.......
[carveJwlIkooP6JGAAIwe30JlM.git] / player.h
1 #ifndef PLAYER_H
2 #define PLAYER_H
3
4 #include "audio.h"
5 #include "common.h"
6 #include "world.h"
7 //#include "character.h"
8 #include "player_model.h"
9 #include "bvh.h"
10
11 /*
12 * Constants
13 */
14
15 static float
16 k_walkspeed = 2.0f,
17 k_board_radius = 0.3f,
18 k_board_length = 0.45f,
19 k_board_allowance = 0.04f,
20 k_friction_lat = 8.8f,
21 k_friction_resistance = 0.01f,
22 k_max_push_speed = 16.0f,
23 k_push_accel = 10.0f,
24 k_push_cycle_rate = 8.0f,
25 k_steer_ground = 2.5f,
26 k_steer_air = 3.6f,
27 k_steer_air_lerp = 0.3f,
28 k_pump_force = 000.0f,
29 k_downforce = 5.0f,
30 k_jump_charge_speed = (1.0f/1.0f),
31 k_jump_force = 5.0f;
32
33 static int freecam = 0;
34 static int walk_grid_iterations = 1;
35 static float fc_speed = 10.0f;
36
37 static struct gplayer
38 {
39 /* Physics */
40 rigidbody rb, collide_front, collide_back, rb_gate_frame;
41
42 v3f a, v_last, m, bob, vl;
43
44 /* Utility */
45 float vswitch, slip, slip_last,
46 reverse;
47
48 float iY; /* Yaw inertia */
49 int in_air, is_dead, on_board;
50
51 v2f board_xy;
52 float grab;
53 float pitch;
54 float pushing, push_time;
55 float jump;
56 int jump_charge;
57
58 v3f land_target;
59 v3f land_target_log[22];
60 u32 land_target_colours[22];
61 int land_log_count;
62 m3x3f vr,vr_pstep;
63
64 struct character mdl;
65
66 v3f handl_target, handr_target,
67 handl, handr;
68
69 /* Camera */
70 float air_blend;
71
72 v3f camera_pos, smooth_localcam;
73 v2f angles;
74 m4x3f camera, camera_inverse;
75
76 /* animation */
77 double jump_time;
78 float fslide,
79 fdirz, fdirx,
80 fstand,
81 ffly,
82 fpush,
83 fairdir,
84 fsetup;
85 }
86 player =
87 {
88 .on_board = 1,
89
90 .collide_front = { .type = k_rb_shape_sphere, .inf.sphere.radius = 0.3f },
91 .collide_back = { .type = k_rb_shape_sphere, .inf.sphere.radius = 0.3f }
92 };
93
94 /*
95 * Player API
96 */
97
98
99 /*
100 * Free camera movement
101 */
102
103 static void player_mouseview(void)
104 {
105 if( gui_want_mouse() )
106 return;
107
108 static v2f mouse_last,
109 view_vel = { 0.0f, 0.0f };
110
111 if( vg_get_button_down( "primary" ) )
112 v2_copy( vg_mouse, mouse_last );
113
114 else if( vg_get_button( "primary" ) )
115 {
116 v2f delta;
117 v2_sub( vg_mouse, mouse_last, delta );
118 v2_copy( vg_mouse, mouse_last );
119
120 v2_muladds( view_vel, delta, 0.001f, view_vel );
121 }
122
123 v2_muladds( view_vel,
124 (v2f){ vg_get_axis("h1"), vg_get_axis("v1") },
125 0.05f, view_vel );
126 v2_muls( view_vel, 0.93f, view_vel );
127 v2_add( view_vel, player.angles, player.angles );
128 player.angles[1] = vg_clampf( player.angles[1], -VG_PIf*0.5f, VG_PIf*0.5f );
129 }
130
131 static void player_freecam(void)
132 {
133 player_mouseview();
134
135 float movespeed = fc_speed;
136 v3f lookdir = { 0.0f, 0.0f, -1.0f },
137 sidedir = { 1.0f, 0.0f, 0.0f };
138
139 m3x3_mulv( player.camera, lookdir, lookdir );
140 m3x3_mulv( player.camera, sidedir, sidedir );
141
142 static v3f move_vel = { 0.0f, 0.0f, 0.0f };
143 if( vg_get_button( "forward" ) )
144 v3_muladds( move_vel, lookdir, ktimestep * movespeed, move_vel );
145 if( vg_get_button( "back" ) )
146 v3_muladds( move_vel, lookdir, ktimestep *-movespeed, move_vel );
147 if( vg_get_button( "left" ) )
148 v3_muladds( move_vel, sidedir, ktimestep *-movespeed, move_vel );
149 if( vg_get_button( "right" ) )
150 v3_muladds( move_vel, sidedir, ktimestep * movespeed, move_vel );
151
152 v3_muls( move_vel, 0.7f, move_vel );
153 v3_add( move_vel, player.camera_pos, player.camera_pos );
154 }
155
156 /*
157 * Player Physics Implementation
158 */
159
160 static void apply_gravity( v3f vel, float const timestep )
161 {
162 v3f gravity = { 0.0f, -9.6f, 0.0f };
163 v3_muladds( vel, gravity, timestep, vel );
164 }
165
166 /*
167 * TODO: The angle bias should become greater when launching from a steeper
168 * angle and skewed towords more 'downwards' angles when launching from
169 * shallower trajectories
170 *
171 * it should also be tweaked by the controller left stick being pushed
172 * up or down
173 */
174 static void player_start_air(void)
175 {
176 if( player.in_air )
177 return;
178
179 player.in_air = 1;
180
181 float pstep = ktimestep*10.0f;
182 float best_velocity_delta = -9999.9f;
183 float k_bias = 0.96f;
184
185 v3f axis;
186 v3_cross( player.rb.up, player.rb.v, axis );
187 v3_normalize( axis );
188 player.land_log_count = 0;
189
190 m3x3_identity( player.vr );
191
192 for( int m=-3;m<=12; m++ )
193 {
194 float vmod = ((float)m / 15.0f)*0.09f;
195
196 v3f pco, pco1, pv;
197 v3_copy( player.rb.co, pco );
198 v3_muls( player.rb.v, k_bias, pv );
199
200 /*
201 * Try different 'rotations' of the velocity to find the best possible
202 * landing normal. This conserves magnitude at the expense of slightly
203 * unrealistic results
204 */
205
206 m3x3f vr;
207 v4f vr_q;
208
209 q_axis_angle( vr_q, axis, vmod );
210 q_m3x3( vr_q, vr );
211
212 m3x3_mulv( vr, pv, pv );
213 v3_muladds( pco, pv, pstep, pco );
214
215 for( int i=0; i<50; i++ )
216 {
217 v3_copy( pco, pco1 );
218 apply_gravity( pv, pstep );
219
220 m3x3_mulv( vr, pv, pv );
221 v3_muladds( pco, pv, pstep, pco );
222
223 ray_hit contact;
224 v3f vdir;
225
226 v3_sub( pco, pco1, vdir );
227 contact.dist = v3_length( vdir );
228 v3_divs( vdir, contact.dist, vdir);
229
230 if( ray_world( pco1, vdir, &contact ))
231 {
232 float land_delta = v3_dot( pv, contact.normal );
233 u32 scolour = (u8)(vg_minf(-land_delta * 2.0f, 255.0f));
234
235 /* Bias prediction towords ramps */
236 if( ray_hit_is_ramp( &contact ) )
237 {
238 land_delta *= 0.1f;
239 scolour |= 0x0000a000;
240 }
241
242 if( (land_delta < 0.0f) && (land_delta > best_velocity_delta) )
243 {
244 best_velocity_delta = land_delta;
245
246 v3_copy( contact.pos, player.land_target );
247
248 m3x3_copy( vr, player.vr_pstep );
249 q_axis_angle( vr_q, axis, vmod*0.1f );
250 q_m3x3( vr_q, player.vr );
251 }
252
253 v3_copy( contact.pos,
254 player.land_target_log[player.land_log_count] );
255 player.land_target_colours[player.land_log_count] =
256 0xff000000 | scolour;
257
258 player.land_log_count ++;
259
260 break;
261 }
262 }
263 }
264 }
265
266 static void draw_cross(v3f pos,u32 colour, float scale)
267 {
268 v3f p0, p1;
269 v3_add( (v3f){ scale,0.0f,0.0f}, pos, p0 );
270 v3_add( (v3f){-scale,0.0f,0.0f}, pos, p1 );
271 vg_line( p0, p1, colour );
272 v3_add( (v3f){0.0f, scale,0.0f}, pos, p0 );
273 v3_add( (v3f){0.0f,-scale,0.0f}, pos, p1 );
274 vg_line( p0, p1, colour );
275 v3_add( (v3f){0.0f,0.0f, scale}, pos, p0 );
276 v3_add( (v3f){0.0f,0.0f,-scale}, pos, p1 );
277 vg_line( p0, p1, colour );
278 }
279
280 static void player_physics_control(void)
281 {
282 /*
283 * Computing localized friction forces for controlling the character
284 * Friction across X is significantly more than Z
285 */
286
287 v3f vel;
288 m3x3_mulv( player.rb.to_local, player.rb.v, vel );
