2ebcee2448668cbdcd0152c5c5b98a537e414069
[carveJwlIkooP6JGAAIwe30JlM.git] / player_skate.c
1 #ifndef PLAYER_SKATE_C
2 #define PLAYER_SKATE_C
3
4 #include "player.h"
5 #include "audio.h"
6
7 VG_STATIC void player__skate_bind( player_instance *player )
8 {
9 struct player_skate *s = &player->_skate;
10 struct player_avatar *av = player->playeravatar;
11 struct skeleton *sk = &av->sk;
12
13 rb_update_transform( &player->rb );
14 s->anim_stand = skeleton_get_anim( sk, "pose_stand" );
15 s->anim_highg = skeleton_get_anim( sk, "pose_highg" );
16 s->anim_air = skeleton_get_anim( sk, "pose_air" );
17 s->anim_slide = skeleton_get_anim( sk, "pose_slide" );
18 s->anim_push = skeleton_get_anim( sk, "push" );
19 s->anim_push_reverse = skeleton_get_anim( sk, "push_reverse" );
20 s->anim_ollie = skeleton_get_anim( sk, "ollie" );
21 s->anim_ollie_reverse = skeleton_get_anim( sk, "ollie_reverse" );
22 s->anim_grabs = skeleton_get_anim( sk, "grabs" );
23 }
24
25 VG_STATIC void player__skate_kill_audio( player_instance *player )
26 {
27 struct player_skate *s = &player->_skate;
28
29 audio_lock();
30 if( s->aud_main )
31 s->aud_main = audio_channel_fadeout( s->aud_main, 0.1f );
32 if( s->aud_air )
33 s->aud_air = audio_channel_fadeout( s->aud_air, 0.1f );
34 if( s->aud_slide )
35 s->aud_slide = audio_channel_fadeout( s->aud_slide, 0.1f );
36 audio_unlock();
37 }
38
39 /*
40 * Collision detection routines
41 *
42 *
43 */
44
45 /*
46 * Does collision detection on a sphere vs world, and applies some smoothing
47 * filters to the manifold afterwards
48 */
49 VG_STATIC int skate_collide_smooth( player_instance *player,
50 m4x3f mtx, rb_sphere *sphere,
51 rb_ct *man )
52 {
53 world_instance *world = get_active_world();
54
55 int len = 0;
56 len = rb_sphere__scene( mtx, sphere, NULL, &world->rb_geo.inf.scene, man );
57
58 for( int i=0; i<len; i++ )
59 {
60 man[i].rba = &player->rb;
61 man[i].rbb = NULL;
62 }
63
64 rb_manifold_filter_coplanar( man, len, 0.03f );
65
66 if( len > 1 )
67 {
68 rb_manifold_filter_backface( man, len );
69 rb_manifold_filter_joint_edges( man, len, 0.03f );
70 rb_manifold_filter_pairs( man, len, 0.03f );
71 }
72 int new_len = rb_manifold_apply_filtered( man, len );
73 if( len && !new_len )
74 len = 1;
75 else
76 len = new_len;
77
78 return len;
79 }
80
81 struct grind_info
82 {
83 v3f co, dir, n;
84 };
85
86 VG_STATIC int skate_grind_scansq( player_instance *player,
87 v3f pos, v3f dir, float r,
88 struct grind_info *inf )
89 {
90 world_instance *world = get_active_world();
91
92 v4f plane;
93 v3_copy( dir, plane );
94 v3_normalize( plane );
95 plane[3] = v3_dot( plane, pos );
96
97 boxf box;
98 v3_add( pos, (v3f){ r, r, r }, box[1] );
99 v3_sub( pos, (v3f){ r, r, r }, box[0] );
100
101 bh_iter it;
102 bh_iter_init( 0, &it );
103 int idx;
104
105 struct grind_sample
106 {
107 v2f co;
108 v2f normal;
109 v3f normal3,
110 centroid;
111 }
112 samples[48];
113 int sample_count = 0;
114
115 v2f support_min,
116 support_max;
117
118 v3f support_axis;
119 v3_cross( plane, player->basis[1], support_axis );
120 v3_normalize( support_axis );
121
122 while( bh_next( world->geo_bh, &it, box, &idx ) ){
123 u32 *ptri = &world->scene_geo->arrindices[ idx*3 ];
124 v3f tri[3];
125
126 struct world_surface *surf = world_tri_index_surface(world,ptri[0]);
127 if( !(surf->info.flags & k_material_flag_skate_surface) )
128 continue;
129
130 for( int j=0; j<3; j++ )
131 v3_copy( world->scene_geo->arrvertices[ptri[j]].co, tri[j] );
132
133 for( int j=0; j<3; j++ ){
134 int i0 = j,
135 i1 = (j+1) % 3;
136
137 struct grind_sample *sample = &samples[ sample_count ];
138 v3f co;
139
140 if( plane_segment( plane, tri[i0], tri[i1], co ) ){
141 v3f d;
142 v3_sub( co, pos, d );
143 if( v3_length2( d ) > r*r )
144 continue;
145
146 v3f va, vb, normal;
147 v3_sub( tri[1], tri[0], va );
148 v3_sub( tri[2], tri[0], vb );
149 v3_cross( va, vb, normal );
150
151 sample->normal[0] = v3_dot( support_axis, normal );
152 sample->normal[1] = v3_dot( player->basis[1], normal );
153 sample->co[0] = v3_dot( support_axis, d );
154 sample->co[1] = v3_dot( player->basis[1], d );
155
156 v3_copy( normal, sample->normal3 ); /* normalize later
157 if we want to us it */
158
159 v3_muls( tri[0], 1.0f/3.0f, sample->centroid );
160 v3_muladds( sample->centroid, tri[1], 1.0f/3.0f, sample->centroid );
161 v3_muladds( sample->centroid, tri[2], 1.0f/3.0f, sample->centroid );
162
163 v2_normalize( sample->normal );
164 sample_count ++;
165
166 if( sample_count == vg_list_size( samples ) )
167 goto too_many_samples;
168 }
169 }
170 }
171
172 too_many_samples:
173
174 if( sample_count < 2 )
175 return 0;
176
177 v3f
178 average_direction,
179 average_normal;
180
181 v2f min_co, max_co;
182 v2_fill( min_co, INFINITY );
183 v2_fill( max_co, -INFINITY );
184
185 v3_zero( average_direction );
186 v3_zero( average_normal );
187
188 int passed_samples = 0;
189
190 for( int i=0; i<sample_count-1; i++ ){
191 struct grind_sample *si, *sj;
192
193 si = &samples[i];
194
195 for( int j=i+1; j<sample_count; j++ ){
196 if( i == j )
197 continue;
198
199 sj = &samples[j];
200
201 /* non overlapping */
202 if( v2_dist2( si->co, sj->co ) >= (0.01f*0.01f) )
203 continue;
204
205 /* not sharp angle */
206 if( v2_dot( si->normal, sj->normal ) >= 0.7f )
207 continue;
208
209 /* not convex */
210 v3f v0;
211 v3_sub( sj->centroid, si->centroid, v0 );
212 if( v3_dot( v0, si->normal3 ) >= 0.0f ||
213 v3_dot( v0, sj->normal3 ) <= 0.0f )
214 continue;
215
216 v2_minv( sj->co, min_co, min_co );
217 v2_maxv( sj->co, max_co, max_co );
218
219 v3f n0, n1, dir;
220 v3_copy( si->normal3, n0 );
221 v3_copy( sj->normal3, n1 );
222 v3_cross( n0, n1, dir );
223 v3_normalize( dir );
224
225 /* make sure the directions all face a common hemisphere */
226 v3_muls( dir, vg_signf(v3_dot(dir,plane)), dir );
227 v3_add( average_direction, dir, average_direction );
228
229 float yi = v3_dot( player->basis[1], si->normal3 ),
230 yj = v3_dot( player->basis[1], sj->normal3 );
231
232 if( yi > yj )
233 v3_add( si->normal3, average_normal, average_normal );
234 else
235 v3_add( sj->normal3, average_normal, average_normal );
236
237 passed_samples ++;
238 }
239 }
240
241 if( !passed_samples )
242 return 0;
243
244 if( (v3_length2( average_direction ) <= 0.001f) ||
245 (v3_length2( average_normal ) <= 0.001f ) )
246 return 0;
247
248 float div = 1.0f/(float)passed_samples;
249 v3_normalize( average_direction );
250 v3_normalize( average_normal );
251
252 v2f average_coord;
253 v2_add( min_co, max_co, average_coord );
254 v2_muls( average_coord, 0.5f, average_coord );
255
256 v3_muls( support_axis, average_coord[0], inf->co );
257 inf->co[1] += average_coord[1];
258 v3_add( pos, inf->co, inf->co );
259 v3_copy( average_normal, inf->n );
260 v3_copy( average_direction, inf->dir );
261
262 vg_line_pt3( inf->co, 0.02f, VG__GREEN );
263 vg_line_arrow( inf->co, average_direction, 0.3f, VG__GREEN );
264 vg_line_arrow( inf->co, inf->n, 0.2f, VG__CYAN );
265
266 return passed_samples;
267 }
268
269 VG_STATIC int solve_prediction_for_target( player_instance *player,
270 v3f target, float max_angle,
271 struct land_prediction *p )
272 {
273 /* calculate the exact solution(s) to jump onto that grind spot */
274
275 v3f v0;
276 v3_sub( target, player->rb.co, v0 );
277 m3x3_mulv( player->invbasis, v0, v0 );
278
279 v3f ax;
280 v3_copy( v0, ax );
281 ax[1] = 0.0f;
282 v3_normalize( ax );
283
284 v3f v_local;
285 m3x3_mulv( player->invbasis, player->rb.v, v_local );
286
287 v2f d = { v3_dot( ax, v0 ), v0[1] },
288 v = { v3_dot( ax, player->rb.v ), v_local[1] };
289
290 float a = atan2f( v[1], v[0] ),
291 m = v2_length( v ),
292 root = m*m*m*m - p->gravity*(p->gravity*d[0]*d[0] + 2.0f*d[1]*m*m);
293
294 if( root > 0.0f )
295 {
296 root = sqrtf( root );
297 float a0 = atanf( (m*m + root) / (p->gravity * d[0]) ),
298 a1 = atanf( (m*m - root) / (p->gravity * d[0]) );
299
300 if( fabsf(a0-a) > fabsf(a1-a) )
301 a0 = a1;
302
303 if( fabsf(a0-a) > max_angle )
304 return 0;
305
306 /* TODO: sweep the path before chosing the smallest dist */
307
308 p->log_length = 0;
309 p->land_dist = 0.0f;
310 v3_zero( p->apex );
311 p->type = k_prediction_grind;
312
313 v3_muls( ax, cosf( a0 ) * m, p->v );
314 p->v[1] += sinf( a0 ) * m;
315 m3x3_mulv( player->basis, p->v, p->v );
316
317 p->land_dist = d[0] / (cosf(a0)*m);
318
319 /* add a trace */
320 for( int i=0; i<=20; i++ )
321 {
322 float t = (float)i * (1.0f/20.0f) * p->land_dist;
323
324 v3f p0;
325 v3_muls( p->v, t, p0 );
326 v3_muladds( p0, player->basis[1], -0.5f * p->gravity * t*t, p0 );
327
328 v3_add( player->rb.co, p0, p->log[ p->log_length ++ ] );
329 }
330
331 return 1;
332 }
333 else
334 return 0;
335 }
336
337 VG_STATIC
338 void player__approximate_best_trajectory( player_instance *player )
339 {
340 world_instance *world = get_active_world();
341
342 struct player_skate *s = &player->_skate;
343 float k_trace_delta = k_rb_delta * 10.0f;
344
345 s->state.air_start = vg.time;
346 v3_copy( player->rb.v, s->state.air_init_v );
347 v3_copy( player->rb.co, s->state.air_init_co );
348
349 s->prediction_count = 0;
350
351 v3f axis;
352 v3_cross( player->rb.v, player->rb.to_world[1], axis );
353 v3_normalize( axis );
354
355 /* at high slopes, Y component is low */
356 float upness = v3_dot( player->rb.to_world[1], player->basis[1] ),
357 angle_begin = -(1.0f-fabsf( upness )),
358 angle_end = 1.0f;
359
360 struct grind_info grind;
361 int grind_located = 0;
362
363 for( int m=0;m<=30; m++ )
364 {
365 struct land_prediction *p = &s->predictions[ s->prediction_count ++ ];
366
367 p->log_length = 0;
368 p->land_dist = 0.0f;
369 v3_zero( p->apex );
370 p->type = k_prediction_none;
371
372 v3f launch_co, launch_v, co0, co1;
373 v3_copy( player->rb.co, launch_co );
374 v3_copy( player->rb.v, launch_v );
375 v3_copy( launch_co, co0 );
376
377 float vt = (float)m * (1.0f/30.0f),
378 ang = vg_lerpf( angle_begin, angle_end, vt ) * 0.15f;
379
380 v4f qbias;
381 q_axis_angle( qbias, axis, ang );
382 q_mulv( qbias, launch_v, launch_v );
383
384 float yaw_sketch = 1.0f-fabsf(upness);
385
386 float yaw_bias = ((float)(m%3) - 1.0f) * 0.08f * yaw_sketch;
387 q_axis_angle( qbias, player->rb.to_world[1], yaw_bias );
388 q_mulv( qbias, launch_v, launch_v );
389
390
391 float gravity_bias = vg_lerpf( 0.85f, 1.4f, vt ),
392 gravity = k_gravity * gravity_bias;
393 p->gravity = gravity;
394
395 v3_copy( launch_v, p->v );
396
397 m3x3f basis;
398 m3x3_copy( player->basis, basis );
399
400 for( int i=1; i<=50; i++ )
401 {
402 float t = (float)i * k_trace_delta;
403
404 v3_muls( launch_v, t, co1 );
405 v3_muladds( co1, basis[1], -0.5f * gravity * t*t, co1 );
406 v3_add( launch_co, co1, co1 );
407
