], tri[0], va );
213 v3_sub( tri[2], tri[0], vb );
214 v3_cross( va, vb, normal );
215
216 sample->normal[0] = v3_dot( support_axis, normal );
217 sample->normal[1] = normal[1];
218 sample->co[0] = v3_dot( support_axis, d );
219 sample->co[1] = d[1];
220
221 v3_copy( normal, sample->normal3 ); /* normalize later
222 if we want to us it */
223
224 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
225 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
226 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
227
228 v2_normalize( sample->normal );
229 sample_count ++;
230
231 if( sample_count == vg_list_size( samples ) )
232 goto too_many_samples;
233 }
234 }
235 }
236
237 too_many_samples:
238
239 if( sample_count < 2 )
240 return 0;
241
242 v3f
243 average_direction,
244 average_normal;
245
246 v2f min_co, max_co;
247 v2_fill( min_co, INFINITY );
248 v2_fill( max_co, -INFINITY );
249
250 v3_zero( average_direction );
251 v3_zero( average_normal );
252
253 int passed_samples = 0;
254
255 for( int i=0; i<sample_count-1; i++ )
256 {
257 struct grind_sample *si, *sj;
258
259 si = &samples[i];
260
261 for( int j=i+1; j<sample_count; j++ )
262 {
263 if( i == j )
264 continue;
265
266 sj = &samples[j];
267
268 /* non overlapping */
269 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
270 continue;
271
272 /* not sharp angle */
273 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
274 continue;
275
276 /* not convex */
277 v3f v0;
278 v3_sub( sj->centroid, si->centroid, v0 );
279 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
280 v3_dot( v0, sj->normal3 ) <= 0.0f )
281 continue;
282
283 v2_minv( sj->co, min_co, min_co );
284 v2_maxv( sj->co, max_co, max_co );
285
286 v3f n0, n1, dir;
287 v3_copy( si->normal3, n0 );
288 v3_copy( sj->normal3, n1 );
289 v3_cross( n0, n1, dir );
290 v3_normalize( dir );
291
292 /* make sure the directions all face a common hemisphere */
293 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
294 v3_add( average_direction, dir, average_direction );
295
296 if( si->normal3[1] > sj->normal3[1] )
297 v3_add( si->normal3, average_normal, average_normal );
298 else
299 v3_add( sj->normal3, average_normal, average_normal );
300
301 passed_samples ++;
302 }
303 }
304
305 if( !passed_samples )
306 return 0;
307
308 if( (v3_length2( average_direction ) <= 0.001f) ||
309 (v3_length2( average_normal ) <= 0.001f ) )
310 return 0;
311
312 float div = 1.0f/(float)passed_samples;
313 v3_normalize( average_direction );
314 v3_normalize( average_normal );
315
316 v2f average_coord;
317 v2_add( min_co, max_co, average_coord );
318 v2_muls( average_coord, 0.5f, average_coord );
319
320 v3_muls( support_axis, average_coord[0], inf->co );
321 inf->co[1] += average_coord[1];
322 v3_add( pos, inf->co, inf->co );
323 v3_copy( average_normal, inf->n );
324 v3_copy( average_direction, inf->dir );
325
326 vg_line_pt3( inf->co, 0.02f, VG__GREEN );
327 vg_line_arrow( inf->co, average_direction, 0.3f, VG__GREEN );
328 vg_line_arrow( inf->co, inf->n, 0.2f, VG__CYAN );
329
330 return passed_samples;
331 }
332
333 #if 0
334 static inline void skate_grind_coordv2i( v2f co, v2i d )
335 {
336 const float k_inv_res = 1.0f/0.01f;
337 d[0] = floorf( co[0] * k_inv_res );
338 d[1] = floorf( co[1] * k_inv_res );
339 }
340
341 static inline u32 skate_grind_hashv2i( v2i d )
342 {
343 return (d[0] * 92837111) ^ (d[1] * 689287499);
344 }
345
346 static inline u32 skate_grind_hashv2f( v2f co )
347 {
348 v2i d;
349 skate_grind_coordv2i( co, d );
350 return skate_grind_hashv2i( d );
351 }
352
353 VG_STATIC int skate_grind_scansq( player_instance *player, v3f pos,
354 v3f result_co, v3f result_dir, v3f result_n )
355 {
356 v4f plane;
357 v3_copy( player->rb.v, plane );
358 v3_normalize( plane );
359 plane[3] = v3_dot( plane, pos );
360
361 boxf box;
362 float r = k_board_length;
363 v3_add( pos, (v3f){ r, r, r }, box[1] );
364 v3_sub( pos, (v3f){ r, r, r }, box[0] );
365
366 vg_line_boxf( box, VG__BLACK );
367
368 m4x3f mtx;
369 m3x3_copy( player->rb.to_world, mtx );
370 v3_copy( pos, mtx[3] );
371
372 bh_iter it;
373 bh_iter_init( 0, &it );
374 int idx;
375
376 struct grind_sample
377 {
378 v2f co;
379 v2f normal;
380 v3f normal3,
381 centroid;
382 }
383 samples[48];
384
385 int sample_count = 0;
386
387 v2f support_min,
388 support_max;
389
390 v3f support_axis;
391 v3_cross( plane, (v3f){0.0f,1.0f,0.0f}, support_axis );
392 v3_normalize( support_axis );
393
394 while( bh_next( world.geo_bh, &it, box, &idx ) )
395 {
396 u32 *ptri = &world.scene_geo->arrindices[ idx*3 ];
397 v3f tri[3];
398
399 for( int j=0; j<3; j++ )
400 v3_copy( world.scene_geo->arrvertices[ptri[j]].co, tri[j] );
401
402 for( int j=0; j<3; j++ )
403 {
404 int i0 = j,
405 i1 = (j+1) % 3;
406
407 struct grind_sample *sample = &samples[ sample_count ];
408 v3f co;
409
410 if( plane_segment( plane, tri[i0], tri[i1], co ) )
411 {
412 v3f d;
413 v3_sub( co, pos, d );
414 if( v3_length2( d ) > r*r )
415 continue;
416
417 v3f va, vb, normal;
418 v3_sub( tri[1], tri[0], va );
419 v3_sub( tri[2], tri[0], vb );
420 v3_cross( va, vb, normal );
421
422 sample->normal[0] = v3_dot( support_axis, normal );
423 sample->normal[1] = normal[1];
424 sample->co[0] = v3_dot( support_axis, d );
425 sample->co[1] = d[1];
426
427 v3_copy( normal, sample->normal3 ); /* normalize later
428 if we want to us it */
429
430 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
431 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
432 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
433
434 v2_normalize( sample->normal );
435 sample_count ++;
436
437 if( sample_count == vg_list_size( samples ) )
438 {
439 break;
440 }
441 }
442 }
443 }
444
445 if( sample_count < 2 )
446 return 0;
447
448
449
450 /* spacial hashing */
451
452 const int k_hashmap_size = 128;
453 u32 hashmap[k_hashmap_size+1];
454 u32 entries[48];
455
456 for( int i=0; i<k_hashmap_size+1; i++ )
457 hashmap[i] = 0;
458
459 for( int i=0; i<sample_count; i++ )
460 {
461 u32 h = skate_grind_hashv2f( samples[i].co ) % k_hashmap_size;
462 hashmap[ h ] ++;
463 }
464
465 /* partial sums */
466 for( int i=0; i<k_hashmap_size; i++ )
467 {
468 hashmap[i+1] += hashmap[i];
469 }
470
471 /* trash compactor */
472 for( int i=0; i<sample_count; i++ )
473 {
474 u32 h = skate_grind_hashv2f( samples[i].co ) % k_hashmap_size;
475 hashmap[ h ] --;
476
477 entries[ hashmap[h] ] = i;
478 }
479
480
481 v3f
482 average_direction,
483 average_normal;
484
485 v2f min_co, max_co;
486 v2_fill( min_co, INFINITY );
487 v2_fill( max_co, -INFINITY );
488
489 v3_zero( average_direction );
490 v3_zero( average_normal );
491
492 int passed_samples = 0;
493
494 for( int i=0; i<sample_count; i++ )
495 {
496 struct grind_sample *si, *sj;
497 si = &samples[i];
498
499 v2i start;
500 skate_grind_coordv2i( si->co, start );
501
502 v2i offsets[] = { {-1,-1},{ 0,-1},{ 1,-1},
503 {-1, 0},{ 0, 0},{ 1, 0},
504 {-1, 1},{ 0, 1},{ 1, 1} };
505
506 for( int j=0; j<vg_list_size(offsets); j++ )
507 {
508 v2i cell;
509 v2i_add( start, offsets[j], cell );
510
511 u32 h = skate_grind_hashv2i( cell ) % k_hashmap_size;
512
513 int start = hashmap[ h ],
514 end = hashmap[ h+1 ];
515
516 for( int k=start; k<end; k++ )
517 {
518 int idx = entries[ k ];
519 if( idx <= i )
520 continue;
521
522 sj = &samples[idx];
523
524 /* non overlapping */
525 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
526 continue;
527
528 /* not sharp angle */
529 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
530 continue;
531
532 /* not convex */
533 v3f v0;
534 v3_sub( sj->centroid, si->centroid, v0 );
535 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
536 v3_dot( v0, sj->normal3 ) <= 0.0f )
537 continue;
538
539 v2_minv( sj->co, min_co, min_co );
540 v2_maxv( sj->co, max_co, max_co );
541
542 v3f n0, n1, dir;
543 v3_copy( si->normal3, n0 );
544 v3_copy( sj->normal3, n1 );
545 v3_cross( n0, n1, dir );
546 v3_normalize( dir );
547
548 /* make sure the directions all face a common hemisphere */
549 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
550 v3_add( average_direction, dir, average_direction );
551
552 if( si->normal3[1] > sj->normal3[1] )
553 v3_add( si->normal3, average_normal, average_normal );
554 else
555 v3_add( sj->normal3, average_normal, average_normal );
556
557 passed_samples ++;
558 }
559 }
560 }
561
562 if( !passed_samples )
563 return 0;
564
565 if( (v3_length2( average_direction ) <= 0.001f) ||
566 (v3_length2( average_normal ) <= 0.001f ) )
567 return 0;
568
569 float div = 1.0f/(float)passed_samples;
570 v3_normalize( average_direction );
571 v3_normalize( average_normal );
572
573 v2f average_coord;
574 v2_add( min_co, max_co, average_coord );
575 v2_muls( average_coord, 0.5f, average_coord );
576
577
578 v3_muls( support_axis, average_coord[0], result_co );
579 result_co[1] += average_coord[1];
580 v3_add( pos, result_co, result_co );
581
582 #if 0
583 vg_line_pt3( result_co, 0.02f, VG__GREEN );
584
585 v3f p0, p1;
586 v3_muladds( result_co, average_direction, 0.35f, p0 );
587 v3_muladds( result_co, average_direction, -0.35f, p1 );
588 vg_line( p0, p1, VG__PINK );
589 #endif
590
591 v3_copy( average_normal, result_n );
592 v3_copy( average_direction, result_dir );
593
594 return passed_samples;
595 }
596
597 #endif
598
599 VG_STATIC int solve_prediction_for_target( player_instance *player,
600 v3f target, float max_angle,
601 struct land_prediction *p )
602 {
603 /* calculate the exact solution(s) to jump onto that grind spot */
604
605 v3f v0;
606 v3_sub( target, player->rb.co, v0 );
607
608 v3f ax;
609 v3_copy( v0, ax );
610 ax[1] = 0.0f;
611 v3_normalize( ax );
612
613 v2f d = { v3_dot( v0, ax ), v0[1] },
614 v = { v3_dot( player->rb.v, ax ), player->rb.v[1] };
615
616 float a = atan2f( v[1], v[0] ),
617 m = v2_length( v ),
618 root = m*m*m*m - k_gravity*(k_gravity*d[0]*d[0] + 2.0f*d[1]*m*m);
619
620 if( root > 0.0f )
621 {
622 root = sqrtf( root );
623 float a0 = atanf( (m*m + root) / (k_gravity * d[0]) ),
624 a1 = atanf( (m*m - root) / (k_gravity * d[0]) );
625
626 if( fabsf(a0-a) > fabsf(a1-a) )
627 a0 = a1;
628
629 if( fabsf(a0-a) > max_angle )
630 return 0;
631
632 /* TODO: sweep the path before chosing the smallest dist */
633 /* TODO: Jump in normal direction not to_world[1] */
634 /* TODO: Max Y angle */
635
636 p->log_length = 0;
637 p->land_dist = 0.0f;
638 v3_zero( p->apex );
639 p->type = k_prediction_grind;
640
641 v3_muls( ax, cosf( a0 ) * m, p->v );
642 p->v[1] += sinf( a0 ) * m;
643 p->land_dist = d[0] / (cosf(a0)*m);
644
645 /* add a trace */
646 for( int i=0; i<=20; i++ )
647 {
648 float t = (float)i * (1.0f/20.0f) * p->land_dist;
