update model format
[carveJwlIkooP6JGAAIwe30JlM.git] / player.h
1 #ifndef PLAYER_H
2 #define PLAYER_H
3
4 #include "audio.h"
5 #include "common.h"
6 #include "world.h"
7 #include "character.h"
8 #include "bvh.h"
9
10 /*
11 * Constants
12 */
13
14 static float
15 k_walkspeed = 2.0f,
16 k_board_radius = 0.3f,
17 k_board_length = 0.45f,
18 k_board_allowance = 0.04f,
19 k_friction_lat = 8.8f,
20 k_friction_resistance = 0.01f,
21 k_max_push_speed = 16.0f,
22 k_push_accel = 5.0f,
23 k_push_cycle_rate = 8.0f,
24 k_steer_ground = 2.5f,
25 k_steer_air = 3.6f,
26 k_steer_air_lerp = 0.3f,
27 k_pump_force = 000.0f,
28 k_downforce = 5.0f;
29
30 static int freecam = 0;
31 static int walk_grid_iterations = 1;
32 static float fc_speed = 10.0f;
33
34 static struct gplayer
35 {
36 /* Physics */
37 rigidbody rb, collide_front, collide_back, rb_gate_frame;
38
39 v3f a, v_last, m, bob, vl;
40
41 /* Utility */
42 float vswitch, slip, slip_last,
43 reverse;
44
45 float iY; /* Yaw inertia */
46 int in_air, is_dead, on_board;
47
48 v2f board_xy;
49 float grab;
50 float pitch;
51
52 v3f land_target;
53 v3f land_target_log[22];
54 u32 land_target_colours[22];
55 int land_log_count;
56 m3x3f vr,vr_pstep;
57
58 struct character mdl;
59
60 v3f handl_target, handr_target,
61 handl, handr;
62
63 /* Camera */
64 float air_blend;
65
66 v3f camera_pos, smooth_localcam;
67 v2f angles;
68 m4x3f camera, camera_inverse;
69 }
70 player =
71 {
72 .on_board = 1,
73
74 .collide_front = { .type = k_rb_shape_sphere, .inf.sphere.radius = 0.3f },
75 .collide_back = { .type = k_rb_shape_sphere, .inf.sphere.radius = 0.3f }
76 };
77
78 /*
79 * Player API
80 */
81
82
83 /*
84 * Free camera movement
85 */
86
87 static void player_mouseview(void)
88 {
89 if( gui_want_mouse() )
90 return;
91
92 static v2f mouse_last,
93 view_vel = { 0.0f, 0.0f };
94
95 if( vg_get_button_down( "primary" ) )
96 v2_copy( vg_mouse, mouse_last );
97
98 else if( vg_get_button( "primary" ) )
99 {
100 v2f delta;
101 v2_sub( vg_mouse, mouse_last, delta );
102 v2_copy( vg_mouse, mouse_last );
103
104 v2_muladds( view_vel, delta, 0.001f, view_vel );
105 }
106
107 v2_muladds( view_vel,
108 (v2f){ vg_get_axis("h1"), vg_get_axis("v1") },
109 0.05f, view_vel );
110 v2_muls( view_vel, 0.93f, view_vel );
111 v2_add( view_vel, player.angles, player.angles );
112 player.angles[1] = vg_clampf( player.angles[1], -VG_PIf*0.5f, VG_PIf*0.5f );
113 }
114
115 static void player_freecam(void)
116 {
117 player_mouseview();
118
119 float movespeed = fc_speed;
120 v3f lookdir = { 0.0f, 0.0f, -1.0f },
121 sidedir = { 1.0f, 0.0f, 0.0f };
122
123 m3x3_mulv( player.camera, lookdir, lookdir );
124 m3x3_mulv( player.camera, sidedir, sidedir );
125
126 static v3f move_vel = { 0.0f, 0.0f, 0.0f };
127 if( vg_get_button( "forward" ) )
128 v3_muladds( move_vel, lookdir, ktimestep * movespeed, move_vel );
129 if( vg_get_button( "back" ) )
130 v3_muladds( move_vel, lookdir, ktimestep *-movespeed, move_vel );
131 if( vg_get_button( "left" ) )
132 v3_muladds( move_vel, sidedir, ktimestep *-movespeed, move_vel );
133 if( vg_get_button( "right" ) )
134 v3_muladds( move_vel, sidedir, ktimestep * movespeed, move_vel );
135
136 v3_muls( move_vel, 0.7f, move_vel );
137 v3_add( move_vel, player.camera_pos, player.camera_pos );
138 }
139
140 /*
141 * Player Physics Implementation
142 */
143
144 static void apply_gravity( v3f vel, float const timestep )
145 {
146 v3f gravity = { 0.0f, -9.6f, 0.0f };
147 v3_muladds( vel, gravity, timestep, vel );
148 }
149
150 /*
151 * TODO: The angle bias should become greater when launching from a steeper
152 * angle and skewed towords more 'downwards' angles when launching from
153 * shallower trajectories
154 *
155 * it should also be tweaked by the controller left stick being pushed
156 * up or down
157 */
158 static void player_start_air(void)
159 {
160 if( player.in_air )
161 return;
162
163 player.in_air = 1;
164
165 float pstep = ktimestep*10.0f;
166 float best_velocity_delta = -9999.9f;
167 float k_bias = 0.96f;
168
169 v3f axis;
170 v3_cross( player.rb.up, player.rb.v, axis );
171 v3_normalize( axis );
172 player.land_log_count = 0;
173
174 m3x3_identity( player.vr );
175
176 for( int m=-3;m<=12; m++ )
177 {
178 float vmod = ((float)m / 15.0f)*0.09f;
179
180 v3f pco, pco1, pv;
181 v3_copy( player.rb.co, pco );
182 v3_muls( player.rb.v, k_bias, pv );
183
184 /*
185 * Try different 'rotations' of the velocity to find the best possible
186 * landing normal. This conserves magnitude at the expense of slightly
187 * unrealistic results
188 */
189
190 m3x3f vr;
191 v4f vr_q;
192
193 q_axis_angle( vr_q, axis, vmod );
194 q_m3x3( vr_q, vr );
195
196 m3x3_mulv( vr, pv, pv );
197 v3_muladds( pco, pv, pstep, pco );
198
199 for( int i=0; i<50; i++ )
200 {
201 v3_copy( pco, pco1 );
202 apply_gravity( pv, pstep );
203
204 m3x3_mulv( vr, pv, pv );
205 v3_muladds( pco, pv, pstep, pco );
206
207 ray_hit contact;
208 v3f vdir;
209
210 v3_sub( pco, pco1, vdir );
211 contact.dist = v3_length( vdir );
212 v3_divs( vdir, contact.dist, vdir);
213
214 if( ray_world( pco1, vdir, &contact ))
215 {
216 float land_delta = v3_dot( pv, contact.normal );
217 u32 scolour = (u8)(vg_minf(-land_delta * 2.0f, 255.0f));
218
219 /* Bias prediction towords ramps */
220 if( ray_hit_is_ramp( &contact ) )
221 {
222 land_delta *= 0.1f;
223 scolour |= 0x0000a000;
224 }
225
226 if( (land_delta < 0.0f) && (land_delta > best_velocity_delta) )
227 {
228 best_velocity_delta = land_delta;
229
230 v3_copy( contact.pos, player.land_target );
231
232 m3x3_copy( vr, player.vr_pstep );
233 q_axis_angle( vr_q, axis, vmod*0.1f );
234 q_m3x3( vr_q, player.vr );
235 }
236
237 v3_copy( contact.pos,
238 player.land_target_log[player.land_log_count] );
239 player.land_target_colours[player.land_log_count] =
240 0xff000000 | scolour;
241
242 player.land_log_count ++;
243
244 break;
245 }
246 }
247 }
248 }
249
250 static void draw_cross(v3f pos,u32 colour, float scale)
251 {
252 v3f p0, p1;
253 v3_add( (v3f){ scale,0.0f,0.0f}, pos, p0 );
254 v3_add( (v3f){-scale,0.0f,0.0f}, pos, p1 );
255 vg_line( p0, p1, colour );
256 v3_add( (v3f){0.0f, scale,0.0f}, pos, p0 );
257 v3_add( (v3f){0.0f,-scale,0.0f}, pos, p1 );
258 vg_line( p0, p1, colour );
259 v3_add( (v3f){0.0f,0.0f, scale}, pos, p0 );
260 v3_add( (v3f){0.0f,0.0f,-scale}, pos, p1 );
261 vg_line( p0, p1, colour );
262 }
263
264 static void player_physics_control(void)
265 {
266 /*
267 * Computing localized friction forces for controlling the character
268 * Friction across X is significantly more than Z
269 */
270
271 v3f vel;
272 m3x3_mulv( player.rb.to_local, player.rb.v, vel );
273 float slip = 0.0f;
274