408 float launch_vy = v3_dot( launch_v,basis[1] );
409 if( !grind_located && (launch_vy - gravity*t < 0.0f) )
410 {
411 v3f closest;
412 if( bh_closest_point( world->geo_bh, co1, closest, 1.0f ) != -1 )
413 {
414 v3f ve;
415 v3_copy( launch_v, ve );
416 v3_muladds( ve, basis[1], -gravity * t, ve );
417
418 if( skate_grind_scansq( player, closest, ve, 0.5f, &grind ) )
419 {
420 /* check alignment */
421 v2f v0 = { v3_dot( ve, basis[0] ),
422 v3_dot( ve, basis[2] ) },
423 v1 = { v3_dot( grind.dir, basis[0] ),
424 v3_dot( grind.dir, basis[2] ) };
425
426 v2_normalize( v0 );
427 v2_normalize( v1 );
428
429 float a = v2_dot( v0, v1 );
430
431 if( a >= cosf( VG_PIf * 0.185f ) )
432 {
433 grind_located = 1;
434 }
435 }
436 }
437 }
438
439 if( world->rendering_gate ){
440 ent_gate *gate = world->rendering_gate;
441 if( gate_intersect( gate, co1, co0 ) ){
442 m4x3_mulv( gate->transport, co0, co0 );
443 m4x3_mulv( gate->transport, co1, co1 );
444 m3x3_mulv( gate->transport, launch_v, launch_v);
445 m4x3_mulv( gate->transport, launch_co, launch_co );
446 m3x3_mul( gate->transport, basis, basis );
447 }
448 }
449
450 float t1;
451 v3f n;
452
453 int idx = spherecast_world( world, co0, co1, k_board_radius, &t1, n );
454 if( idx != -1 )
455 {
456 v3f co;
457 v3_lerp( co0, co1, t1, co );
458 v3_copy( co, p->log[ p->log_length ++ ] );
459
460 v3_copy( n, p->n );
461 p->type = k_prediction_land;
462
463 v3f ve;
464 v3_copy( launch_v, ve );
465 v3_muladds( ve, player->basis[1], -gravity * t, ve );
466
467 struct grind_info replace_grind;
468 if( skate_grind_scansq( player, co, ve, 0.3f, &replace_grind ) )
469 {
470 v3_copy( replace_grind.n, p->n );
471 p->type = k_prediction_grind;
472 }
473
474 p->score = -v3_dot( ve, p->n );
475 p->land_dist = t + k_trace_delta * t1;
476
477 u32 vert_index = world->scene_geo->arrindices[ idx*3 ];
478 struct world_surface *surf =
479 world_tri_index_surface( world, vert_index );
480
481 /* Bias prediction towords ramps */
482 if( !(surf->info.flags & k_material_flag_skate_surface) )
483 p->score *= 10.0f;
484
485 break;
486 }
487
488 if( i % 3 == 0 )
489 v3_copy( co1, p->log[ p->log_length ++ ] );
490
491 v3_copy( co1, co0 );
492 }
493
494 if( p->type == k_prediction_none )
495 s->prediction_count --;
496 }
497
498 if( grind_located ){
499 /* calculate the exact solution(s) to jump onto that grind spot */
500 struct land_prediction *p = &s->predictions[ s->prediction_count ];
501 p->gravity = k_gravity;
502
503 if( solve_prediction_for_target( player, grind.co, 0.125f*VG_PIf, p ) ){
504 v3_copy( grind.n, p->n );
505
506 /* determine score */
507 v3f ve;
508 v3_copy( p->v, ve );
509 v3_muladds( ve, player->basis[1], -p->gravity * p->land_dist, ve );
510 p->score = -v3_dot( ve, grind.n ) * 0.85f;
511
512 s->prediction_count ++;
513 }
514 }
515
516
517 float score_min = INFINITY,
518 score_max = -INFINITY;
519
520 struct land_prediction *best = NULL;
521
522 for( int i=0; i<s->prediction_count; i ++ ){
523 struct land_prediction *p = &s->predictions[i];
524
525 if( p->score < score_min )
526 best = p;
527
528 score_min = vg_minf( score_min, p->score );
529 score_max = vg_maxf( score_max, p->score );
530 }
531
532 for( int i=0; i<s->prediction_count; i ++ ){
533 struct land_prediction *p = &s->predictions[i];
534 float s = p->score;
535
536 s -= score_min;
537 s /= (score_max-score_min);
538 s = 1.0f - s;
539
540 p->score = s;
541 p->colour = s * 255.0f;
542
543 if( p == best )
544 p->colour <<= 16;
545 else if( p->type == k_prediction_land )
546 p->colour <<= 8;
547
548 p->colour |= 0xff000000;
549 }
550
551 if( best ){
552 v3_copy( best->n, s->land_normal );
553 v3_copy( best->v, player->rb.v );
554 s->land_dist = best->land_dist;
555
556 v2f steer = { player->input_js1h->axis.value,
557 player->input_js1v->axis.value };
558 v2_normalize_clamp( steer );
559 s->state.gravity_bias = best->gravity;
560
561 if( (fabsf(steer[1]) > 0.5f) && (s->land_dist >= 1.5f) ){
562 s->state.flip_rate = (1.0f/s->land_dist) * vg_signf(steer[1]) *
563 s->state.reverse ;
564 s->state.flip_time = 0.0f;
565 v3_copy( player->rb.to_world[0], s->state.flip_axis );
566 }
567 else{
568 s->state.flip_rate = 0.0f;
569 v3_zero( s->state.flip_axis );
570 }
571 }
572 else{
573 v3_copy( player->basis[1], s->land_normal );
574 }
575 }
576
577 /*
578 *
579 * Varius physics models
580 * ------------------------------------------------
581 */
582
583 /*
584 * Air control, no real physics
585 */
586 VG_STATIC void skate_apply_air_model( player_instance *player )
587 {
588 struct player_skate *s = &player->_skate;
589
590 if( s->state.activity_prev != k_skate_activity_air )
591 player__approximate_best_trajectory( player );
592
593 float angle = v3_dot( player->rb.to_world[1], s->land_normal );
594 angle = vg_clampf( angle, -1.0f, 1.0f );
595 v3f axis;
596 v3_cross( player->rb.to_world[1], s->land_normal, axis );
597
598 v4f correction;
599 q_axis_angle( correction, axis,
600 acosf(angle)*2.0f*VG_TIMESTEP_FIXED );
601 q_mul( correction, player->rb.q, player->rb.q );
602
603 v2f steer = { player->input_js1h->axis.value,
604 player->input_js1v->axis.value };
605 v2_normalize_clamp( steer );
606 }
607
608 VG_STATIC int player_skate_trick_input( player_instance *player );
609 VG_STATIC void skate_apply_trick_model( player_instance *player )
610 {
611 struct player_skate *s = &player->_skate;
612
613 v3f Fd, Fs, F;
614 v3f strength = { 3.7f, 3.6f, 8.0f };
615
616 v3_muls( s->board_trick_residualv, -4.0f , Fd );
617 v3_muls( s->board_trick_residuald, -10.0f, Fs );
618 v3_add( Fd, Fs, F );
619 v3_mul( strength, F, F );
620
621 v3_muladds( s->board_trick_residualv, F, k_rb_delta,
622 s->board_trick_residualv );
623 v3_muladds( s->board_trick_residuald, s->board_trick_residualv,
624 k_rb_delta, s->board_trick_residuald );
625
626 if( s->state.activity == k_skate_activity_air ){
627 if( v3_length2( s->state.trick_vel ) < 0.0001f )
628 return;
629
630 int carry_on = player_skate_trick_input( player );
631
632 /* we assume velocities share a common divisor, in which case the
633 * interval is the minimum value (if not zero) */
634
635 float min_rate = 99999.0f;
636
637 for( int i=0; i<3; i++ ){
638 float v = s->state.trick_vel[i];
639 if( (v > 0.0f) && (v < min_rate) )
640 min_rate = v;
641 }
642
643 float interval = 1.0f / min_rate,
644 current = floorf( s->state.trick_time / interval ),
645 next_end = (current+1.0f) * interval;
646
647
648 /* integrate trick velocities */
649 v3_muladds( s->state.trick_euler, s->state.trick_vel, k_rb_delta,
650 s->state.trick_euler );
651
652 if( !carry_on && (s->state.trick_time + k_rb_delta >= next_end) ){
653 s->state.trick_time = 0.0f;
654 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
655 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
656 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
657 v3_copy( s->state.trick_vel, s->board_trick_residualv );
658 v3_zero( s->state.trick_vel );
659 }
660
661 s->state.trick_time += k_rb_delta;
662 }
663 else{
664 if( (v3_length2(s->state.trick_vel) >= 0.0001f ) &&
665 s->state.trick_time > 0.2f)
666 {
667 player__skate_kill_audio( player );
668 player__dead_transition( player );
669 }
670
671 s->state.trick_euler[0] = roundf( s->state.trick_euler[0] );
672 s->state.trick_euler[1] = roundf( s->state.trick_euler[1] );
673 s->state.trick_euler[2] = roundf( s->state.trick_euler[2] );
674 s->state.trick_time = 0.0f;
675 v3_zero( s->state.trick_vel );
676 }
677 }
678
679 VG_STATIC void skate_apply_grab_model( player_instance *player )
680 {
681 struct player_skate *s = &player->_skate;
682
683 float grabt = player->input_grab->axis.value;
684
685 if( grabt > 0.5f ){
686 v2_muladds( s->state.grab_mouse_delta, vg.mouse_delta, 0.02f,
687 s->state.grab_mouse_delta );
688
689 v2_normalize_clamp( s->state.grab_mouse_delta );
690 }
691 else
692 v2_zero( s->state.grab_mouse_delta );
693
694 s->state.grabbing = vg_lerpf( s->state.grabbing, grabt, 8.4f*k_rb_delta );
695 }
696
697 VG_STATIC void skate_apply_steering_model( player_instance *player )
698 {
699 struct player_skate *s = &player->_skate;
700
701 /* Steering */
702 float steer = player->input_js1h->axis.value,
703 grab = player->input_grab->axis.value;
704
705 steer = vg_signf( steer ) * steer*steer * k_steer_ground;
706
707 v3f steer_axis;
708 v3_muls( player->rb.to_world[1], -vg_signf( steer ), steer_axis );
709
710 float rate = 26.0f,
711 top = 1.0f;
712
713 if( s->state.activity == k_skate_activity_air ){
714 rate = 6.0f * fabsf(steer);
715 top = 1.5f;
716 }
717 else{
718 /* rotate slower when grabbing on ground */
719 steer *= (1.0f-(s->state.jump_charge+grab)*0.4f);
720
721 if( s->state.activity == k_skate_activity_grind_5050 ){
722 rate = 0.0f;
723 top = 0.0f;
724 }
725
726 else if( s->state.activity >= k_skate_activity_grind_any ){
727 rate *= fabsf(steer);
728
729 float a = 0.8f * -steer * k_rb_delta;
730
731 v4f q;
732 q_axis_angle( q, player->rb.to_world[1], a );
733 q_mulv( q, s->grind_vec, s->grind_vec );
734
735 v3_normalize( s->grind_vec );
736 }
737
738 else if( s->state.manual_direction ){
739 rate = 35.0f;
740 top = 1.5f;
741 }
742 }
743
744 float current = v3_dot( player->rb.to_world[1], player->rb.w ),
745 addspeed = (steer * -top) - current,
746 maxaccel = rate * k_rb_delta,
747 accel = vg_clampf( addspeed, -maxaccel, maxaccel );
748
749 v3_muladds( player->rb.w, player->rb.to_world[1], accel, player->rb.w );
750 }
751
752 /*
753 * Computes friction and surface interface model
754 */
755 VG_STATIC void skate_apply_friction_model( player_instance *player )
756 {
757 struct player_skate *s = &player->_skate;
758
759 /*
760 * Computing localized friction forces for controlling the character
761 * Friction across X is significantly more than Z
762 */
763
764 v3f vel;
765 m3x3_mulv( player->rb.to_local, player->rb.v, vel );
766 float slip = 0.0f;
767
768 if( fabsf(vel[2]) > 0.01f )
769 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
770
771 if( fabsf( slip ) > 1.2f )
772 slip = vg_signf( slip ) * 1.2f;
773
774 s->state.slip = slip;
775 s->state.reverse = -vg_signf(vel[2]);
776
777 vel[0] += vg_cfrictf( vel[0], k_friction_lat * k_rb_delta );
778 vel[2] += vg_cfrictf( vel[2], k_friction_resistance * k_rb_delta );
779
780 /* Pushing additive force */
781
782 if( !player->input_jump->button.value ){
783 if( player->input_push->button.value ||
784 (vg.time-s->state.start_push<0.75) )
785 {
786 if( (vg.time - s->state.cur_push) > 0.25 )
787 s->state.start_push = vg.time;
788
789 s->state.cur_push = vg.time;
790
791 double push_time = vg.time - s->state.start_push;
792
793 float cycle_time = push_time*k_push_cycle_rate,
794 accel = k_push_accel * (sinf(cycle_time)*0.5f+0.5f),