649
650 v3f p0;
651 v3_muls( p->v, t, p0 );
652 p0[1] += -0.5f * k_gravity * t*t;
653
654 v3_add( player->rb.co, p0, p->log[ p->log_length ++ ] );
655 }
656
657 return 1;
658 }
659 else
660 return 0;
661 }
662
663 VG_STATIC
664 void player__approximate_best_trajectory( player_instance *player )
665 {
666 struct player_skate *s = &player->_skate;
667 float k_trace_delta = k_rb_delta * 10.0f;
668
669 s->state.air_start = vg.time;
670 v3_copy( player->rb.v, s->state.air_init_v );
671 v3_copy( player->rb.co, s->state.air_init_co );
672
673 s->prediction_count = 0;
674
675 v3f axis;
676 v3_cross( player->rb.v, player->rb.to_world[1], axis );
677 v3_normalize( axis );
678
679 /* at high slopes, Y component is low */
680 float angle_begin = -(1.0f-fabsf( player->rb.to_world[1][1] )),
681 angle_end = 1.0f;
682
683 struct grind_info grind;
684 int grind_located = 0;
685
686 for( int m=0;m<=15; m++ )
687 {
688 struct land_prediction *p = &s->predictions[ s->prediction_count ++ ];
689
690 p->log_length = 0;
691 p->land_dist = 0.0f;
692 v3_zero( p->apex );
693 p->type = k_prediction_none;
694
695 v3f launch_co, launch_v, co0, co1;
696 v3_copy( player->rb.co, launch_co );
697 v3_copy( player->rb.v, launch_v );
698 v3_copy( launch_co, co0 );
699
700 float vt = (float)m * (1.0f/15.0f),
701 ang = vg_lerpf( angle_begin, angle_end, vt ) * 0.15f;
702
703 v4f qbias;
704 q_axis_angle( qbias, axis, ang );
705 q_mulv( qbias, launch_v, launch_v );
706 v3_copy( launch_v, p->v );
707
708 for( int i=1; i<=50; i++ )
709 {
710 float t = (float)i * k_trace_delta;
711
712 v3_muls( launch_v, t, co1 );
713 co1[1] += -0.5f * k_gravity * t*t;
714 v3_add( launch_co, co1, co1 );
715
716 if( !grind_located && (launch_v[1] - k_gravity*t < 0.0f) )
717 {
718 v3f closest;
719 if( bh_closest_point( world.geo_bh, co1, closest, 1.0f ) != -1 )
720 {
721 v3f ve;
722 v3_copy( launch_v, ve );
723 ve[1] -= k_gravity * t;
724
725 if( skate_grind_scansq( closest, ve, 0.5f, &grind ) )
726 {
727 v2f v0 = { ve[0], ve[2] },
728 v1 = { grind.dir[0], grind.dir[2] };
729
730 v2_normalize( v0 );
731 v2_normalize( v1 );
732
733 float a = v2_dot( v0, v1 );
734
735 if( a >= cosf( VG_PIf * 0.125f ) )
736 {
737 grind_located = 1;
738 }
739 }
740 }
741 }
742
743 float t1;
744 v3f n;
745
746 int idx = spherecast_world( co0, co1, k_board_radius, &t1, n );
747 if( idx != -1 )
748 {
749 v3f co;
750 v3_lerp( co0, co1, t1, co );
751 v3_copy( co, p->log[ p->log_length ++ ] );
752
753 v3_copy( n, p->n );
754 p->type = k_prediction_land;
755
756 v3f ve;
757 v3_copy( launch_v, ve );
758 ve[1] -= k_gravity * t;
759
760 struct grind_info replace_grind;
761 if( skate_grind_scansq( co, ve, 0.3f, &replace_grind ) )
762 {
763 v3_copy( replace_grind.n, p->n );
764 p->type = k_prediction_grind;
765 }
766
767 p->score = -v3_dot( ve, p->n );
768 p->land_dist = t + k_trace_delta * t1;
769
770 break;
771 }
772
773 v3_copy( co1, p->log[ p->log_length ++ ] );
774 v3_copy( co1, co0 );
775 }
776
777 if( p->type == k_prediction_none )
778 s->prediction_count --;
779 }
780
781
782
783 if( grind_located )
784 {
785 /* calculate the exact solution(s) to jump onto that grind spot */
786 struct land_prediction *p = &s->predictions[ s->prediction_count ];
787
788 if( solve_prediction_for_target( player, grind.co, 0.125f*VG_PIf, p ) )
789 {
790 v3_copy( grind.n, p->n );
791
792 /* determine score */
793 v3f ve;
794 v3_copy( p->v, ve );
795 ve[1] -= k_gravity * p->land_dist;
796 p->score = -v3_dot( ve, grind.n ) * 0.85f;
797
798 s->prediction_count ++;
799 }
800 }
801
802
803 float score_min = INFINITY,
804 score_max = -INFINITY;
805
806 struct land_prediction *best = NULL;
807
808 for( int i=0; i<s->prediction_count; i ++ )
809 {
810 struct land_prediction *p = &s->predictions[i];
811
812 if( p->score < score_min )
813 best = p;
814
815 score_min = vg_minf( score_min, p->score );
816 score_max = vg_maxf( score_max, p->score );
817 }
818
819 for( int i=0; i<s->prediction_count; i ++ )
820 {
821 struct land_prediction *p = &s->predictions[i];
822 float s = p->score;
823
824 s -= score_min;
825 s /= (score_max-score_min);
826 s = 1.0f - s;
827
828 p->score = s;
829 p->colour = s * 255.0f;
830
831 if( p == best )
832 p->colour <<= 16;
833 else if( p->type == k_prediction_land )
834 p->colour <<= 8;
835
836 p->colour |= 0xff000000;
837 }
838
839 if( best )
840 {
841 v3_copy( best->n, s->land_normal );
842 v3_copy( best->v, player->rb.v );
843 s->land_dist = best->land_dist;
844
845 v2f steer = { player->input_js1h->axis.value,
846 player->input_js1v->axis.value };
847 v2_normalize_clamp( steer );
848
849 if( (fabsf(steer[1]) > 0.5f) && (s->land_dist >= 1.5f) )
850 {
851 s->state.flip_rate = (1.0f/s->land_dist) * vg_signf(steer[1]) *
852 s->state.reverse ;
853 s->state.flip_time = 0.0f;
854 v3_copy( player->rb.to_world[0], s->state.flip_axis );
855 }
856 else
857 {
858 s->state.flip_rate = 0.0f;
859 v3_zero( s->state.flip_axis );
860 }
861 }
862 else
863 {
864 v3_copy( (v3f){0.0f,1.0f,0.0f}, s->land_normal );
865 }
866 }
867
868 /*
869 *
870 * Varius physics models
871 * ------------------------------------------------
872 */
873
874 /*
875 * Air control, no real physics
876 */
877 VG_STATIC void skate_apply_air_model( player_instance *player )
878 {
879 struct player_skate *s = &player->_skate;
880
881 if( s->state.activity_prev != k_skate_activity_air )
882 player__approximate_best_trajectory( player );
883
884 #if 0
885 m3x3_mulv( s->state.velocity_bias, player->rb.v, player->rb.v );
886
887 ray_hit hit;
888 /*
889 * Prediction
890 */
891 float pstep = VG_TIMESTEP_FIXED * 1.0f;
892 float k_bias = 0.98f;
893
894 v3f pco, pco1, pv;
895 v3_copy( player->rb.co, pco );
896 v3_muls( player->rb.v, 1.0f, pv );
897
898 float time_to_impact = 0.0f;
899 float limiter = 1.0f;
900
901 struct grind_edge *best_grind = NULL;
902 float closest_grind = INFINITY;
903
904 v3f target_normal = { 0.0f, 1.0f, 0.0f };
905 int has_target = 0;
906
907 for( int i=0; i<250; i++ )
908 {
909 v3_copy( pco, pco1 );
910 m3x3_mulv( s->state.velocity_bias, pv, pv );
911
912 pv[1] += -k_gravity * pstep;
913 v3_muladds( pco, pv, pstep, pco );
914
915 ray_hit contact;
916 v3f vdir;
917
918 v3_sub( pco, pco1, vdir );
919 contact.dist = v3_length( vdir );
920 v3_divs( vdir, contact.dist, vdir);
921
922 v3f c0, c1;
923 struct grind_edge *ge = skate_collect_grind_edge( pco, pco1,
924 c0, c1, 0.4f );
925
926 if( ge && (v3_dot((v3f){0.0f,1.0f,0.0f},vdir) < -0.2f ) )
927 {
928 vg_line( ge->p0, ge->p1, 0xff0000ff );
929 vg_line_cross( pco, 0xff0000ff, 0.25f );
930 has_target = 1;
931 break;
932 }
933
934 float orig_dist = contact.dist;
935 if( ray_world( pco1, vdir, &contact ) )
936 {
937 v3_copy( contact.normal, target_normal );
938 has_target = 1;
939 time_to_impact += (contact.dist/orig_dist)*pstep;
940 vg_line_cross( contact.pos, 0xffff0000, 0.25f );
941 break;
942 }
943 time_to_impact += pstep;
944 }
945 #endif
946
947 float angle = v3_dot( player->rb.to_world[1], s->land_normal );
948 angle = vg_clampf( angle, -1.0f, 1.0f );
949 v3f axis;
950 v3_cross( player->rb.to_world[1], s->land_normal, axis );
951
952 v4f correction;
953 q_axis_angle( correction, axis,
954 acosf(angle)*2.0f*VG_TIMESTEP_FIXED );
955 q_mul( correction, player->rb.q, player->rb.q );
956
957 v2f steer = { player->input_js1h->axis.value,
958 player->input_js1v->axis.value };
959 v2_normalize_clamp( steer );
960
961 //s->land_dist = time_to_impact;
962 s->land_dist = 1.0f;
963 }
964
965 VG_STATIC int player_skate_trick_input( player_instance *player );
966 VG_STATIC void skate_apply_trick_model( player_instance *player )
967 {
968 struct player_skate *s = &player->_skate;
969
970 v3f Fd, Fs, F;
971 v3f strength = { 3.7f, 3.6f, 8.0f };
972
973 v3_muls( s->board_trick_residualv, -4.0f , Fd );
974 v3_muls( s->board_trick_residuald, -10.0f, Fs );
975 v3_add( Fd, Fs, F );
976 v3_mul( strength, F, F );
977
978 v3_muladds( s->board_trick_residualv, F, k_rb_delta,
979 s->board_trick_residualv );
980 v3_muladds( s->board_trick_residuald, s->board_trick_residualv,
981 k_rb_delta, s->board_trick_residuald );
982
983 if( s->state.activity == k_skate_activity_air )
984 {
985 if( v3_length2( s->state.trick_vel ) < 0.0001f )
986 return;
987
988 int carry_on = player_skate_trick_input( player );
989
990 /* we assume velocities share a common divisor, in which case the
991 * interval is the minimum value (if not zero) */
992
993 float min_rate = 99999.0f;
994
995 for( int i=0; i<3; i++ )
996 {
997 float v = s->state.trick_vel[i];
998 if( (v > 0.0f) && (v < min_rate) )
999 min_rate = v;
1000 }
1001
1002 float interval = 1.0f / min_rate,
1003 current = floorf( s->state.trick_time / interval ),
1004 next_end = (current+1.0f) * interval;
1005
1006
1007 /* integrate trick velocities */
1008 v3_muladds( s->state.trick_euler, s->state.trick_vel, k_rb_delta,
1009 s->state.trick_euler );
1010
1011 if( !carry_on && (s->state.trick_time + k_rb_delta >= next_end) )
1012 {
1013 s->state.trick_time = 0.0f;
1014 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
1015 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
1016 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
1017 v3_copy( s->state.trick_vel, s->board_trick_residualv );
1018 v3_zero( s->state.trick_vel );
1019 }
1020
1021 s->state.trick_time += k_rb_delta;
1022 }
1023 else
1024 {
1025 if( (v3_length2(s->state.trick_vel) >= 0.0001f ) &&
1026 s->state.trick_time > 0.2f)
1027 {
1028 player__dead_transition( player );
1029 }
1030
1031 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
1032 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
1033 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
1034 s->state.trick_time = 0.0f;
1035 v3_zero( s->state.trick_vel );
1036 }
1037 }
1038
1039 VG_STATIC void skate_apply_grab_model( player_instance *player )
1040 {
1041 struct player_skate *s = &player->_skate;
1042
1043 float grabt = player->input_grab->axis.value;
1044
1045 if( grabt > 0.5f )
1046 {
1047 v2_muladds( s->state.grab_mouse_delta, vg.mouse_delta, 0.02f,
1048 s->state.grab_mouse_delta );
1049
1050 v2_normalize_clamp( s->state.grab_mouse_delta );
1051 }
1052 else
1053 v2_zero( s->state.grab_mouse_delta );
1054
1055 s->state.grabbing = vg_lerpf( s->state.grabbing, grabt, 8.4f*k_rb_delta );
1056 }
1057
1058 VG_STATIC void skate_apply_steering_model( player_instance *player )
1059 {
1060 struct player_skate *s = &player->_skate;
1061
1062 /* Steering */
1063 float input = player->input_js1h->axis.value,
1064 grab = player->input_grab->axis.value,
1065 steer = input * (1.0f-(s->state.jump_charge+grab)*0.4f),