289 float slip = 0.0f;
290
291 if( fabsf(vel[2]) > 0.01f )
292 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
293
294 if( fabsf( slip ) > 1.2f )
295 slip = vg_signf( slip ) * 1.2f;
296 player.slip = slip;
297 player.reverse = -vg_signf(vel[2]);
298
299 float substep = ktimestep * 0.2f;
300 float fwd_resistance = (vg_get_button( "break" )? 5.0f: 0.02f) * -substep;
301
302 for( int i=0; i<5; i++ )
303 {
304 vel[2] = stable_force( vel[2], vg_signf( vel[2] ) * fwd_resistance );
305 vel[0] = stable_force( vel[0],
306 vg_signf( vel[0] ) * -k_friction_lat*substep );
307 }
308
309 static double start_push = 0.0;
310 if( vg_get_button_down( "push" ) )
311 start_push = vg_time;
312
313 if( vg_get_button( "jump" ) )
314 {
315 player.jump += ktimestep * k_jump_charge_speed;
316 player.jump_charge = 1;
317 }
318
319 if( !vg_get_button("break") && vg_get_button( "push" ) )
320 {
321 player.pushing = 1.0f;
322 player.push_time = vg_time-start_push;
323
324 float cycle_time = player.push_time*k_push_cycle_rate,
325 amt = k_push_accel * (sinf(cycle_time)*0.5f+0.5f)*ktimestep,
326 current = v3_length( vel ),
327 new_vel = vg_minf( current + amt, k_max_push_speed );
328
329 new_vel -= vg_minf(current, k_max_push_speed);
330 vel[2] -= new_vel * player.reverse;
331 }
332
333 /* Pumping */
334 static float previous = 0.0f;
335 float delta = previous - player.grab,
336 pump = delta * k_pump_force*ktimestep;
337 previous = player.grab;
338
339 v3f p1;
340 v3_muladds( player.rb.co, player.rb.up, pump, p1 );
341 vg_line( player.rb.co, p1, 0xff0000ff );
342
343 vel[1] += pump;
344
345
346 m3x3_mulv( player.rb.to_world, vel, player.rb.v );
347
348 float steer = vg_get_axis( "horizontal" );
349 player.iY -= vg_signf(steer)*powf(steer,2.0f) * k_steer_ground * ktimestep;
350
351 v2_lerp( player.board_xy, (v2f){ slip*0.25f, 0.0f },
352 ktimestep*5.0f, player.board_xy);
353 }
354
355 static void player_physics_control_air(void)
356 {
357 m3x3_mulv( player.vr, player.rb.v, player.rb.v );
358 draw_cross( player.land_target, 0xff0000ff, 0.25f );
359
360 ray_hit hit;
361
362 /*
363 * Prediction
364 */
365 float pstep = ktimestep*10.0f;
366
367 v3f pco, pco1, pv;
368 v3_copy( player.rb.co, pco );
369 v3_copy( player.rb.v, pv );
370
371 float time_to_impact = 0.0f;
372 float limiter = 1.0f;
373
374 for( int i=0; i<50; i++ )
375 {
376 v3_copy( pco, pco1 );
377 m3x3_mulv( player.vr_pstep, pv, pv );
378 apply_gravity( pv, pstep );
379 v3_muladds( pco, pv, pstep, pco );
380
381 //vg_line( pco, pco1, i&0x1?0xff000000:0xffffffff );
382
383 ray_hit contact;
384 v3f vdir;
385
386 v3_sub( pco, pco1, vdir );
387 contact.dist = v3_length( vdir );
388 v3_divs( vdir, contact.dist, vdir);
389
390 float orig_dist = contact.dist;
391 if( ray_world( pco1, vdir, &contact ))
392 {
393 float angle = v3_dot( player.rb.up, contact.normal );
394 v3f axis;
395 v3_cross( player.rb.up, contact.normal, axis );
396
397 time_to_impact += (contact.dist/orig_dist)*pstep;
398 limiter = vg_minf( 5.0f, time_to_impact )/5.0f;
399 limiter = 1.0f-limiter;
400 limiter *= limiter;
401 limiter = 1.0f-limiter;
402
403 if( angle < 0.99f )
404 {
405 v4f correction;
406 q_axis_angle( correction, axis, acosf(angle)*0.05f*(1.0f-limiter) );
407 q_mul( correction, player.rb.q, player.rb.q );
408 }
409
410 draw_cross( contact.pos, 0xffff0000, 0.25f );
411 break;
412 }
413 time_to_impact += pstep;
414 }
415
416 player.iY -= vg_get_axis( "horizontal" ) * k_steer_air * ktimestep;
417 {
418 float iX = vg_get_axis( "vertical" ) *
419 player.reverse * k_steer_air * limiter * ktimestep;
420
421 static float siX = 0.0f;
422 siX = vg_lerpf( siX, iX, k_steer_air_lerp );
423
424 v4f rotate;
425 q_axis_angle( rotate, player.rb.right, siX );
426 q_mul( rotate, player.rb.q, player.rb.q );
427 }
428
429 v2f target = {0.0f,0.0f};
430 v2_muladds( target, (v2f){ vg_get_axis("h1"), vg_get_axis("v1") },
431 player.grab, target );
432 v2_lerp( player.board_xy, target, ktimestep*3.0f, player.board_xy );
433 }
434
435 static void player_init(void)
436 {
437 rb_init( &player.collide_front );
438 rb_init( &player.collide_back );
439 }
440
441 static void player_physics(void)
442 {
443 /*
444 * Update collision fronts
445 */
446
447 rigidbody *rbf = &player.collide_front,
448 *rbb = &player.collide_back;
449
450 m3x3_copy( player.rb.to_world, player.collide_front.to_world );
451 m3x3_copy( player.rb.to_world, player.collide_back.to_world );
452
453 player.air_blend = vg_lerpf( player.air_blend, player.in_air, 0.1f );
454 float h = player.air_blend*0.2f;
455
456 m4x3_mulv( player.rb.to_world, (v3f){0.0f,h,-k_board_length}, rbf->co );
457 v3_copy( rbf->co, rbf->to_world[3] );
458 m4x3_mulv( player.rb.to_world, (v3f){0.0f,h, k_board_length}, rbb->co );
459 v3_copy( rbb->co, rbb->to_world[3] );
460
461 m4x3_invert_affine( rbf->to_world, rbf->to_local );
462 m4x3_invert_affine( rbb->to_world, rbb->to_local );
463
464 rb_update_bounds( rbf );
465 rb_update_bounds( rbb );
466
467 rb_debug( rbf, 0xff00ffff );
468 rb_debug( rbb, 0xffffff00 );
469
470 rb_ct manifold[24];
471 int len = 0;
472
473 len += rb_sphere_vs_scene( rbf, &world.rb_geo, manifold+len );
474 len += rb_sphere_vs_scene( rbb, &world.rb_geo, manifold+len );
475
476 rb_presolve_contacts( manifold, len );
477 v3f surface_avg = {0.0f, 0.0f, 0.0f};
478
479 if( !len )
480 {
481 player_start_air();
482 }
483 else
484 {
485 for( int i=0; i<len; i++ )
486 {
487 v3_add( manifold[i].n, surface_avg, surface_avg );
488
489 #if 0
490 if( manifold[i].element_id <= world.sm_geo_std_oob.vertex_count )
491 {
492 player.is_dead = 1;
493 character_ragdoll_copypose( &player.mdl, player.rb.v );
494 return;
495 }
496 #endif
497 }
498
499 v3_normalize( surface_avg );
500
501 if( v3_dot( player.rb.v, surface_avg ) > 0.5f )
502 {
503 player_start_air();
504 }
505 else
506 player.in_air = 0;
507 }
508
509 for( int j=0; j<5; j++ )
510 {
511 for( int i=0; i<len; i++ )
512 {
513 struct contact *ct = &manifold[i];
514
515 v3f dv, delta;
516 v3_sub( ct->co, player.rb.co, delta );
517 v3_cross( player.rb.w, delta, dv );
518 v3_add( player.rb.v, dv, dv );
519
520 float vn = -v3_dot( dv, ct->n );
521 vn += ct->bias;
522
523 float temp = ct->norm_impulse;
524 ct->norm_impulse = vg_maxf( temp + vn, 0.0f );
525 vn = ct->norm_impulse - temp;
526
527 v3f impulse;
528 v3_muls( ct->n, vn, impulse );
529
530 if( fabsf(v3_dot( impulse, player.rb.forward )) > 10.0f ||
531 fabsf(v3_dot( impulse, player.rb.up )) > 50.0f )
532 {
533 player.is_dead = 1;
534 character_ragdoll_copypose( &player.mdl, player.rb.v );
535 return;
536 }
537
538 v3_add( impulse, player.rb.v, player.rb.v );
539 v3_cross( delta, impulse, impulse );
540
541 /*
542 * W Impulses are limited to the Y and X axises, we don't really want
543 * roll angular velocities being included.
544 *
545 * Can also tweak the resistance of each axis here by scaling the wx,wy
546 * components.