795 amt = accel * VG_TIMESTEP_FIXED,
796 current = v3_length( vel ),
797 new_vel = vg_minf( current + amt, k_max_push_speed ),
798 delta = new_vel - vg_minf( current, k_max_push_speed );
799
800 vel[2] += delta * -s->state.reverse;
801 }
802 }
803
804 /* Send back to velocity */
805 m3x3_mulv( player->rb.to_world, vel, player->rb.v );
806 }
807
808 VG_STATIC void skate_apply_jump_model( player_instance *player )
809 {
810 struct player_skate *s = &player->_skate;
811 int charging_jump_prev = s->state.charging_jump;
812 s->state.charging_jump = player->input_jump->button.value;
813
814 /* Cannot charge this in air */
815 if( s->state.activity == k_skate_activity_air ){
816 s->state.charging_jump = 0;
817 return;
818 }
819
820 if( s->state.charging_jump ){
821 s->state.jump_charge += k_rb_delta * k_jump_charge_speed;
822
823 if( !charging_jump_prev )
824 s->state.jump_dir = s->state.reverse>0.0f? 1: 0;
825 }
826 else{
827 s->state.jump_charge -= k_jump_charge_speed * k_rb_delta;
828 }
829
830 s->state.jump_charge = vg_clampf( s->state.jump_charge, 0.0f, 1.0f );
831
832 /* player let go after charging past 0.2: trigger jump */
833 if( (!s->state.charging_jump) && (s->state.jump_charge > 0.2f) ){
834 v3f jumpdir;
835
836 /* Launch more up if alignment is up else improve velocity */
837 float aup = v3_dot( player->basis[1], player->rb.to_world[1] ),
838 mod = 0.5f,
839 dir = mod + fabsf(aup)*(1.0f-mod);
840
841 v3_copy( player->rb.v, jumpdir );
842 v3_normalize( jumpdir );
843 v3_muls( jumpdir, 1.0f-dir, jumpdir );
844 v3_muladds( jumpdir, player->rb.to_world[1], dir, jumpdir );
845 v3_normalize( jumpdir );
846
847 float force = k_jump_force*s->state.jump_charge;
848 v3_muladds( player->rb.v, jumpdir, force, player->rb.v );
849 s->state.jump_charge = 0.0f;
850 s->state.jump_time = vg.time;
851 s->state.activity = k_skate_activity_air;
852
853 v2f steer = { player->input_js1h->axis.value,
854 player->input_js1v->axis.value };
855 v2_normalize_clamp( steer );
856 skate_apply_air_model( player );
857
858 #if 0
859 float maxspin = k_steer_air * k_rb_delta * k_spin_boost;
860 s->state.steery_s = -steer[0] * maxspin;
861 s->state.steerx = s->state.steerx_s;
862 s->state.lift_frames ++;
863 #endif
864
865 audio_lock();
866 audio_oneshot_3d( &audio_jumps[rand()%2], player->rb.co, 40.0f, 1.0f );
867 audio_unlock();
868 }
869 }
870
871 VG_STATIC void skate_apply_pump_model( player_instance *player )
872 {
873 struct player_skate *s = &player->_skate;
874
875 if( s->state.activity != k_skate_activity_ground ){
876 v3_zero( s->state.throw_v );
877 return;
878 }
879
880 /* Throw / collect routine
881 *
882 * TODO: Max speed boost
883 */
884 if( player->input_grab->axis.value > 0.5f ){
885 if( s->state.activity == k_skate_activity_ground ){
886 /* Throw */
887 v3_muls( player->rb.to_world[1], k_mmthrow_scale, s->state.throw_v );
888 }
889 }
890 else{
891 /* Collect */
892 float doty = v3_dot( player->rb.to_world[1], s->state.throw_v );
893
894 v3f Fl, Fv;
895 v3_muladds( s->state.throw_v, player->rb.to_world[1], -doty, Fl);
896
897 if( s->state.activity == k_skate_activity_ground ){
898 v3_muladds( player->rb.v, Fl, k_mmcollect_lat, player->rb.v );
899 v3_muladds( s->state.throw_v, Fl, -k_mmcollect_lat, s->state.throw_v );
900 }
901
902 v3_muls( player->rb.to_world[1], -doty, Fv );
903 v3_muladds( player->rb.v, Fv, k_mmcollect_vert, player->rb.v );
904 v3_muladds( s->state.throw_v, Fv, k_mmcollect_vert, s->state.throw_v );
905 }
906
907 /* Decay */
908 if( v3_length2( s->state.throw_v ) > 0.0001f ){
909 v3f dir;
910 v3_copy( s->state.throw_v, dir );
911 v3_normalize( dir );
912
913 float max = v3_dot( dir, s->state.throw_v ),
914 amt = vg_minf( k_mmdecay * k_rb_delta, max );
915 v3_muladds( s->state.throw_v, dir, -amt, s->state.throw_v );
916 }
917 }
918
919 VG_STATIC void skate_apply_cog_model( player_instance *player )
920 {
921 struct player_skate *s = &player->_skate;
922
923 v3f ideal_cog, ideal_diff, ideal_dir;
924 v3_copy( s->state.up_dir, ideal_dir );
925 v3_normalize( ideal_dir );
926
927 v3_muladds( player->rb.co, ideal_dir,
928 1.0f-player->input_grab->axis.value, ideal_cog );
929 v3_sub( ideal_cog, s->state.cog, ideal_diff );
930
931 /* Apply velocities */
932 v3f rv;
933 v3_sub( player->rb.v, s->state.cog_v, rv );
934
935 v3f F;
936 v3_muls( ideal_diff, -k_cog_spring * k_rb_rate, F );
937 v3_muladds( F, rv, -k_cog_damp * k_rb_rate, F );
938
939 float ra = k_cog_mass_ratio,
940 rb = 1.0f-k_cog_mass_ratio;
941
942 /* Apply forces & intergrate */
943 v3_muladds( s->state.cog_v, F, -rb, s->state.cog_v );
944 v3_muladds( s->state.cog_v, player->basis[1], -9.8f * k_rb_delta,
945 s->state.cog_v );
946
947 v3_muladds( s->state.cog, s->state.cog_v, k_rb_delta, s->state.cog );
948 }
949
950
951 VG_STATIC void skate_integrate( player_instance *player )
952 {
953 struct player_skate *s = &player->_skate;
954
955 float decay_rate = 1.0f - (k_rb_delta * 3.0f),
956 decay_rate_y = 1.0f;
957
958 if( s->state.activity >= k_skate_activity_grind_any ){
959 decay_rate = 1.0f-vg_lerpf( 3.0f, 20.0f, s->grind_strength ) * k_rb_delta;
960 decay_rate_y = decay_rate;
961 }
962
963 float wx = v3_dot( player->rb.w, player->rb.to_world[0] ) * decay_rate,
964 wy = v3_dot( player->rb.w, player->rb.to_world[1] ) * decay_rate_y,
965 wz = v3_dot( player->rb.w, player->rb.to_world[2] ) * decay_rate;
966
967 v3_muls( player->rb.to_world[0], wx, player->rb.w );
968 v3_muladds( player->rb.w, player->rb.to_world[1], wy, player->rb.w );
969 v3_muladds( player->rb.w, player->rb.to_world[2], wz, player->rb.w );
970
971 s->state.flip_time += s->state.flip_rate * k_rb_delta;
972 rb_update_transform( &player->rb );
973 }
974
975 /*
976 * 1 2 or 3
977 */
978
979 VG_STATIC int player_skate_trick_input( player_instance *player )
980 {
981 return (player->input_trick0->button.value) |
982 (player->input_trick1->button.value << 1) |
983 (player->input_trick2->button.value << 1) |
984 (player->input_trick2->button.value);
985 }
986
987 VG_STATIC void player__skate_pre_update( player_instance *player )
988 {
989 struct player_skate *s = &player->_skate;
990
991 if( vg_input_button_down( player->input_use ) ){
992 player->subsystem = k_player_subsystem_walk;
993
994 v3f angles;
995 v3_copy( player->cam.angles, angles );
996 angles[2] = 0.0f;
997
998 player->holdout_time = 0.25f;
999 player__skate_kill_audio( player );
1000 player__walk_transition( player, angles );
1001 return;
1002 }
1003
1004 if( vg_input_button_down( player->input_reset ) ){
1005 player->rb.co[1] += 2.0f;
1006 s->state.cog[1] += 2.0f;
1007 q_axis_angle( player->rb.q, (v3f){1.0f,0.0f,0.0f}, VG_PIf * 0.25f );
1008 v3_zero( player->rb.w );
1009 v3_zero( player->rb.v );
1010
1011 rb_update_transform( &player->rb );
1012 }
1013
1014 int trick_id;
1015 if( (s->state.activity == k_skate_activity_air) &&
1016 (trick_id = player_skate_trick_input( player )) )
1017 {
1018 if( (vg.time - s->state.jump_time) < 0.1f ){
1019 v3_zero( s->state.trick_vel );
1020 s->state.trick_time = 0.0f;
1021
1022 if( trick_id == 1 ){
1023 s->state.trick_vel[0] = 3.0f;
1024 }
1025 else if( trick_id == 2 ){
1026 s->state.trick_vel[2] = 3.0f;
1027 }
1028 else if( trick_id == 3 ){
1029 s->state.trick_vel[0] = 2.0f;
1030 s->state.trick_vel[2] = 2.0f;
1031 }
1032 }
1033 }
1034 }
1035
1036 VG_STATIC void player__skate_post_update( player_instance *player )
1037 {
1038 struct player_skate *s = &player->_skate;
1039
1040 for( int i=0; i<s->prediction_count; i++ )
1041 {
1042 struct land_prediction *p = &s->predictions[i];
1043
1044 for( int j=0; j<p->log_length - 1; j ++ )
1045 {
1046 float brightness = p->score*p->score*p->score;
1047 v3f p1;
1048 v3_lerp( p->log[j], p->log[j+1], brightness, p1 );
1049 vg_line( p->log[j], p1, p->colour );
1050 }
1051
1052 vg_line_cross( p->log[p->log_length-1], p->colour, 0.25f );
1053
1054 v3f p1;
1055 v3_add( p->log[p->log_length-1], p->n, p1 );
1056 vg_line( p->log[p->log_length-1], p1, 0xffffffff );
1057
1058 vg_line_pt3( p->apex, 0.02f, 0xffffffff );
1059 }
1060
1061 #if 0
1062 vg_line_pt3( s->state.apex, 0.030f, 0xff0000ff );
1063 #endif
1064
1065 audio_lock();
1066
1067 float air = s->state.activity == k_skate_activity_air? 1.0f: 0.0f,
1068 speed = v3_length( player->rb.v ),
1069 attn = vg_minf( 1.0f, speed*0.1f ),
1070 slide = vg_clampf( fabsf(s->state.slip), 0.0f, 1.0f ),
1071
1072 vol_main = sqrtf( (1.0f-air)*attn*(1.0f-slide) * 0.4f ),
1073 vol_air = sqrtf( air *attn * 0.5f ),
1074 vol_slide = sqrtf( (1.0f-air)*attn*slide * 0.25f );
1075
1076 const u32 flags = AUDIO_FLAG_SPACIAL_3D|AUDIO_FLAG_LOOP;
1077 if( !s->aud_main )
1078 s->aud_main = audio_request_channel( &audio_board[0], flags );
1079
1080 if( !s->aud_air )
1081 s->aud_air = audio_request_channel( &audio_board[1], flags );
1082
1083 if( !s->aud_slide )
1084 s->aud_slide = audio_request_channel( &audio_board[2], flags );
1085
1086
1087 /* brrrrrrrrrrrt sound for tiles and stuff
1088 * --------------------------------------------------------*/
1089 float sidechain_amt = 0.0f,
1090 hz = speed * 2.0f;
1091
1092 if( s->surface == k_surface_prop_tiles )
1093 sidechain_amt = 1.0f;
1094 else
1095 sidechain_amt = 0.0f;
1096
1097 audio_set_lfo_frequency( 0, hz );
1098 audio_set_lfo_wave( 0, k_lfo_polynomial_bipolar,
1099 vg_lerpf( 250.0f, 80.0f, attn ) );
1100
1101 if( s->aud_main ){
1102 s->aud_main->colour = 0x00103efe;
1103 audio_channel_set_spacial( s->aud_main, player->rb.co, 40.0f );
1104 audio_channel_slope_volume( s->aud_main, 0.05f, vol_main );
1105 audio_channel_sidechain_lfo( s->aud_main, 0, sidechain_amt );
1106
1107 float rate = 1.0f + (attn-0.5f)*0.2f;
1108 audio_channel_set_sampling_rate( s->aud_main, rate );
1109 }
1110
1111 if( s->aud_slide ){
1112 s->aud_slide->colour = 0x00103efe;
1113 audio_channel_set_spacial( s->aud_slide, player->rb.co, 40.0f );
1114 audio_channel_slope_volume( s->aud_slide, 0.05f, vol_slide );
1115 audio_channel_sidechain_lfo( s->aud_slide, 0, sidechain_amt );
1116 }
1117
1118 if( s->aud_air ){
1119 s->aud_air->colour = 0x00103efe;
1120 audio_channel_set_spacial( s->aud_air, player->rb.co, 40.0f );
1121 audio_channel_slope_volume( s->aud_air, 0.05f, vol_air );
1122 }
1123
1124 audio_unlock();
1125 }
1126
1127 /*
1128 * truck alignment model at ra(local)
1129 * returns 1 if valid surface:
1130 * surface_normal will be filled out with an averaged normal vector
1131 * axel_dir will be the direction from left to right wheels
1132 *
1133 * returns 0 if no good surface found
1134 */
1135 VG_STATIC
1136 int skate_compute_surface_alignment( player_instance *player,
1137 v3f ra, u32 colour,
1138 v3f surface_normal, v3f axel_dir )
1139 {
1140 struct player_skate *s = &player->_skate;