1066 steer_scaled = vg_signf(steer) * powf(steer,2.0f) * k_steer_ground;
1067
1068 v3f steer_axis;
1069 v3_muls( player->rb.to_world[1], -vg_signf( steer_scaled ), steer_axis );
1070
1071 float rate = 26.0f,
1072 top = 1.0f;
1073
1074 if( s->state.activity == k_skate_activity_air )
1075 {
1076 rate = 6.0f * fabsf(steer_scaled);
1077 top = 1.5f;
1078 }
1079
1080 else if( s->state.activity >= k_skate_activity_grind_any )
1081 {
1082 rate *= fabsf(steer_scaled);
1083
1084 float a = 0.8f * -steer_scaled * k_rb_delta;
1085
1086 v4f q;
1087 q_axis_angle( q, player->rb.to_world[1], a );
1088 q_mulv( q, s->grind_vec, s->grind_vec );
1089
1090 #if 0
1091 float tilt = player->input_js1v->axis.value;
1092 tilt *= tilt * 0.8f * k_rb_delta;
1093
1094 q_axis_angle( q, player->rb.to_world[0], tilt );
1095 q_mulv( q, s->grind_vec, s->grind_vec );
1096 #endif
1097
1098 v3_normalize( s->grind_vec );
1099 }
1100
1101 else if( s->state.manual_direction )
1102 {
1103 rate = 35.0f;
1104 top = 1.5f;
1105 }
1106
1107 float current = v3_dot( player->rb.to_world[1], player->rb.w ),
1108 addspeed = (steer_scaled * -top) - current,
1109 maxaccel = rate * k_rb_delta,
1110 accel = vg_clampf( addspeed, -maxaccel, maxaccel );
1111
1112 v3_muladds( player->rb.w, player->rb.to_world[1], accel, player->rb.w );
1113 }
1114
1115 /*
1116 * Computes friction and surface interface model
1117 */
1118 VG_STATIC void skate_apply_friction_model( player_instance *player )
1119 {
1120 struct player_skate *s = &player->_skate;
1121
1122 /*
1123 * Computing localized friction forces for controlling the character
1124 * Friction across X is significantly more than Z
1125 */
1126
1127 v3f vel;
1128 m3x3_mulv( player->rb.to_local, player->rb.v, vel );
1129 float slip = 0.0f;
1130
1131 if( fabsf(vel[2]) > 0.01f )
1132 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
1133
1134 if( fabsf( slip ) > 1.2f )
1135 slip = vg_signf( slip ) * 1.2f;
1136
1137 s->state.slip = slip;
1138 s->state.reverse = -vg_signf(vel[2]);
1139
1140 vel[0] += vg_cfrictf( vel[0], k_friction_lat * k_rb_delta );
1141 vel[2] += vg_cfrictf( vel[2], k_friction_resistance * k_rb_delta );
1142
1143 /* Pushing additive force */
1144
1145 if( !player->input_jump->button.value )
1146 {
1147 if( player->input_push->button.value )
1148 {
1149 if( (vg.time - s->state.cur_push) > 0.25 )
1150 s->state.start_push = vg.time;
1151
1152 s->state.cur_push = vg.time;
1153
1154 double push_time = vg.time - s->state.start_push;
1155
1156 float cycle_time = push_time*k_push_cycle_rate,
1157 accel = k_push_accel * (sinf(cycle_time)*0.5f+0.5f),
1158 amt = accel * VG_TIMESTEP_FIXED,
1159 current = v3_length( vel ),
1160 new_vel = vg_minf( current + amt, k_max_push_speed ),
1161 delta = new_vel - vg_minf( current, k_max_push_speed );
1162
1163 vel[2] += delta * -s->state.reverse;
1164 }
1165 }
1166
1167 /* Send back to velocity */
1168 m3x3_mulv( player->rb.to_world, vel, player->rb.v );
1169 }
1170
1171 VG_STATIC void skate_apply_jump_model( player_instance *player )
1172 {
1173 struct player_skate *s = &player->_skate;
1174 int charging_jump_prev = s->state.charging_jump;
1175 s->state.charging_jump = player->input_jump->button.value;
1176
1177 /* Cannot charge this in air */
1178 if( s->state.activity == k_skate_activity_air )
1179 {
1180 s->state.charging_jump = 0;
1181 return;
1182 }
1183
1184 if( s->state.charging_jump )
1185 {
1186 s->state.jump_charge += k_rb_delta * k_jump_charge_speed;
1187
1188 if( !charging_jump_prev )
1189 s->state.jump_dir = s->state.reverse>0.0f? 1: 0;
1190 }
1191 else
1192 {
1193 s->state.jump_charge -= k_jump_charge_speed * k_rb_delta;
1194 }
1195
1196 s->state.jump_charge = vg_clampf( s->state.jump_charge, 0.0f, 1.0f );
1197
1198 /* player let go after charging past 0.2: trigger jump */
1199 if( (!s->state.charging_jump) && (s->state.jump_charge > 0.2f) )
1200 {
1201 v3f jumpdir;
1202
1203 /* Launch more up if alignment is up else improve velocity */
1204 float aup = v3_dot( (v3f){0.0f,1.0f,0.0f}, player->rb.to_world[1] ),
1205 mod = 0.5f,
1206 dir = mod + fabsf(aup)*(1.0f-mod);
1207
1208 v3_copy( player->rb.v, jumpdir );
1209 v3_normalize( jumpdir );
1210 v3_muls( jumpdir, 1.0f-dir, jumpdir );
1211 v3_muladds( jumpdir, player->rb.to_world[1], dir, jumpdir );
1212 v3_normalize( jumpdir );
1213
1214 float force = k_jump_force*s->state.jump_charge;
1215 v3_muladds( player->rb.v, jumpdir, force, player->rb.v );
1216 s->state.jump_charge = 0.0f;
1217 s->state.jump_time = vg.time;
1218 s->state.activity = k_skate_activity_air;
1219
1220 v2f steer = { player->input_js1h->axis.value,
1221 player->input_js1v->axis.value };
1222 v2_normalize_clamp( steer );
1223
1224
1225 #if 0
1226 float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
1227 s->state.steery_s = -steer[0] * maxspin;
1228 s->state.steerx = s->state.steerx_s;
1229 s->state.lift_frames ++;
1230 #endif
1231
1232 /* FIXME audio events */
1233 #if 0
1234 audio_lock();
1235 audio_player_set_flags( &audio_player_extra, AUDIO_FLAG_SPACIAL_3D );
1236 audio_player_set_position( &audio_player_extra, player.rb.co );
1237 audio_player_set_vol( &audio_player_extra, 20.0f );
1238 audio_player_playclip( &audio_player_extra, &audio_jumps[rand()%2] );
1239 audio_unlock();
1240 #endif
1241 }
1242 }
1243
1244 VG_STATIC void skate_apply_pump_model( player_instance *player )
1245 {
1246 struct player_skate *s = &player->_skate;
1247
1248 /* Throw / collect routine
1249 *
1250 * TODO: Max speed boost
1251 */
1252 if( player->input_grab->axis.value > 0.5f )
1253 {
1254 if( s->state.activity == k_skate_activity_ground )
1255 {
1256 /* Throw */
1257 v3_muls( player->rb.to_world[1], k_mmthrow_scale, s->state.throw_v );
1258 }
1259 }
1260 else
1261 {
1262 /* Collect */
1263 float doty = v3_dot( player->rb.to_world[1], s->state.throw_v );
1264
1265 v3f Fl, Fv;
1266 v3_muladds( s->state.throw_v, player->rb.to_world[1], -doty, Fl);
1267
1268 if( s->state.activity == k_skate_activity_ground )
1269 {
1270 v3_muladds( player->rb.v, Fl, k_mmcollect_lat, player->rb.v );
1271 v3_muladds( s->state.throw_v, Fl, -k_mmcollect_lat, s->state.throw_v );
1272 }
1273
1274 v3_muls( player->rb.to_world[1], -doty, Fv );
1275 v3_muladds( player->rb.v, Fv, k_mmcollect_vert, player->rb.v );
1276 v3_muladds( s->state.throw_v, Fv, k_mmcollect_vert, s->state.throw_v );
1277 }
1278
1279 /* Decay */
1280 if( v3_length2( s->state.throw_v ) > 0.0001f )
1281 {
1282 v3f dir;
1283 v3_copy( s->state.throw_v, dir );
1284 v3_normalize( dir );
1285
1286 float max = v3_dot( dir, s->state.throw_v ),
1287 amt = vg_minf( k_mmdecay * k_rb_delta, max );
1288 v3_muladds( s->state.throw_v, dir, -amt, s->state.throw_v );
1289 }
1290 }
1291
1292 VG_STATIC void skate_apply_cog_model( player_instance *player )
1293 {
1294 struct player_skate *s = &player->_skate;
1295
1296 v3f ideal_cog, ideal_diff, ideal_dir;
1297 v3_copy( s->state.up_dir, ideal_dir );
1298 v3_normalize( ideal_dir );
1299
1300 v3_muladds( player->rb.co, ideal_dir,
1301 1.0f-player->input_grab->axis.value, ideal_cog );
1302 v3_sub( ideal_cog, s->state.cog, ideal_diff );
1303
1304 /* Apply velocities */
1305 v3f rv;
1306 v3_sub( player->rb.v, s->state.cog_v, rv );
1307
1308 v3f F;
1309 v3_muls( ideal_diff, -k_cog_spring * k_rb_rate, F );
1310 v3_muladds( F, rv, -k_cog_damp * k_rb_rate, F );
1311
1312 float ra = k_cog_mass_ratio,
1313 rb = 1.0f-k_cog_mass_ratio;
1314
1315 /* Apply forces & intergrate */
1316 v3_muladds( s->state.cog_v, F, -rb, s->state.cog_v );
1317 s->state.cog_v[1] += -9.8f * k_rb_delta;
1318 v3_muladds( s->state.cog, s->state.cog_v, k_rb_delta, s->state.cog );
1319 }
1320
1321
1322 VG_STATIC void skate_integrate( player_instance *player )
1323 {
1324 struct player_skate *s = &player->_skate;
1325
1326 float decay_rate = 1.0f - (k_rb_delta * 3.0f),
1327 decay_rate_y = 1.0f;
1328
1329 if( s->state.activity >= k_skate_activity_grind_any )
1330 {
1331 decay_rate = 1.0f-vg_lerpf( 3.0f, 20.0f, s->grind_strength ) * k_rb_delta;
1332 decay_rate_y = decay_rate;
1333 }
1334
1335 float wx = v3_dot( player->rb.w, player->rb.to_world[0] ) * decay_rate,
1336 wy = v3_dot( player->rb.w, player->rb.to_world[1] ) * decay_rate_y,
1337 wz = v3_dot( player->rb.w, player->rb.to_world[2] ) * decay_rate;
1338
1339 v3_muls( player->rb.to_world[0], wx, player->rb.w );
1340 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
1341 v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
1342
1343 s->state.flip_time += s->state.flip_rate * k_rb_delta;
1344 rb_update_transform( &player->rb );
1345 }
1346
1347 /*
1348 * 1 2 or 3
1349 */
1350
1351 VG_STATIC int player_skate_trick_input( player_instance *player )
1352 {
1353 return (player->input_trick0->button.value) |
1354 (player->input_trick1->button.value << 1) |
1355 (player->input_trick2->button.value << 1) |
1356 (player->input_trick2->button.value);
1357 }
1358
1359 VG_STATIC void player__skate_pre_update( player_instance *player )
1360 {
1361 struct player_skate *s = &player->_skate;
1362
1363 if( vg_input_button_down( player->input_use ) )
1364 {
1365 player->subsystem = k_player_subsystem_walk;
1366
1367 v3f angles;
1368 v3_copy( player->cam.angles, angles );
1369 angles[2] = 0.0f;
1370
1371 player__walk_transition( player, angles );
1372 return;
1373 }
1374
1375 if( vg_input_button_down( player->input_reset ) )
1376 {
1377 player->rb.co[1] += 2.0f;
1378 s->state.cog[1] += 2.0f;
1379 q_axis_angle( player->rb.q, (v3f){1.0f,0.0f,0.0f}, VG_PIf * 0.25f );
1380 v3_zero( player->rb.w );
1381 v3_zero( player->rb.v );
1382
1383 rb_update_transform( &player->rb );
1384 }
1385
1386 int trick_id;
1387 if( (s->state.activity == k_skate_activity_air) &&
1388 (trick_id = player_skate_trick_input( player )) )
1389 {
1390 if( (vg.time - s->state.jump_time) < 0.1f )
1391 {
1392 v3_zero( s->state.trick_vel );
1393 s->state.trick_time = 0.0f;
1394
1395 if( trick_id == 1 )
1396 {
1397 s->state.trick_vel[0] = 3.0f;
1398 }
1399 else if( trick_id == 2 )
1400 {
1401 s->state.trick_vel[2] = 3.0f;
1402 }
1403 else if( trick_id == 3 )
1404 {
1405 s->state.trick_vel[0] = 2.0f;
1406 s->state.trick_vel[2] = 2.0f;
1407 }
1408 }
1409 }
1410 }
1411
1412 VG_STATIC void player__skate_post_update( player_instance *player )
1413 {
1414 struct player_skate *s = &player->_skate;
1415
1416 for( int i=0; i<s->prediction_count; i++ )
1417 {
1418 struct land_prediction *p = &s->predictions[i];
1419
1420 for( int j=0; j<p->log_length - 1; j ++ )
1421 {
1422 float brightness = p->score*p->score*p->score;
1423 v3f p1;
1424 v3_lerp( p->log[j], p->log[j+1], brightness, p1 );
1425 vg_line( p->log[j], p1, p->colour );
1426 }
1427