275 if( fabsf(vel[2]) > 0.01f )
276 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
277
278 if( fabsf( slip ) > 1.2f )
279 slip = vg_signf( slip ) * 1.2f;
280 player.slip = slip;
281 player.reverse = -vg_signf(vel[2]);
282
283 float substep = ktimestep * 0.2f;
284 float fwd_resistance = (vg_get_button( "break" )? 5.0f: 0.02f) * -substep;
285
286 for( int i=0; i<5; i++ )
287 {
288 vel[2] = stable_force( vel[2], vg_signf( vel[2] ) * fwd_resistance );
289 vel[0] = stable_force( vel[0],
290 vg_signf( vel[0] ) * -k_friction_lat*substep );
291 }
292
293 static double start_push = 0.0;
294 if( vg_get_button_down( "push" ) )
295 start_push = vg_time;
296
297 if( !vg_get_button("break") && vg_get_button( "push" ) )
298 {
299 float cycle_time = (vg_time-start_push)*k_push_cycle_rate,
300 amt = k_push_accel * (sinf(cycle_time)*0.5f+0.5f)*ktimestep,
301 current = v3_length( vel ),
302 new_vel = vg_minf( current + amt, k_max_push_speed );
303 new_vel -= vg_minf(current, k_max_push_speed);
304 vel[2] -= new_vel * player.reverse;
305 }
306
307 /* Pumping */
308 static float previous = 0.0f;
309 float delta = previous - player.grab,
310 pump = delta * k_pump_force*ktimestep;
311 previous = player.grab;
312
313 v3f p1;
314 v3_muladds( player.rb.co, player.rb.up, pump, p1 );
315 vg_line( player.rb.co, p1, 0xff0000ff );
316
317 vel[1] += pump;
318
319
320 m3x3_mulv( player.rb.to_world, vel, player.rb.v );
321
322 float steer = vg_get_axis( "horizontal" );
323 player.iY -= vg_signf(steer)*powf(steer,2.0f) * k_steer_ground * ktimestep;
324
325 v2_lerp( player.board_xy, (v2f){ slip*0.25f, 0.0f },
326 ktimestep*5.0f, player.board_xy);
327 }
328
329 static void player_physics_control_air(void)
330 {
331 m3x3_mulv( player.vr, player.rb.v, player.rb.v );
332 draw_cross( player.land_target, 0xff0000ff, 0.25f );
333
334 ray_hit hit;
335
336 /*
337 * Prediction
338 */
339 float pstep = ktimestep*10.0f;
340
341 v3f pco, pco1, pv;
342 v3_copy( player.rb.co, pco );
343 v3_copy( player.rb.v, pv );
344
345 float time_to_impact = 0.0f;
346 float limiter = 1.0f;
347
348 for( int i=0; i<50; i++ )
349 {
350 v3_copy( pco, pco1 );
351 m3x3_mulv( player.vr_pstep, pv, pv );
352 apply_gravity( pv, pstep );
353 v3_muladds( pco, pv, pstep, pco );
354
355 //vg_line( pco, pco1, i&0x1?0xff000000:0xffffffff );
356
357 ray_hit contact;
358 v3f vdir;
359
360 v3_sub( pco, pco1, vdir );
361 contact.dist = v3_length( vdir );
362 v3_divs( vdir, contact.dist, vdir);
363
364 float orig_dist = contact.dist;
365 if( ray_world( pco1, vdir, &contact ))
366 {
367 float angle = v3_dot( player.rb.up, contact.normal );
368 v3f axis;
369 v3_cross( player.rb.up, contact.normal, axis );
370
371 time_to_impact += (contact.dist/orig_dist)*pstep;
372 limiter = vg_minf( 5.0f, time_to_impact )/5.0f;
373 limiter = 1.0f-limiter;
374 limiter *= limiter;
375 limiter = 1.0f-limiter;
376
377 if( angle < 0.99f )
378 {
379 v4f correction;
380 q_axis_angle( correction, axis, acosf(angle)*0.05f*(1.0f-limiter) );
381 q_mul( correction, player.rb.q, player.rb.q );
382 }
383
384 draw_cross( contact.pos, 0xffff0000, 0.25f );
385 break;
386 }
387 time_to_impact += pstep;
388 }
389
390 player.iY -= vg_get_axis( "horizontal" ) * k_steer_air * ktimestep;
391 {
392 float iX = vg_get_axis( "vertical" ) *
393 player.reverse * k_steer_air * limiter * ktimestep;
394
395 static float siX = 0.0f;
396 siX = vg_lerpf( siX, iX, k_steer_air_lerp );
397
398 v4f rotate;
399 q_axis_angle( rotate, player.rb.right, siX );
400 q_mul( rotate, player.rb.q, player.rb.q );
401 }
402
403 v2f target = {0.0f,0.0f};
404 v2_muladds( target, (v2f){ vg_get_axis("h1"), vg_get_axis("v1") },
405 player.grab, target );
406 v2_lerp( player.board_xy, target, ktimestep*3.0f, player.board_xy );
407 }
408
409 static void player_init(void)
410 {
411 rb_init( &player.collide_front );
412 rb_init( &player.collide_back );
413 }
414
415 static void player_physics(void)
416 {
417 /*
418 * Update collision fronts
419 */
420
421 rigidbody *rbf = &player.collide_front,
422 *rbb = &player.collide_back;
423
424 m3x3_copy( player.rb.to_world, player.collide_front.to_world );
425 m3x3_copy( player.rb.to_world, player.collide_back.to_world );
426
427 player.air_blend = vg_lerpf( player.air_blend, player.in_air, 0.1f );
428 float h = player.air_blend*0.2f;
429
430 m4x3_mulv( player.rb.to_world, (v3f){0.0f,h,-k_board_length}, rbf->co );
431 v3_copy( rbf->co, rbf->to_world[3] );
432 m4x3_mulv( player.rb.to_world, (v3f){0.0f,h, k_board_length}, rbb->co );
433 v3_copy( rbb->co, rbb->to_world[3] );
434
435 m4x3_invert_affine( rbf->to_world, rbf->to_local );
436 m4x3_invert_affine( rbb->to_world, rbb->to_local );
437
438 rb_update_bounds( rbf );
439 rb_update_bounds( rbb );
440
441 rb_debug( rbf, 0xff00ffff );
442 rb_debug( rbb, 0xffffff00 );
443
444 rb_ct manifold[24];
445 int len = 0;
446
447 len += rb_sphere_vs_scene( rbf, &world.rb_geo, manifold+len );
448 len += rb_sphere_vs_scene( rbb, &world.rb_geo, manifold+len );
449
450 rb_presolve_contacts( manifold, len );
451 v3f surface_avg = {0.0f, 0.0f, 0.0f};
452
453 if( !len )
454 {
455 player_start_air();
456 }
457 else
458 {
459 for( int i=0; i<len; i++ )
460 {
461 v3_add( manifold[i].n, surface_avg, surface_avg );
462
463 #if 0
464 if( manifold[i].element_id <= world.sm_geo_std_oob.vertex_count )
465 {
466 player.is_dead = 1;
467 character_ragdoll_copypose( &player.mdl, player.rb.v );
468 return;
469 }
470 #endif
471 }
472
473 v3_normalize( surface_avg );
474
475 if( v3_dot( player.rb.v, surface_avg ) > 0.5f )
476 {
477 player_start_air();
478 }
479 else
480 player.in_air = 0;
481 }
482
483 for( int j=0; j<5; j++ )
484 {
485 for( int i=0; i<len; i++ )
486 {
487 struct contact *ct = &manifold[i];
488
489 v3f dv, delta;
490 v3_sub( ct->co, player.rb.co, delta );
491 v3_cross( player.rb.w, delta, dv );
492 v3_add( player.rb.v, dv, dv );
493
494 float vn = -v3_dot( dv, ct->n );
495 vn += ct->bias;
496
497 float temp = ct->norm_impulse;
498 ct->norm_impulse = vg_maxf( temp + vn, 0.0f );
499 vn = ct->norm_impulse - temp;
500
501 v3f impulse;
502 v3_muls( ct->n, vn, impulse );
503
504 if( fabsf(v3_dot( impulse, player.rb.forward )) > 10.0f ||
505 fabsf(v3_dot( impulse, player.rb.up )) > 50.0f )
506 {
507 player.is_dead = 1;
508 character_ragdoll_copypose( &player.mdl, player.rb.v );
509 return;
510 }
511
512 v3_add( impulse, player.rb.v, player.rb.v );
513 v3_cross( delta, impulse, impulse );
514
515 /*
516 * W Impulses are limited to the Y and X axises, we don't really want
517 * roll angular velocities being included.
518 *
519 * Can also tweak the resistance of each axis here by scaling the wx,wy
520 * components.