547 */
548
549 float wy = v3_dot( player.rb.up, impulse ),
550 wx = v3_dot( player.rb.right, impulse )*1.5f;
551
552 v3_muladds( player.rb.w, player.rb.up, wy, player.rb.w );
553 v3_muladds( player.rb.w, player.rb.right, wx, player.rb.w );
554 }
555 }
556
557 float grabt = vg_get_axis( "grabr" )*0.5f+0.5f;
558 player.grab = vg_lerpf( player.grab, grabt, 0.14f );
559 player.pushing = 0.0f;
560
561 if( !player.in_air )
562 {
563 v3f axis;
564 float angle = v3_dot( player.rb.up, surface_avg );
565 v3_cross( player.rb.up, surface_avg, axis );
566
567 //float cz = v3_dot( player.rb.forward, axis );
568 //v3_muls( player.rb.forward, cz, axis );
569
570 if( angle < 0.999f )
571 {
572 v4f correction;
573 q_axis_angle( correction, axis, acosf(angle)*0.3f );
574 q_mul( correction, player.rb.q, player.rb.q );
575 }
576
577 v3_muladds( player.rb.v, player.rb.up,
578 -k_downforce*ktimestep, player.rb.v );
579
580 player_physics_control();
581
582 if( !player.jump_charge && player.jump > 0.2f )
583 {
584 v3_muladds( player.rb.v, player.rb.up, k_jump_force*player.jump,
585 player.rb.v );
586
587 player.jump_time = vg_time;
588 }
589 }
590 else
591 {
592 player_physics_control_air();
593 }
594
595 if( !player.jump_charge )
596 {
597 player.jump -= k_jump_charge_speed * ktimestep;
598 }
599 player.jump_charge = 0;
600 player.jump = vg_clampf( player.jump, 0.0f, 1.0f );
601 }
602
603 static void player_do_motion(void)
604 {
605 float horizontal = vg_get_axis("horizontal"),
606 vertical = vg_get_axis("vertical");
607
608 player_physics();
609
610 /* Integrate velocity */
611 v3f prevco;
612 v3_copy( player.rb.co, prevco );
613
614 apply_gravity( player.rb.v, ktimestep );
615 v3_muladds( player.rb.co, player.rb.v, ktimestep, player.rb.co );
616
617 /* Real angular velocity integration */
618 v3_lerp( player.rb.w, (v3f){0.0f,0.0f,0.0f}, 0.125f, player.rb.w );
619 if( v3_length2( player.rb.w ) > 0.0f )
620 {
621 v4f rotation;
622 v3f axis;
623 v3_copy( player.rb.w, axis );
624
625 float mag = v3_length( axis );
626 v3_divs( axis, mag, axis );
627 q_axis_angle( rotation, axis, mag*k_rb_delta );
628 q_mul( rotation, player.rb.q, player.rb.q );
629 }
630
631 /* Faux angular velocity */
632 v4f rotate;
633
634 static float siY = 0.0f;
635 float lerpq = player.in_air? 0.04f: 0.3f;
636 siY = vg_lerpf( siY, player.iY, lerpq );
637
638 q_axis_angle( rotate, player.rb.up, siY );
639 q_mul( rotate, player.rb.q, player.rb.q );
640 player.iY = 0.0f;
641
642 /*
643 * Gate intersection, by tracing a line over the gate planes
644 */
645 for( int i=0; i<world.routes.gate_count; i++ )
646 {
647 struct route_gate *rg = &world.routes.gates[i];
648 teleport_gate *gate = &rg->gate;
649
650 if( gate_intersect( gate, player.rb.co, prevco ) )
651 {
652 m4x3_mulv( gate->transport, player.rb.co, player.rb.co );
653 m3x3_mulv( gate->transport, player.rb.v, player.rb.v );
654 m3x3_mulv( gate->transport, player.vl, player.vl );
655 m3x3_mulv( gate->transport, player.v_last, player.v_last );
656 m3x3_mulv( gate->transport, player.m, player.m );
657 m3x3_mulv( gate->transport, player.bob, player.bob );
658
659 v4f transport_rotation;
660 m3x3_q( gate->transport, transport_rotation );
661 q_mul( transport_rotation, player.rb.q, player.rb.q );
662
663 world_routes_activate_gate( i );
664 player.rb_gate_frame = player.rb;
665 break;
666 }
667 }
668
669 rb_update_transform( &player.rb );
670 }
671
672 /*
673 * Walkgrid implementation,
674 * loosely based of cmuratoris youtube video 'Killing the Walkmonster'
675 */
676
677 #define WALKGRID_SIZE 16
678 struct walkgrid
679 {
680 struct grid_sample
681 {
682 enum sample_type
683 {
684 k_sample_type_air, /* Nothing was hit. */
685 k_sample_type_invalid, /* The point is invalid, but there is a sample
686 underneath that can be used */
687 k_sample_type_valid, /* This point is good */
688 }
689 type;
690
691 v3f clip[2];
692 v3f pos;
693
694 enum traverse_state
695 {
696 k_traverse_none = 0x00,
697 k_traverse_h = 0x01,
698 k_traverse_v = 0x02
699 }
700 state;
701 }
702 samples[WALKGRID_SIZE][WALKGRID_SIZE];
703
704 boxf region;
705
706 float move; /* Current amount of movement we have left to apply */
707 v2f dir; /* The movement delta */
708 v2i cell_id;/* Current cell */
709 v2f pos; /* Local position (in cell) */
710 float h;
711 };
712
713 static int player_walkgrid_tri_walkable( u32 tri[3] )
714 {
715 return tri[0] > world.sm_geo_std_oob.vertex_count;
716 }
717
718 /*
719 * Get a sample at this pole location, will return 1 if the sample is valid,
720 * and pos will be updated to be the intersection location.
721 */
722 static void player_walkgrid_samplepole( struct grid_sample *s )
723 {
724 boxf region = {{ s->pos[0] -0.01f, s->pos[1] - 4.0f, s->pos[2] -0.01f},
725 { s->pos[0] +0.01f, s->pos[1] + 4.0f, s->pos[2] +0.01f}};
726
727 u32 geo[256];
728 v3f tri[3];
729 int len = bh_select( &world.geo.bhtris, region, geo, 256 );
730
731 const float k_minworld_y = -2000.0f;
732
733 float walk_height = k_minworld_y,
734 block_height = k_minworld_y;
735
736 s->type = k_sample_type_air;
737
738 for( int i=0; i<len; i++ )
739 {
740 u32 *ptri = &world.geo.indices[ geo[i]*3 ];
741
742 for( int j=0; j<3; j++ )
743 v3_copy( world.geo.verts[ptri[j]].co, tri[j] );
744
745 v3f vdown = {0.0f,-1.0f,0.0f};
746 v3f sample_from;
747 v3_copy( s->pos, sample_from );
748 sample_from[1] = region[1][1];
749
750 float dist;
751 if( ray_tri( tri, sample_from, vdown, &dist ))
752 {
753 v3f p0;
754 v3_muladds( sample_from, vdown, dist, p0 );
755
756 if( player_walkgrid_tri_walkable(ptri) )
757 {
758 if( p0[1] > walk_height )
759 {
760 walk_height = p0[1];
761 }
762 }
763 else
764 {
765 if( p0[1] > block_height )
766 block_height = p0[1];
767 }
768 }
769 }
770
771 s->pos[1] = walk_height;
772
773 if( walk_height > k_minworld_y )
774 if( block_height > walk_height )
775 s->type = k_sample_type_invalid;
776 else
777 s->type = k_sample_type_valid;
778 else
779 s->type = k_sample_type_air;
780 }
781
782 float const k_gridscale = 0.5f;
783
784 enum eclipdir
785 {
786 k_eclipdir_h = 0,
787 k_eclipdir_v = 1
788 };
789
790 static void player_walkgrid_clip_blocker( struct grid_sample *sa,