1428 vg_line_cross( p->log[p->log_length-1], p->colour, 0.25f );
1429
1430 v3f p1;
1431 v3_add( p->log[p->log_length-1], p->n, p1 );
1432 vg_line( p->log[p->log_length-1], p1, 0xffffffff );
1433
1434 vg_line_pt3( p->apex, 0.02f, 0xffffffff );
1435 }
1436
1437 #if 0
1438 vg_line_pt3( s->state.apex, 0.030f, 0xff0000ff );
1439 #endif
1440 }
1441
1442 /*
1443 * truck alignment model at ra(local)
1444 * returns 1 if valid surface:
1445 * surface_normal will be filled out with an averaged normal vector
1446 * axel_dir will be the direction from left to right wheels
1447 *
1448 * returns 0 if no good surface found
1449 */
1450 VG_STATIC
1451 int skate_compute_surface_alignment( player_instance *player,
1452 v3f ra, u32 colour,
1453 v3f surface_normal, v3f axel_dir )
1454 {
1455 struct player_skate *s = &player->_skate;
1456
1457 v3f truck, left, right;
1458 m4x3_mulv( player->rb.to_world, ra, truck );
1459 v3_muladds( truck, player->rb.to_world[0], -k_board_width, left );
1460 v3_muladds( truck, player->rb.to_world[0], k_board_width, right );
1461
1462 vg_line( left, right, colour );
1463
1464 v3_muladds( left, player->rb.to_world[1], 0.1f, left );
1465 v3_muladds( right, player->rb.to_world[1], 0.1f, right );
1466
1467 float k_max_truck_flex = VG_PIf * 0.25f;
1468
1469 ray_hit ray_l, ray_r;
1470 ray_l.dist = 0.2f;
1471 ray_r.dist = 0.2f;
1472
1473 v3f dir;
1474 v3_muls( player->rb.to_world[1], -1.0f, dir );
1475
1476 int res_l = ray_world( left, dir, &ray_l ),
1477 res_r = ray_world( right, dir, &ray_r );
1478
1479 /* ignore bad normals */
1480 if( res_l )
1481 if( v3_dot( ray_l.normal, player->rb.to_world[1] ) < 0.7071f )
1482 res_l = 0;
1483
1484 if( res_r )
1485 if( v3_dot( ray_r.normal, player->rb.to_world[1] ) < 0.7071f )
1486 res_r = 0;
1487
1488 v3f v0;
1489 v3f midpoint;
1490 v3f tangent_average;
1491 v3_muladds( truck, player->rb.to_world[1], -k_board_radius, midpoint );
1492 v3_zero( tangent_average );
1493
1494 if( res_l || res_r )
1495 {
1496 v3f p0, p1, t;
1497 v3_copy( midpoint, p0 );
1498 v3_copy( midpoint, p1 );
1499
1500 if( res_l )
1501 {
1502 v3_copy( ray_l.pos, p0 );
1503 v3_cross( ray_l.normal, player->rb.to_world[0], t );
1504 v3_add( t, tangent_average, tangent_average );
1505 }
1506 if( res_r )
1507 {
1508 v3_copy( ray_r.pos, p1 );
1509 v3_cross( ray_r.normal, player->rb.to_world[0], t );
1510 v3_add( t, tangent_average, tangent_average );
1511 }
1512
1513 v3_sub( p1, p0, v0 );
1514 v3_normalize( v0 );
1515 }
1516 else
1517 {
1518 /* fallback: use the closes point to the trucks */
1519 v3f closest;
1520 int idx = bh_closest_point( world.geo_bh, midpoint, closest, 0.1f );
1521
1522 if( idx != -1 )
1523 {
1524 u32 *tri = &world.scene_geo->arrindices[ idx * 3 ];
1525 v3f verts[3];
1526
1527 for( int j=0; j<3; j++ )
1528 v3_copy( world.scene_geo->arrvertices[ tri[j] ].co, verts[j] );
1529
1530 v3f vert0, vert1, n;
1531 v3_sub( verts[1], verts[0], vert0 );
1532 v3_sub( verts[2], verts[0], vert1 );
1533 v3_cross( vert0, vert1, n );
1534 v3_normalize( n );
1535
1536 if( v3_dot( n, player->rb.to_world[1] ) < 0.3f )
1537 return 0;
1538
1539 v3_cross( n, player->rb.to_world[2], v0 );
1540 v3_muladds( v0, player->rb.to_world[2],
1541 -v3_dot( player->rb.to_world[2], v0 ), v0 );
1542 v3_normalize( v0 );
1543
1544 v3f t;
1545 v3_cross( n, player->rb.to_world[0], t );
1546 v3_add( t, tangent_average, tangent_average );
1547 }
1548 else
1549 return 0;
1550 }
1551
1552 v3_muladds( truck, v0, k_board_width, right );
1553 v3_muladds( truck, v0, -k_board_width, left );
1554
1555 vg_line( left, right, VG__WHITE );
1556
1557 v3_normalize( tangent_average );
1558 v3_cross( v0, tangent_average, surface_normal );
1559 v3_copy( v0, axel_dir );
1560
1561 return 1;
1562 }
1563
1564 VG_STATIC void skate_weight_distribute( player_instance *player )
1565 {
1566 struct player_skate *s = &player->_skate;
1567 v3_zero( s->weight_distribution );
1568
1569 int reverse_dir = v3_dot( player->rb.to_world[2], player->rb.v ) < 0.0f?1:-1;
1570
1571 if( s->state.manual_direction == 0 )
1572 {
1573 if( (player->input_js1v->axis.value > 0.7f) &&
1574 (s->state.activity == k_skate_activity_ground) &&
1575 (s->state.jump_charge <= 0.01f) )
1576 s->state.manual_direction = reverse_dir;
1577 }
1578 else
1579 {
1580 if( player->input_js1v->axis.value < 0.1f )
1581 {
1582 s->state.manual_direction = 0;
1583 }
1584 else
1585 {
1586 if( reverse_dir != s->state.manual_direction )
1587 {
1588 #if 0
1589 player__dead_transition( player );
1590 #endif
1591 return;
1592 }
1593 }
1594 }
1595
1596 if( s->state.manual_direction )
1597 {
1598 float amt = vg_minf( player->input_js1v->axis.value * 8.0f, 1.0f );
1599 s->weight_distribution[2] = k_board_length * amt *
1600 (float)s->state.manual_direction;
1601 }
1602
1603 /* TODO: Fall back on land normal */
1604 /* TODO: Lerp weight distribution */
1605 /* TODO: Can start manual only if not charge jump */
1606 if( s->state.manual_direction )
1607 {
1608 v3f plane_z;
1609
1610 m3x3_mulv( player->rb.to_world, s->weight_distribution, plane_z );
1611 v3_negate( plane_z, plane_z );
1612
1613 v3_muladds( plane_z, s->surface_picture,
1614 -v3_dot( plane_z, s->surface_picture ), plane_z );
1615 v3_normalize( plane_z );
1616
1617 v3_muladds( plane_z, s->surface_picture, 0.3f, plane_z );
1618 v3_normalize( plane_z );
1619
1620 v3f p1;
1621 v3_muladds( player->rb.co, plane_z, 1.5f, p1 );
1622 vg_line( player->rb.co, p1, VG__GREEN );
1623
1624 v3f refdir;
1625 v3_muls( player->rb.to_world[2], -(float)s->state.manual_direction,
1626 refdir );
1627
1628 rb_effect_spring_target_vector( &player->rb, refdir, plane_z,
1629 k_manul_spring, k_manul_dampener,
1630 s->substep_delta );
1631 }
1632 }
1633
1634 VG_STATIC void skate_adjust_up_direction( player_instance *player )
1635 {
1636 struct player_skate *s = &player->_skate;
1637
1638 if( s->state.activity == k_skate_activity_ground )
1639 {
1640 v3f target;
1641 v3_copy( s->surface_picture, target );
1642
1643 target[1] += 2.0f * s->surface_picture[1];
1644 v3_normalize( target );
1645
1646 v3_lerp( s->state.up_dir, target,
1647 8.0f * s->substep_delta, s->state.up_dir );
1648 }
1649 else if( s->state.activity == k_skate_activity_air )
1650 {
1651 v3_lerp( s->state.up_dir, player->rb.to_world[1],
1652 8.0f * s->substep_delta, s->state.up_dir );
1653 }
1654 else
1655 {
1656 /* FIXME UNDEFINED! */
1657 vg_warn( "Undefined up target!\n" );
1658
1659 v3_lerp( s->state.up_dir, (v3f){0.0f,1.0f,0.0f},
1660 12.0f * s->substep_delta, s->state.up_dir );
1661 }
1662 }
1663
1664 VG_STATIC int skate_point_visible( v3f origin, v3f target )
1665 {
1666 v3f dir;
1667 v3_sub( target, origin, dir );
1668
1669 ray_hit ray;
1670 ray.dist = v3_length( dir );
1671 v3_muls( dir, 1.0f/ray.dist, dir );
1672 ray.dist -= 0.025f;
1673
1674 if( ray_world( origin, dir, &ray ) )
1675 return 0;
1676
1677 return 1;
1678 }
1679
1680 VG_STATIC void skate_grind_orient( struct grind_info *inf, m3x3f mtx )
1681 {
1682 /* TODO: Is N and Dir really orthogonal? */
1683 v3_copy( inf->dir, mtx[0] );
1684 v3_copy( inf->n, mtx[1] );
1685 v3_cross( mtx[0], mtx[1], mtx[2] );
1686 }
1687
1688 VG_STATIC void skate_grind_friction( player_instance *player,
1689 struct grind_info *inf, float strength )
1690 {
1691 v3f v2;
1692 v3_muladds( player->rb.to_world[2], inf->n,
1693 -v3_dot( player->rb.to_world[2], inf->n ), v2 );
1694
1695 float a = 1.0f-fabsf( v3_dot( v2, inf->dir ) ),
1696 dir = vg_signf( v3_dot( player->rb.v, inf->dir ) ),
1697 F = a * -dir * k_grind_max_friction;
1698
1699 v3_muladds( player->rb.v, inf->dir, F*k_rb_delta*strength, player->rb.v );
1700 }
1701
1702 VG_STATIC void skate_grind_decay( player_instance *player,
1703 struct grind_info *inf, float strength )
1704 {
1705 m3x3f mtx, mtx_inv;
1706 skate_grind_orient( inf, mtx );
1707 m3x3_transpose( mtx, mtx_inv );
1708
1709 v3f v_grind;
1710 m3x3_mulv( mtx_inv, player->rb.v, v_grind );
1711
1712 float decay = 1.0f - ( k_rb_delta * k_grind_decayxy * strength );
1713 v3_mul( v_grind, (v3f){ 1.0f, decay, decay }, v_grind );
1714 m3x3_mulv( mtx, v_grind, player->rb.v );
1715 }
1716
1717 VG_STATIC void skate_grind_truck_apply( player_instance *player,
1718 float sign, struct grind_info *inf,
1719 float strength )
1720 {
1721 struct player_skate *s = &player->_skate;
1722
1723 /* TODO: Trash compactor this */
1724 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1725 v3f raw, wsp;
1726 m3x3_mulv( player->rb.to_world, ra, raw );
1727 v3_add( player->rb.co, raw, wsp );
1728
1729
1730
1731 v3f delta;
1732 v3_sub( inf->co, wsp, delta );
1733
1734 /* spring force */
1735 v3_muladds( player->rb.v, delta, k_spring_force*strength*k_rb_delta,
1736 player->rb.v );
1737
1738 skate_grind_decay( player, inf, strength );
1739 skate_grind_friction( player, inf, strength );
1740
1741 /* yeah yeah yeah yeah */
1742 v3f raw_nplane, axis;
1743 v3_muladds( raw, inf->n, -v3_dot( inf->n, raw ), raw_nplane );
1744 v3_cross( raw_nplane, inf->n, axis );
1745 v3_normalize( axis );
1746
1747 /* orientation */
1748 m3x3f mtx;
1749 skate_grind_orient( inf, mtx );
1750 v3f target_fwd, fwd, up, target_up;
1751 m3x3_mulv( mtx, s->grind_vec, target_fwd );
1752 v3_copy( raw_nplane, fwd );
1753 v3_copy( player->rb.to_world[1], up );
1754 v3_copy( inf->n, target_up );
1755
1756 v3_muladds( target_fwd, inf->n, -v3_dot(inf->n,target_fwd), target_fwd );
1757 v3_muladds( fwd, inf->n, -v3_dot(inf->n,fwd), fwd );
1758
1759 v3_normalize( target_fwd );
1760 v3_normalize( fwd );
1761
1762 float way = player->input_js1v->axis.value *
1763 vg_signf( v3_dot( raw_nplane, player->rb.v ) );
1764
1765 v4f q;
1766 q_axis_angle( q, axis, VG_PIf*0.125f * way );
1767 q_mulv( q, target_up, target_up );
1768 q_mulv( q, target_fwd, target_fwd );
1769
1770 rb_effect_spring_target_vector( &player->rb, up, target_up,
1771 k_grind_spring,
1772 k_grind_dampener,
1773 k_rb_delta );
1774
1775 rb_effect_spring_target_vector( &player->rb, fwd, target_fwd,
1776 k_grind_spring*strength,
1777 k_grind_dampener*strength,
1778 k_rb_delta );
1779
1780 vg_line_arrow( player->rb.co, target_up, 1.0f, VG__GREEN );
1781 vg_line_arrow( player->rb.co, fwd, 0.8f, VG__RED );
1782 vg_line_arrow( player->rb.co, target_fwd, 1.0f, VG__YELOW );
1783
1784 s->grind_strength = strength;
1785
1786 /* Fake contact */
1787 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1788 m4x3_mulv( player->rb.to_local, wsp, limit->ra );
1789 m3x3_mulv( player->rb.to_local, inf->n, limit->n );
1790 limit->p = 0.0f;
1791
1792 v3_copy( inf->dir, s->grind_dir );
1793 }
1794
1795 VG_STATIC void skate_5050_apply( player_instance *player,
1796 struct grind_info *inf_front,