521 */
522
523 float wy = v3_dot( player.rb.up, impulse ),
524 wx = v3_dot( player.rb.right, impulse )*1.5f;
525
526 v3_muladds( player.rb.w, player.rb.up, wy, player.rb.w );
527 v3_muladds( player.rb.w, player.rb.right, wx, player.rb.w );
528 }
529 }
530
531 float grabt = vg_get_axis( "grabr" )*0.5f+0.5f;
532 player.grab = vg_lerpf( player.grab, grabt, 0.14f );
533
534 if( !player.in_air )
535 {
536 v3f axis;
537 float angle = v3_dot( player.rb.up, surface_avg );
538 v3_cross( player.rb.up, surface_avg, axis );
539
540 //float cz = v3_dot( player.rb.forward, axis );
541 //v3_muls( player.rb.forward, cz, axis );
542
543 if( angle < 0.999f )
544 {
545 v4f correction;
546 q_axis_angle( correction, axis, acosf(angle)*0.3f );
547 q_mul( correction, player.rb.q, player.rb.q );
548 }
549
550 v3_muladds( player.rb.v, player.rb.up,
551 -k_downforce*ktimestep, player.rb.v );
552 player_physics_control();
553 }
554 else
555 {
556 player_physics_control_air();
557 }
558 }
559
560 static void player_do_motion(void)
561 {
562 float horizontal = vg_get_axis("horizontal"),
563 vertical = vg_get_axis("vertical");
564
565 player_physics();
566
567 /* Integrate velocity */
568 v3f prevco;
569 v3_copy( player.rb.co, prevco );
570
571 apply_gravity( player.rb.v, ktimestep );
572 v3_muladds( player.rb.co, player.rb.v, ktimestep, player.rb.co );
573
574 /* Real angular velocity integration */
575 v3_lerp( player.rb.w, (v3f){0.0f,0.0f,0.0f}, 0.125f, player.rb.w );
576 if( v3_length2( player.rb.w ) > 0.0f )
577 {
578 v4f rotation;
579 v3f axis;
580 v3_copy( player.rb.w, axis );
581
582 float mag = v3_length( axis );
583 v3_divs( axis, mag, axis );
584 q_axis_angle( rotation, axis, mag*k_rb_delta );
585 q_mul( rotation, player.rb.q, player.rb.q );
586 }
587
588 /* Faux angular velocity */
589 v4f rotate;
590
591 static float siY = 0.0f;
592 float lerpq = player.in_air? 0.04f: 0.3f;
593 siY = vg_lerpf( siY, player.iY, lerpq );
594
595 q_axis_angle( rotate, player.rb.up, siY );
596 q_mul( rotate, player.rb.q, player.rb.q );
597 player.iY = 0.0f;
598
599 /*
600 * Gate intersection, by tracing a line over the gate planes
601 */
602 for( int i=0; i<world.routes.gate_count; i++ )
603 {
604 struct route_gate *rg = &world.routes.gates[i];
605 teleport_gate *gate = &rg->gate;
606
607 if( gate_intersect( gate, player.rb.co, prevco ) )
608 {
609 m4x3_mulv( gate->transport, player.rb.co, player.rb.co );
610 m3x3_mulv( gate->transport, player.rb.v, player.rb.v );
611 m3x3_mulv( gate->transport, player.vl, player.vl );
612 m3x3_mulv( gate->transport, player.v_last, player.v_last );
613 m3x3_mulv( gate->transport, player.m, player.m );
614 m3x3_mulv( gate->transport, player.bob, player.bob );
615
616 v4f transport_rotation;
617 m3x3_q( gate->transport, transport_rotation );
618 q_mul( transport_rotation, player.rb.q, player.rb.q );
619
620 world_routes_activate_gate( i );
621 player.rb_gate_frame = player.rb;
622 break;
623 }
624 }
625
626 rb_update_transform( &player.rb );
627 }
628
629 /*
630 * Walkgrid implementation,
631 * loosely based of cmuratoris youtube video 'Killing the Walkmonster'
632 */
633
634 #define WALKGRID_SIZE 16
635 struct walkgrid
636 {
637 struct grid_sample
638 {
639 enum sample_type
640 {
641 k_sample_type_air, /* Nothing was hit. */
642 k_sample_type_invalid, /* The point is invalid, but there is a sample
643 underneath that can be used */
644 k_sample_type_valid, /* This point is good */
645 }
646 type;
647
648 v3f clip[2];
649 v3f pos;
650
651 enum traverse_state
652 {
653 k_traverse_none = 0x00,
654 k_traverse_h = 0x01,
655 k_traverse_v = 0x02
656 }
657 state;
658 }
659 samples[WALKGRID_SIZE][WALKGRID_SIZE];
660
661 boxf region;
662
663 float move; /* Current amount of movement we have left to apply */
664 v2f dir; /* The movement delta */
665 v2i cell_id;/* Current cell */
666 v2f pos; /* Local position (in cell) */
667 float h;
668 };
669
670 static int player_walkgrid_tri_walkable( u32 tri[3] )
671 {
672 return tri[0] > world.sm_geo_std_oob.vertex_count;
673 }
674
675 /*
676 * Get a sample at this pole location, will return 1 if the sample is valid,
677 * and pos will be updated to be the intersection location.
678 */
679 static void player_walkgrid_samplepole( struct grid_sample *s )
680 {
681 boxf region = {{ s->pos[0] -0.01f, s->pos[1] - 4.0f, s->pos[2] -0.01f},
682 { s->pos[0] +0.01f, s->pos[1] + 4.0f, s->pos[2] +0.01f}};
683
684 u32 geo[256];
685 v3f tri[3];
686 int len = bh_select( &world.geo.bhtris, region, geo, 256 );
687
688 const float k_minworld_y = -2000.0f;
689
690 float walk_height = k_minworld_y,
691 block_height = k_minworld_y;
692
693 s->type = k_sample_type_air;
694
695 for( int i=0; i<len; i++ )
696 {
697 u32 *ptri = &world.geo.indices[ geo[i]*3 ];
698
699 for( int j=0; j<3; j++ )
700 v3_copy( world.geo.verts[ptri[j]].co, tri[j] );
701
702 v3f vdown = {0.0f,-1.0f,0.0f};
703 v3f sample_from;
704 v3_copy( s->pos, sample_from );
705 sample_from[1] = region[1][1];
706
707 float dist;
708 if( ray_tri( tri, sample_from, vdown, &dist ))
709 {
710 v3f p0;
711 v3_muladds( sample_from, vdown, dist, p0 );
712
713 if( player_walkgrid_tri_walkable(ptri) )
714 {
715 if( p0[1] > walk_height )
716 {
717 walk_height = p0[1];
718 }
719 }
720 else
721 {
722 if( p0[1] > block_height )
723 block_height = p0[1];
724 }
725 }
726 }
727
728 s->pos[1] = walk_height;
729
730 if( walk_height > k_minworld_y )
731 if( block_height > walk_height )
732 s->type = k_sample_type_invalid;
733 else
734 s->type = k_sample_type_valid;
735 else
736 s->type = k_sample_type_air;
737 }
738
739 float const k_gridscale = 0.5f;
740
741 enum eclipdir
742 {
743 k_eclipdir_h = 0,
744 k_eclipdir_v = 1
745 };
746
747 static void player_walkgrid_clip_blocker( struct grid_sample *sa,
748 struct grid_sample *sb,
749 struct grid_sample *st,
750 enum eclipdir dir )
751 {
752 v3f clipdir, pos;
753 int valid_a = sa->type == k_sample_type_valid,
754 valid_b = sb->type == k_sample_type_valid;
755 struct grid_sample *target = valid_a? sa: sb,
756 *other = valid_a? sb: sa;
757 v3_copy( target->pos, pos );
758 v3_sub( other->pos, target->pos, clipdir );
759
760 boxf cell_region;
761 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, -k_gridscale*2.1f, cell_region[0]);
762 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, k_gridscale*2.1f, cell_region[1]);
763
764 u32 geo[256];
765 v3f tri[3];
766 int len = bh_select( &world.geo.bhtris, cell_region, geo, 256 );
767
768 float start_time = v3_length( clipdir ),
769 min_time = start_time;
770 v3_normalize( clipdir );
771 v3_muls( clipdir, 0.0001f, st->clip[dir] );
772
773 for( int i=0; i<len; i++ )
774 {
775 u32 *ptri = &world.geo.indices[ geo[i]*3 ];
776 for( int j=0; j<3; j++ )
777 v3_copy( world.geo.verts[ptri[j]].co, tri[j] );
778
779 if( player_walkgrid_tri_walkable(ptri) )
780 continue;
781
782 float dist;
783 if(ray_tri( tri, pos, clipdir, &dist ))
784 {
785 if( dist > 0.0f && dist < min_time )
786 {
787 min_time = dist;
788 sb->type = k_sample_type_air;
789 }
790 }
791 }
792
793 if( !(min_time < start_time) )
794 min_time = 0.5f * k_gridscale;
795
796 min_time = vg_clampf( min_time/k_gridscale, 0.01f, 0.99f );
797
798 v3_muls( clipdir, min_time, st->clip[dir] );
799
800 v3f p0;
801 v3_muladds( target->pos, st->clip[dir], k_gridscale, p0 );
802 }
803
804 static void player_walkgrid_clip_edge( struct grid_sample *sa,
805 struct grid_sample *sb,
806 struct grid_sample *st, /* data store */
807 enum eclipdir dir )
808 {
809 v3f clipdir = { 0.0f, 0.0f, 0.0f }, pos;
810 int valid_a = sa->type == k_sample_type_valid,
811 valid_b = sb->type == k_sample_type_valid;
812
813 struct grid_sample *target = valid_a? sa: sb,
814 *other = valid_a? sb: sa;
815
816 v3_sub( other->pos, target->pos, clipdir );
817 clipdir[1] = 0.0f;
818
819 v3_copy( target->pos, pos );
820
821 boxf cell_region;
822 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, -k_gridscale*1.1f, cell_region[0]);
823 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, k_gridscale*1.1f, cell_region[1]);
824
825 u32 geo[256];
826 int len = bh_select( &world.geo.bhtris, cell_region, geo, 256 );
827
828 float max_dist = 0.0f;
829 v3f tri[3];
830 v3f perp;
831 v3_cross( clipdir,(v3f){0.0f,1.0f,0.0f},perp );
832 v3_muls( clipdir, 0.001f, st->clip[dir] );
833
834 for( int i=0; i<len; i++ )
835 {
836 u32 *ptri = &world.geo.indices[ geo[i]*3 ];
837 for( int j=0; j<3; j++ )
838 v3_copy( world.geo.verts[ptri[j]].co, tri[j] );
839
840 if( !player_walkgrid_tri_walkable(ptri) )
841 continue;
842
843 for( int k=0; k<3; k++ )
844 {
845 int ia = k,
846 ib = (k+1)%3;
847
848 v3f v0, v1;
849 v3_sub( tri[ia], pos, v0 );
850 v3_sub( tri[ib], pos, v1 );
851
852 if( (clipdir[2]*v0[0] - clipdir[0]*v0[2]) *
853 (clipdir[2]*v1[0] - clipdir[0]*v1[2]) < 0.0f )
854 {
855 float da = v3_dot(v0,perp),
856 db = v3_dot(v1,perp),
857 d = da-db,
858 qa = da/d;
859
860 v3f p0;
861 v3_muls( v1, qa, p0 );
862 v3_muladds( p0, v0, 1.0f-qa, p0 );
863
864 float h = v3_dot(p0,clipdir)/v3_dot(clipdir,clipdir);
865
866 if( h >= max_dist && h <= 1.0f )
867 {
868 max_dist = h;
869 float l = 1.0f/v3_length(clipdir);
870 v3_muls( p0, l, st->clip[dir] );
871 }
872 }
873 }
874 }
875 }
876
877 static const struct conf
878 {
879 struct confedge
880 {
881 /* i: sample index
882 * d: data index
883 * a: axis index
884 * o: the 'other' point to do a A/B test with
885 * if its -1, all AB is done.