1141 world_instance *world = get_active_world();
1142
1143 v3f truck, left, right;
1144 m4x3_mulv( player->rb.to_world, ra, truck );
1145
1146 v3_muladds( truck, player->rb.to_world[0], -k_board_width, left );
1147 v3_muladds( truck, player->rb.to_world[0], k_board_width, right );
1148 vg_line( left, right, colour );
1149
1150 float k_max_truck_flex = VG_PIf * 0.25f;
1151
1152 ray_hit ray_l, ray_r;
1153
1154 v3f dir;
1155 v3_muls( player->rb.to_world[1], -1.0f, dir );
1156
1157 int res_l = 0, res_r = 0;
1158
1159 for( int i=0; i<8; i++ )
1160 {
1161 float t = 1.0f - (float)i * (1.0f/8.0f);
1162 v3_muladds( truck, player->rb.to_world[0], -k_board_radius*t, left );
1163 v3_muladds( left, player->rb.to_world[1], k_board_radius, left );
1164 ray_l.dist = 2.1f * k_board_radius;
1165
1166 res_l = ray_world( world, left, dir, &ray_l );
1167
1168 if( res_l )
1169 break;
1170 }
1171
1172 for( int i=0; i<8; i++ )
1173 {
1174 float t = 1.0f - (float)i * (1.0f/8.0f);
1175 v3_muladds( truck, player->rb.to_world[0], k_board_radius*t, right );
1176 v3_muladds( right, player->rb.to_world[1], k_board_radius, right );
1177 ray_r.dist = 2.1f * k_board_radius;
1178
1179 res_r = ray_world( world, right, dir, &ray_r );
1180
1181 if( res_r )
1182 break;
1183 }
1184
1185 v3f v0;
1186 v3f midpoint;
1187 v3f tangent_average;
1188 v3_muladds( truck, player->rb.to_world[1], -k_board_radius, midpoint );
1189 v3_zero( tangent_average );
1190
1191 if( res_l || res_r )
1192 {
1193 v3f p0, p1, t;
1194 v3_copy( midpoint, p0 );
1195 v3_copy( midpoint, p1 );
1196
1197 if( res_l )
1198 {
1199 v3_copy( ray_l.pos, p0 );
1200 v3_cross( ray_l.normal, player->rb.to_world[0], t );
1201 v3_add( t, tangent_average, tangent_average );
1202 }
1203 if( res_r )
1204 {
1205 v3_copy( ray_r.pos, p1 );
1206 v3_cross( ray_r.normal, player->rb.to_world[0], t );
1207 v3_add( t, tangent_average, tangent_average );
1208 }
1209
1210 v3_sub( p1, p0, v0 );
1211 v3_normalize( v0 );
1212 }
1213 else
1214 {
1215 /* fallback: use the closes point to the trucks */
1216 v3f closest;
1217 int idx = bh_closest_point( world->geo_bh, midpoint, closest, 0.1f );
1218
1219 if( idx != -1 )
1220 {
1221 u32 *tri = &world->scene_geo->arrindices[ idx * 3 ];
1222 v3f verts[3];
1223
1224 for( int j=0; j<3; j++ )
1225 v3_copy( world->scene_geo->arrvertices[ tri[j] ].co, verts[j] );
1226
1227 v3f vert0, vert1, n;
1228 v3_sub( verts[1], verts[0], vert0 );
1229 v3_sub( verts[2], verts[0], vert1 );
1230 v3_cross( vert0, vert1, n );
1231 v3_normalize( n );
1232
1233 if( v3_dot( n, player->rb.to_world[1] ) < 0.3f )
1234 return 0;
1235
1236 v3_cross( n, player->rb.to_world[2], v0 );
1237 v3_muladds( v0, player->rb.to_world[2],
1238 -v3_dot( player->rb.to_world[2], v0 ), v0 );
1239 v3_normalize( v0 );
1240
1241 v3f t;
1242 v3_cross( n, player->rb.to_world[0], t );
1243 v3_add( t, tangent_average, tangent_average );
1244 }
1245 else
1246 return 0;
1247 }
1248
1249 v3_muladds( truck, v0, k_board_width, right );
1250 v3_muladds( truck, v0, -k_board_width, left );
1251
1252 vg_line( left, right, VG__WHITE );
1253
1254 v3_normalize( tangent_average );
1255 v3_cross( v0, tangent_average, surface_normal );
1256 v3_copy( v0, axel_dir );
1257
1258 return 1;
1259 }
1260
1261 VG_STATIC void skate_weight_distribute( player_instance *player )
1262 {
1263 struct player_skate *s = &player->_skate;
1264 v3_zero( s->weight_distribution );
1265
1266 int reverse_dir = v3_dot( player->rb.to_world[2], player->rb.v ) < 0.0f?1:-1;
1267
1268 if( s->state.manual_direction == 0 )
1269 {
1270 if( (player->input_js1v->axis.value > 0.7f) &&
1271 (s->state.activity == k_skate_activity_ground) &&
1272 (s->state.jump_charge <= 0.01f) )
1273 s->state.manual_direction = reverse_dir;
1274 }
1275 else
1276 {
1277 if( player->input_js1v->axis.value < 0.1f )
1278 {
1279 s->state.manual_direction = 0;
1280 }
1281 else
1282 {
1283 if( reverse_dir != s->state.manual_direction )
1284 {
1285 return;
1286 }
1287 }
1288 }
1289
1290 if( s->state.manual_direction )
1291 {
1292 float amt = vg_minf( player->input_js1v->axis.value * 8.0f, 1.0f );
1293 s->weight_distribution[2] = k_board_length * amt *
1294 (float)s->state.manual_direction;
1295 }
1296
1297 /* TODO: Fall back on land normal */
1298 /* TODO: Lerp weight distribution */
1299 if( s->state.manual_direction )
1300 {
1301 v3f plane_z;
1302
1303 m3x3_mulv( player->rb.to_world, s->weight_distribution, plane_z );
1304 v3_negate( plane_z, plane_z );
1305
1306 v3_muladds( plane_z, s->surface_picture,
1307 -v3_dot( plane_z, s->surface_picture ), plane_z );
1308 v3_normalize( plane_z );
1309
1310 v3_muladds( plane_z, s->surface_picture, 0.3f, plane_z );
1311 v3_normalize( plane_z );
1312
1313 v3f p1;
1314 v3_muladds( player->rb.co, plane_z, 1.5f, p1 );
1315 vg_line( player->rb.co, p1, VG__GREEN );
1316
1317 v3f refdir;
1318 v3_muls( player->rb.to_world[2], -(float)s->state.manual_direction,
1319 refdir );
1320
1321 rb_effect_spring_target_vector( &player->rb, refdir, plane_z,
1322 k_manul_spring, k_manul_dampener,
1323 s->substep_delta );
1324 }
1325 }
1326
1327 VG_STATIC void skate_adjust_up_direction( player_instance *player )
1328 {
1329 struct player_skate *s = &player->_skate;
1330
1331 if( s->state.activity == k_skate_activity_ground )
1332 {
1333 v3f target;
1334 v3_copy( s->surface_picture, target );
1335
1336 target[1] += 2.0f * s->surface_picture[1];
1337 v3_normalize( target );
1338
1339 v3_lerp( s->state.up_dir, target,
1340 8.0f * s->substep_delta, s->state.up_dir );
1341 }
1342 else if( s->state.activity == k_skate_activity_air )
1343 {
1344 v3_lerp( s->state.up_dir, player->rb.to_world[1],
1345 8.0f * s->substep_delta, s->state.up_dir );
1346 }
1347 else
1348 {
1349 v3_lerp( s->state.up_dir, player->basis[1],
1350 12.0f * s->substep_delta, s->state.up_dir );
1351 }
1352 }
1353
1354 VG_STATIC int skate_point_visible( v3f origin, v3f target )
1355 {
1356 v3f dir;
1357 v3_sub( target, origin, dir );
1358
1359 ray_hit ray;
1360 ray.dist = v3_length( dir );
1361 v3_muls( dir, 1.0f/ray.dist, dir );
1362 ray.dist -= 0.025f;
1363
1364 if( ray_world( get_active_world(), origin, dir, &ray ) )
1365 return 0;
1366
1367 return 1;
1368 }
1369
1370 VG_STATIC void skate_grind_orient( struct grind_info *inf, m3x3f mtx )
1371 {
1372 /* TODO: Is N and Dir really orthogonal? */
1373 v3_copy( inf->dir, mtx[0] );
1374 v3_copy( inf->n, mtx[1] );
1375 v3_cross( mtx[0], mtx[1], mtx[2] );
1376 }
1377
1378 VG_STATIC void skate_grind_friction( player_instance *player,
1379 struct grind_info *inf, float strength )
1380 {
1381 v3f v2;
1382 v3_muladds( player->rb.to_world[2], inf->n,
1383 -v3_dot( player->rb.to_world[2], inf->n ), v2 );
1384
1385 float a = 1.0f-fabsf( v3_dot( v2, inf->dir ) ),
1386 dir = vg_signf( v3_dot( player->rb.v, inf->dir ) ),
1387 F = a * -dir * k_grind_max_friction;
1388
1389 v3_muladds( player->rb.v, inf->dir, F*k_rb_delta*strength, player->rb.v );
1390 }
1391
1392 VG_STATIC void skate_grind_decay( player_instance *player,
1393 struct grind_info *inf, float strength )
1394 {
1395 m3x3f mtx, mtx_inv;
1396 skate_grind_orient( inf, mtx );
1397 m3x3_transpose( mtx, mtx_inv );
1398
1399 v3f v_grind;
1400 m3x3_mulv( mtx_inv, player->rb.v, v_grind );
1401
1402 float decay = 1.0f - ( k_rb_delta * k_grind_decayxy * strength );
1403 v3_mul( v_grind, (v3f){ 1.0f, decay, decay }, v_grind );
1404 m3x3_mulv( mtx, v_grind, player->rb.v );
1405 }
1406
1407 VG_STATIC void skate_grind_truck_apply( player_instance *player,
1408 float sign, struct grind_info *inf,
1409 float strength )
1410 {
1411 struct player_skate *s = &player->_skate;
1412
1413 /* TODO: Trash compactor this */
1414 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1415 v3f raw, wsp;
1416 m3x3_mulv( player->rb.to_world, ra, raw );
1417 v3_add( player->rb.co, raw, wsp );
1418
1419 v3_copy( ra, s->weight_distribution );
1420
1421 v3f delta;
1422 v3_sub( inf->co, wsp, delta );
1423
1424 /* spring force */
1425 v3_muladds( player->rb.v, delta, k_spring_force*strength*k_rb_delta,
1426 player->rb.v );
1427
1428 skate_grind_decay( player, inf, strength );
1429 skate_grind_friction( player, inf, strength );
1430
1431 /* yeah yeah yeah yeah */
1432 v3f raw_nplane, axis;
1433 v3_muladds( raw, inf->n, -v3_dot( inf->n, raw ), raw_nplane );
1434 v3_cross( raw_nplane, inf->n, axis );
1435 v3_normalize( axis );
1436
1437 /* orientation */
1438 m3x3f mtx;
1439 skate_grind_orient( inf, mtx );
1440 v3f target_fwd, fwd, up, target_up;
1441 m3x3_mulv( mtx, s->grind_vec, target_fwd );
1442 v3_copy( raw_nplane, fwd );
1443 v3_copy( player->rb.to_world[1], up );
1444 v3_copy( inf->n, target_up );
1445
1446 v3_muladds( target_fwd, inf->n, -v3_dot(inf->n,target_fwd), target_fwd );
1447 v3_muladds( fwd, inf->n, -v3_dot(inf->n,fwd), fwd );
1448
1449 v3_normalize( target_fwd );
1450 v3_normalize( fwd );
1451
1452
1453 float way = player->input_js1v->axis.value *
1454 vg_signf( v3_dot( raw_nplane, player->rb.v ) );
1455
1456 v4f q;
1457 q_axis_angle( q, axis, VG_PIf*0.125f * way );
1458 q_mulv( q, target_up, target_up );
1459 q_mulv( q, target_fwd, target_fwd );
1460
1461 rb_effect_spring_target_vector( &player->rb, up, target_up,
1462 k_grind_spring,
1463 k_grind_dampener,
1464 k_rb_delta );
1465
1466 rb_effect_spring_target_vector( &player->rb, fwd, target_fwd,
1467 k_grind_spring*strength,
1468 k_grind_dampener*strength,
1469 k_rb_delta );
1470
1471 vg_line_arrow( player->rb.co, target_up, 1.0f, VG__GREEN );
1472 vg_line_arrow( player->rb.co, fwd, 0.8f, VG__RED );
1473 vg_line_arrow( player->rb.co, target_fwd, 1.0f, VG__YELOW );
1474
1475 s->grind_strength = strength;
1476
1477 /* Fake contact */
1478 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1479 m4x3_mulv( player->rb.to_local, wsp, limit->ra );
1480 m3x3_mulv( player->rb.to_local, inf->n, limit->n );
1481 limit->p = 0.0f;
1482
1483 v3_copy( inf->dir, s->grind_dir );
1484 }
1485
1486 VG_STATIC void skate_5050_apply( player_instance *player,
1487 struct grind_info *inf_front,
1488 struct grind_info *inf_back )
1489 {
1490 struct player_skate *s = &player->_skate;
1491 struct grind_info inf_avg;
1492
1493 v3_sub( inf_front->co, inf_back->co, inf_avg.dir );
1494 v3_muladds( inf_back->co, inf_avg.dir, 0.5f, inf_avg.co );
1495 v3_normalize( inf_avg.dir );
1496
1497 v3f axis_front, axis_back, axis;
1498 v3_cross( inf_front->dir, inf_front->n, axis_front );
1499 v3_cross( inf_back->dir, inf_back->n, axis_back );
1500 v3_add( axis_front, axis_back, axis );
1501 v3_normalize( axis );
1502
1503 v3_cross( axis, inf_avg.dir, inf_avg.n );
1504
1505 skate_grind_decay( player, &inf_avg, 1.0f );
1506
1507
1508 float way = player->input_js1v->axis.value *
1509 vg_signf( v3_dot( player->rb.to_world[2], player->rb.v ) );