1797 struct grind_info *inf_back )
1798 {
1799 struct player_skate *s = &player->_skate;
1800 struct grind_info inf_avg;
1801 }
1802
1803 VG_STATIC int skate_grind_truck_renew( player_instance *player, float sign,
1804 struct grind_info *inf )
1805 {
1806 struct player_skate *s = &player->_skate;
1807
1808 v3f wheel_co = { 0.0f, 0.0f, sign * k_board_length },
1809 grind_co = { 0.0f, -k_board_radius, sign * k_board_length };
1810
1811 m4x3_mulv( player->rb.to_world, wheel_co, wheel_co );
1812 m4x3_mulv( player->rb.to_world, grind_co, grind_co );
1813
1814 /* Exit condition: lost grind tracking */
1815 if( !skate_grind_scansq( grind_co, player->rb.v, 0.3f, inf ) )
1816 return 0;
1817
1818 /* Exit condition: cant see grind target directly */
1819 if( !skate_point_visible( wheel_co, inf->co ) )
1820 return 0;
1821
1822 /* Exit condition: minimum velocity not reached, but allow a bit of error */
1823 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1824 minv = k_grind_axel_min_vel*0.8f;
1825
1826 if( dv < minv )
1827 return 0;
1828
1829 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1830 return 0;
1831
1832 v3_copy( inf->dir, s->grind_dir );
1833 return 1;
1834 }
1835
1836 VG_STATIC int skate_grind_truck_entry( player_instance *player, float sign,
1837 struct grind_info *inf )
1838 {
1839 struct player_skate *s = &player->_skate;
1840
1841 /* TODO: Trash compactor this */
1842 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1843
1844 v3f raw, wsp;
1845 m3x3_mulv( player->rb.to_world, ra, raw );
1846 v3_add( player->rb.co, raw, wsp );
1847
1848 if( skate_grind_scansq( wsp, player->rb.v, 0.3, inf ) )
1849 {
1850 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1851 return 0;
1852
1853 /* velocity should be at least 60% aligned */
1854 v3f pv, axis;
1855 v3_cross( inf->n, inf->dir, axis );
1856 v3_muladds( player->rb.v, inf->n, -v3_dot( player->rb.v, inf->n ), pv );
1857
1858 if( v3_length2( pv ) < 0.0001f )
1859 return 0;
1860 v3_normalize( pv );
1861
1862 if( fabsf(v3_dot( pv, inf->dir )) < k_grind_axel_max_angle )
1863 return 0;
1864
1865 if( v3_dot( player->rb.v, inf->n ) > 0.5f )
1866 return 0;
1867
1868 #if 0
1869 /* check for vertical alignment */
1870 if( v3_dot( player->rb.to_world[1], inf->n ) < k_grind_axel_max_vangle )
1871 return 0;
1872 #endif
1873
1874 v3f local_co, local_dir, local_n;
1875 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1876 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1877 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1878
1879 v2f delta = { local_co[0], local_co[2] - k_board_length*sign };
1880
1881 float truck_height = -(k_board_radius+0.03f);
1882
1883 v3f rv;
1884 v3_cross( player->rb.w, raw, rv );
1885 v3_add( player->rb.v, rv, rv );
1886
1887 if( (local_co[1] >= truck_height) &&
1888 (v2_length2( delta ) <= k_board_radius*k_board_radius) )
1889 {
1890 return 1;
1891 }
1892 }
1893
1894 return 0;
1895 }
1896
1897 VG_STATIC void skate_boardslide_apply( player_instance *player,
1898 struct grind_info *inf )
1899 {
1900 struct player_skate *s = &player->_skate;
1901
1902 v3f local_co, local_dir, local_n;
1903 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1904 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1905 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1906
1907 v3f intersection;
1908 v3_muladds( local_co, local_dir, local_co[0]/-local_dir[0],
1909 intersection );
1910 v3_copy( intersection, s->weight_distribution );
1911
1912 skate_grind_decay( player, inf, 0.1f );
1913 skate_grind_friction( player, inf, 0.25f );
1914
1915 /* direction alignment */
1916 v3f dir, perp;
1917 v3_cross( local_dir, local_n, perp );
1918 v3_muls( local_dir, vg_signf(local_dir[0]), dir );
1919 v3_muls( perp, vg_signf(perp[2]), perp );
1920
1921 m3x3_mulv( player->rb.to_world, dir, dir );
1922 m3x3_mulv( player->rb.to_world, perp, perp );
1923
1924 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1925 dir,
1926 k_grind_spring, k_grind_dampener,
1927 k_rb_delta );
1928
1929 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[2],
1930 perp,
1931 k_grind_spring, k_grind_dampener,
1932 k_rb_delta );
1933
1934 vg_line_arrow( player->rb.co, dir, 0.5f, VG__GREEN );
1935 vg_line_arrow( player->rb.co, perp, 0.5f, VG__BLUE );
1936
1937 v3_copy( inf->dir, s->grind_dir );
1938 }
1939
1940 VG_STATIC int skate_boardslide_entry( player_instance *player,
1941 struct grind_info *inf )
1942 {
1943 struct player_skate *s = &player->_skate;
1944
1945 if( skate_grind_scansq( player->rb.co,
1946 player->rb.to_world[0], k_board_length,
1947 inf ) )
1948 {
1949 v3f local_co, local_dir;
1950 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1951 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1952
1953 if( (fabsf(local_co[2]) <= k_board_length) && /* within wood area */
1954 (local_co[1] >= 0.0f) && /* at deck level */
1955 (fabsf(local_dir[0]) >= 0.5f) ) /* perpendicular to us */
1956 {
1957 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1958 return 0;
1959
1960 return 1;
1961 }
1962 }
1963
1964 return 0;
1965 }
1966
1967 VG_STATIC int skate_boardslide_renew( player_instance *player,
1968 struct grind_info *inf )
1969 {
1970 struct player_skate *s = &player->_skate;
1971
1972 if( !skate_grind_scansq( player->rb.co,
1973 player->rb.to_world[0], k_board_length,
1974 inf ) )
1975 return 0;
1976
1977 /* Exit condition: cant see grind target directly */
1978 v3f vis;
1979 v3_muladds( player->rb.co, player->rb.to_world[1], 0.2f, vis );
1980 if( !skate_point_visible( vis, inf->co ) )
1981 return 0;
1982
1983 /* Exit condition: minimum velocity not reached, but allow a bit of error
1984 * TODO: trash compactor */
1985 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1986 minv = k_grind_axel_min_vel*0.8f;
1987
1988 if( dv < minv )
1989 return 0;
1990
1991 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1992 return 0;
1993
1994 return 1;
1995 }
1996
1997 VG_STATIC void skate_store_grind_vec( player_instance *player,
1998 struct grind_info *inf )
1999 {
2000 struct player_skate *s = &player->_skate;
2001
2002 m3x3f mtx;
2003 skate_grind_orient( inf, mtx );
2004 m3x3_transpose( mtx, mtx );
2005
2006 v3f raw;
2007 v3_sub( inf->co, player->rb.co, raw );
2008
2009 m3x3_mulv( mtx, raw, s->grind_vec );
2010 v3_normalize( s->grind_vec );
2011 v3_copy( inf->dir, s->grind_dir );
2012 }
2013
2014 VG_STATIC enum skate_activity skate_availible_grind( player_instance *player )
2015 {
2016 struct player_skate *s = &player->_skate;
2017
2018 /* debounces this state manager a little bit */
2019 if( s->frames_since_activity_change < 10 )
2020 {
2021 s->frames_since_activity_change ++;
2022 return k_skate_activity_undefined;
2023 }
2024
2025 struct grind_info inf_back50,
2026 inf_front50,
2027 inf_slide;
2028
2029 int res_back50 = 0,
2030 res_front50 = 0,
2031 res_slide = 0;
2032
2033 if( s->state.activity == k_skate_activity_grind_boardslide )
2034 {
2035 res_slide = skate_boardslide_renew( player, &inf_slide );
2036 }
2037 else if( s->state.activity == k_skate_activity_grind_back50 )
2038 {
2039 res_back50 = skate_grind_truck_renew( player, 1.0f, &inf_back50 );
2040 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
2041 }
2042 else if( s->state.activity == k_skate_activity_grind_front50 )
2043 {
2044 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
2045 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
2046 }
2047 else if( s->state.activity == k_skate_activity_grind_5050 )
2048 {
2049 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
2050 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
2051 }
2052 else
2053 {
2054 res_slide = skate_boardslide_entry( player, &inf_slide );
2055 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
2056 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
2057
2058 if( res_back50 != res_front50 )
2059 {
2060 int wants_to_do_that = fabsf(player->input_js1v->axis.value) >= 0.25f;
2061
2062 res_back50 &= wants_to_do_that;
2063 res_front50 &= wants_to_do_that;
2064 }
2065 }
2066
2067 const enum skate_activity table[] =
2068 { /* slide | back | front */
2069 k_skate_activity_undefined, /* 0 0 0 */
2070 k_skate_activity_grind_front50, /* 0 0 1 */
2071 k_skate_activity_grind_back50, /* 0 1 0 */
2072 k_skate_activity_grind_5050, /* 0 1 1 */
2073
2074 /* slide has priority always */
2075 k_skate_activity_grind_boardslide, /* 1 0 0 */
2076 k_skate_activity_grind_boardslide, /* 1 0 1 */
2077 k_skate_activity_grind_boardslide, /* 1 1 0 */
2078 k_skate_activity_grind_boardslide, /* 1 1 1 */
2079 }
2080 , new_activity = table[ res_slide << 2 | res_back50 << 1 | res_front50 ];
2081
2082 if( new_activity == k_skate_activity_undefined )
2083 {
2084 s->frames_since_activity_change = 0;
2085 }
2086 else if( new_activity == k_skate_activity_grind_boardslide )
2087 {
2088 skate_boardslide_apply( player, &inf_slide );
2089 }
2090 else if( new_activity == k_skate_activity_grind_back50 )
2091 {
2092 if( s->state.activity != k_skate_activity_grind_back50 )
2093 skate_store_grind_vec( player, &inf_back50 );
2094
2095 skate_grind_truck_apply( player, 1.0f, &inf_back50, 1.0f );
2096 }
2097 else if( new_activity == k_skate_activity_grind_front50 )
2098 {
2099 if( s->state.activity != k_skate_activity_grind_front50 )
2100 skate_store_grind_vec( player, &inf_front50 );
2101
2102 skate_grind_truck_apply( player, -1.0f, &inf_front50, 1.0f );
2103 }
2104 else if( new_activity == k_skate_activity_grind_5050 )
2105 skate_5050_apply( player, &inf_front50, &inf_back50 );
2106
2107 return new_activity;
2108
2109 #if 0
2110 if( s->state.activity == k_skate_activity_grind_boardslide )
2111 {
2112 int res_slide = skate_boardslide_singular( player );
2113
2114 const enum skate_activity table[] =
2115 {
2116 k_skate_activity_undefined,
2117 k_skate_activity_grind_boardslide
2118 };
2119
2120 return table[ result ];
2121 }
2122 if( s->state.activity == k_skate_activity_grind_back50 )
2123 {
2124 int result = skate_grind_truck_singular( player, 1.0f ),
2125 front = 0;//skate_truck_entry_condition( player, -1.0f );
2126
2127 const enum skate_activity table[] =
2128 { /* result | front */
2129 k_skate_activity_undefined, /* 0 0 */
2130 k_skate_activity_grind_front50, /* 0 1 */
2131 k_skate_activity_grind_back50, /* 1 0 */
2132 k_skate_activity_grind_5050 /* 1 1 */
2133 };
2134
2135 return table[ result<<1 | front ];
2136 }
2137 else if( s->state.activity == k_skate_activity_grind_front50 )
2138 {
2139 int result = skate_grind_truck_singular( player, -1.0f ),
2140 back = 0;//skate_truck_entry_condition( player, 1.0f );
2141
2142 const enum skate_activity table[] =