791 struct grid_sample *sb,
792 struct grid_sample *st,
793 enum eclipdir dir )
794 {
795 v3f clipdir, pos;
796 int valid_a = sa->type == k_sample_type_valid,
797 valid_b = sb->type == k_sample_type_valid;
798 struct grid_sample *target = valid_a? sa: sb,
799 *other = valid_a? sb: sa;
800 v3_copy( target->pos, pos );
801 v3_sub( other->pos, target->pos, clipdir );
802
803 boxf cell_region;
804 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, -k_gridscale*2.1f, cell_region[0]);
805 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, k_gridscale*2.1f, cell_region[1]);
806
807 u32 geo[256];
808 v3f tri[3];
809 int len = bh_select( &world.geo.bhtris, cell_region, geo, 256 );
810
811 float start_time = v3_length( clipdir ),
812 min_time = start_time;
813 v3_normalize( clipdir );
814 v3_muls( clipdir, 0.0001f, st->clip[dir] );
815
816 for( int i=0; i<len; i++ )
817 {
818 u32 *ptri = &world.geo.indices[ geo[i]*3 ];
819 for( int j=0; j<3; j++ )
820 v3_copy( world.geo.verts[ptri[j]].co, tri[j] );
821
822 if( player_walkgrid_tri_walkable(ptri) )
823 continue;
824
825 float dist;
826 if(ray_tri( tri, pos, clipdir, &dist ))
827 {
828 if( dist > 0.0f && dist < min_time )
829 {
830 min_time = dist;
831 sb->type = k_sample_type_air;
832 }
833 }
834 }
835
836 if( !(min_time < start_time) )
837 min_time = 0.5f * k_gridscale;
838
839 min_time = vg_clampf( min_time/k_gridscale, 0.01f, 0.99f );
840
841 v3_muls( clipdir, min_time, st->clip[dir] );
842
843 v3f p0;
844 v3_muladds( target->pos, st->clip[dir], k_gridscale, p0 );
845 }
846
847 static void player_walkgrid_clip_edge( struct grid_sample *sa,
848 struct grid_sample *sb,
849 struct grid_sample *st, /* data store */
850 enum eclipdir dir )
851 {
852 v3f clipdir = { 0.0f, 0.0f, 0.0f }, pos;
853 int valid_a = sa->type == k_sample_type_valid,
854 valid_b = sb->type == k_sample_type_valid;
855
856 struct grid_sample *target = valid_a? sa: sb,
857 *other = valid_a? sb: sa;
858
859 v3_sub( other->pos, target->pos, clipdir );
860 clipdir[1] = 0.0f;
861
862 v3_copy( target->pos, pos );
863
864 boxf cell_region;
865 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, -k_gridscale*1.1f, cell_region[0]);
866 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, k_gridscale*1.1f, cell_region[1]);
867
868 u32 geo[256];
869 int len = bh_select( &world.geo.bhtris, cell_region, geo, 256 );
870
871 float max_dist = 0.0f;
872 v3f tri[3];
873 v3f perp;
874 v3_cross( clipdir,(v3f){0.0f,1.0f,0.0f},perp );
875 v3_muls( clipdir, 0.001f, st->clip[dir] );
876
877 for( int i=0; i<len; i++ )
878 {
879 u32 *ptri = &world.geo.indices[ geo[i]*3 ];
880 for( int j=0; j<3; j++ )
881 v3_copy( world.geo.verts[ptri[j]].co, tri[j] );
882
883 if( !player_walkgrid_tri_walkable(ptri) )
884 continue;
885
886 for( int k=0; k<3; k++ )
887 {
888 int ia = k,
889 ib = (k+1)%3;
890
891 v3f v0, v1;
892 v3_sub( tri[ia], pos, v0 );
893 v3_sub( tri[ib], pos, v1 );
894
895 if( (clipdir[2]*v0[0] - clipdir[0]*v0[2]) *
896 (clipdir[2]*v1[0] - clipdir[0]*v1[2]) < 0.0f )
897 {
898 float da = v3_dot(v0,perp),
899 db = v3_dot(v1,perp),
900 d = da-db,
901 qa = da/d;
902
903 v3f p0;
904 v3_muls( v1, qa, p0 );
905 v3_muladds( p0, v0, 1.0f-qa, p0 );
906
907 float h = v3_dot(p0,clipdir)/v3_dot(clipdir,clipdir);
908
909 if( h >= max_dist && h <= 1.0f )
910 {
911 max_dist = h;
912 float l = 1.0f/v3_length(clipdir);
913 v3_muls( p0, l, st->clip[dir] );
914 }
915 }
916 }
917 }
918 }
919
920 static const struct conf
921 {
922 struct confedge
923 {
924 /* i: sample index
925 * d: data index
926 * a: axis index
927 * o: the 'other' point to do a A/B test with
928 * if its -1, all AB is done.
929 */
930 int i0, i1,
931 d0, d1,
932 a0, a1,
933 o0, o1;
934 }
935 edges[2];
936 int edge_count;
937 }
938 k_walkgrid_configs[16] = {
939 {{},0},
940 {{{ 3,3, 3,0, 1,0, -1,-1 }}, 1},
941 {{{ 2,2, 1,3, 0,1, -1,-1 }}, 1},
942 {{{ 2,3, 1,0, 0,0, 3,-1 }}, 1},
943
944 {{{ 1,1, 0,1, 1,0, -1,-1 }}, 1},
945 {{{ 3,3, 3,0, 1,0, -1,-1 },
946 { 1,1, 0,1, 1,0, -1,-1 }}, 2},
947 {{{ 1,2, 0,3, 1,1, 2,-1 }}, 1},
948 {{{ 1,3, 0,0, 1,0, 2, 2 }}, 1},
949
950 {{{ 0,0, 0,0, 0,1, -1,-1 }}, 1},
951 {{{ 3,0, 3,0, 1,1, 0,-1 }}, 1},
952 {{{ 2,2, 1,3, 0,1, -1,-1 },
953 { 0,0, 0,0, 0,1, -1,-1 }}, 2},
954 {{{ 2,0, 1,0, 0,1, 3, 3 }}, 1},
955
956 {{{ 0,1, 0,1, 0,0, 1,-1 }}, 1},
957 {{{ 3,1, 3,1, 1,0, 0, 0 }}, 1},
958 {{{ 0,2, 0,3, 0,1, 1, 1 }}, 1},
959 {{},0},
960 };
961
962 /*
963 * Get a buffer of edges from cell location
964 */
965 static const struct conf *player_walkgrid_conf( struct walkgrid *wg,
966 v2i cell,
967 struct grid_sample *corners[4] )
968 {
969 corners[0] = &wg->samples[cell[1] ][cell[0] ];
970 corners[1] = &wg->samples[cell[1]+1][cell[0] ];
971 corners[2] = &wg->samples[cell[1]+1][cell[0]+1];
972 corners[3] = &wg->samples[cell[1] ][cell[0]+1];
973
974 u32 vd0 = corners[0]->type == k_sample_type_valid,
975 vd1 = corners[1]->type == k_sample_type_valid,
976 vd2 = corners[2]->type == k_sample_type_valid,
977 vd3 = corners[3]->type == k_sample_type_valid,
978 config = (vd0<<3) | (vd1<<2) | (vd2<<1) | vd3;
979
980 return &k_walkgrid_configs[ config ];
981 }
982
983 static void player_walkgrid_floor(v3f pos)
984 {
985 v3_muls( pos, 1.0f/k_gridscale, pos );
986 v3_floor( pos, pos );
987 v3_muls( pos, k_gridscale, pos );
988 }
989
990 /*
991 * Computes the barycentric coordinate of location on a triangle (vertical),
992 * then sets the Y position to the interpolation of the three points
993 */
994 static void player_walkgrid_stand_tri( v3f a, v3f b, v3f c, v3f pos )
995 {
996 v3f v0,v1,v2;
997 v3_sub( b, a, v0 );
998 v3_sub( c, a, v1 );
999 v3_sub( pos, a, v2 );
1000
1001 float d = v0[0]*v1[2] - v1[0]*v0[2],
1002 v = (v2[0]*v1[2] - v1[0]*v2[2]) / d,
1003 w = (v0[0]*v2[2] - v2[0]*v0[2]) / d,
1004 u = 1.0f - v - w;
1005
1006 vg_line( pos, a, 0xffff0000 );
1007 vg_line( pos, b, 0xff00ff00 );
1008 vg_line( pos, c, 0xff0000ff );
1009 pos[1] = u*a[1] + v*b[1] + w*c[1];
1010 }
1011
1012 /*
1013 * Get the minimum time value of pos+dir until a cell edge
1014 *
1015 * t[0] -> t[3] are the individual time values
1016 * t[5] & t[6] are the maximum axis values
1017 * t[6] is the minimum value