1510 v4f q;
1511 v3f up, target_up;
1512 v3_copy( player->rb.to_world[1], up );
1513 v3_copy( inf_avg.n, target_up );
1514 q_axis_angle( q, player->rb.to_world[0], VG_PIf*0.25f * -way );
1515 q_mulv( q, target_up, target_up );
1516
1517 v3_zero( s->weight_distribution );
1518 s->weight_distribution[2] = k_board_length * -way;
1519
1520 rb_effect_spring_target_vector( &player->rb, up, target_up,
1521 k_grind_spring,
1522 k_grind_dampener,
1523 k_rb_delta );
1524
1525 v3f fwd_nplane, dir_nplane;
1526 v3_muladds( player->rb.to_world[2], inf_avg.n,
1527 -v3_dot( player->rb.to_world[2], inf_avg.n ), fwd_nplane );
1528
1529 v3f dir;
1530 v3_muls( inf_avg.dir, v3_dot( fwd_nplane, inf_avg.dir ), dir );
1531 v3_muladds( dir, inf_avg.n, -v3_dot( dir, inf_avg.n ), dir_nplane );
1532
1533 v3_normalize( fwd_nplane );
1534 v3_normalize( dir_nplane );
1535
1536 rb_effect_spring_target_vector( &player->rb, fwd_nplane, dir_nplane,
1537 1000.0f,
1538 k_grind_dampener,
1539 k_rb_delta );
1540
1541 v3f pos_front = { 0.0f, -k_board_radius, -1.0f * k_board_length },
1542 pos_back = { 0.0f, -k_board_radius, 1.0f * k_board_length },
1543 delta_front, delta_back, delta_total;
1544
1545 m4x3_mulv( player->rb.to_world, pos_front, pos_front );
1546 m4x3_mulv( player->rb.to_world, pos_back, pos_back );
1547
1548 v3_sub( inf_front->co, pos_front, delta_front );
1549 v3_sub( inf_back->co, pos_back, delta_back );
1550 v3_add( delta_front, delta_back, delta_total );
1551
1552 v3_muladds( player->rb.v, delta_total, 50.0f * k_rb_delta, player->rb.v );
1553
1554 /* Fake contact */
1555 struct grind_limit *limit = &s->limits[ s->limit_count ++ ];
1556 v3_zero( limit->ra );
1557 m3x3_mulv( player->rb.to_local, inf_avg.n, limit->n );
1558 limit->p = 0.0f;
1559
1560 v3_copy( inf_avg.dir, s->grind_dir );
1561 }
1562
1563 VG_STATIC int skate_grind_truck_renew( player_instance *player, float sign,
1564 struct grind_info *inf )
1565 {
1566 struct player_skate *s = &player->_skate;
1567
1568 v3f wheel_co = { 0.0f, 0.0f, sign * k_board_length },
1569 grind_co = { 0.0f, -k_board_radius, sign * k_board_length };
1570
1571 m4x3_mulv( player->rb.to_world, wheel_co, wheel_co );
1572 m4x3_mulv( player->rb.to_world, grind_co, grind_co );
1573
1574 /* Exit condition: lost grind tracking */
1575 if( !skate_grind_scansq( player, grind_co, player->rb.v, 0.3f, inf ) )
1576 return 0;
1577
1578 /* Exit condition: cant see grind target directly */
1579 if( !skate_point_visible( wheel_co, inf->co ) )
1580 return 0;
1581
1582 /* Exit condition: minimum velocity not reached, but allow a bit of error */
1583 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1584 minv = k_grind_axel_min_vel*0.8f;
1585
1586 if( dv < minv )
1587 return 0;
1588
1589 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1590 return 0;
1591
1592 v3_copy( inf->dir, s->grind_dir );
1593 return 1;
1594 }
1595
1596 VG_STATIC int skate_grind_truck_entry( player_instance *player, float sign,
1597 struct grind_info *inf )
1598 {
1599 struct player_skate *s = &player->_skate;
1600
1601 /* TODO: Trash compactor this */
1602 v3f ra = { 0.0f, -k_board_radius, sign * k_board_length };
1603
1604 v3f raw, wsp;
1605 m3x3_mulv( player->rb.to_world, ra, raw );
1606 v3_add( player->rb.co, raw, wsp );
1607
1608 if( skate_grind_scansq( player, wsp, player->rb.v, 0.3, inf ) )
1609 {
1610 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1611 return 0;
1612
1613 /* velocity should be at least 60% aligned */
1614 v3f pv, axis;
1615 v3_cross( inf->n, inf->dir, axis );
1616 v3_muladds( player->rb.v, inf->n, -v3_dot( player->rb.v, inf->n ), pv );
1617
1618 if( v3_length2( pv ) < 0.0001f )
1619 return 0;
1620 v3_normalize( pv );
1621
1622 if( fabsf(v3_dot( pv, inf->dir )) < k_grind_axel_max_angle )
1623 return 0;
1624
1625 if( v3_dot( player->rb.v, inf->n ) > 0.5f )
1626 return 0;
1627
1628 #if 0
1629 /* check for vertical alignment */
1630 if( v3_dot( player->rb.to_world[1], inf->n ) < k_grind_axel_max_vangle )
1631 return 0;
1632 #endif
1633
1634 v3f local_co, local_dir, local_n;
1635 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1636 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1637 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1638
1639 v2f delta = { local_co[0], local_co[2] - k_board_length*sign };
1640
1641 float truck_height = -(k_board_radius+0.03f);
1642
1643 v3f rv;
1644 v3_cross( player->rb.w, raw, rv );
1645 v3_add( player->rb.v, rv, rv );
1646
1647 if( (local_co[1] >= truck_height) &&
1648 (v2_length2( delta ) <= k_board_radius*k_board_radius) )
1649 {
1650 return 1;
1651 }
1652 }
1653
1654 return 0;
1655 }
1656
1657 VG_STATIC void skate_boardslide_apply( player_instance *player,
1658 struct grind_info *inf )
1659 {
1660 struct player_skate *s = &player->_skate;
1661
1662 v3f local_co, local_dir, local_n;
1663 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1664 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1665 m3x3_mulv( player->rb.to_local, inf->n, local_n );
1666
1667 v3f intersection;
1668 v3_muladds( local_co, local_dir, local_co[0]/-local_dir[0],
1669 intersection );
1670 v3_copy( intersection, s->weight_distribution );
1671
1672 skate_grind_decay( player, inf, 0.1f );
1673 skate_grind_friction( player, inf, 0.25f );
1674
1675 /* direction alignment */
1676 v3f dir, perp;
1677 v3_cross( local_dir, local_n, perp );
1678 v3_muls( local_dir, vg_signf(local_dir[0]), dir );
1679 v3_muls( perp, vg_signf(perp[2]), perp );
1680
1681 m3x3_mulv( player->rb.to_world, dir, dir );
1682 m3x3_mulv( player->rb.to_world, perp, perp );
1683
1684 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1685 dir,
1686 k_grind_spring, k_grind_dampener,
1687 k_rb_delta );
1688
1689 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[2],
1690 perp,
1691 k_grind_spring, k_grind_dampener,
1692 k_rb_delta );
1693
1694 vg_line_arrow( player->rb.co, dir, 0.5f, VG__GREEN );
1695 vg_line_arrow( player->rb.co, perp, 0.5f, VG__BLUE );
1696
1697 v3_copy( inf->dir, s->grind_dir );
1698 }
1699
1700 VG_STATIC int skate_boardslide_entry( player_instance *player,
1701 struct grind_info *inf )
1702 {
1703 struct player_skate *s = &player->_skate;
1704
1705 if( skate_grind_scansq( player, player->rb.co,
1706 player->rb.to_world[0], k_board_length,
1707 inf ) )
1708 {
1709 v3f local_co, local_dir;
1710 m4x3_mulv( player->rb.to_local, inf->co, local_co );
1711 m3x3_mulv( player->rb.to_local, inf->dir, local_dir );
1712
1713 if( (fabsf(local_co[2]) <= k_board_length) && /* within wood area */
1714 (local_co[1] >= 0.0f) && /* at deck level */
1715 (fabsf(local_dir[0]) >= 0.5f) ) /* perpendicular to us */
1716 {
1717 if( fabsf(v3_dot( player->rb.v, inf->dir )) < k_grind_axel_min_vel )
1718 return 0;
1719
1720 return 1;
1721 }
1722 }
1723
1724 return 0;
1725 }
1726
1727 VG_STATIC int skate_boardslide_renew( player_instance *player,
1728 struct grind_info *inf )
1729 {
1730 struct player_skate *s = &player->_skate;
1731
1732 if( !skate_grind_scansq( player, player->rb.co,
1733 player->rb.to_world[0], k_board_length,
1734 inf ) )
1735 return 0;
1736
1737 /* Exit condition: cant see grind target directly */
1738 v3f vis;
1739 v3_muladds( player->rb.co, player->rb.to_world[1], 0.2f, vis );
1740 if( !skate_point_visible( vis, inf->co ) )
1741 return 0;
1742
1743 /* Exit condition: minimum velocity not reached, but allow a bit of error
1744 * TODO: trash compactor */
1745 float dv = fabsf(v3_dot( player->rb.v, inf->dir )),
1746 minv = k_grind_axel_min_vel*0.8f;
1747
1748 if( dv < minv )
1749 return 0;
1750
1751 if( fabsf(v3_dot( inf->dir, s->grind_dir )) < k_grind_max_edge_angle )
1752 return 0;
1753
1754 return 1;
1755 }
1756
1757 VG_STATIC void skate_store_grind_vec( player_instance *player,
1758 struct grind_info *inf )
1759 {
1760 struct player_skate *s = &player->_skate;
1761
1762 m3x3f mtx;
1763 skate_grind_orient( inf, mtx );
1764 m3x3_transpose( mtx, mtx );
1765
1766 v3f raw;
1767 v3_sub( inf->co, player->rb.co, raw );
1768
1769 m3x3_mulv( mtx, raw, s->grind_vec );
1770 v3_normalize( s->grind_vec );
1771 v3_copy( inf->dir, s->grind_dir );
1772 }
1773
1774 VG_STATIC enum skate_activity skate_availible_grind( player_instance *player )
1775 {
1776 struct player_skate *s = &player->_skate;
1777
1778 /* debounces this state manager a little bit */
1779 if( s->frames_since_activity_change < 10 )
1780 {
1781 s->frames_since_activity_change ++;
1782 return k_skate_activity_undefined;
1783 }
1784
1785 struct grind_info inf_back50,
1786 inf_front50,
1787 inf_slide;
1788
1789 int res_back50 = 0,
1790 res_front50 = 0,
1791 res_slide = 0;
1792
1793 if( s->state.activity == k_skate_activity_grind_boardslide )
1794 {
1795 res_slide = skate_boardslide_renew( player, &inf_slide );
1796 }
1797 else if( s->state.activity == k_skate_activity_grind_back50 )
1798 {
1799 res_back50 = skate_grind_truck_renew( player, 1.0f, &inf_back50 );
1800 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1801 }
1802 else if( s->state.activity == k_skate_activity_grind_front50 )
1803 {
1804 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1805 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1806 }
1807 else if( s->state.activity == k_skate_activity_grind_5050 )
1808 {
1809 res_front50 = skate_grind_truck_renew( player, -1.0f, &inf_front50 );
1810 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1811 }
1812 else
1813 {
1814 res_slide = skate_boardslide_entry( player, &inf_slide );
1815 res_back50 = skate_grind_truck_entry( player, 1.0f, &inf_back50 );
1816 res_front50 = skate_grind_truck_entry( player, -1.0f, &inf_front50 );
1817
1818 if( res_back50 != res_front50 )
1819 {
1820 int wants_to_do_that = fabsf(player->input_js1v->axis.value) >= 0.25f;
1821
1822 res_back50 &= wants_to_do_that;
1823 res_front50 &= wants_to_do_that;
1824 }
1825 }
1826
1827 const enum skate_activity table[] =
1828 { /* slide | back | front */
1829 k_skate_activity_undefined, /* 0 0 0 */
1830 k_skate_activity_grind_front50, /* 0 0 1 */
1831 k_skate_activity_grind_back50, /* 0 1 0 */
1832 k_skate_activity_grind_5050, /* 0 1 1 */
1833
1834 /* slide has priority always */
1835 k_skate_activity_grind_boardslide, /* 1 0 0 */
1836 k_skate_activity_grind_boardslide, /* 1 0 1 */
1837 k_skate_activity_grind_boardslide, /* 1 1 0 */
1838 k_skate_activity_grind_boardslide, /* 1 1 1 */
1839 }
1840 , new_activity = table[ res_slide << 2 | res_back50 << 1 | res_front50 ];
1841
1842 if( new_activity == k_skate_activity_undefined )
1843 {
1844 if( s->state.activity >= k_skate_activity_grind_any )
1845 s->frames_since_activity_change = 0;
1846 }
1847 else if( new_activity == k_skate_activity_grind_boardslide )
1848 {
1849 skate_boardslide_apply( player, &inf_slide );