2143 { /* result | back */
2144 k_skate_activity_undefined, /* 0 0 */
2145 k_skate_activity_grind_back50, /* 0 1 */
2146 k_skate_activity_grind_front50, /* 1 0 */
2147 k_skate_activity_grind_5050 /* 1 1 */
2148 };
2149
2150 return table[ result<<1 | back ];
2151 }
2152 else if( s->state.activity == k_skate_activity_grind_5050 )
2153 {
2154 /* FIXME */
2155 return k_skate_activity_grind_back50;
2156 }
2157 else
2158 {
2159 int slide = skate_boardslide_entry_condition( player );
2160
2161 if( slide )
2162 return k_skate_activity_grind_boardslide;
2163
2164 int front = skate_truck_entry_condition( player, -1.0f ),
2165 back = skate_truck_entry_condition( player, 1.0f );
2166
2167 const enum skate_activity table[] =
2168 { /* front | back */
2169 k_skate_activity_undefined, /* 0 0 */
2170 k_skate_activity_grind_back50, /* 0 1 */
2171 k_skate_activity_grind_front50, /* 1 0 */
2172 k_skate_activity_grind_5050 /* 1 1 */
2173 };
2174
2175 return table[ front<<1 | back ];
2176 }
2177
2178 return 0;
2179 #endif
2180 }
2181
2182 VG_STATIC void player__skate_update( player_instance *player )
2183 {
2184 struct player_skate *s = &player->_skate;
2185 v3_copy( player->rb.co, s->state.prev_pos );
2186 s->state.activity_prev = s->state.activity;
2187
2188 struct board_collider
2189 {
2190 v3f pos;
2191 float radius;
2192
2193 u32 colour;
2194
2195 enum board_collider_state
2196 {
2197 k_collider_state_default,
2198 k_collider_state_disabled,
2199 k_collider_state_colliding
2200 }
2201 state;
2202 }
2203 wheels[] =
2204 {
2205 {
2206 { 0.0f, 0.0f, -k_board_length },
2207 .radius = k_board_radius,
2208 .colour = VG__RED
2209 },
2210 {
2211 { 0.0f, 0.0f, k_board_length },
2212 .radius = k_board_radius,
2213 .colour = VG__GREEN
2214 }
2215 };
2216
2217 const int k_wheel_count = 2;
2218
2219 s->substep = k_rb_delta;
2220 s->substep_delta = s->substep;
2221 s->limit_count = 0;
2222
2223 int substep_count = 0;
2224
2225 v3_zero( s->surface_picture );
2226
2227 for( int i=0; i<k_wheel_count; i++ )
2228 wheels[i].state = k_collider_state_default;
2229
2230 /* check if we can enter or continue grind */
2231 enum skate_activity grindable_activity = skate_availible_grind( player );
2232 if( grindable_activity != k_skate_activity_undefined )
2233 {
2234 s->state.activity = grindable_activity;
2235 goto grinding;
2236 }
2237
2238 int contact_count = 0;
2239 for( int i=0; i<2; i++ )
2240 {
2241 v3f normal, axel;
2242 if( skate_compute_surface_alignment( player, wheels[i].pos,
2243 wheels[i].colour, normal, axel ) )
2244 {
2245 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
2246 axel,
2247 k_board_spring, k_board_dampener,
2248 s->substep_delta );
2249
2250 v3_add( normal, s->surface_picture, s->surface_picture );
2251 contact_count ++;
2252 }
2253 }
2254
2255 if( contact_count )
2256 {
2257 s->state.activity = k_skate_activity_ground;
2258 v3_normalize( s->surface_picture );
2259
2260 skate_apply_friction_model( player );
2261 skate_weight_distribute( player );
2262 skate_apply_pump_model( player );
2263 }
2264 else
2265 {
2266 s->state.activity = k_skate_activity_air;
2267 skate_apply_air_model( player );
2268 }
2269
2270 grinding:;
2271
2272 if( s->state.activity == k_skate_activity_grind_back50 )
2273 wheels[1].state = k_collider_state_disabled;
2274 if( s->state.activity == k_skate_activity_grind_front50 )
2275 wheels[0].state = k_collider_state_disabled;
2276 if( s->state.activity == k_skate_activity_grind_5050 )
2277 {
2278 wheels[0].state = k_collider_state_disabled;
2279 wheels[1].state = k_collider_state_disabled;
2280 }
2281
2282 /* all activities */
2283 skate_apply_steering_model( player );
2284 skate_adjust_up_direction( player );
2285 skate_apply_cog_model( player );
2286 skate_apply_jump_model( player );
2287 skate_apply_grab_model( player );
2288 skate_apply_trick_model( player );
2289
2290
2291 begin_collision:;
2292
2293 /*
2294 * Phase 0: Continous collision detection
2295 * --------------------------------------------------------------------------
2296 */
2297
2298 v3f head_wp0, head_wp1, start_co;
2299 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp0 );
2300 v3_copy( player->rb.co, start_co );
2301
2302 /* calculate transform one step into future */
2303 v3f future_co;
2304 v4f future_q;
2305 v3_muladds( player->rb.co, player->rb.v, s->substep, future_co );
2306
2307 if( v3_length2( player->rb.w ) > 0.0f )
2308 {
2309 v4f rotation;
2310 v3f axis;
2311 v3_copy( player->rb.w, axis );
2312
2313 float mag = v3_length( axis );
2314 v3_divs( axis, mag, axis );
2315 q_axis_angle( rotation, axis, mag*s->substep );
2316 q_mul( rotation, player->rb.q, future_q );
2317 q_normalize( future_q );
2318 }
2319 else
2320 v4_copy( player->rb.q, future_q );
2321
2322 v3f future_cg, current_cg, cg_offset;
2323 q_mulv( player->rb.q, s->weight_distribution, current_cg );
2324 q_mulv( future_q, s->weight_distribution, future_cg );
2325 v3_sub( future_cg, current_cg, cg_offset );
2326
2327 /* calculate the minimum time we can move */
2328 float max_time = s->substep;
2329
2330 for( int i=0; i<k_wheel_count; i++ )
2331 {
2332 if( wheels[i].state == k_collider_state_disabled )
2333 continue;
2334
2335 v3f current, future, r_cg;
2336
2337 q_mulv( future_q, wheels[i].pos, future );
2338 v3_add( future, future_co, future );
2339 v3_add( cg_offset, future, future );
2340
2341 q_mulv( player->rb.q, wheels[i].pos, current );
2342 v3_add( current, player->rb.co, current );
2343
2344 float t;
2345 v3f n;
2346
2347 float cast_radius = wheels[i].radius - k_penetration_slop * 2.0f;
2348 if( spherecast_world( current, future, cast_radius, &t, n ) != -1)
2349 max_time = vg_minf( max_time, t * s->substep );
2350 }
2351
2352 /* clamp to a fraction of delta, to prevent locking */
2353 float rate_lock = substep_count;
2354 rate_lock *= k_rb_delta * 0.1f;
2355 rate_lock *= rate_lock;
2356
2357 max_time = vg_maxf( max_time, rate_lock );
2358 s->substep_delta = max_time;
2359
2360 /* integrate */
2361 v3_muladds( player->rb.co, player->rb.v, s->substep_delta, player->rb.co );
2362 if( v3_length2( player->rb.w ) > 0.0f )
2363 {
2364 v4f rotation;
2365 v3f axis;
2366 v3_copy( player->rb.w, axis );
2367
2368 float mag = v3_length( axis );
2369 v3_divs( axis, mag, axis );
2370 q_axis_angle( rotation, axis, mag*s->substep_delta );
2371 q_mul( rotation, player->rb.q, player->rb.q );
2372 q_normalize( player->rb.q );
2373
2374 q_mulv( player->rb.q, s->weight_distribution, future_cg );
2375 v3_sub( current_cg, future_cg, cg_offset );
2376 v3_add( player->rb.co, cg_offset, player->rb.co );
2377 }
2378
2379 rb_update_transform( &player->rb );
2380 player->rb.v[1] += -k_gravity * s->substep_delta;
2381
2382 s->substep -= s->substep_delta;
2383
2384 rb_ct manifold[128];
2385 int manifold_len = 0;
2386
2387 /*
2388 * Phase -1: head detection
2389 * --------------------------------------------------------------------------
2390 */
2391 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp1 );
2392
2393 float t;
2394 v3f n;
2395 if( (v3_dist2( head_wp0, head_wp1 ) > 0.001f) &&
2396 (spherecast_world( head_wp0, head_wp1, 0.2f, &t, n ) != -1) )
2397 {
2398 v3_lerp( start_co, player->rb.co, t, player->rb.co );
2399 rb_update_transform( &player->rb );
2400
2401 player__dead_transition( player );
2402 return;
2403 }
2404
2405 /*
2406 * Phase 1: Regular collision detection
2407 * --------------------------------------------------------------------------
2408 */
2409
2410 for( int i=0; i<k_wheel_count; i++ )
2411 {
2412 if( wheels[i].state == k_collider_state_disabled )
2413 continue;
2414
2415 m4x3f mtx;
2416 m3x3_identity( mtx );
2417 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2418
2419 rb_sphere collider = { .radius = wheels[i].radius };
2420
2421 rb_ct *man = &manifold[ manifold_len ];
2422
2423 int l = skate_collide_smooth( player, mtx, &collider, man );
2424 if( l )
2425 wheels[i].state = k_collider_state_colliding;
2426
2427 manifold_len += l;
2428 }
2429
2430 float grind_radius = k_board_radius * 0.75f;
2431 rb_capsule capsule = { .height = (k_board_length+0.2f)*2.0f,
2432 .radius=grind_radius };
2433 m4x3f mtx;
2434 v3_muls( player->rb.to_world[0], 1.0f, mtx[0] );
2435 v3_muls( player->rb.to_world[2], -1.0f, mtx[1] );
2436 v3_muls( player->rb.to_world[1], 1.0f, mtx[2] );
2437 v3_muladds( player->rb.to_world[3], player->rb.to_world[1],
2438 grind_radius + k_board_radius*0.25f, mtx[3] );
2439
2440 rb_ct *cman = &manifold[manifold_len];
2441
2442 int l = rb_capsule__scene( mtx, &capsule, NULL, &world.rb_geo.inf.scene,
2443 cman );
2444
2445 /* weld joints */
2446 for( int i=0; i<l; i ++ )
2447 cman[l].type = k_contact_type_edge;
2448 rb_manifold_filter_joint_edges( cman, l, 0.03f );
2449 l = rb_manifold_apply_filtered( cman, l );
2450
2451 manifold_len += l;
2452
2453 debug_capsule( mtx, capsule.radius, capsule.height, VG__WHITE );
2454
2455 /* add limits */
2456 for( int i=0; i<s->limit_count; i++ )
2457 {
2458 struct grind_limit *limit = &s->limits[i];
2459 rb_ct *ct = &manifold[ manifold_len ++ ];
2460 m4x3_mulv( player->rb.to_world, limit->ra, ct->co );
2461 m3x3_mulv( player->rb.to_world, limit->n, ct->n );
2462 ct->p = limit->p;
2463 ct->type = k_contact_type_default;
2464 }
2465
2466 /*
2467 * Phase 3: Dynamics
2468 * --------------------------------------------------------------------------
2469 */
2470
2471
2472 v3f world_cog;
2473 m4x3_mulv( player->rb.to_world, s->weight_distribution, world_cog );
2474 vg_line_pt3( world_cog, 0.02f, VG__BLACK );
2475
2476 for( int i=0; i<manifold_len; i ++ )
2477 {
2478 rb_prepare_contact( &manifold[i], s->substep_delta );
2479 rb_debug_contact( &manifold[i] );
2480 }
2481
2482 /* yes, we are currently rebuilding mass matrices every frame. too bad! */
2483 v3f extent = { k_board_width, 0.1f, k_board_length };
2484 float ex2 = k_board_interia*extent[0]*extent[0],
2485 ey2 = k_board_interia*extent[1]*extent[1],
2486 ez2 = k_board_interia*extent[2]*extent[2];
2487
2488 float mass = 2.0f * (extent[0]*extent[1]*extent[2]);
2489 float inv_mass = 1.0f/mass;
2490
2491 v3f I;
2492 I[0] = ((1.0f/12.0f) * mass * (ey2+ez2));
2493 I[1] = ((1.0f/12.0f) * mass * (ex2+ez2));
2494 I[2] = ((1.0f/12.0f) * mass * (ex2+ey2));
2495
2496 m3x3f iI;
2497 m3x3_identity( iI );
2498 iI[0][0] = I[0];
2499 iI[1][1] = I[1];
2500 iI[2][2] = I[2];
2501 m3x3_inv( iI, iI );
2502
2503 m3x3f iIw;
2504 m3x3_mul( iI, player->rb.to_local, iIw );
2505 m3x3_mul( player->rb.to_world, iIw, iIw );
2506
2507 for( int j=0; j<10; j++ )
2508 {
2509 for( int i=0; i<manifold_len; i++ )
2510 {
2511 /*
2512 * regular dance; calculate velocity & total mass, apply impulse.