1018 *
1019 */
1020 static void player_walkgrid_min_cell( float t[7], v2f pos, v2f dir )
1021 {
1022 v2f frac = { 1.0f/dir[0], 1.0f/dir[1] };
1023
1024 t[0] = 999.9f;
1025 t[1] = 999.9f;
1026 t[2] = 999.9f;
1027 t[3] = 999.9f;
1028
1029 if( fabsf(dir[0]) > 0.0001f )
1030 {
1031 t[0] = (0.0f-pos[0]) * frac[0];
1032 t[1] = (1.0f-pos[0]) * frac[0];
1033 }
1034 if( fabsf(dir[1]) > 0.0001f )
1035 {
1036 t[2] = (0.0f-pos[1]) * frac[1];
1037 t[3] = (1.0f-pos[1]) * frac[1];
1038 }
1039
1040 t[4] = vg_maxf(t[0],t[1]);
1041 t[5] = vg_maxf(t[2],t[3]);
1042 t[6] = vg_minf(t[4],t[5]);
1043 }
1044
1045 static void player_walkgrid_iter(struct walkgrid *wg, int iter)
1046 {
1047
1048 /*
1049 * For each walkgrid iteration we are stepping through cells and determining
1050 * the intersections with the grid, and any edges that are present
1051 */
1052
1053 u32 icolours[] = { 0xffff00ff, 0xff00ffff, 0xffffff00 };
1054
1055 v3f pa, pb, pc, pd, pl0, pl1;
1056 pa[0] = wg->region[0][0] + (float)wg->cell_id[0] *k_gridscale;
1057 pa[1] = (wg->region[0][1] + wg->region[1][1]) * 0.5f + k_gridscale;
1058 pa[2] = wg->region[0][2] + (float)wg->cell_id[1] *k_gridscale;
1059 #if 0
1060 pb[0] = pa[0];
1061 pb[1] = pa[1];
1062 pb[2] = pa[2] + k_gridscale;
1063 pc[0] = pa[0] + k_gridscale;
1064 pc[1] = pa[1];
1065 pc[2] = pa[2] + k_gridscale;
1066 pd[0] = pa[0] + k_gridscale;
1067 pd[1] = pa[1];
1068 pd[2] = pa[2];
1069 /* if you want to draw the current cell */
1070 vg_line( pa, pb, 0xff00ffff );
1071 vg_line( pb, pc, 0xff00ffff );
1072 vg_line( pc, pd, 0xff00ffff );
1073 vg_line( pd, pa, 0xff00ffff );
1074 #endif
1075 pl0[0] = pa[0] + wg->pos[0]*k_gridscale;
1076 pl0[1] = pa[1];
1077 pl0[2] = pa[2] + wg->pos[1]*k_gridscale;
1078
1079 /*
1080 * If there are edges present, we need to create a 'substep' event, where
1081 * we find the intersection point, find the fully resolved position,
1082 * then the new pos dir is the intersection->resolution
1083 *
1084 * the resolution is applied in non-discretized space in order to create a
1085 * suitable vector for finding outflow, we want it to leave the cell so it
1086 * can be used by the quad
1087 */
1088
1089 v2f pos, dir;
1090 v2_copy( wg->pos, pos );
1091 v2_muls( wg->dir, wg->move, dir );
1092
1093 struct grid_sample *corners[4];
1094 v2f corners2d[4] = {{0.0f,0.0f},{0.0f,1.0f},{1.0f,1.0f},{1.0f,0.0f}};
1095 const struct conf *conf = player_walkgrid_conf( wg, wg->cell_id, corners );
1096
1097 float t[7];
1098 player_walkgrid_min_cell( t, pos, dir );
1099
1100 for( int i=0; i<conf->edge_count; i++ )
1101 {
1102 const struct confedge *edge = &conf->edges[i];
1103
1104 v2f e0, e1, n, r, target, res, tangent;
1105 e0[0] = corners2d[edge->i0][0] + corners[edge->d0]->clip[edge->a0][0];
1106 e0[1] = corners2d[edge->i0][1] + corners[edge->d0]->clip[edge->a0][2];
1107 e1[0] = corners2d[edge->i1][0] + corners[edge->d1]->clip[edge->a1][0];
1108 e1[1] = corners2d[edge->i1][1] + corners[edge->d1]->clip[edge->a1][2];
1109
1110 v3f pe0 = { pa[0] + e0[0]*k_gridscale,
1111 pa[1],
1112 pa[2] + e0[1]*k_gridscale };
1113 v3f pe1 = { pa[0] + e1[0]*k_gridscale,
1114 pa[1],
1115 pa[2] + e1[1]*k_gridscale };
1116
1117 v2_sub( e1, e0, tangent );
1118 n[0] = -tangent[1];
1119 n[1] = tangent[0];
1120 v2_normalize( n );
1121
1122 /*
1123 * If we find ourselfs already penetrating the edge, move back out a
1124 * little
1125 */
1126 v2_sub( e0, pos, r );
1127 float p1 = v2_dot(r,n);
1128
1129 if( -p1 < 0.0001f )
1130 {
1131 v2_muladds( pos, n, p1+0.0001f, pos );
1132 v2_copy( pos, wg->pos );
1133 v3f p_new = { pa[0] + pos[0]*k_gridscale,
1134 pa[1],
1135 pa[2] + pos[1]*k_gridscale };
1136 v3_copy( p_new, pl0 );
1137 }
1138
1139 v2_add( pos, dir, target );
1140
1141 v2f v1, v2, v3;
1142 v2_sub( e0, pos, v1 );
1143 v2_sub( target, pos, v2 );
1144
1145 v2_copy( n, v3 );
1146
1147 v2_sub( e0, target, r );
1148 float p = v2_dot(r,n),
1149 t1 = v2_dot(v1,v3)/v2_dot(v2,v3);
1150
1151 if( t1 < t[6] && t1 > 0.0f && -p < 0.001f )
1152 {
1153 v2_muladds( target, n, p+0.0001f, res );
1154
1155 v2f intersect;
1156 v2_muladds( pos, dir, t1, intersect );
1157 v2_copy( intersect, pos );
1158 v2_sub( res, intersect, dir );
1159
1160 v3f p_res = { pa[0] + res[0]*k_gridscale,
1161 pa[1],
1162 pa[2] + res[1]*k_gridscale };
1163 v3f p_int = { pa[0] + intersect[0]*k_gridscale,
1164 pa[1],
1165 pa[2] + intersect[1]*k_gridscale };
1166
1167 vg_line( pl0, p_int, icolours[iter%3] );
1168 v3_copy( p_int, pl0 );
1169 v2_copy( pos, wg->pos );
1170
1171 player_walkgrid_min_cell( t, pos, dir );
1172 }
1173 }
1174
1175 /*
1176 * Compute intersection with grid cell moving outwards
1177 */
1178 t[6] = vg_minf( t[6], 1.0f );
1179
1180 pl1[0] = pl0[0] + dir[0]*k_gridscale*t[6];
1181 pl1[1] = pl0[1];
1182 pl1[2] = pl0[2] + dir[1]*k_gridscale*t[6];
1183 vg_line( pl0, pl1, icolours[iter%3] );
1184
1185 if( t[6] < 1.0f )
1186 {
1187 /*
1188 * To figure out what t value created the clip so we know which edge
1189 * to wrap around
1190 */
1191
1192 if( t[4] < t[5] )
1193 {
1194 wg->pos[1] = pos[1] + dir[1]*t[6];
1195
1196 if( t[0] > t[1] ) /* left edge */
1197 {
1198 wg->pos[0] = 0.9999f;
1199 wg->cell_id[0] --;
1200
1201 if( wg->cell_id[0] == 0 )
1202 wg->move = -1.0f;
1203 }
1204 else /* Right edge */
1205 {
1206 wg->pos[0] = 0.0001f;
1207 wg->cell_id[0] ++;
1208
1209 if( wg->cell_id[0] == WALKGRID_SIZE-2 )
1210 wg->move = -1.0f;
1211 }
1212 }
1213 else
1214 {
1215 wg->pos[0] = pos[0] + dir[0]*t[6];
1216
1217 if( t[2] > t[3] ) /* bottom edge */
1218 {
1219 wg->pos[1] = 0.9999f;
1220 wg->cell_id[1] --;
1221
1222 if( wg->cell_id[1] == 0 )
1223 wg->move = -1.0f;
1224 }
1225 else /* top edge */
1226 {
1227 wg->pos[1] = 0.0001f;
1228 wg->cell_id[1] ++;
1229
1230 if( wg->cell_id[1] == WALKGRID_SIZE-2 )
1231 wg->move = -1.0f;
1232 }
1233 }
1234
1235 wg->move -= t[6];
1236 }
1237 else
1238 {
1239 v2_muladds( wg->pos, dir, wg->move, wg->pos );
1240 wg->move = 0.0f;
1241 }
1242 }
1243
1244 static void player_walkgrid_stand_cell(struct walkgrid *wg)
1245 {
1246 /*
1247 * NOTE: as opposed to the other function which is done in discretized space
1248 * this use a combination of both.