886 */
887 int i0, i1,
888 d0, d1,
889 a0, a1,
890 o0, o1;
891 }
892 edges[2];
893 int edge_count;
894 }
895 k_walkgrid_configs[16] = {
896 {{},0},
897 {{{ 3,3, 3,0, 1,0, -1,-1 }}, 1},
898 {{{ 2,2, 1,3, 0,1, -1,-1 }}, 1},
899 {{{ 2,3, 1,0, 0,0, 3,-1 }}, 1},
900
901 {{{ 1,1, 0,1, 1,0, -1,-1 }}, 1},
902 {{{ 3,3, 3,0, 1,0, -1,-1 },
903 { 1,1, 0,1, 1,0, -1,-1 }}, 2},
904 {{{ 1,2, 0,3, 1,1, 2,-1 }}, 1},
905 {{{ 1,3, 0,0, 1,0, 2, 2 }}, 1},
906
907 {{{ 0,0, 0,0, 0,1, -1,-1 }}, 1},
908 {{{ 3,0, 3,0, 1,1, 0,-1 }}, 1},
909 {{{ 2,2, 1,3, 0,1, -1,-1 },
910 { 0,0, 0,0, 0,1, -1,-1 }}, 2},
911 {{{ 2,0, 1,0, 0,1, 3, 3 }}, 1},
912
913 {{{ 0,1, 0,1, 0,0, 1,-1 }}, 1},
914 {{{ 3,1, 3,1, 1,0, 0, 0 }}, 1},
915 {{{ 0,2, 0,3, 0,1, 1, 1 }}, 1},
916 {{},0},
917 };
918
919 /*
920 * Get a buffer of edges from cell location
921 */
922 static const struct conf *player_walkgrid_conf( struct walkgrid *wg,
923 v2i cell,
924 struct grid_sample *corners[4] )
925 {
926 corners[0] = &wg->samples[cell[1] ][cell[0] ];
927 corners[1] = &wg->samples[cell[1]+1][cell[0] ];
928 corners[2] = &wg->samples[cell[1]+1][cell[0]+1];
929 corners[3] = &wg->samples[cell[1] ][cell[0]+1];
930
931 u32 vd0 = corners[0]->type == k_sample_type_valid,
932 vd1 = corners[1]->type == k_sample_type_valid,
933 vd2 = corners[2]->type == k_sample_type_valid,
934 vd3 = corners[3]->type == k_sample_type_valid,
935 config = (vd0<<3) | (vd1<<2) | (vd2<<1) | vd3;
936
937 return &k_walkgrid_configs[ config ];
938 }
939
940 static void player_walkgrid_floor(v3f pos)
941 {
942 v3_muls( pos, 1.0f/k_gridscale, pos );
943 v3_floor( pos, pos );
944 v3_muls( pos, k_gridscale, pos );
945 }
946
947 /*
948 * Computes the barycentric coordinate of location on a triangle (vertical),
949 * then sets the Y position to the interpolation of the three points
950 */
951 static void player_walkgrid_stand_tri( v3f a, v3f b, v3f c, v3f pos )
952 {
953 v3f v0,v1,v2;
954 v3_sub( b, a, v0 );
955 v3_sub( c, a, v1 );
956 v3_sub( pos, a, v2 );
957
958 float d = v0[0]*v1[2] - v1[0]*v0[2],
959 v = (v2[0]*v1[2] - v1[0]*v2[2]) / d,
960 w = (v0[0]*v2[2] - v2[0]*v0[2]) / d,
961 u = 1.0f - v - w;
962
963 vg_line( pos, a, 0xffff0000 );
964 vg_line( pos, b, 0xff00ff00 );
965 vg_line( pos, c, 0xff0000ff );
966 pos[1] = u*a[1] + v*b[1] + w*c[1];
967 }
968
969 /*
970 * Get the minimum time value of pos+dir until a cell edge
971 *
972 * t[0] -> t[3] are the individual time values
973 * t[5] & t[6] are the maximum axis values
974 * t[6] is the minimum value
975 *
976 */
977 static void player_walkgrid_min_cell( float t[7], v2f pos, v2f dir )
978 {
979 v2f frac = { 1.0f/dir[0], 1.0f/dir[1] };
980
981 t[0] = 999.9f;
982 t[1] = 999.9f;
983 t[2] = 999.9f;
984 t[3] = 999.9f;
985
986 if( fabsf(dir[0]) > 0.0001f )
987 {
988 t[0] = (0.0f-pos[0]) * frac[0];
989 t[1] = (1.0f-pos[0]) * frac[0];
990 }
991 if( fabsf(dir[1]) > 0.0001f )
992 {
993 t[2] = (0.0f-pos[1]) * frac[1];
994 t[3] = (1.0f-pos[1]) * frac[1];
995 }
996
997 t[4] = vg_maxf(t[0],t[1]);
998 t[5] = vg_maxf(t[2],t[3]);
999 t[6] = vg_minf(t[4],t[5]);
1000 }
1001
1002 static void player_walkgrid_iter(struct walkgrid *wg, int iter)
1003 {
1004
1005 /*
1006 * For each walkgrid iteration we are stepping through cells and determining
1007 * the intersections with the grid, and any edges that are present
1008 */
1009
1010 u32 icolours[] = { 0xffff00ff, 0xff00ffff, 0xffffff00 };
1011
1012 v3f pa, pb, pc, pd, pl0, pl1;
1013 pa[0] = wg->region[0][0] + (float)wg->cell_id[0] *k_gridscale;
1014 pa[1] = (wg->region[0][1] + wg->region[1][1]) * 0.5f + k_gridscale;
1015 pa[2] = wg->region[0][2] + (float)wg->cell_id[1] *k_gridscale;
1016 #if 0
1017 pb[0] = pa[0];
1018 pb[1] = pa[1];
1019 pb[2] = pa[2] + k_gridscale;
1020 pc[0] = pa[0] + k_gridscale;
1021 pc[1] = pa[1];
1022 pc[2] = pa[2] + k_gridscale;
1023 pd[0] = pa[0] + k_gridscale;
1024 pd[1] = pa[1];
1025 pd[2] = pa[2];
1026 /* if you want to draw the current cell */
1027 vg_line( pa, pb, 0xff00ffff );
1028 vg_line( pb, pc, 0xff00ffff );
1029 vg_line( pc, pd, 0xff00ffff );
1030 vg_line( pd, pa, 0xff00ffff );
1031 #endif
1032 pl0[0] = pa[0] + wg->pos[0]*k_gridscale;
1033 pl0[1] = pa[1];
1034 pl0[2] = pa[2] + wg->pos[1]*k_gridscale;
1035
1036 /*
1037 * If there are edges present, we need to create a 'substep' event, where
1038 * we find the intersection point, find the fully resolved position,
1039 * then the new pos dir is the intersection->resolution
1040 *
1041 * the resolution is applied in non-discretized space in order to create a
1042 * suitable vector for finding outflow, we want it to leave the cell so it
1043 * can be used by the quad
1044 */
1045
1046 v2f pos, dir;
1047 v2_copy( wg->pos, pos );
1048 v2_muls( wg->dir, wg->move, dir );
1049
1050 struct grid_sample *corners[4];
1051 v2f corners2d[4] = {{0.0f,0.0f},{0.0f,1.0f},{1.0f,1.0f},{1.0f,0.0f}};
1052 const struct conf *conf = player_walkgrid_conf( wg, wg->cell_id, corners );
1053
1054 float t[7];
1055 player_walkgrid_min_cell( t, pos, dir );
1056
1057 for( int i=0; i<conf->edge_count; i++ )
1058 {
1059 const struct confedge *edge = &conf->edges[i];
1060
1061 v2f e0, e1, n, r, target, res, tangent;
1062 e0[0] = corners2d[edge->i0][0] + corners[edge->d0]->clip[edge->a0][0];
1063 e0[1] = corners2d[edge->i0][1] + corners[edge->d0]->clip[edge->a0][2];
1064 e1[0] = corners2d[edge->i1][0] + corners[edge->d1]->clip[edge->a1][0];
1065 e1[1] = corners2d[edge->i1][1] + corners[edge->d1]->clip[edge->a1][2];
1066
1067 v3f pe0 = { pa[0] + e0[0]*k_gridscale,
1068 pa[1],
1069 pa[2] + e0[1]*k_gridscale };
1070 v3f pe1 = { pa[0] + e1[0]*k_gridscale,
1071 pa[1],
1072 pa[2] + e1[1]*k_gridscale };
1073
1074 v2_sub( e1, e0, tangent );
1075 n[0] = -tangent[1];
1076 n[1] = tangent[0];
1077 v2_normalize( n );
1078
1079 /*