2513 */
2514
2515 struct contact *ct = &manifold[i];
2516
2517 v3f rv, delta;
2518 v3_sub( ct->co, world_cog, delta );
2519 v3_cross( player->rb.w, delta, rv );
2520 v3_add( player->rb.v, rv, rv );
2521
2522 v3f raCn;
2523 v3_cross( delta, ct->n, raCn );
2524
2525 v3f raCnI, rbCnI;
2526 m3x3_mulv( iIw, raCn, raCnI );
2527
2528 float normal_mass = 1.0f / (inv_mass + v3_dot(raCn,raCnI)),
2529 vn = v3_dot( rv, ct->n ),
2530 lambda = normal_mass * ( -vn );
2531
2532 float temp = ct->norm_impulse;
2533 ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
2534 lambda = ct->norm_impulse - temp;
2535
2536 v3f impulse;
2537 v3_muls( ct->n, lambda, impulse );
2538
2539 v3_muladds( player->rb.v, impulse, inv_mass, player->rb.v );
2540 v3_cross( delta, impulse, impulse );
2541 m3x3_mulv( iIw, impulse, impulse );
2542 v3_add( impulse, player->rb.w, player->rb.w );
2543
2544 v3_cross( player->rb.w, delta, rv );
2545 v3_add( player->rb.v, rv, rv );
2546 vn = v3_dot( rv, ct->n );
2547 }
2548 }
2549
2550 v3f dt;
2551 rb_depenetrate( manifold, manifold_len, dt );
2552 v3_add( dt, player->rb.co, player->rb.co );
2553 rb_update_transform( &player->rb );
2554
2555 substep_count ++;
2556
2557 if( s->substep >= 0.0001f )
2558 goto begin_collision; /* again! */
2559
2560 /*
2561 * End of collision and dynamics routine
2562 * --------------------------------------------------------------------------
2563 */
2564
2565 for( int i=0; i<k_wheel_count; i++ )
2566 {
2567 m4x3f mtx;
2568 m3x3_copy( player->rb.to_world, mtx );
2569 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2570 debug_sphere( mtx, wheels[i].radius,
2571 (u32[]){ VG__WHITE, VG__BLACK,
2572 wheels[i].colour }[ wheels[i].state ]);
2573 }
2574
2575 skate_integrate( player );
2576 vg_line_pt3( s->state.cog, 0.02f, VG__WHITE );
2577
2578 teleport_gate *gate;
2579 if( (gate = world_intersect_gates( player->rb.co, s->state.prev_pos )) )
2580 {
2581 m4x3_mulv( gate->transport, player->rb.co, player->rb.co );
2582 m3x3_mulv( gate->transport, player->rb.v, player->rb.v );
2583 m4x3_mulv( gate->transport, s->state.cog, s->state.cog );
2584 m3x3_mulv( gate->transport, s->state.cog_v, s->state.cog_v );
2585 m3x3_mulv( gate->transport, s->state.throw_v, s->state.throw_v );
2586 m3x3_mulv( gate->transport, s->state.head_position,
2587 s->state.head_position );
2588
2589 v4f transport_rotation;
2590 m3x3_q( gate->transport, transport_rotation );
2591 q_mul( transport_rotation, player->rb.q, player->rb.q );
2592 rb_update_transform( &player->rb );
2593
2594 s->state_gate_storage = s->state;
2595 player__pass_gate( player, gate );
2596 }
2597 }
2598
2599 VG_STATIC void player__skate_im_gui( player_instance *player )
2600 {
2601 struct player_skate *s = &player->_skate;
2602
2603 /* FIXME: Compression */
2604 player__debugtext( 1, "V: %5.2f %5.2f %5.2f",player->rb.v[0],
2605 player->rb.v[1],
2606 player->rb.v[2] );
2607 player__debugtext( 1, "CO: %5.2f %5.2f %5.2f",player->rb.co[0],
2608 player->rb.co[1],
2609 player->rb.co[2] );
2610 player__debugtext( 1, "W: %5.2f %5.2f %5.2f",player->rb.w[0],
2611 player->rb.w[1],
2612 player->rb.w[2] );
2613
2614 const char *activity_txt[] =
2615 {
2616 "air",
2617 "ground",
2618 "undefined (INVALID)",
2619 "grind_any (INVALID)",
2620 "grind_boardslide",
2621 "grind_noseslide",
2622 "grind_tailslide",
2623 "grind_back50",
2624 "grind_front50",
2625 "grind_5050"
2626 };
2627
2628 player__debugtext( 1, "activity: %s", activity_txt[s->state.activity] );
2629 #if 0
2630 player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
2631 s->state.steerx_s, s->state.steery_s,
2632 k_steer_ground, k_steer_air );
2633 #endif
2634 player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
2635 s->state.flip_time );
2636 player__debugtext( 1, "trickv: %.2f %.2f %.2f",
2637 s->state.trick_vel[0],
2638 s->state.trick_vel[1],
2639 s->state.trick_vel[2] );
2640 player__debugtext( 1, "tricke: %.2f %.2f %.2f",
2641 s->state.trick_euler[0],
2642 s->state.trick_euler[1],
2643 s->state.trick_euler[2] );
2644 }
2645
2646 VG_STATIC void player__skate_animate( player_instance *player,
2647 player_animation *dest )
2648 {
2649 struct player_skate *s = &player->_skate;
2650 struct player_avatar *av = player->playeravatar;
2651 struct skeleton *sk = &av->sk;
2652
2653 /* Head */
2654 float kheight = 2.0f,
2655 kleg = 0.6f;
2656
2657 v3f offset;
2658 v3_zero( offset );
2659
2660 v3f cog_local, cog_ideal;
2661 m4x3_mulv( player->rb.to_local, s->state.cog, cog_local );
2662
2663 v3_copy( s->state.up_dir, cog_ideal );
2664 v3_normalize( cog_ideal );
2665 m3x3_mulv( player->rb.to_local, cog_ideal, cog_ideal );
2666
2667 v3_sub( cog_ideal, cog_local, offset );
2668
2669
2670 v3_muls( offset, 4.0f, offset );
2671 offset[1] *= -1.0f;
2672
2673 float curspeed = v3_length( player->rb.v ),
2674 kickspeed = vg_clampf( curspeed*(1.0f/40.0f), 0.0f, 1.0f ),
2675 kicks = (vg_randf()-0.5f)*2.0f*kickspeed,
2676 sign = vg_signf( kicks );
2677
2678 s->wobble[0] = vg_lerpf( s->wobble[0], kicks*kicks*sign, 6.0f*vg.time_delta);
2679 s->wobble[1] = vg_lerpf( s->wobble[1], s->wobble[0], 2.4f*vg.time_delta);
2680
2681 offset[0] *= 0.26f;
2682 offset[0] += s->wobble[1]*3.0f;
2683
2684 offset[1] *= -0.3f;
2685 offset[2] *= 0.01f;
2686
2687 offset[0]=vg_clampf(offset[0],-0.8f,0.8f)*(1.0f-fabsf(s->blend_slide)*0.9f);
2688 offset[1]=vg_clampf(offset[1],-0.5f,0.0f);
2689
2690 /*
2691 * Animation blending
2692 * ===========================================
2693 */
2694
2695 /* sliding */
2696 {
2697 float desired = vg_clampf( fabsf( s->state.slip ), 0.0f, 1.0f );
2698 s->blend_slide = vg_lerpf( s->blend_slide, desired, 2.4f*vg.time_delta);
2699 }
2700
2701 /* movement information */
2702 {
2703 int iair = s->state.activity == k_skate_activity_air;
2704
2705 float dirz = s->state.reverse > 0.0f? 0.0f: 1.0f,
2706 dirx = s->state.slip < 0.0f? 0.0f: 1.0f,
2707 fly = iair? 1.0f: 0.0f;
2708
2709 s->blend_z = vg_lerpf( s->blend_z, dirz, 2.4f*vg.time_delta );
2710 s->blend_x = vg_lerpf( s->blend_x, dirx, 0.6f*vg.time_delta );
2711 s->blend_fly = vg_lerpf( s->blend_fly, fly, 2.4f*vg.time_delta );
2712 }
2713
2714 mdl_keyframe apose[32], bpose[32];
2715 mdl_keyframe ground_pose[32];
2716 {
2717 /* when the player is moving fast he will crouch down a little bit */
2718 float stand = 1.0f - vg_clampf( curspeed * 0.03f, 0.0f, 1.0f );
2719 s->blend_stand = vg_lerpf( s->blend_stand, stand, 6.0f*vg.time_delta );
2720
2721 /* stand/crouch */
2722 float dir_frame = s->blend_z * (15.0f/30.0f),
2723 stand_blend = offset[1]*-2.0f;
2724
2725 v3f local_cog;
2726 m4x3_mulv( player->rb.to_local, s->state.cog, local_cog );
2727
2728 stand_blend = vg_clampf( 1.0f-local_cog[1], 0, 1 );
2729
2730 skeleton_sample_anim( sk, s->anim_stand, dir_frame, apose );
2731 skeleton_sample_anim( sk, s->anim_highg, dir_frame, bpose );
2732 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
2733
2734 /* sliding */
2735 float slide_frame = s->blend_x * (15.0f/30.0f);
2736 skeleton_sample_anim( sk, s->anim_slide, slide_frame, bpose );
2737 skeleton_lerp_pose( sk, apose, bpose, s->blend_slide, apose );
2738
2739 /* pushing */
2740 double push_time = vg.time - s->state.start_push;
2741 s->blend_push = vg_lerpf( s->blend_push,
2742 (vg.time - s->state.cur_push) < 0.125,
2743 6.0f*vg.time_delta );
2744
2745 float pt = push_time + vg.accumulator;
2746 if( s->state.reverse > 0.0f )
2747 skeleton_sample_anim( sk, s->anim_push, pt, bpose );
2748 else
2749 skeleton_sample_anim( sk, s->anim_push_reverse, pt, bpose );
2750
2751 skeleton_lerp_pose( sk, apose, bpose, s->blend_push, apose );
2752
2753 /* trick setup */
2754 float jump_start_frame = 14.0f/30.0f;
2755
2756 float charge = s->state.jump_charge;
2757 s->blend_jump = vg_lerpf( s->blend_jump, charge, 8.4f*vg.time_delta );
2758
2759 float setup_frame = charge * jump_start_frame,
2760 setup_blend = vg_minf( s->blend_jump, 1.0f );
2761
2762 float jump_frame = (vg.time - s->state.jump_time) + jump_start_frame;
2763 if( jump_frame >= jump_start_frame && jump_frame <= (40.0f/30.0f) )
2764 setup_frame = jump_frame;
2765
2766 struct skeleton_anim *jump_anim = s->state.jump_dir?