1249 */
1250
1251 v3f world;
1252 world[0] = wg->region[0][0]+((float)wg->cell_id[0]+wg->pos[0])*k_gridscale;
1253 world[1] = player.rb.co[1];
1254 world[2] = wg->region[0][2]+((float)wg->cell_id[1]+wg->pos[1])*k_gridscale;
1255
1256 struct grid_sample *corners[4];
1257 const struct conf *conf = player_walkgrid_conf( wg, wg->cell_id, corners );
1258
1259 if( conf != k_walkgrid_configs )
1260 {
1261 if( conf->edge_count == 0 )
1262 {
1263 v3f v0;
1264
1265 /* Split the basic quad along the shortest diagonal */
1266 if( fabsf(corners[2]->pos[1] - corners[0]->pos[1]) <
1267 fabsf(corners[3]->pos[1] - corners[1]->pos[1]) )
1268 {
1269 vg_line( corners[2]->pos, corners[0]->pos, 0xffaaaaaa );
1270
1271 if( wg->pos[0] > wg->pos[1] )
1272 player_walkgrid_stand_tri( corners[0]->pos,
1273 corners[3]->pos,
1274 corners[2]->pos, world );
1275 else
1276 player_walkgrid_stand_tri( corners[0]->pos,
1277 corners[2]->pos,
1278 corners[1]->pos, world );
1279 }
1280 else
1281 {
1282 vg_line( corners[3]->pos, corners[1]->pos, 0xffaaaaaa );
1283
1284 if( wg->pos[0] < 1.0f-wg->pos[1] )
1285 player_walkgrid_stand_tri( corners[0]->pos,
1286 corners[3]->pos,
1287 corners[1]->pos, world );
1288 else
1289 player_walkgrid_stand_tri( corners[3]->pos,
1290 corners[2]->pos,
1291 corners[1]->pos, world );
1292 }
1293 }
1294 else
1295 {
1296 for( int i=0; i<conf->edge_count; i++ )
1297 {
1298 const struct confedge *edge = &conf->edges[i];
1299
1300 v3f p0, p1;
1301 v3_muladds( corners[edge->i0]->pos,
1302 corners[edge->d0]->clip[edge->a0], k_gridscale, p0 );
1303 v3_muladds( corners[edge->i1]->pos,
1304 corners[edge->d1]->clip[edge->a1], k_gridscale, p1 );
1305
1306 /*
1307 * Find penetration distance between player position and the edge
1308 */
1309
1310 v2f normal = { -(p1[2]-p0[2]), p1[0]-p0[0] },
1311 rel = { world[0]-p0[0], world[2]-p0[2] };
1312
1313 if( edge->o0 == -1 )
1314 {
1315 /* No subregions (default case), just use triangle created by
1316 * i0, e0, e1 */
1317 player_walkgrid_stand_tri( corners[edge->i0]->pos,
1318 p0,
1319 p1, world );
1320 }
1321 else
1322 {
1323 /*
1324 * Test if we are in the first region, which is
1325 * edge.i0, edge.e0, edge.o0,
1326 */
1327 v3f v0, ref;
1328 v3_sub( p0, corners[edge->o0]->pos, ref );
1329 v3_sub( world, corners[edge->o0]->pos, v0 );
1330
1331 vg_line( corners[edge->o0]->pos, p0, 0xffffff00 );
1332 vg_line( corners[edge->o0]->pos, world, 0xff000000 );
1333
1334 if( ref[0]*v0[2] - ref[2]*v0[0] < 0.0f )
1335 {
1336 player_walkgrid_stand_tri( corners[edge->i0]->pos,
1337 p0,
1338 corners[edge->o0]->pos, world );
1339 }
1340 else
1341 {
1342 if( edge->o1 == -1 )
1343 {
1344 /*
1345 * No other edges mean we just need to use the opposite
1346 *
1347 * e0, e1, o0 (in our case, also i1)
1348 */
1349 player_walkgrid_stand_tri( p0,
1350 p1,
1351 corners[edge->o0]->pos, world );
1352 }
1353 else
1354 {
1355 /*
1356 * Note: this v0 calculation can be ommited with the
1357 * current tileset.
1358 *
1359 * the last two triangles we have are:
1360 * e0, e1, o1
1361 * and
1362 * e1, i1, o1
1363 */
1364 v3_sub( p1, corners[edge->o1]->pos, ref );
1365 v3_sub( world, corners[edge->o1]->pos, v0 );
1366 vg_line( corners[edge->o1]->pos, p1, 0xff00ffff );
1367
1368 if( ref[0]*v0[2] - ref[2]*v0[0] < 0.0f )
1369 {
1370 player_walkgrid_stand_tri( p0,
1371 p1,
1372 corners[edge->o1]->pos,
1373 world );
1374 }
1375 else
1376 {
1377 player_walkgrid_stand_tri( p1,
1378 corners[edge->i1]->pos,
1379 corners[edge->o1]->pos,
1380 world );
1381 }
1382 }
1383 }
1384 }
1385 }
1386 }
1387 }
1388
1389 v3_copy( world, player.rb.co );
1390 }
1391
1392 static void player_walkgrid_getsurface(void)
1393 {
1394 float const k_stepheight = 0.5f;
1395 float const k_miny = 0.6f;
1396 float const k_height = 1.78f;
1397 float const k_region_size = (float)WALKGRID_SIZE/2.0f * k_gridscale;
1398
1399 static struct walkgrid wg;
1400
1401 v3f cell;
1402 v3_copy( player.rb.co, cell );
1403 player_walkgrid_floor( cell );
1404
1405 v3_muladds( cell, (v3f){-1.0f,-1.0f,-1.0f}, k_region_size, wg.region[0] );
1406 v3_muladds( cell, (v3f){ 1.0f, 1.0f, 1.0f}, k_region_size, wg.region[1] );
1407
1408
1409 /*
1410 * Create player input vector
1411 */
1412 v3f delta = {0.0f,0.0f,0.0f};
1413 v3f fwd = { -sinf(-player.angles[0]), 0.0f, -cosf(-player.angles[0]) },
1414 side = { -fwd[2], 0.0f, fwd[0] };
1415
1416 /* Temp */
1417 if( !vg_console_enabled() )
1418 {
1419 if( glfwGetKey( vg_window, GLFW_KEY_W ) )
1420 v3_muladds( delta, fwd, ktimestep*k_walkspeed, delta );
1421 if( glfwGetKey( vg_window, GLFW_KEY_S ) )
1422 v3_muladds( delta, fwd, -ktimestep*k_walkspeed, delta );
1423
1424 if( glfwGetKey( vg_window, GLFW_KEY_A ) )
1425 v3_muladds( delta, side, -ktimestep*k_walkspeed, delta );
1426 if( glfwGetKey( vg_window, GLFW_KEY_D ) )
1427 v3_muladds( delta, side, ktimestep*k_walkspeed, delta );
1428
1429 v3_muladds( delta, fwd,
1430 vg_get_axis("vertical")*-ktimestep*k_walkspeed, delta );
1431 v3_muladds( delta, side,
1432 vg_get_axis("horizontal")*ktimestep*k_walkspeed, delta );
1433 }
1434
1435 /*
1436 * Create our move in grid space
1437 */
1438 wg.dir[0] = delta[0] * (1.0f/k_gridscale);
1439 wg.dir[1] = delta[2] * (1.0f/k_gridscale);
1440 wg.move = 1.0f;
1441
1442 v2f region_pos =
1443 {
1444 (player.rb.co[0] - wg.region[0][0]) * (1.0f/k_gridscale),
1445 (player.rb.co[2] - wg.region[0][2]) * (1.0f/k_gridscale)
1446 };
1447 v2f region_cell_pos;
1448 v2_floor( region_pos, region_cell_pos );
1449 v2_sub( region_pos, region_cell_pos, wg.pos );
1450
1451 wg.cell_id[0] = region_cell_pos[0];
1452 wg.cell_id[1] = region_cell_pos[1];
1453
1454 for(int y=0; y<WALKGRID_SIZE; y++ )
1455 {
1456 for(int x=0; x<WALKGRID_SIZE; x++ )
1457 {
1458 struct grid_sample *s = &wg.samples[y][x];
1459 v3_muladds( wg.region[0], (v3f){ x, 0, y }, k_gridscale, s->pos );
1460 s->state = k_traverse_none;
1461 s->type = k_sample_type_air;
1462 v3_zero( s->clip[0] );
1463 v3_zero( s->clip[1] );
1464 }
1465 }
1466
1467 v2i border[WALKGRID_SIZE*WALKGRID_SIZE];
1468 v2i *cborder = border;
1469 u32 border_length = 1;
1470
1471 struct grid_sample *base = NULL;
1472
1473 v2i starters[] = {{0,0},{1,1},{0,1},{1,0}};
1474
1475 for( int i=0;i<4;i++ )
1476 {
1477 v2i test;
1478 v2i_add( wg.cell_id, starters[i], test );
1479 v2i_copy( test, border[0] );
1480 base = &wg.samples[test[1]][test[0]];
1481
1482 base->pos[1] = cell[1];
1483 player_walkgrid_samplepole( base );
1484
1485 if( base->type == k_sample_type_valid )
1486 break;
1487 else
1488 base->type = k_sample_type_air;
1489 }
1490
1491 vg_line_pt3( base->pos, 0.1f, 0xffffffff );
1492
1493 int iter = 0;
1494
1495 while( border_length )
1496 {
1497 v2i directions[] = {{1,0},{0,1},{-1,0},{0,-1}};
1498
1499 v2i *old_border = cborder;
1500 int len = border_length;
1501
1502 border_length = 0;
1503 cborder = old_border+len;
1504
1505 for( int i=0; i<len; i++ )
1506 {
1507 v2i co;
1508 v2i_copy( old_border[i], co );
1509 struct grid_sample *sa = &wg.samples[co[1]][co[0]];
1510
1511 for( int j=0; j<4; j++ )
1512 {
1513 v2i newp;