1080 * If we find ourselfs already penetrating the edge, move back out a
1081 * little
1082 */
1083 v2_sub( e0, pos, r );
1084 float p1 = v2_dot(r,n);
1085
1086 if( -p1 < 0.0001f )
1087 {
1088 v2_muladds( pos, n, p1+0.0001f, pos );
1089 v2_copy( pos, wg->pos );
1090 v3f p_new = { pa[0] + pos[0]*k_gridscale,
1091 pa[1],
1092 pa[2] + pos[1]*k_gridscale };
1093 v3_copy( p_new, pl0 );
1094 }
1095
1096 v2_add( pos, dir, target );
1097
1098 v2f v1, v2, v3;
1099 v2_sub( e0, pos, v1 );
1100 v2_sub( target, pos, v2 );
1101
1102 v2_copy( n, v3 );
1103
1104 v2_sub( e0, target, r );
1105 float p = v2_dot(r,n),
1106 t1 = v2_dot(v1,v3)/v2_dot(v2,v3);
1107
1108 if( t1 < t[6] && t1 > 0.0f && -p < 0.001f )
1109 {
1110 v2_muladds( target, n, p+0.0001f, res );
1111
1112 v2f intersect;
1113 v2_muladds( pos, dir, t1, intersect );
1114 v2_copy( intersect, pos );
1115 v2_sub( res, intersect, dir );
1116
1117 v3f p_res = { pa[0] + res[0]*k_gridscale,
1118 pa[1],
1119 pa[2] + res[1]*k_gridscale };
1120 v3f p_int = { pa[0] + intersect[0]*k_gridscale,
1121 pa[1],
1122 pa[2] + intersect[1]*k_gridscale };
1123
1124 vg_line( pl0, p_int, icolours[iter%3] );
1125 v3_copy( p_int, pl0 );
1126 v2_copy( pos, wg->pos );
1127
1128 player_walkgrid_min_cell( t, pos, dir );
1129 }
1130 }
1131
1132 /*
1133 * Compute intersection with grid cell moving outwards
1134 */
1135 t[6] = vg_minf( t[6], 1.0f );
1136
1137 pl1[0] = pl0[0] + dir[0]*k_gridscale*t[6];
1138 pl1[1] = pl0[1];
1139 pl1[2] = pl0[2] + dir[1]*k_gridscale*t[6];
1140 vg_line( pl0, pl1, icolours[iter%3] );
1141
1142 if( t[6] < 1.0f )
1143 {
1144 /*
1145 * To figure out what t value created the clip so we know which edge
1146 * to wrap around
1147 */
1148
1149 if( t[4] < t[5] )
1150 {
1151 wg->pos[1] = pos[1] + dir[1]*t[6];
1152
1153 if( t[0] > t[1] ) /* left edge */
1154 {
1155 wg->pos[0] = 0.9999f;
1156 wg->cell_id[0] --;
1157
1158 if( wg->cell_id[0] == 0 )
1159 wg->move = -1.0f;
1160 }
1161 else /* Right edge */
1162 {
1163 wg->pos[0] = 0.0001f;
1164 wg->cell_id[0] ++;
1165
1166 if( wg->cell_id[0] == WALKGRID_SIZE-2 )
1167 wg->move = -1.0f;
1168 }
1169 }
1170 else
1171 {
1172 wg->pos[0] = pos[0] + dir[0]*t[6];
1173
1174 if( t[2] > t[3] ) /* bottom edge */
1175 {
1176 wg->pos[1] = 0.9999f;
1177 wg->cell_id[1] --;
1178
1179 if( wg->cell_id[1] == 0 )
1180 wg->move = -1.0f;
1181 }
1182 else /* top edge */
1183 {
1184 wg->pos[1] = 0.0001f;
1185 wg->cell_id[1] ++;
1186
1187 if( wg->cell_id[1] == WALKGRID_SIZE-2 )
1188 wg->move = -1.0f;
1189 }
1190 }
1191
1192 wg->move -= t[6];
1193 }
1194 else
1195 {
1196 v2_muladds( wg->pos, dir, wg->move, wg->pos );
1197 wg->move = 0.0f;
1198 }
1199 }
1200
1201 static void player_walkgrid_stand_cell(struct walkgrid *wg)
1202 {
1203 /*
1204 * NOTE: as opposed to the other function which is done in discretized space
1205 * this use a combination of both.
1206 */
1207
1208 v3f world;
1209 world[0] = wg->region[0][0]+((float)wg->cell_id[0]+wg->pos[0])*k_gridscale;
1210 world[1] = player.rb.co[1];
1211 world[2] = wg->region[0][2]+((float)wg->cell_id[1]+wg->pos[1])*k_gridscale;
1212
1213 struct grid_sample *corners[4];
1214 const struct conf *conf = player_walkgrid_conf( wg, wg->cell_id, corners );
1215
1216 if( conf != k_walkgrid_configs )
1217 {
1218 if( conf->edge_count == 0 )
1219 {
1220 v3f v0;
1221
1222 /* Split the basic quad along the shortest diagonal */
1223 if( fabsf(corners[2]->pos[1] - corners[0]->pos[1]) <
1224 fabsf(corners[3]->pos[1] - corners[1]->pos[1]) )
1225 {
1226 vg_line( corners[2]->pos, corners[0]->pos, 0xffaaaaaa );
1227
1228 if( wg->pos[0] > wg->pos[1] )
1229 player_walkgrid_stand_tri( corners[0]->pos,
1230 corners[3]->pos,
1231 corners[2]->pos, world );
1232 else
1233 player_walkgrid_stand_tri( corners[0]->pos,
1234 corners[2]->pos,
1235 corners[1]->pos, world );
1236 }
1237 else
1238 {
1239 vg_line( corners[3]->pos, corners[1]->pos, 0xffaaaaaa );
1240
1241 if( wg->pos[0] < 1.0f-wg->pos[1] )
1242 player_walkgrid_stand_tri( corners[0]->pos,
1243 corners[3]->pos,
1244 corners[1]->pos, world );
1245 else
1246 player_walkgrid_stand_tri( corners[3]->pos,
1247 corners[2]->pos,
1248 corners[1]->pos, world );
1249 }
1250 }
1251 else
1252 {
1253 for( int i=0; i<conf->edge_count; i++ )
1254 {
1255 const struct confedge *edge = &conf->edges[i];
1256
1257 v3f p0, p1;
1258 v3_muladds( corners[edge->i0]->pos,
1259 corners[edge->d0]->clip[edge->a0], k_gridscale, p0 );
1260 v3_muladds( corners[edge->i1]->pos,
1261 corners[edge->d1]->clip[edge->a1], k_gridscale, p1 );
1262
1263 /*
1264 * Find penetration distance between player position and the edge
1265 */
1266
1267 v2f normal = { -(p1[2]-p0[2]), p1[0]-p0[0] },
1268 rel = { world[0]-p0[0], world[2]-p0[2] };
1269
1270 if( edge->o0 == -1 )
1271 {
1272 /* No subregions (default case), just use triangle created by
1273 * i0, e0, e1 */
1274 player_walkgrid_stand_tri( corners[edge->i0]->pos,
1275 p0,
1276 p1, world );
1277 }
1278 else
1279 {
1280 /*
1281 * Test if we are in the first region, which is
1282 * edge.i0, edge.e0, edge.o0,
1283 */
1284 v3f v0, ref;
1285 v3_sub( p0, corners[edge->o0]->pos, ref );
1286 v3_sub( world, corners[edge->o0]->pos, v0 );
1287
1288 vg_line( corners[edge->o0]->pos, p0, 0xffffff00 );
1289 vg_line( corners[edge->o0]->pos, world, 0xff000000 );
1290
1291 if( ref[0]*v0[2] - ref[2]*v0[0] < 0.0f )
1292 {
1293 player_walkgrid_stand_tri( corners[edge->i0]->pos,
1294 p0,
1295 corners[edge->o0]->pos, world );
1296 }
1297 else
1298 {
1299 if( edge->o1 == -1 )
1300 {
1301 /*
1302 * No other edges mean we just need to use the opposite
1303 *
1304 * e0, e1, o0 (in our case, also i1)
1305 */
1306 player_walkgrid_stand_tri( p0,
1307 p1,
1308 corners[edge->o0]->pos, world );
1309 }
1310 else
1311 {
1312 /*
1313 * Note: this v0 calculation can be ommited with the
1314 * current tileset.