1850 }
1851 else if( new_activity == k_skate_activity_grind_back50 )
1852 {
1853 if( s->state.activity != k_skate_activity_grind_back50 )
1854 skate_store_grind_vec( player, &inf_back50 );
1855
1856 skate_grind_truck_apply( player, 1.0f, &inf_back50, 1.0f );
1857 }
1858 else if( new_activity == k_skate_activity_grind_front50 )
1859 {
1860 if( s->state.activity != k_skate_activity_grind_front50 )
1861 skate_store_grind_vec( player, &inf_front50 );
1862
1863 skate_grind_truck_apply( player, -1.0f, &inf_front50, 1.0f );
1864 }
1865 else if( new_activity == k_skate_activity_grind_5050 )
1866 skate_5050_apply( player, &inf_front50, &inf_back50 );
1867
1868 return new_activity;
1869 }
1870
1871 VG_STATIC void player__skate_update( player_instance *player )
1872 {
1873 struct player_skate *s = &player->_skate;
1874 world_instance *world = get_active_world();
1875
1876 v3_copy( player->rb.co, s->state.prev_pos );
1877 s->state.activity_prev = s->state.activity;
1878
1879 struct board_collider
1880 {
1881 v3f pos;
1882 float radius;
1883
1884 u32 colour;
1885
1886 enum board_collider_state
1887 {
1888 k_collider_state_default,
1889 k_collider_state_disabled,
1890 k_collider_state_colliding
1891 }
1892 state;
1893 }
1894 wheels[] =
1895 {
1896 {
1897 { 0.0f, 0.0f, -k_board_length },
1898 .radius = k_board_radius,
1899 .colour = VG__RED
1900 },
1901 {
1902 { 0.0f, 0.0f, k_board_length },
1903 .radius = k_board_radius,
1904 .colour = VG__GREEN
1905 }
1906 };
1907
1908 const int k_wheel_count = 2;
1909
1910 s->substep = k_rb_delta;
1911 s->substep_delta = s->substep;
1912 s->limit_count = 0;
1913
1914 int substep_count = 0;
1915
1916 v3_zero( s->surface_picture );
1917
1918 for( int i=0; i<k_wheel_count; i++ )
1919 wheels[i].state = k_collider_state_default;
1920
1921 /* check if we can enter or continue grind */
1922 enum skate_activity grindable_activity = skate_availible_grind( player );
1923 if( grindable_activity != k_skate_activity_undefined )
1924 {
1925 s->state.activity = grindable_activity;
1926 goto grinding;
1927 }
1928
1929 int contact_count = 0;
1930 for( int i=0; i<2; i++ )
1931 {
1932 v3f normal, axel;
1933 v3_copy( player->rb.to_world[0], axel );
1934
1935 if( skate_compute_surface_alignment( player, wheels[i].pos,
1936 wheels[i].colour, normal, axel ) )
1937 {
1938 rb_effect_spring_target_vector( &player->rb, player->rb.to_world[0],
1939 axel,
1940 k_surface_spring, k_surface_dampener,
1941 s->substep_delta );
1942
1943 v3_add( normal, s->surface_picture, s->surface_picture );
1944 contact_count ++;
1945 }
1946
1947 m3x3_mulv( player->rb.to_local, axel, s->truckv0[i] );
1948 }
1949
1950 if( contact_count )
1951 {
1952 s->state.activity = k_skate_activity_ground;
1953 s->state.gravity_bias = k_gravity;
1954 v3_normalize( s->surface_picture );
1955
1956 skate_apply_friction_model( player );
1957 skate_weight_distribute( player );
1958 }
1959 else
1960 {
1961 s->state.activity = k_skate_activity_air;
1962 v3_zero( s->weight_distribution );
1963 skate_apply_air_model( player );
1964 }
1965
1966 grinding:;
1967
1968 if( s->state.activity == k_skate_activity_grind_back50 )
1969 wheels[1].state = k_collider_state_disabled;
1970 if( s->state.activity == k_skate_activity_grind_front50 )
1971 wheels[0].state = k_collider_state_disabled;
1972 if( s->state.activity == k_skate_activity_grind_5050 )
1973 {
1974 wheels[0].state = k_collider_state_disabled;
1975 wheels[1].state = k_collider_state_disabled;
1976 }
1977
1978 /* all activities */
1979 skate_apply_steering_model( player );
1980 skate_adjust_up_direction( player );
1981 skate_apply_cog_model( player );
1982 skate_apply_jump_model( player );
1983 skate_apply_grab_model( player );
1984 skate_apply_trick_model( player );
1985 skate_apply_pump_model( player );
1986
1987 begin_collision:;
1988
1989 /*
1990 * Phase 0: Continous collision detection
1991 * --------------------------------------------------------------------------
1992 */
1993
1994 v3f head_wp0, head_wp1, start_co;
1995 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp0 );
1996 v3_copy( player->rb.co, start_co );
1997
1998 /* calculate transform one step into future */
1999 v3f future_co;
2000 v4f future_q;
2001 v3_muladds( player->rb.co, player->rb.v, s->substep, future_co );
2002
2003 if( v3_length2( player->rb.w ) > 0.0f )
2004 {
2005 v4f rotation;
2006 v3f axis;
2007 v3_copy( player->rb.w, axis );
2008
2009 float mag = v3_length( axis );
2010 v3_divs( axis, mag, axis );
2011 q_axis_angle( rotation, axis, mag*s->substep );
2012 q_mul( rotation, player->rb.q, future_q );
2013 q_normalize( future_q );
2014 }
2015 else
2016 v4_copy( player->rb.q, future_q );
2017
2018 v3f future_cg, current_cg, cg_offset;
2019 q_mulv( player->rb.q, s->weight_distribution, current_cg );
2020 q_mulv( future_q, s->weight_distribution, future_cg );
2021 v3_sub( future_cg, current_cg, cg_offset );
2022
2023 /* calculate the minimum time we can move */
2024 float max_time = s->substep;
2025
2026 for( int i=0; i<k_wheel_count; i++ )
2027 {
2028 if( wheels[i].state == k_collider_state_disabled )
2029 continue;
2030
2031 v3f current, future, r_cg;
2032
2033 q_mulv( future_q, wheels[i].pos, future );
2034 v3_add( future, future_co, future );
2035 v3_add( cg_offset, future, future );
2036
2037 q_mulv( player->rb.q, wheels[i].pos, current );
2038 v3_add( current, player->rb.co, current );
2039
2040 float t;
2041 v3f n;
2042
2043 float cast_radius = wheels[i].radius - k_penetration_slop * 2.0f;
2044 if( spherecast_world( world, current, future, cast_radius, &t, n ) != -1)
2045 max_time = vg_minf( max_time, t * s->substep );
2046 }
2047
2048 /* clamp to a fraction of delta, to prevent locking */
2049 float rate_lock = substep_count;
2050 rate_lock *= k_rb_delta * 0.1f;
2051 rate_lock *= rate_lock;
2052
2053 max_time = vg_maxf( max_time, rate_lock );
2054 s->substep_delta = max_time;
2055
2056 /* integrate */
2057 v3_muladds( player->rb.co, player->rb.v, s->substep_delta, player->rb.co );
2058 if( v3_length2( player->rb.w ) > 0.0f )
2059 {
2060 v4f rotation;
2061 v3f axis;
2062 v3_copy( player->rb.w, axis );
2063
2064 float mag = v3_length( axis );
2065 v3_divs( axis, mag, axis );
2066 q_axis_angle( rotation, axis, mag*s->substep_delta );
2067 q_mul( rotation, player->rb.q, player->rb.q );
2068 q_normalize( player->rb.q );
2069
2070 q_mulv( player->rb.q, s->weight_distribution, future_cg );
2071 v3_sub( current_cg, future_cg, cg_offset );
2072 v3_add( player->rb.co, cg_offset, player->rb.co );
2073 }
2074
2075 rb_update_transform( &player->rb );
2076 v3_muladds( player->rb.v, player->basis[1],
2077 -s->state.gravity_bias * s->substep_delta, player->rb.v );
2078
2079 s->substep -= s->substep_delta;
2080
2081 rb_ct manifold[128];
2082 int manifold_len = 0;
2083
2084 /*
2085 * Phase -1: head detection
2086 * --------------------------------------------------------------------------
2087 */
2088 m4x3_mulv( player->rb.to_world, s->state.head_position, head_wp1 );
2089
2090 float t;
2091 v3f n;
2092 if( (v3_dist2( head_wp0, head_wp1 ) > 0.001f) &&
2093 (spherecast_world( world, head_wp0, head_wp1, 0.2f, &t, n ) != -1) )
2094 {
2095 v3_lerp( start_co, player->rb.co, t, player->rb.co );
2096 rb_update_transform( &player->rb );
2097
2098 player__skate_kill_audio( player );
2099 player__dead_transition( player );
2100 return;
2101 }
2102
2103 /*
2104 * Phase 1: Regular collision detection
2105 * --------------------------------------------------------------------------
2106 */
2107
2108 for( int i=0; i<k_wheel_count; i++ )
2109 {
2110 if( wheels[i].state == k_collider_state_disabled )
2111 continue;
2112
2113 m4x3f mtx;
2114 m3x3_identity( mtx );
2115 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2116
2117 rb_sphere collider = { .radius = wheels[i].radius };
2118
2119 rb_ct *man = &manifold[ manifold_len ];
2120
2121 int l = skate_collide_smooth( player, mtx, &collider, man );
2122 if( l )
2123 wheels[i].state = k_collider_state_colliding;
2124
2125 manifold_len += l;
2126 }
2127
2128 float grind_radius = k_board_radius * 0.75f;
2129 rb_capsule capsule = { .height = (k_board_length+0.2f)*2.0f,
2130 .radius=grind_radius };
2131 m4x3f mtx;
2132 v3_muls( player->rb.to_world[0], 1.0f, mtx[0] );
2133 v3_muls( player->rb.to_world[2], -1.0f, mtx[1] );
2134 v3_muls( player->rb.to_world[1], 1.0f, mtx[2] );
2135 v3_muladds( player->rb.to_world[3], player->rb.to_world[1],
2136 grind_radius + k_board_radius*0.25f, mtx[3] );
2137
2138 rb_ct *cman = &manifold[manifold_len];
2139
2140 int l = rb_capsule__scene( mtx, &capsule, NULL, &world->rb_geo.inf.scene,
2141 cman );
2142
2143 /* weld joints */
2144 for( int i=0; i<l; i ++ )
2145 cman[l].type = k_contact_type_edge;
2146 rb_manifold_filter_joint_edges( cman, l, 0.03f );
2147 l = rb_manifold_apply_filtered( cman, l );
2148
2149 manifold_len += l;
2150
2151 debug_capsule( mtx, capsule.radius, capsule.height, VG__WHITE );
2152
2153 /* add limits */
2154 for( int i=0; i<s->limit_count; i++ )
2155 {
2156 struct grind_limit *limit = &s->limits[i];
2157 rb_ct *ct = &manifold[ manifold_len ++ ];
2158 m4x3_mulv( player->rb.to_world, limit->ra, ct->co );
2159 m3x3_mulv( player->rb.to_world, limit->n, ct->n );
2160 ct->p = limit->p;
2161 ct->type = k_contact_type_default;
2162 }
2163
2164 /*
2165 * Phase 3: Dynamics
2166 * --------------------------------------------------------------------------
2167 */
2168
2169
2170 v3f world_cog;
2171 m4x3_mulv( player->rb.to_world, s->weight_distribution, world_cog );
2172 vg_line_pt3( world_cog, 0.02f, VG__BLACK );
2173
2174 for( int i=0; i<manifold_len; i ++ )
2175 {
2176 rb_prepare_contact( &manifold[i], s->substep_delta );
2177 rb_debug_contact( &manifold[i] );
2178 }
2179
2180 /* yes, we are currently rebuilding mass matrices every frame. too bad! */
2181 v3f extent = { k_board_width, 0.1f, k_board_length };
2182 float ex2 = k_board_interia*extent[0]*extent[0],
2183 ey2 = k_board_interia*extent[1]*extent[1],
2184 ez2 = k_board_interia*extent[2]*extent[2];
2185
2186 float mass = 2.0f * (extent[0]*extent[1]*extent[2]);
2187 float inv_mass = 1.0f/mass;
2188
2189 v3f I;
2190 I[0] = ((1.0f/12.0f) * mass * (ey2+ez2));
2191 I[1] = ((1.0f/12.0f) * mass * (ex2+ez2));
2192 I[2] = ((1.0f/12.0f) * mass * (ex2+ey2));
2193
2194 m3x3f iI;
2195 m3x3_identity( iI );
2196 iI[0][0] = I[0];
2197 iI[1][1] = I[1];
2198 iI[2][2] = I[2];
2199 m3x3_inv( iI, iI );
2200
2201 m3x3f iIw;
2202 m3x3_mul( iI, player->rb.to_local, iIw );
2203 m3x3_mul( player->rb.to_world, iIw, iIw );
2204
2205 for( int j=0; j<10; j++ )
2206 {
2207 for( int i=0; i<manifold_len; i++ )
2208 {
2209 /*
2210 * regular dance; calculate velocity & total mass, apply impulse.