1514 v2i_add( co, directions[j], newp );
1515
1516 if( newp[0] < 0 || newp[1] < 0 ||
1517 newp[0] == WALKGRID_SIZE || newp[1] == WALKGRID_SIZE )
1518 continue;
1519
1520 struct grid_sample *sb = &wg.samples[newp[1]][newp[0]];
1521 enum traverse_state thismove = j%2==0? 1: 2;
1522
1523 if( (sb->state & thismove) == 0x00 ||
1524 sb->type == k_sample_type_air )
1525 {
1526 sb->pos[1] = sa->pos[1];
1527
1528 player_walkgrid_samplepole( sb );
1529
1530 if( sb->type != k_sample_type_air )
1531 {
1532 /*
1533 * Need to do a blocker pass
1534 */
1535
1536 struct grid_sample *store = (j>>1 == 0)? sa: sb;
1537 player_walkgrid_clip_blocker( sa, sb, store, j%2 );
1538
1539
1540 if( sb->type != k_sample_type_air )
1541 {
1542 vg_line( sa->pos, sb->pos, 0xffffffff );
1543
1544 if( sb->state == k_traverse_none )
1545 v2i_copy( newp, cborder[ border_length ++ ] );
1546 }
1547 else
1548 {
1549 v3f p1;
1550 v3_muladds( sa->pos, store->clip[j%2], k_gridscale, p1 );
1551 vg_line( sa->pos, p1, 0xffffffff );
1552 }
1553 }
1554 else
1555 {
1556 /*
1557 * A clipping pass is now done on the edge of the walkable
1558 * surface
1559 */
1560
1561 struct grid_sample *store = (j>>1 == 0)? sa: sb;
1562 player_walkgrid_clip_edge( sa, sb, store, j%2 );
1563
1564 v3f p1;
1565 v3_muladds( sa->pos, store->clip[j%2], k_gridscale, p1 );
1566 vg_line( sa->pos, p1, 0xffffffff );
1567 }
1568
1569 sb->state |= thismove;
1570 }
1571 }
1572
1573 sa->state = k_traverse_h|k_traverse_v;
1574 }
1575
1576 iter ++;
1577 if( iter == walk_grid_iterations )
1578 break;
1579 }
1580
1581 /* Draw connections */
1582 struct grid_sample *corners[4];
1583 for( int x=0; x<WALKGRID_SIZE-1; x++ )
1584 {
1585 for( int z=0; z<WALKGRID_SIZE-1; z++ )
1586 {
1587 const struct conf *conf =
1588 player_walkgrid_conf( &wg, (v2i){x,z}, corners );
1589
1590 for( int i=0; i<conf->edge_count; i++ )
1591 {
1592 const struct confedge *edge = &conf->edges[i];
1593
1594 v3f p0, p1;
1595 v3_muladds( corners[edge->i0]->pos,
1596 corners[edge->d0]->clip[edge->a0], k_gridscale, p0 );
1597 v3_muladds( corners[edge->i1]->pos,
1598 corners[edge->d1]->clip[edge->a1], k_gridscale, p1 );
1599
1600 vg_line( p0, p1, 0xff0000ff );
1601 }
1602 }
1603 }
1604
1605 /*
1606 * Commit player movement into the grid
1607 */
1608
1609 if( v3_length2(delta) <= 0.00001f )
1610 return;
1611
1612 int i=0;
1613 for(; i<8 && wg.move > 0.001f; i++ )
1614 player_walkgrid_iter( &wg, i );
1615
1616 player_walkgrid_stand_cell( &wg );
1617 }
1618
1619 static void player_walkgrid(void)
1620 {
1621 player_walkgrid_getsurface();
1622
1623 m4x3_mulv( player.rb.to_world, (v3f){0.0f,1.8f,0.0f}, player.camera_pos );
1624 player_mouseview();
1625 rb_update_transform( &player.rb );
1626 }
1627
1628 /*
1629 * Animation
1630 */
1631
1632 static void player_animate(void)
1633 {
1634 /* Camera position */
1635 v3_sub( player.rb.v, player.v_last, player.a );
1636 v3_copy( player.rb.v, player.v_last );
1637
1638 v3_add( player.m, player.a, player.m );
1639 v3_lerp( player.m, (v3f){0.0f,0.0f,0.0f}, 0.1f, player.m );
1640
1641 player.m[0] = vg_clampf( player.m[0], -2.0f, 2.0f );
1642 player.m[1] = vg_clampf( player.m[1], -2.0f, 2.0f );
1643 player.m[2] = vg_clampf( player.m[2], -2.0f, 2.0f );
1644 v3_lerp( player.bob, player.m, 0.2f, player.bob );
1645
1646 /* Head */
1647 float lslip = fabsf(player.slip);
1648
1649 float kheight = 2.0f,
1650 kleg = 0.6f;
1651
1652 v3f offset;
1653 v3_zero( offset );
1654 m3x3_mulv( player.rb.to_local, player.bob, offset );
1655
1656 static float speed_wobble = 0.0f, speed_wobble_2 = 0.0f;
1657
1658 float kickspeed = vg_clampf(v3_length(player.rb.v)*(1.0f/40.0f), 0.0f, 1.0f);
1659 float kicks = (vg_randf()-0.5f)*2.0f*kickspeed;
1660 float sign = vg_signf( kicks );
1661 speed_wobble = vg_lerpf( speed_wobble, kicks*kicks*sign, 0.1f );
1662 speed_wobble_2 = vg_lerpf( speed_wobble_2, speed_wobble, 0.04f );
1663
1664 offset[0] *= 0.26f;
1665 offset[0] += speed_wobble_2*3.0f;
1666
1667 offset[1] *= -0.3f;
1668 offset[2] *= 0.01f;
1669
1670 offset[0] = vg_clampf( offset[0], -0.8f, 0.8f );
1671 offset[1] = vg_clampf( offset[1], -0.5f, 0.0f );
1672 offset[1] = 0.0f;
1673
1674 /*
1675 * Animation blending
1676 * ===========================================
1677 */
1678
1679 /* scalar blending information */
1680 float speed = v3_length( player.rb.v );
1681
1682 /* sliding */
1683 {
1684 float desired = vg_clampf( lslip, 0.0f, 1.0f );
1685 player.fslide = vg_lerpf( player.fslide, desired, 0.04f );
1686 }
1687
1688 /* movement information */
1689 {
1690 float dirz = player.reverse > 0.0f? 0.0f: 1.0f,
1691 dirx = player.slip < 0.0f? 0.0f: 1.0f,
1692 fly = player.in_air? 1.0f: 0.0f;
1693
1694 player.fdirz = vg_lerpf( player.fdirz, dirz, 0.04f );
1695 player.fdirx = vg_lerpf( player.fdirx, dirx, 0.01f );
1696 player.ffly = vg_lerpf( player.ffly, fly, 0.04f );
1697 }
1698
1699 struct skeleton *sk = &player.mdl.sk;
1700
1701 mdl_keyframe apose[32], bpose[32];
1702 mdl_keyframe ground_pose[32];
1703 {
1704 /* when the player is moving fast he will crouch down a little bit */
1705 float stand = 1.0f - vg_clampf( speed * 0.03f, 0.0f, 1.0f );
1706 player.fstand = vg_lerpf( player.fstand, stand, 0.1f );
1707
1708 /* stand/crouch */
1709 float dir_frame = player.fdirz * (15.0f/30.0f),
1710 stand_blend = offset[1]*-2.0f;
1711
1712 skeleton_sample_anim( sk, player.mdl.anim_stand, dir_frame, apose );
1713 skeleton_sample_anim( sk, player.mdl.anim_highg, dir_frame, bpose );
1714 skeleton_lerp_pose( sk, apose, bpose, stand_blend, apose );
1715
1716 /* sliding */
1717 float slide_frame = player.fdirx * (15.0f/30.0f);
1718 skeleton_sample_anim( sk, player.mdl.anim_slide, slide_frame, bpose );
1719 skeleton_lerp_pose( sk, apose, bpose, player.fslide, apose );
1720
1721 /* pushing */
1722 player.fpush = vg_lerpf( player.fpush, player.pushing, 0.1f );
1723
1724 float pt = player.push_time;
1725 if( player.reverse > 0.0f )
1726 skeleton_sample_anim( sk, player.mdl.anim_push, pt, bpose );
1727 else
1728 skeleton_sample_anim( sk, player.mdl.anim_push_reverse, pt, bpose );
1729
1730 skeleton_lerp_pose( sk, apose, bpose, player.fpush, apose );
1731
1732 /* trick setup */
1733 float setup_frame = player.jump * (12.0f/30.0f),
1734 setup_blend = vg_minf( player.jump*5.0f, 1.0f );
1735
1736 float jump_frame = (vg_time - player.jump_time) + (12.0f/30.0f);
1737 if( jump_frame >= (12.0f/30.0f) && jump_frame <= (40.0f/30.0f) )
1738 setup_frame = jump_frame;
1739
1740 skeleton_sample_anim_clamped( sk, player.mdl.anim_ollie,
1741 setup_frame, bpose );
1742 skeleton_lerp_pose( sk, apose, bpose, setup_blend, ground_pose );
1743 }
1744
1745 mdl_keyframe air_pose[32];
1746 {
1747 float target = -vg_get_axis("horizontal");
1748 player.fairdir = vg_lerpf( player.fairdir, target, 0.04f );
1749
1750 float air_frame = (player.fairdir*0.5f+0.5f) * (15.0f/30.0f);
1751
1752 skeleton_sample_anim( sk, player.mdl.anim_air, air_frame, air_pose );
1753 }
1754
1755 skeleton_lerp_pose( sk, ground_pose, air_pose, player.ffly, apose );
1756
1757 /* additive effects */