1315 *
1316 * the last two triangles we have are:
1317 * e0, e1, o1
1318 * and
1319 * e1, i1, o1
1320 */
1321 v3_sub( p1, corners[edge->o1]->pos, ref );
1322 v3_sub( world, corners[edge->o1]->pos, v0 );
1323 vg_line( corners[edge->o1]->pos, p1, 0xff00ffff );
1324
1325 if( ref[0]*v0[2] - ref[2]*v0[0] < 0.0f )
1326 {
1327 player_walkgrid_stand_tri( p0,
1328 p1,
1329 corners[edge->o1]->pos,
1330 world );
1331 }
1332 else
1333 {
1334 player_walkgrid_stand_tri( p1,
1335 corners[edge->i1]->pos,
1336 corners[edge->o1]->pos,
1337 world );
1338 }
1339 }
1340 }
1341 }
1342 }
1343 }
1344 }
1345
1346 v3_copy( world, player.rb.co );
1347 }
1348
1349 static void player_walkgrid_getsurface(void)
1350 {
1351 float const k_stepheight = 0.5f;
1352 float const k_miny = 0.6f;
1353 float const k_height = 1.78f;
1354 float const k_region_size = (float)WALKGRID_SIZE/2.0f * k_gridscale;
1355
1356 static struct walkgrid wg;
1357
1358 v3f cell;
1359 v3_copy( player.rb.co, cell );
1360 player_walkgrid_floor( cell );
1361
1362 v3_muladds( cell, (v3f){-1.0f,-1.0f,-1.0f}, k_region_size, wg.region[0] );
1363 v3_muladds( cell, (v3f){ 1.0f, 1.0f, 1.0f}, k_region_size, wg.region[1] );
1364
1365
1366 /*
1367 * Create player input vector
1368 */
1369 v3f delta = {0.0f,0.0f,0.0f};
1370 v3f fwd = { -sinf(-player.angles[0]), 0.0f, -cosf(-player.angles[0]) },
1371 side = { -fwd[2], 0.0f, fwd[0] };
1372
1373 /* Temp */
1374 if( !vg_console_enabled() )
1375 {
1376 if( glfwGetKey( vg_window, GLFW_KEY_W ) )
1377 v3_muladds( delta, fwd, ktimestep*k_walkspeed, delta );
1378 if( glfwGetKey( vg_window, GLFW_KEY_S ) )
1379 v3_muladds( delta, fwd, -ktimestep*k_walkspeed, delta );
1380
1381 if( glfwGetKey( vg_window, GLFW_KEY_A ) )
1382 v3_muladds( delta, side, -ktimestep*k_walkspeed, delta );
1383 if( glfwGetKey( vg_window, GLFW_KEY_D ) )
1384 v3_muladds( delta, side, ktimestep*k_walkspeed, delta );
1385
1386 v3_muladds( delta, fwd,
1387 vg_get_axis("vertical")*-ktimestep*k_walkspeed, delta );
1388 v3_muladds( delta, side,
1389 vg_get_axis("horizontal")*ktimestep*k_walkspeed, delta );
1390 }
1391
1392 /*
1393 * Create our move in grid space
1394 */
1395 wg.dir[0] = delta[0] * (1.0f/k_gridscale);
1396 wg.dir[1] = delta[2] * (1.0f/k_gridscale);
1397 wg.move = 1.0f;
1398
1399 v2f region_pos =
1400 {
1401 (player.rb.co[0] - wg.region[0][0]) * (1.0f/k_gridscale),
1402 (player.rb.co[2] - wg.region[0][2]) * (1.0f/k_gridscale)
1403 };
1404 v2f region_cell_pos;
1405 v2_floor( region_pos, region_cell_pos );
1406 v2_sub( region_pos, region_cell_pos, wg.pos );
1407
1408 wg.cell_id[0] = region_cell_pos[0];
1409 wg.cell_id[1] = region_cell_pos[1];
1410
1411 for(int y=0; y<WALKGRID_SIZE; y++ )
1412 {
1413 for(int x=0; x<WALKGRID_SIZE; x++ )
1414 {
1415 struct grid_sample *s = &wg.samples[y][x];
1416 v3_muladds( wg.region[0], (v3f){ x, 0, y }, k_gridscale, s->pos );
1417 s->state = k_traverse_none;
1418 s->type = k_sample_type_air;
1419 v3_zero( s->clip[0] );
1420 v3_zero( s->clip[1] );
1421 }
1422 }
1423
1424 v2i border[WALKGRID_SIZE*WALKGRID_SIZE];
1425 v2i *cborder = border;
1426 u32 border_length = 1;
1427
1428 struct grid_sample *base = NULL;
1429
1430 v2i starters[] = {{0,0},{1,1},{0,1},{1,0}};
1431
1432 for( int i=0;i<4;i++ )
1433 {
1434 v2i test;
1435 v2i_add( wg.cell_id, starters[i], test );
1436 v2i_copy( test, border[0] );
1437 base = &wg.samples[test[1]][test[0]];
1438
1439 base->pos[1] = cell[1];
1440 player_walkgrid_samplepole( base );
1441
1442 if( base->type == k_sample_type_valid )
1443 break;
1444 else
1445 base->type = k_sample_type_air;
1446 }
1447
1448 vg_line_pt3( base->pos, 0.1f, 0xffffffff );
1449
1450 int iter = 0;
1451
1452 while( border_length )
1453 {
1454 v2i directions[] = {{1,0},{0,1},{-1,0},{0,-1}};
1455
1456 v2i *old_border = cborder;
1457 int len = border_length;
1458
1459 border_length = 0;
1460 cborder = old_border+len;
1461
1462 for( int i=0; i<len; i++ )
1463 {
1464 v2i co;
1465 v2i_copy( old_border[i], co );
1466 struct grid_sample *sa = &wg.samples[co[1]][co[0]];
1467
1468 for( int j=0; j<4; j++ )
1469 {
1470 v2i newp;
1471 v2i_add( co, directions[j], newp );
1472
1473 if( newp[0] < 0 || newp[1] < 0 ||
1474 newp[0] == WALKGRID_SIZE || newp[1] == WALKGRID_SIZE )
1475 continue;
1476
1477 struct grid_sample *sb = &wg.samples[newp[1]][newp[0]];
1478 enum traverse_state thismove = j%2==0? 1: 2;
1479
1480 if( (sb->state & thismove) == 0x00 ||
1481 sb->type == k_sample_type_air )
1482 {
1483 sb->pos[1] = sa->pos[1];
1484
1485 player_walkgrid_samplepole( sb );
1486
1487 if( sb->type != k_sample_type_air )
1488 {
1489 /*
1490 * Need to do a blocker pass
1491 */
1492
1493 struct grid_sample *store = (j>>1 == 0)? sa: sb;
1494 player_walkgrid_clip_blocker( sa, sb, store, j%2 );
1495
1496
1497 if( sb->type != k_sample_type_air )
1498 {
1499 vg_line( sa->pos, sb->pos, 0xffffffff );
1500
1501 if( sb->state == k_traverse_none )
1502 v2i_copy( newp, cborder[ border_length ++ ] );
1503 }
1504 else
1505 {
1506 v3f p1;
1507 v3_muladds( sa->pos, store->clip[j%2], k_gridscale, p1 );
1508 vg_line( sa->pos, p1, 0xffffffff );
1509 }
1510 }
1511 else
1512 {
1513 /*
1514 * A clipping pass is now done on the edge of the walkable
1515 * surface
1516 */
1517
1518 struct grid_sample *store = (j>>1 == 0)? sa: sb;
1519 player_walkgrid_clip_edge( sa, sb, store, j%2 );
1520
1521 v3f p1;
1522 v3_muladds( sa->pos, store->clip[j%2], k_gridscale, p1 );
1523 vg_line( sa->pos, p1, 0xffffffff );
1524 }
1525
1526 sb->state |= thismove;
1527 }
1528 }
1529
1530 sa->state = k_traverse_h|k_traverse_v;
1531 }
1532
1533 iter ++;
1534 if( iter == walk_grid_iterations )
1535 break;
1536 }
1537
1538 /* Draw connections */
1539 struct grid_sample *corners[4];
1540 for( int x=0; x<WALKGRID_SIZE-1; x++ )
1541 {
1542 for( int z=0; z<WALKGRID_SIZE-1; z++ )
1543 {
1544 const struct conf *conf =
1545 player_walkgrid_conf( &wg, (v2i){x,z}, corners );
1546
1547 for( int i=0; i<conf->edge_count; i++ )
1548 {
1549 const struct confedge *edge = &conf->edges[i];
1550
1551 v3f p0, p1;
1552 v3_muladds( corners[edge->i0]->pos,
1553 corners[edge->d0]->clip[edge->a0], k_gridscale, p0 );
1554 v3_muladds( corners[edge->i1]->pos,
1555 corners[edge->d1]->clip[edge->a1], k_gridscale, p1 );
1556
1557 vg_line( p0, p1, 0xff0000ff );
1558 }
1559 }
1560 }
1561
1562 /*
1563 * Commit player movement into the grid
1564 */
1565
1566 if( v3_length2(delta) <= 0.00001f )
1567 return;
1568
1569 int i=0;
1570 for(; i<8 && wg.move > 0.001f; i++ )
1571 player_walkgrid_iter( &wg, i );
1572
1573 player_walkgrid_stand_cell( &wg );
1574 }
1575
1576 static void player_walkgrid(void)
1577 {
1578 player_walkgrid_getsurface();
1579