2211 */
2212
2213 struct contact *ct = &manifold[i];
2214
2215 v3f rv, delta;
2216 v3_sub( ct->co, world_cog, delta );
2217 v3_cross( player->rb.w, delta, rv );
2218 v3_add( player->rb.v, rv, rv );
2219
2220 v3f raCn;
2221 v3_cross( delta, ct->n, raCn );
2222
2223 v3f raCnI, rbCnI;
2224 m3x3_mulv( iIw, raCn, raCnI );
2225
2226 float normal_mass = 1.0f / (inv_mass + v3_dot(raCn,raCnI)),
2227 vn = v3_dot( rv, ct->n ),
2228 lambda = normal_mass * ( -vn );
2229
2230 float temp = ct->norm_impulse;
2231 ct->norm_impulse = vg_maxf( temp + lambda, 0.0f );
2232 lambda = ct->norm_impulse - temp;
2233
2234 v3f impulse;
2235 v3_muls( ct->n, lambda, impulse );
2236
2237 v3_muladds( player->rb.v, impulse, inv_mass, player->rb.v );
2238 v3_cross( delta, impulse, impulse );
2239 m3x3_mulv( iIw, impulse, impulse );
2240 v3_add( impulse, player->rb.w, player->rb.w );
2241
2242 v3_cross( player->rb.w, delta, rv );
2243 v3_add( player->rb.v, rv, rv );
2244 vn = v3_dot( rv, ct->n );
2245 }
2246 }
2247
2248 v3f dt;
2249 rb_depenetrate( manifold, manifold_len, dt );
2250 v3_add( dt, player->rb.co, player->rb.co );
2251 rb_update_transform( &player->rb );
2252
2253 substep_count ++;
2254
2255 if( s->substep >= 0.0001f )
2256 goto begin_collision; /* again! */
2257
2258 /*
2259 * End of collision and dynamics routine
2260 * --------------------------------------------------------------------------
2261 */
2262
2263 s->surface = k_surface_prop_concrete;
2264
2265 for( int i=0; i<manifold_len; i++ ){
2266 rb_ct *ct = &manifold[i];
2267 struct world_surface *surf = world_contact_surface( world, ct );
2268
2269 if( surf->info.surface_prop != k_surface_prop_concrete )
2270 s->surface = surf->info.surface_prop;
2271 }
2272
2273 for( int i=0; i<k_wheel_count; i++ ){
2274 m4x3f mtx;
2275 m3x3_copy( player->rb.to_world, mtx );
2276 m4x3_mulv( player->rb.to_world, wheels[i].pos, mtx[3] );
2277 debug_sphere( mtx, wheels[i].radius,
2278 (u32[]){ VG__WHITE, VG__BLACK,
2279 wheels[i].colour }[ wheels[i].state ]);
2280 }
2281
2282 skate_integrate( player );
2283 vg_line_pt3( s->state.cog, 0.02f, VG__WHITE );
2284
2285 ent_gate *gate =
2286 world_intersect_gates(world, player->rb.co, s->state.prev_pos );
2287
2288 if( gate ){
2289 m4x3_mulv( gate->transport, player->rb.co, player->rb.co );
2290 m3x3_mulv( gate->transport, player->rb.v, player->rb.v );
2291 m4x3_mulv( gate->transport, s->state.cog, s->state.cog );
2292 m3x3_mulv( gate->transport, s->state.cog_v, s->state.cog_v );
2293 m3x3_mulv( gate->transport, s->state.throw_v, s->state.throw_v );
2294 m3x3_mulv( gate->transport, s->state.head_position,
2295 s->state.head_position );
2296 m3x3_mulv( gate->transport, s->state.up_dir, s->state.up_dir );
2297
2298 v4f transport_rotation;
2299 m3x3_q( gate->transport, transport_rotation );
2300 q_mul( transport_rotation, player->rb.q, player->rb.q );
2301 rb_update_transform( &player->rb );
2302
2303 s->state_gate_storage = s->state;
2304 player__pass_gate( player, gate );
2305 }
2306
2307 /* FIXME: Rate limit */
2308 static int stick_frames = 0;
2309
2310 if( s->state.activity == k_skate_activity_ground )
2311 stick_frames ++;
2312 else
2313 stick_frames = 0;
2314
2315
2316 if( stick_frames == 4 )
2317 {
2318 audio_lock();
2319 if( (fabsf(s->state.slip) > 0.75f) )
2320 {
2321 audio_oneshot_3d( &audio_lands[rand()%2+3], player->rb.co,
2322 40.0f, 1.0f );
2323 }
2324 else
2325 {
2326 audio_oneshot_3d( &audio_lands[rand()%3], player->rb.co,
2327 40.0f, 1.0f );
2328 }
2329 audio_unlock();
2330 }
2331 }
2332
2333 VG_STATIC void player__skate_im_gui( player_instance *player )
2334 {
2335 struct player_skate *s = &player->_skate;
2336 player__debugtext( 1, "V: %5.2f %5.2f %5.2f",player->rb.v[0],
2337 player->rb.v[1],
2338 player->rb.v[2] );
2339 player__debugtext( 1, "CO: %5.2f %5.2f %5.2f",player->rb.co[0],
2340 player->rb.co[1],
2341 player->rb.co[2] );
2342 player__debugtext( 1, "W: %5.2f %5.2f %5.2f",player->rb.w[0],
2343 player->rb.w[1],
2344 player->rb.w[2] );
2345
2346 const char *activity_txt[] =
2347 {
2348 "air",
2349 "ground",
2350 "undefined (INVALID)",
2351 "grind_any (INVALID)",
2352 "grind_boardslide",
2353 "grind_noseslide",
2354 "grind_tailslide",
2355 "grind_back50",
2356 "grind_front50",
2357 "grind_5050"
2358 };
2359
2360 player__debugtext( 1, "activity: %s", activity_txt[s->state.activity] );
2361 #if 0
2362 player__debugtext( 1, "steer_s: %5.2f %5.2f [%.2f %.2f]",
2363 s->state.steerx_s, s->state.steery_s,
2364 k_steer_ground, k_steer_air );
2365 #endif
2366 player__debugtext( 1, "flip: %.4f %.4f", s->state.flip_rate,
2367 s->state.flip_time );
2368 player__debugtext( 1, "trickv: %.2f %.2f %.2f",
2369 s->state.trick_vel[0],
2370 s->state.trick_vel[1],
2371 s->state.trick_vel[2] );
2372 player__debugtext( 1, "tricke: %.2f %.2f %.2f",
2373 s->state.trick_euler[0],
2374 s->state.trick_euler[1],
2375 s->state.trick_euler[2] );
2376 }
2377
2378 VG_STATIC void player__skate_animate( player_instance *player,
2379 player_animation *dest )
2380 {
2381 struct player_skate *s = &player->_skate;
2382 struct player_avatar *av = player->playeravatar;
2383 struct skeleton *sk = &av->sk;
2384
2385 /* Head */
2386 float kheight = 2.0f,
2387 kleg = 0.6f;
2388
2389 v3f offset;
2390 v3_zero( offset );
2391
2392 v3f cog_local, cog_ideal;
2393 m4x3_mulv( player->rb.to_local, s->state.cog, cog_local );
2394
2395 v3_copy( s->state.up_dir, cog_ideal );
2396 v3_normalize( cog_ideal );
2397 m3x3_mulv( player->rb.to_local, cog_ideal, cog_ideal );
2398
2399 v3_sub( cog_ideal, cog_local, offset );
2400
2401
2402 v3_muls( offset, 4.0f, offset );
2403 offset[1] *= -1.0f;
2404
2405 float curspeed = v3_length( player->rb.v ),
2406 kickspeed = vg_clampf( curspeed*(1.0f/40.0f), 0.0f, 1.0f ),
2407 kicks = (vg_randf()-0.5f)*2.0f*kickspeed,
2408 sign = vg_signf( kicks );
2409
2410 s->wobble[0] = vg_lerpf( s->wobble[0], kicks*kicks*sign, 6.0f*vg.time_delta);
2411 s->wobble[1] = vg_lerpf( s->wobble[1], s->wobble[0], 2.4f*vg.time_delta);
2412
2413 offset[0] *= 0.26f;
2414 offset[0] += s->wobble[1]*3.0f;
2415
2416 offset[1] *= -0.3f;
2417 offset[2] *= 0.01f;
2418
2419 offset[0]=vg_clampf(offset[0],-0.8f,0.8f)*(1.0f-fabsf(s->blend_slide)*0.9f);
2420 offset[1]=vg_clampf(offset[1],-0.5f,0.0f);
2421
2422 /*
2423 * Animation blending
2424 * ===========================================
2425 */
2426
2427 /* sliding */
2428 {
2429 float desired = vg_clampf( fabsf( s->state.slip ), 0.0f, 1.0f );
2430 s->blend_slide = vg_lerpf( s->blend_slide, desired, 2.4f*vg.time_delta);
2431 }
2432
2433 /* movement information */
2434 {
2435 int iair = s->state.activity == k_skate_activity_air;
2436
2437 float dirz = s->state.reverse > 0.0f? 0.0f: 1.0f,
2438 dirx = s->state.slip < 0.0f? 0.0f: 1.0f,
2439 fly = iair? 1.0f: 0.0f,
2440 wdist= s->weight_distribution[2] / k_board_length;
2441
2442 s->blend_z = vg_lerpf( s->blend_z, dirz, 2.4f*vg.time_delta );
2443 s->blend_x = vg_lerpf( s->blend_x, dirx, 0.6f*vg.time_delta );
2444 s->blend_fly = vg_lerpf( s->blend_fly, fly, 2.4f*vg.time_delta );
2445 s->blend_weight= vg_lerpf( s->blend_weight, wdist, 9.0f*vg.time_delta );
2446 }
2447
2448 mdl_keyframe apose[32], bpose[32];
2449 mdl_keyframe ground_pose[32];
2450 {
2451 /* when the player is moving fast he will crouch down a little bit */
2452 float stand = 1.0f - vg_clampf( curspeed * 0.03f, 0.0f, 1.0f );
2453 s->blend_stand = vg_lerpf( s->blend_stand, stand, 6.0f*vg.time_delta );
2454
2455 /* stand/crouch */
2456 float dir_frame = s->blend_z * (15.0f/30.0f),
2457 stand_blend = offset[1]*-2.0f;
2458
2459 v3f local_cog;
2460 m4x3_mulv( player->rb.to_local, s->state.cog, local_cog );
2461
2462 stand_blend = vg_clampf( 1.0f-local_cog[1], 0, 1 );
2463
2464 skeleton_sample_anim( sk, s->anim_stand, dir_frame, apose );
2465 skeleton_sample_anim( sk, s->anim_highg, dir_frame, bpose );
2466 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
2467
2468 /* sliding */
2469 float slide_frame = s->blend_x * (15.0f/30.0f);
2470 skeleton_sample_anim( sk, s->anim_slide, slide_frame, bpose );
2471 skeleton_lerp_pose( sk, apose, bpose, s->blend_slide, apose );
2472
2473 /* pushing */
2474 double push_time = vg.time - s->state.start_push;
2475 s->blend_push = vg_lerpf( s->blend_push,
2476 (vg.time - s->state.cur_push) < 0.125,
2477 6.0f*vg.time_delta );
2478
2479 float pt = push_time + vg.accumulator;
2480 if( s->state.reverse > 0.0f )
2481 skeleton_sample_anim( sk, s->anim_push, pt, bpose );
2482 else
2483 skeleton_sample_anim( sk, s->anim_push_reverse, pt, bpose );
2484
2485 skeleton_lerp_pose( sk, apose, bpose, s->blend_push, apose );
2486
2487 /* trick setup */
2488 float jump_start_frame = 14.0f/30.0f;
2489
2490 float charge = s->state.jump_charge;
2491 s->blend_jump = vg_lerpf( s->blend_jump, charge, 8.4f*vg.time_delta );
2492
2493 float setup_frame = charge * jump_start_frame,
2494 setup_blend = vg_minf( s->blend_jump, 1.0f );
2495
2496 float jump_frame = (vg.time - s->state.jump_time) + jump_start_frame;
2497 if( jump_frame >= jump_start_frame && jump_frame <= (40.0f/30.0f) )
2498 setup_frame = jump_frame;
2499
2500 struct skeleton_anim *jump_anim = s->state.jump_dir?