2767 s->anim_ollie:
2768 s->anim_ollie_reverse;
2769
2770 skeleton_sample_anim_clamped( sk, jump_anim, setup_frame, bpose );
2771 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
2772 }
2773
2774 mdl_keyframe air_pose[32];
2775 {
2776 float target = -player->input_js1h->axis.value;
2777 s->blend_airdir = vg_lerpf( s->blend_airdir, target, 2.4f*vg.time_delta );
2778
2779 float air_frame = (s->blend_airdir*0.5f+0.5f) * (15.0f/30.0f);
2780 skeleton_sample_anim( sk, s->anim_air, air_frame, apose );
2781
2782 static v2f grab_choice;
2783
2784 v2f grab_input = { player->input_js2h->axis.value,
2785 player->input_js2v->axis.value };
2786 v2_add( s->state.grab_mouse_delta, grab_input, grab_input );
2787 if( v2_length2( grab_input ) <= 0.001f )
2788 grab_input[0] = -1.0f;
2789 else
2790 v2_normalize_clamp( grab_input );
2791 v2_lerp( grab_choice, grab_input, 2.4f*vg.time_delta, grab_choice );
2792
2793 float ang = atan2f( grab_choice[0], grab_choice[1] ),
2794 ang_unit = (ang+VG_PIf) * (1.0f/VG_TAUf),
2795 grab_frame = ang_unit * (15.0f/30.0f);
2796
2797 skeleton_sample_anim( sk, s->anim_grabs, grab_frame, bpose );
2798 skeleton_lerp_pose( sk, apose, bpose, s->state.grabbing, air_pose );
2799 }
2800
2801 skeleton_lerp_pose( sk, ground_pose, air_pose, s->blend_fly, dest->pose );
2802
2803 float add_grab_mod = 1.0f - s->blend_fly;
2804
2805 /* additive effects */
2806 {
2807 u32 apply_to[] = { av->id_hip,
2808 av->id_ik_hand_l,
2809 av->id_ik_hand_r,
2810 av->id_ik_elbow_l,
2811 av->id_ik_elbow_r };
2812
2813 for( int i=0; i<vg_list_size(apply_to); i ++ )
2814 {
2815 dest->pose[apply_to[i]-1].co[0] += offset[0]*add_grab_mod;
2816 dest->pose[apply_to[i]-1].co[2] += offset[2]*add_grab_mod;
2817 }
2818
2819
2820
2821
2822 /* angle correction */
2823 if( v3_length2( s->state.up_dir ) > 0.001f )
2824 {
2825 v3f ndir;
2826 m3x3_mulv( player->rb.to_local, s->state.up_dir, ndir );
2827 v3_normalize( ndir );
2828
2829 v3f up = { 0.0f, 1.0f, 0.0f };
2830
2831 float a = v3_dot( ndir, up );
2832 a = acosf( vg_clampf( a, -1.0f, 1.0f ) );
2833
2834 v3f axis;
2835 v4f q;
2836
2837 v3_cross( up, ndir, axis );
2838 q_axis_angle( q, axis, a );
2839
2840 mdl_keyframe *kf_hip = &dest->pose[av->id_hip-1];
2841
2842 for( int i=0; i<vg_list_size(apply_to); i ++ )
2843 {
2844 mdl_keyframe *kf = &dest->pose[apply_to[i]-1];
2845
2846 v3f v0;
2847 v3_sub( kf->co, kf_hip->co, v0 );
2848 q_mulv( q, v0, v0 );
2849 v3_add( v0, kf_hip->co, kf->co );
2850
2851 q_mul( q, kf->q, kf->q );
2852 q_normalize( kf->q );
2853 }
2854
2855 v3f p1, p2;
2856 m3x3_mulv( player->rb.to_world, up, p1 );
2857 m3x3_mulv( player->rb.to_world, ndir, p2 );
2858
2859 vg_line_arrow( player->rb.co, p1, 0.25f, VG__PINK );
2860 vg_line_arrow( player->rb.co, p2, 0.25f, VG__PINK );
2861 }
2862
2863
2864
2865 mdl_keyframe *kf_board = &dest->pose[av->id_board-1],
2866 *kf_foot_l = &dest->pose[av->id_ik_foot_l-1],
2867 *kf_foot_r = &dest->pose[av->id_ik_foot_r-1];
2868
2869
2870 v4f qtotal;
2871 v4f qtrickr, qyawr, qpitchr, qrollr;
2872 v3f eulerr;
2873
2874
2875 v3_muls( s->board_trick_residuald, VG_TAUf, eulerr );
2876
2877 q_axis_angle( qyawr, (v3f){0.0f,1.0f,0.0f}, eulerr[0] * 0.5f );
2878 q_axis_angle( qpitchr, (v3f){1.0f,0.0f,0.0f}, eulerr[1] );
2879 q_axis_angle( qrollr, (v3f){0.0f,0.0f,1.0f}, eulerr[2] );
2880
2881 q_mul( qpitchr, qrollr, qtrickr );
2882 q_mul( qyawr, qtrickr, qtotal );
2883 q_normalize( qtotal );
2884
2885 q_mul( qtotal, kf_board->q, kf_board->q );
2886
2887
2888 /* trick rotation */
2889 v4f qtrick, qyaw, qpitch, qroll;
2890 v3f euler;
2891 v3_muls( s->state.trick_euler, VG_TAUf, euler );
2892
2893 q_axis_angle( qyaw, (v3f){0.0f,1.0f,0.0f}, euler[0] * 0.5f );
2894 q_axis_angle( qpitch, (v3f){1.0f,0.0f,0.0f}, euler[1] );
2895 q_axis_angle( qroll, (v3f){0.0f,0.0f,1.0f}, euler[2] );
2896
2897 q_mul( qpitch, qroll, qtrick );
2898 q_mul( qyaw, qtrick, qtrick );
2899 q_mul( kf_board->q, qtrick, kf_board->q );
2900 q_normalize( kf_board->q );
2901 }
2902
2903 /* transform */
2904 rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
2905 v3_muladds( dest->root_co, player->rb.to_world[1], -0.1f, dest->root_co );
2906
2907 float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
2908 #if 0
2909 v4f qresy, qresx, qresidual;
2910 m3x3f mtx_residual;
2911 q_axis_angle( qresy, player->rb.to_world[1], s->state.steery_s*substep );
2912 q_axis_angle( qresx, player->rb.to_world[0], s->state.steerx_s*substep );
2913
2914 q_mul( qresy, qresx, qresidual );
2915 q_normalize( qresidual );
2916 q_mul( dest->root_q, qresidual, dest->root_q );
2917 q_normalize( dest->root_q );
2918 #endif
2919
2920 v4f qflip;
2921 if( (s->state.activity == k_skate_activity_air) &&
2922 (fabsf(s->state.flip_rate) > 0.01f) )
2923 {
2924 float t = s->state.flip_time + s->state.flip_rate*substep*k_rb_delta,
2925 angle = vg_clampf( t, -1.0f, 1.0f ) * VG_TAUf,
2926 distm = s->land_dist * fabsf(s->state.flip_rate) * 3.0f,
2927 blend = vg_clampf( 1.0f-distm, 0.0f, 1.0f );
2928
2929 angle = vg_lerpf( angle, vg_signf(s->state.flip_rate) * VG_TAUf, blend );
2930
2931 q_axis_angle( qflip, s->state.flip_axis, angle );
2932 q_mul( qflip, dest->root_q, dest->root_q );
2933 q_normalize( dest->root_q );
2934
2935 v3f rotation_point, rco;
2936 v3_muladds( player->rb.co, player->rb.to_world[1], 0.5f, rotation_point );
2937 v3_sub( dest->root_co, rotation_point, rco );
2938
2939 q_mulv( qflip, rco, rco );
2940 v3_add( rco, rotation_point, dest->root_co );
2941 }
2942 }
2943
2944 VG_STATIC void player__skate_post_animate( player_instance *player )
2945 {
2946 struct player_skate *s = &player->_skate;
2947 struct player_avatar *av = player->playeravatar;
2948
2949 player->cam_velocity_influence = 1.0f;
2950
2951 v3f head = { 0.0f, 1.8f, 0.0f }; /* FIXME: Viewpoint entity */
2952 m4x3_mulv( av->sk.final_mtx[ av->id_head ], head, s->state.head_position );
2953 m4x3_mulv( player->rb.to_local, s->state.head_position,
2954 s->state.head_position );
2955 }
2956
2957 VG_STATIC void player__skate_reset_animator( player_instance *player )
2958 {
2959 struct player_skate *s = &player->_skate;
2960
2961 if( s->state.activity == k_skate_activity_air )
2962 s->blend_fly = 1.0f;
2963 else
2964 s->blend_fly = 0.0f;
2965
2966 s->blend_slide = 0.0f;
2967 s->blend_z = 0.0f;
2968 s->blend_x = 0.0f;
2969 s->blend_stand = 0.0f;
2970 s->blend_push = 0.0f;
2971 s->blend_jump = 0.0f;
2972 s->blend_airdir = 0.0f;
2973 }
2974
2975 VG_STATIC void player__skate_clear_mechanics( player_instance *player )
2976 {
2977 struct player_skate *s = &player->_skate;
2978 s->state.jump_charge = 0.0f;
2979 s->state.lift_frames = 0;
2980 s->state.flip_rate = 0.0f;
2981 #if 0
2982 s->state.steery = 0.0f;
2983 s->state.steerx = 0.0f;
2984 s->state.steery_s = 0.0f;
2985 s->state.steerx_s = 0.0f;
2986 #endif
2987 s->state.reverse = 0.0f;
2988 s->state.slip = 0.0f;
2989 v3_copy( player->rb.co, s->state.prev_pos );
2990
2991 #if 0
2992 m3x3_identity( s->state.velocity_bias );
2993 m3x3_identity( s->state.velocity_bias_pstep );
2994 #endif
2995
2996 v3_zero( s->state.throw_v );
2997 v3_zero( s->state.trick_vel );
2998 v3_zero( s->state.trick_euler );
2999 }
3000
3001 VG_STATIC void player__skate_reset( player_instance *player,
3002 struct respawn_point *rp )
3003 {
3004 struct player_skate *s = &player->_skate;
3005 v3_muladds( player->rb.co, player->rb.to_world[1], 1.0f, s->state.cog );
3006 v3_zero( player->rb.v );
3007 v3_zero( s->state.cog_v );
3008 v4_copy( rp->q, player->rb.q );
3009
3010 s->state.activity = k_skate_activity_air;
3011 s->state.activity_prev = k_skate_activity_air;
3012
3013 player__skate_clear_mechanics( player );
3014 player__skate_reset_animator( player );
3015
3016 v3_zero( s->state.head_position );
3017 s->state.head_position[1] = 1.8f;
3018 }
3019
3020 #endif /* PLAYER_SKATE_C */