1580 m4x3_mulv( player.rb.to_world, (v3f){0.0f,1.8f,0.0f}, player.camera_pos );
1581 player_mouseview();
1582 rb_update_transform( &player.rb );
1583 }
1584
1585 /*
1586 * Animation
1587 */
1588
1589 static void player_animate(void)
1590 {
1591 /* Camera position */
1592 v3_sub( player.rb.v, player.v_last, player.a );
1593 v3_copy( player.rb.v, player.v_last );
1594
1595 v3_add( player.m, player.a, player.m );
1596 v3_lerp( player.m, (v3f){0.0f,0.0f,0.0f}, 0.1f, player.m );
1597
1598 player.m[0] = vg_clampf( player.m[0], -2.0f, 2.0f );
1599 player.m[1] = vg_clampf( player.m[1], -2.0f, 2.0f );
1600 player.m[2] = vg_clampf( player.m[2], -2.0f, 2.0f );
1601 v3_lerp( player.bob, player.m, 0.2f, player.bob );
1602
1603 /* Head */
1604 float lslip = fabsf(player.slip);
1605
1606 float kheight = 2.0f,
1607 kleg = 0.6f;
1608
1609 v3f offset;
1610 v3_zero( offset );
1611 m3x3_mulv( player.rb.to_local, player.bob, offset );
1612
1613 static float speed_wobble = 0.0f, speed_wobble_2 = 0.0f;
1614
1615 float kickspeed = vg_clampf(v3_length(player.rb.v)*(1.0f/40.0f), 0.0f, 1.0f);
1616 float kicks = (vg_randf()-0.5f)*2.0f*kickspeed;
1617 float sign = vg_signf( kicks );
1618 speed_wobble = vg_lerpf( speed_wobble, kicks*kicks*sign, 0.1f );
1619 speed_wobble_2 = vg_lerpf( speed_wobble_2, speed_wobble, 0.04f );
1620
1621 offset[0] *= 0.26f;
1622 offset[0] += speed_wobble_2*3.0f;
1623
1624 offset[1] *= -0.3f;
1625 offset[2] *= 0.01f;
1626
1627 offset[0] = vg_clampf( offset[0], -0.8f, 0.8f );
1628 offset[1] = vg_clampf( offset[1], -0.5f, 0.0f );
1629
1630 /*
1631 * Player rotation
1632 */
1633 #if 0
1634 float angle = v3_dot( player.rb.up, (v3f){0.0f,1.0f,0.0f} );
1635 v3f axis;
1636 v3_cross( player.rb.up, (v3f){0.0f,1.0f,0.0f}, axis );
1637
1638 v4f correction;
1639 if( angle < 0.99f && 0 )
1640 {
1641 m3x3_mulv( player.rb.to_local, axis, axis );
1642 q_axis_angle( correction, axis, acosf(angle) );
1643 }
1644 else
1645 {
1646 q_identity( correction );
1647 }
1648
1649 /*
1650 * Animation blending
1651 * ===========================================
1652 */
1653 #endif
1654
1655 static float fslide = 0.0f;
1656 static float fdirz = 0.0f;
1657 static float fdirx = 0.0f;
1658 static float fstand = 0.0f;
1659 static float ffly = 0.0f;
1660
1661 float speed = v3_length( player.rb.v );
1662
1663 fstand = vg_lerpf(fstand, 1.0f-vg_clampf(speed*0.03f,0.0f,1.0f),0.1f);
1664 fslide = vg_lerpf(fslide, vg_clampf(lslip,0.0f,1.0f), 0.04f);
1665 fdirz = vg_lerpf(fdirz, player.reverse > 0.0f? 1.0f: 0.0f, 0.04f );
1666 fdirx = vg_lerpf(fdirx, player.slip < 0.0f? 1.0f: 0.0f, 0.01f );
1667 ffly = vg_lerpf(ffly, player.in_air? 1.0f: 0.0f, 0.04f );
1668
1669 character_pose_reset( &player.mdl );
1670
1671 /* TODO */
1672 float fstand1 = 1.0f-(1.0f-fstand)*0.0f;
1673
1674 float amt_air = ffly*ffly,
1675 amt_ground = 1.0f-amt_air,
1676 amt_std = (1.0f-fslide) * amt_ground,
1677 amt_stand = amt_std * fstand1,
1678 amt_aero = amt_std * (1.0f-fstand1),
1679 amt_slide = amt_ground * fslide;
1680
1681 character_final_pose( &player.mdl, offset, &pose_stand, amt_stand*fdirz );
1682 character_final_pose( &player.mdl, offset,
1683 &pose_stand_reverse, amt_stand * (1.0f-fdirz) );
1684
1685 character_final_pose( &player.mdl, offset, &pose_aero, amt_aero*fdirz );
1686 character_final_pose( &player.mdl, offset,
1687 &pose_aero_reverse, amt_aero * (1.0f-fdirz) );
1688
1689 character_final_pose( &player.mdl, offset, &pose_slide, amt_slide*fdirx );
1690 character_final_pose( &player.mdl, offset,
1691 &pose_slide1, amt_slide*(1.0f-fdirx) );
1692
1693 character_final_pose( &player.mdl, (v4f){0.0f,0.0f,0.0f,1.0f},
1694 &pose_fly, amt_air );
1695
1696 /*
1697 * Additive effects
1698 * ==========================
1699 */
1700 struct ik_basic *arm_l = &player.mdl.ik_arm_l,
1701 *arm_r = &player.mdl.ik_arm_r;
1702
1703 v3f localv;
1704 m3x3_mulv( player.rb.to_local, player.rb.v, localv );
1705
1706 /* New board transformation */
1707 v4f board_rotation; v3f board_location;
1708
1709 v4f rz, rx;
1710 q_axis_angle( rz, (v3f){ 0.0f, 0.0f, 1.0f }, player.board_xy[0] );
1711 q_axis_angle( rx, (v3f){ 1.0f, 0.0f, 0.0f }, player.board_xy[1] );
1712 q_mul( rx, rz, board_rotation );
1713
1714 v3f *mboard = player.mdl.matrices[k_chpart_board];// player.mboard;
1715 q_m3x3( board_rotation, mboard );
1716 m3x3_mulv( mboard, (v3f){ 0.0f, -0.5f, 0.0f }, board_location );
1717 v3_add( (v3f){0.0f,0.5f,0.0f}, board_location, board_location );
1718 v3_copy( board_location, mboard[3] );
1719
1720
1721 float wheel_r = offset[0]*-0.4f;
1722 v4f qwheel;
1723 q_axis_angle( qwheel, (v3f){0.0f,1.0f,0.0f}, wheel_r );
1724
1725 q_m3x3( qwheel, player.mdl.matrices[k_chpart_wb] );
1726
1727 m3x3_transpose( player.mdl.matrices[k_chpart_wb],
1728 player.mdl.matrices[k_chpart_wf] );
1729 v3_copy( player.mdl.offsets[k_chpart_wb],
1730 player.mdl.matrices[k_chpart_wb][3] );
1731 v3_copy( player.mdl.offsets[k_chpart_wf],
1732 player.mdl.matrices[k_chpart_wf][3] );
1733
1734 m4x3_mul( mboard, player.mdl.matrices[k_chpart_wb],
1735 player.mdl.matrices[k_chpart_wb] );
1736 m4x3_mul( mboard, player.mdl.matrices[k_chpart_wf],
1737 player.mdl.matrices[k_chpart_wf] );
1738
1739 m4x3_mulv( mboard, player.mdl.ik_leg_l.end, player.mdl.ik_leg_l.end );
1740 m4x3_mulv( mboard, player.mdl.ik_leg_r.end, player.mdl.ik_leg_r.end );
1741
1742
1743 v3_copy( player.mdl.ik_arm_l.end, player.handl_target );
1744 v3_copy( player.mdl.ik_arm_r.end, player.handr_target );
1745
1746 if( 1||player.in_air )
1747 {
1748 float tuck = player.board_xy[1],
1749 tuck_amt = fabsf( tuck ) * (1.0f-fabsf(player.board_xy[0]));
1750
1751 float crouch = player.grab*0.3f;
1752 v3_muladds( player.mdl.ik_body.base, (v3f){0.0f,-1.0f,0.0f},
1753 crouch, player.mdl.ik_body.base );
1754 v3_muladds( player.mdl.ik_body.end, (v3f){0.0f,-1.0f,0.0f},
1755 crouch*1.2f, player.mdl.ik_body.end );
1756
1757 if( tuck < 0.0f )
1758 {
1759 //foot_l *= 1.0f-tuck_amt*1.5f;
1760
1761 if( player.grab > 0.1f )
1762 {
1763 m4x3_mulv( mboard, (v3f){0.1f,0.14f,0.6f},
1764 player.handl_target );
1765 }
1766 }
1767 else
1768 {
1769 //foot_r *= 1.0f-tuck_amt*1.4f;
1770
1771 if( player.grab > 0.1f )
1772 {
1773 m4x3_mulv( mboard, (v3f){0.1f,0.14f,-0.6f},
1774 player.handr_target );
1775 }
1776 }
1777 }
1778
1779 v3_lerp( player.handl, player.handl_target, 1.0f, player.handl );
1780 v3_lerp( player.handr, player.handr_target, 1.0f, player.handr );
1781
1782 v3_copy( player.handl, player.mdl.ik_arm_l.end );
1783 v3_copy( player.handr, player.mdl.ik_arm_r.end );
1784
1785 /* Head rotation */
1786
1787 static float rhead = 0.0f;
1788 static const float klook_max = 0.8f;
1789 rhead = vg_lerpf( rhead,