2501 s->anim_ollie:
2502 s->anim_ollie_reverse;
2503
2504 skeleton_sample_anim_clamped( sk, jump_anim, setup_frame, bpose );
2505 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
2506 }
2507
2508 mdl_keyframe air_pose[32];
2509 {
2510 float target = -player->input_js1h->axis.value;
2511 s->blend_airdir = vg_lerpf( s->blend_airdir, target, 2.4f*vg.time_delta );
2512
2513 float air_frame = (s->blend_airdir*0.5f+0.5f) * (15.0f/30.0f);
2514 skeleton_sample_anim( sk, s->anim_air, air_frame, apose );
2515
2516 static v2f grab_choice;
2517
2518 v2f grab_input = { player->input_js2h->axis.value,
2519 player->input_js2v->axis.value };
2520 v2_add( s->state.grab_mouse_delta, grab_input, grab_input );
2521 if( v2_length2( grab_input ) <= 0.001f )
2522 grab_input[0] = -1.0f;
2523 else
2524 v2_normalize_clamp( grab_input );
2525 v2_lerp( grab_choice, grab_input, 2.4f*vg.time_delta, grab_choice );
2526
2527 float ang = atan2f( grab_choice[0], grab_choice[1] ),
2528 ang_unit = (ang+VG_PIf) * (1.0f/VG_TAUf),
2529 grab_frame = ang_unit * (15.0f/30.0f);
2530
2531 skeleton_sample_anim( sk, s->anim_grabs, grab_frame, bpose );
2532 skeleton_lerp_pose( sk, apose, bpose, s->state.grabbing, air_pose );
2533 }
2534
2535 skeleton_lerp_pose( sk, ground_pose, air_pose, s->blend_fly, dest->pose );
2536
2537 float add_grab_mod = 1.0f - s->blend_fly;
2538
2539 /* additive effects */
2540 {
2541 u32 apply_to[] = { av->id_hip,
2542 av->id_ik_hand_l,
2543 av->id_ik_hand_r,
2544 av->id_ik_elbow_l,
2545 av->id_ik_elbow_r };
2546
2547 for( int i=0; i<vg_list_size(apply_to); i ++ )
2548 {
2549 dest->pose[apply_to[i]-1].co[0] += offset[0]*add_grab_mod;
2550 dest->pose[apply_to[i]-1].co[2] += offset[2]*add_grab_mod;
2551 }
2552
2553
2554 /* angle correction */
2555 if( v3_length2( s->state.up_dir ) > 0.001f )
2556 {
2557 v3f ndir;
2558 m3x3_mulv( player->rb.to_local, s->state.up_dir, ndir );
2559 v3_normalize( ndir );
2560
2561 v3f up = { 0.0f, 1.0f, 0.0f };
2562
2563 float a = v3_dot( ndir, up );
2564 a = acosf( vg_clampf( a, -1.0f, 1.0f ) );
2565
2566 v3f axis;
2567 v4f q;
2568
2569 v3_cross( up, ndir, axis );
2570 q_axis_angle( q, axis, a );
2571
2572 mdl_keyframe *kf_hip = &dest->pose[av->id_hip-1];
2573
2574 for( int i=0; i<vg_list_size(apply_to); i ++ )
2575 {
2576 mdl_keyframe *kf = &dest->pose[apply_to[i]-1];
2577
2578 v3f v0;
2579 v3_sub( kf->co, kf_hip->co, v0 );
2580 q_mulv( q, v0, v0 );
2581 v3_add( v0, kf_hip->co, kf->co );
2582
2583 q_mul( q, kf->q, kf->q );
2584 q_normalize( kf->q );
2585 }
2586
2587 v3f p1, p2;
2588 m3x3_mulv( player->rb.to_world, up, p1 );
2589 m3x3_mulv( player->rb.to_world, ndir, p2 );
2590
2591 vg_line_arrow( player->rb.co, p1, 0.25f, VG__PINK );
2592 vg_line_arrow( player->rb.co, p2, 0.25f, VG__PINK );
2593 }
2594
2595
2596
2597 mdl_keyframe *kf_board = &dest->pose[av->id_board-1],
2598 *kf_foot_l = &dest->pose[av->id_ik_foot_l-1],
2599 *kf_foot_r = &dest->pose[av->id_ik_foot_r-1],
2600 *kf_wheels[] = { &dest->pose[av->id_wheel_r-1],
2601 &dest->pose[av->id_wheel_l-1] };
2602
2603 v4f qtotal;
2604 v4f qtrickr, qyawr, qpitchr, qrollr;
2605 v3f eulerr;
2606
2607 v3_muls( s->board_trick_residuald, VG_TAUf, eulerr );
2608
2609 q_axis_angle( qyawr, (v3f){0.0f,1.0f,0.0f}, eulerr[0] * 0.5f );
2610 q_axis_angle( qpitchr, (v3f){1.0f,0.0f,0.0f}, eulerr[1] );
2611 q_axis_angle( qrollr, (v3f){0.0f,0.0f,1.0f}, eulerr[2] );
2612
2613 q_mul( qpitchr, qrollr, qtrickr );
2614 q_mul( qyawr, qtrickr, qtotal );
2615 q_normalize( qtotal );
2616
2617 q_mul( qtotal, kf_board->q, kf_board->q );
2618
2619
2620 /* trick rotation */
2621 v4f qtrick, qyaw, qpitch, qroll;
2622 v3f euler;
2623 v3_muls( s->state.trick_euler, VG_TAUf, euler );
2624
2625 q_axis_angle( qyaw, (v3f){0.0f,1.0f,0.0f}, euler[0] * 0.5f );
2626 q_axis_angle( qpitch, (v3f){1.0f,0.0f,0.0f}, euler[1] );
2627 q_axis_angle( qroll, (v3f){0.0f,0.0f,1.0f}, euler[2] );
2628
2629 q_mul( qpitch, qroll, qtrick );
2630 q_mul( qyaw, qtrick, qtrick );
2631 q_mul( kf_board->q, qtrick, kf_board->q );
2632 q_normalize( kf_board->q );
2633
2634 /* foot weight distribution */
2635 if( s->blend_weight > 0.0f )
2636 {
2637 kf_foot_l->co[2] += s->blend_weight * 0.2f;
2638 kf_foot_r->co[2] += s->blend_weight * 0.1f;
2639 }
2640 else
2641 {
2642 kf_foot_r->co[2] += s->blend_weight * 0.3f;
2643 kf_foot_l->co[2] += s->blend_weight * 0.1f;
2644 }
2645
2646 /* truck rotation */
2647 for( int i=0; i<2; i++ )
2648 {
2649 float a = vg_minf( s->truckv0[i][0], 1.0f );
2650 a = -acosf( a ) * vg_signf( s->truckv0[i][1] );
2651
2652 v4f q;
2653 q_axis_angle( q, (v3f){0.0f,0.0f,1.0f}, a );
2654 q_mul( q, kf_wheels[i]->q, kf_wheels[i]->q );
2655 q_normalize( kf_wheels[i]->q );
2656 }
2657 }
2658
2659 /* transform */
2660 rb_extrapolate( &player->rb, dest->root_co, dest->root_q );
2661 v3_muladds( dest->root_co, player->rb.to_world[1], -0.1f, dest->root_co );
2662
2663 float substep = vg_clampf( vg.accumulator / VG_TIMESTEP_FIXED, 0.0f, 1.0f );
2664
2665 v4f qflip;
2666 if( (s->state.activity == k_skate_activity_air) &&
2667 (fabsf(s->state.flip_rate) > 0.01f) )
2668 {
2669 float t = s->state.flip_time;
2670 sign = vg_signf( t );
2671
2672 t = 1.0f - vg_minf( 1.0f, fabsf( t * 1.1f ) );
2673 t = sign * (1.0f-t*t);
2674
2675 float angle = vg_clampf( t, -1.0f, 1.0f ) * VG_TAUf,
2676 distm = s->land_dist * fabsf(s->state.flip_rate) * 3.0f,
2677 blend = vg_clampf( 1.0f-distm, 0.0f, 1.0f );
2678
2679 angle = vg_lerpf( angle, vg_signf(s->state.flip_rate) * VG_TAUf, blend );
2680
2681 q_axis_angle( qflip, s->state.flip_axis, angle );
2682 q_mul( qflip, dest->root_q, dest->root_q );
2683 q_normalize( dest->root_q );
2684
2685 v3f rotation_point, rco;
2686 v3_muladds( player->rb.co, player->rb.to_world[1], 0.5f, rotation_point );
2687 v3_sub( dest->root_co, rotation_point, rco );
2688
2689 q_mulv( qflip, rco, rco );
2690 v3_add( rco, rotation_point, dest->root_co );
2691 }
2692
2693 skeleton_copy_pose( sk, dest->pose, player->holdout_pose );
2694 }
2695
2696 VG_STATIC void player__skate_post_animate( player_instance *player )
2697 {
2698 struct player_skate *s = &player->_skate;
2699 struct player_avatar *av = player->playeravatar;
2700
2701 player->cam_velocity_influence = 1.0f;
2702
2703 v3f head = { 0.0f, 1.8f, 0.0f };
2704 m4x3_mulv( av->sk.final_mtx[ av->id_head ], head, s->state.head_position );
2705 m4x3_mulv( player->rb.to_local, s->state.head_position,
2706 s->state.head_position );
2707 }
2708
2709 VG_STATIC void player__skate_reset_animator( player_instance *player )
2710 {
2711 struct player_skate *s = &player->_skate;
2712
2713 if( s->state.activity == k_skate_activity_air )
2714 s->blend_fly = 1.0f;
2715 else
2716 s->blend_fly = 0.0f;
2717
2718 s->blend_slide = 0.0f;
2719 s->blend_z = 0.0f;
2720 s->blend_x = 0.0f;
2721 s->blend_stand = 0.0f;
2722 s->blend_push = 0.0f;
2723 s->blend_jump = 0.0f;
2724 s->blend_airdir = 0.0f;
2725 }
2726
2727 VG_STATIC void player__skate_clear_mechanics( player_instance *player )
2728 {
2729 struct player_skate *s = &player->_skate;
2730 s->state.jump_charge = 0.0f;
2731 s->state.lift_frames = 0;
2732 s->state.flip_rate = 0.0f;
2733 #if 0
2734 s->state.steery = 0.0f;
2735 s->state.steerx = 0.0f;
2736 s->state.steery_s = 0.0f;
2737 s->state.steerx_s = 0.0f;
2738 #endif
2739 s->state.reverse = 0.0f;
2740 s->state.slip = 0.0f;
2741 v3_copy( player->rb.co, s->state.prev_pos );
2742
2743 #if 0
2744 m3x3_identity( s->state.velocity_bias );
2745 m3x3_identity( s->state.velocity_bias_pstep );
2746 #endif
2747
2748 v3_zero( s->state.throw_v );
2749 v3_zero( s->state.trick_vel );
2750 v3_zero( s->state.trick_euler );
2751 }
2752
2753 VG_STATIC void player__skate_reset( player_instance *player,
2754 ent_spawn *rp )
2755 {
2756 struct player_skate *s = &player->_skate;
2757 v3_muladds( player->rb.co, player->rb.to_world[1], 1.0f, s->state.cog );
2758 v3_zero( player->rb.v );
2759 v3_zero( s->state.cog_v );
2760 v4_copy( rp->transform.q, player->rb.q );
2761
2762 s->state.activity = k_skate_activity_air;
2763 s->state.activity_prev = k_skate_activity_air;
2764
2765 player__skate_clear_mechanics( player );
2766 player__skate_reset_animator( player );
2767
2768 v3_zero( s->state.head_position );
2769 s->state.head_position[1] = 1.8f;
2770 }
2771
2772 #endif /* PLAYER_SKATE_C */