1790 vg_clampf( atan2f(localv[2],-localv[0]),-klook_max,klook_max), 0.04f );
1791 player.mdl.rhead = rhead;
1792 }
1793
1794 static void player_camera_update(void)
1795 {
1796 /* Update camera matrices */
1797 m4x3_identity( player.camera );
1798 m4x3_rotate_y( player.camera, -player.angles[0] );
1799 m4x3_rotate_x( player.camera, -player.angles[1] );
1800 v3_copy( player.camera_pos, player.camera[3] );
1801 m4x3_invert_affine( player.camera, player.camera_inverse );
1802 }
1803
1804 static void player_animate_death_cam(void)
1805 {
1806 v3f delta;
1807 v3f head_pos;
1808 v3_copy( player.mdl.ragdoll[k_chpart_head].co, head_pos );
1809
1810 v3_sub( head_pos, player.camera_pos, delta );
1811 v3_normalize( delta );
1812
1813 v3f follow_pos;
1814 v3_muladds( head_pos, delta, -2.5f, follow_pos );
1815 v3_lerp( player.camera_pos, follow_pos, 0.1f, player.camera_pos );
1816
1817 /*
1818 * Make sure the camera stays above the ground
1819 */
1820 v3f min_height = {0.0f,1.0f,0.0f};
1821
1822 v3f sample;
1823 v3_add( player.camera_pos, min_height, sample );
1824 ray_hit hit;
1825 hit.dist = min_height[1]*2.0f;
1826
1827 if( ray_world( sample, (v3f){0.0f,-1.0f,0.0f}, &hit ))
1828 v3_add( hit.pos, min_height, player.camera_pos );
1829
1830 player.camera_pos[1] =
1831 vg_maxf( wrender.height + 2.0f, player.camera_pos[1] );
1832
1833 player.angles[0] = atan2f( delta[0], -delta[2] );
1834 player.angles[1] = -asinf( delta[1] );
1835 }
1836
1837 static void player_animate_camera(void)
1838 {
1839 v3f offs = { -0.29f, 0.08f, 0.0f };
1840 m3x3_mulv( player.rb.to_world, offs, offs );
1841 m4x3_mulv( player.rb.to_world, player.mdl.ik_body.end, player.camera_pos );
1842 v3_add( offs, player.camera_pos, player.camera_pos );
1843
1844 /* Look angles */
1845 v3_lerp( player.vl, player.rb.v, 0.05f, player.vl );
1846
1847 float yaw = atan2f( player.vl[0], -player.vl[2] ),
1848 pitch = atan2f( -player.vl[1],
1849 sqrtf(
1850 player.vl[0]*player.vl[0] + player.vl[2]*player.vl[2]
1851 )) * 0.7f;
1852
1853 player.angles[0] = yaw;
1854 player.angles[1] = pitch + 0.30f;
1855
1856 /* Camera shake */
1857 static v2f shake_damp = {0.0f,0.0f};
1858 v2f shake = { vg_randf()-0.5f, vg_randf()-0.5f };
1859 v2_muls( shake, v3_length(player.rb.v)*0.3f
1860 * (1.0f+fabsf(player.slip)), shake);
1861
1862 v2_lerp( shake_damp, shake, 0.01f, shake_damp );
1863 shake_damp[0] *= 0.2f;
1864
1865 v2_muladds( player.angles, shake_damp, 0.1f, player.angles );
1866 }
1867
1868 /*
1869 * Audio
1870 */
1871 static void player_audio(void)
1872 {
1873 float speed = vg_minf(v3_length( player.rb.v )*0.1f,1.0f),
1874 attn = v3_dist( player.rb.co, player.camera[3] )+1.0f;
1875 attn = (1.0f/(attn*attn)) * speed;
1876
1877 static float air = 0.0f;
1878 air = vg_lerpf(air, player.in_air? 1.0f: 0.0f, 0.7f);
1879
1880 v3f ears = { 1.0f,0.0f,0.0f };
1881 v3f delta;
1882
1883 v3_sub( player.rb.co, player.camera[3], delta );
1884 v3_normalize( delta );
1885 m3x3_mulv( player.camera, ears, ears );
1886
1887 float pan = v3_dot( ears, delta );
1888 audio_player0.pan = pan;
1889 audio_player1.pan = pan;
1890 audio_player2.pan = pan;
1891
1892 if( freecam )
1893 {
1894 audio_player0.vol = 0.0f;
1895 audio_player1.vol = 0.0f;
1896 audio_player2.vol = 0.0f;
1897 }
1898 else
1899 {
1900 if( player.is_dead )
1901 {
1902 audio_player0.vol = 0.0f;
1903 audio_player1.vol = 0.0f;
1904 audio_player2.vol = 0.0f;
1905 }
1906 else
1907 {
1908 float slide = vg_clampf( fabsf(player.slip), 0.0f, 1.0f );
1909 audio_player0.vol = (1.0f-air)*attn*(1.0f-slide);
1910 audio_player1.vol = air *attn;
1911 audio_player2.vol = (1.0f-air)*attn*slide;
1912 }
1913 }
1914 }
1915
1916 /*
1917 * Public Endpoints
1918 */
1919 static float *player_cam_pos(void)
1920 {
1921 return player.camera_pos;
1922 }
1923
1924 static int reset_player( int argc, char const *argv[] )
1925 {
1926 struct respawn_point *rp = NULL, *r;
1927
1928 if( argc == 1 )
1929 {
1930 for( int i=0; i<world.spawn_count; i++ )
1931 {
1932 r = &world.spawns[i];
1933 if( !strcmp( r->name, argv[0] ) )
1934 {
1935 rp = r;
1936 break;
1937 }
1938 }
1939
1940 if( !rp )
1941 vg_warn( "No spawn named '%s'\n", argv[0] );
1942 }
1943
1944 if( !rp )
1945 {
1946 float min_dist = INFINITY;
1947
1948 for( int i=0; i<world.spawn_count; i++ )
1949 {
1950 r = &world.spawns[i];
1951 float d = v3_dist2( r->co, player.rb.co );
1952
1953 vg_info( "Dist %s : %f\n", r->name, d );
1954 if( d < min_dist )
1955 {
1956 min_dist = d;
1957 rp = r;
1958 }
1959 }
1960 }
1961
1962 if( !rp )
1963 {
1964 vg_error( "No spawn found\n" );
1965 if( !world.spawn_count )
1966 return 0;
1967
1968 rp = &world.spawns[0];
1969 }
1970
1971 v4_copy( rp->q, player.rb.q );
1972 v3_copy( rp->co, player.rb.co );
1973
1974 player.vswitch = 1.0f;
1975 player.slip_last = 0.0f;
1976 player.is_dead = 0;
1977 player.in_air = 1;
1978 m3x3_identity( player.vr );
1979
1980 player.mdl.shoes[0] = 1;
1981 player.mdl.shoes[1] = 1;
1982
1983 rb_update_transform( &player.rb );
1984 m3x3_mulv( player.rb.to_world, (v3f){ 0.0f, 0.0f, -1.2f }, player.rb.v );
1985
1986 player.rb_gate_frame = player.rb;
1987 return 1;
1988 }
1989
1990 static void player_update(void)
1991 {
1992 for( int i=0; i<player.land_log_count; i++ )
1993 draw_cross( player.land_target_log[i],
1994 player.land_target_colours[i], 0.25f);
1995
1996 if( vg_get_axis("grabl")>0.0f)
1997 {
1998 player.rb = player.rb_gate_frame;
1999 player.is_dead = 0;
2000 player.in_air = 1;
2001 m3x3_identity( player.vr );
2002
2003 player.mdl.shoes[0] = 1;
2004 player.mdl.shoes[1] = 1;
2005
2006 world_routes_notify_reset();
2007 }
2008
2009 if( vg_get_button_down( "switchmode" ) )
2010 {
2011 player.on_board ^= 0x1;
2012 }
2013
2014 if( player.is_dead )
2015 {
2016 character_ragdoll_iter( &player.mdl );
2017 character_debug_ragdoll( &player.mdl );
2018
2019 if( !freecam )
2020 player_animate_death_cam();
2021 }
2022 else
2023 {
2024 if( player.on_board )
2025 {
2026 player_do_motion();
2027 player_animate();
2028
2029 if( !freecam )
2030 player_animate_camera();
2031 }
2032 else
2033 {
2034 player_walkgrid();
2035 }
2036 }
2037
2038 if( freecam )
2039 player_freecam();
2040
2041 player_camera_update();
2042 player_audio();
2043 }
2044
2045 static void draw_player(void)
2046 {
2047 /* Draw */
2048 m4x3_copy( player.rb.to_world, player.mdl.mroot );
2049
2050 if( player.is_dead )
2051 character_mimic_ragdoll( &player.mdl );
2052 else
2053 character_eval( &player.mdl );
2054
2055 float opacity = 1.0f-player.air_blend;
2056 if( player.is_dead )
2057 opacity = 0.0f;
2058
2059 character_draw( &player.mdl, opacity, player.camera );
2060 }
2061
2062 #endif /* PLAYER_H */