1758 apose[player.mdl.id_hip-1].co[0] += offset[0];
1759 apose[player.mdl.id_hip-1].co[2] += offset[2];
1760 apose[player.mdl.id_ik_hand_l-1].co[0] += offset[0];
1761 apose[player.mdl.id_ik_hand_l-1].co[2] += offset[2];
1762 apose[player.mdl.id_ik_hand_r-1].co[0] += offset[0];
1763 apose[player.mdl.id_ik_hand_r-1].co[2] += offset[2];
1764 apose[player.mdl.id_ik_elbow_l-1].co[0] += offset[0];
1765 apose[player.mdl.id_ik_elbow_l-1].co[2] += offset[2];
1766 apose[player.mdl.id_ik_elbow_r-1].co[0] += offset[0];
1767 apose[player.mdl.id_ik_elbow_r-1].co[2] += offset[2];
1768
1769 skeleton_apply_pose( &player.mdl.sk, apose, k_anim_apply_defer_ik );
1770 skeleton_apply_ik_pass( &player.mdl.sk );
1771 skeleton_apply_pose( &player.mdl.sk, apose, k_anim_apply_deffered_only );
1772
1773 v3_copy( player.mdl.sk.final_mtx[player.mdl.id_head-1][3],
1774 player.mdl.cam_pos );
1775 skeleton_apply_inverses( &player.mdl.sk );
1776 skeleton_apply_transform( &player.mdl.sk, player.rb.to_world );
1777
1778 skeleton_debug( &player.mdl.sk );
1779 }
1780
1781 static void player_camera_update(void)
1782 {
1783 /* Update camera matrices */
1784 m4x3_identity( player.camera );
1785 m4x3_rotate_y( player.camera, -player.angles[0] );
1786 m4x3_rotate_x( player.camera, -player.angles[1] );
1787 v3_copy( player.camera_pos, player.camera[3] );
1788 m4x3_invert_affine( player.camera, player.camera_inverse );
1789 }
1790
1791 static void player_animate_death_cam(void)
1792 {
1793 #if 0
1794 v3f delta;
1795 v3f head_pos;
1796 v3_copy( player.mdl.ragdoll[k_chpart_head].co, head_pos );
1797
1798 v3_sub( head_pos, player.camera_pos, delta );
1799 v3_normalize( delta );
1800
1801 v3f follow_pos;
1802 v3_muladds( head_pos, delta, -2.5f, follow_pos );
1803 v3_lerp( player.camera_pos, follow_pos, 0.1f, player.camera_pos );
1804
1805 /*
1806 * Make sure the camera stays above the ground
1807 */
1808 v3f min_height = {0.0f,1.0f,0.0f};
1809
1810 v3f sample;
1811 v3_add( player.camera_pos, min_height, sample );
1812 ray_hit hit;
1813 hit.dist = min_height[1]*2.0f;
1814
1815 if( ray_world( sample, (v3f){0.0f,-1.0f,0.0f}, &hit ))
1816 v3_add( hit.pos, min_height, player.camera_pos );
1817
1818 player.camera_pos[1] =
1819 vg_maxf( wrender.height + 2.0f, player.camera_pos[1] );
1820
1821 player.angles[0] = atan2f( delta[0], -delta[2] );
1822 player.angles[1] = -asinf( delta[1] );
1823 #endif
1824 }
1825
1826 static void player_animate_camera(void)
1827 {
1828 static v3f lerp_cam = {0.0f,0.0f,0.0f};
1829 v3f offs = { -0.4f, 0.15f, 0.0f };
1830
1831 v3_lerp( lerp_cam, player.mdl.cam_pos, 0.8f, lerp_cam );
1832 v3_add( lerp_cam, offs, offs );
1833 m4x3_mulv( player.rb.to_world, offs, player.camera_pos );
1834
1835 /* Look angles */
1836 v3_lerp( player.vl, player.rb.v, 0.05f, player.vl );
1837
1838 float yaw = atan2f( player.vl[0], -player.vl[2] ),
1839 pitch = atan2f( -player.vl[1],
1840 sqrtf(
1841 player.vl[0]*player.vl[0] + player.vl[2]*player.vl[2]
1842 )) * 0.7f;
1843
1844 player.angles[0] = yaw;
1845 player.angles[1] = pitch + 0.30f;
1846
1847 /* Camera shake */
1848 static v2f shake_damp = {0.0f,0.0f};
1849 v2f shake = { vg_randf()-0.5f, vg_randf()-0.5f };
1850 v2_muls( shake, v3_length(player.rb.v)*0.3f
1851 * (1.0f+fabsf(player.slip)), shake);
1852
1853 v2_lerp( shake_damp, shake, 0.01f, shake_damp );
1854 shake_damp[0] *= 0.2f;
1855
1856 v2_muladds( player.angles, shake_damp, 0.1f, player.angles );
1857 }
1858
1859 /*
1860 * Audio
1861 */
1862 static void player_audio(void)
1863 {
1864 float speed = vg_minf(v3_length( player.rb.v )*0.1f,1.0f),
1865 attn = v3_dist( player.rb.co, player.camera[3] )+1.0f;
1866 attn = (1.0f/(attn*attn)) * speed;
1867
1868 static float air = 0.0f;
1869 air = vg_lerpf(air, player.in_air? 1.0f: 0.0f, 0.7f);
1870
1871 v3f ears = { 1.0f,0.0f,0.0f };
1872 v3f delta;
1873
1874 v3_sub( player.rb.co, player.camera[3], delta );
1875 v3_normalize( delta );
1876 m3x3_mulv( player.camera, ears, ears );
1877
1878 float pan = v3_dot( ears, delta );
1879 audio_player0.pan = pan;
1880 audio_player1.pan = pan;
1881 audio_player2.pan = pan;
1882
1883 if( freecam )
1884 {
1885 audio_player0.vol = 0.0f;
1886 audio_player1.vol = 0.0f;
1887 audio_player2.vol = 0.0f;
1888 }
1889 else
1890 {
1891 if( player.is_dead )
1892 {
1893 audio_player0.vol = 0.0f;
1894 audio_player1.vol = 0.0f;
1895 audio_player2.vol = 0.0f;
1896 }
1897 else
1898 {
1899 float slide = vg_clampf( fabsf(player.slip), 0.0f, 1.0f );
1900 audio_player0.vol = (1.0f-air)*attn*(1.0f-slide);
1901 audio_player1.vol = air *attn;
1902 audio_player2.vol = (1.0f-air)*attn*slide;
1903 }
1904 }
1905 }
1906
1907 /*
1908 * Public Endpoints
1909 */
1910 static float *player_cam_pos(void)
1911 {
1912 return player.camera_pos;
1913 }
1914
1915 static int reset_player( int argc, char const *argv[] )
1916 {
1917 struct respawn_point *rp = NULL, *r;
1918
1919 if( argc == 1 )
1920 {
1921 for( int i=0; i<world.spawn_count; i++ )
1922 {
1923 r = &world.spawns[i];
1924 if( !strcmp( r->name, argv[0] ) )
1925 {
1926 rp = r;
1927 break;
1928 }
1929 }
1930
1931 if( !rp )
1932 vg_warn( "No spawn named '%s'\n", argv[0] );
1933 }
1934
1935 if( !rp )
1936 {
1937 float min_dist = INFINITY;
1938
1939 for( int i=0; i<world.spawn_count; i++ )
1940 {
1941 r = &world.spawns[i];
1942 float d = v3_dist2( r->co, player.rb.co );
1943
1944 vg_info( "Dist %s : %f\n", r->name, d );
1945 if( d < min_dist )
1946 {
1947 min_dist = d;
1948 rp = r;
1949 }
1950 }
1951 }
1952
1953 if( !rp )
1954 {
1955 vg_error( "No spawn found\n" );
1956 if( !world.spawn_count )
1957 return 0;
1958
1959 rp = &world.spawns[0];
1960 }
1961
1962 v4_copy( rp->q, player.rb.q );
1963 v3_copy( rp->co, player.rb.co );
1964
1965 player.vswitch = 1.0f;
1966 player.slip_last = 0.0f;
1967 player.is_dead = 0;
1968 player.in_air = 1;
1969 m3x3_identity( player.vr );
1970
1971 player.mdl.shoes[0] = 1;
1972 player.mdl.shoes[1] = 1;
1973
1974 rb_update_transform( &player.rb );
1975 m3x3_mulv( player.rb.to_world, (v3f){ 0.0f, 0.0f, -1.2f }, player.rb.v );
1976
1977 player.rb_gate_frame = player.rb;
1978 return 1;
1979 }
1980
1981 static void player_update(void)
1982 {
1983 for( int i=0; i<player.land_log_count; i++ )
1984 draw_cross( player.land_target_log[i],
1985 player.land_target_colours[i], 0.25f);
1986
1987 if( vg_get_axis("grabl")>0.0f)
1988 {
1989 player.rb = player.rb_gate_frame;
1990 player.is_dead = 0;
1991 player.in_air = 1;
1992 m3x3_identity( player.vr );
1993
1994 player.mdl.shoes[0] = 1;
1995 player.mdl.shoes[1] = 1;
1996
1997 world_routes_notify_reset();
1998 }
1999
2000 if( vg_get_button_down( "switchmode" ) )
2001 {
2002 player.on_board ^= 0x1;
2003 }
2004
2005 if( player.is_dead )
2006 {
2007 character_ragdoll_iter( &player.mdl );
2008 character_debug_ragdoll( &player.mdl );
2009
2010 if( !freecam )
2011 player_animate_death_cam();
2012 }
2013 else
2014 {
2015 if( player.on_board )
2016 {
2017 player_do_motion();
2018 player_animate();
2019
2020 if( !freecam )
2021 player_animate_camera();
2022 }
2023 else
2024 {
2025 player_walkgrid();
2026 }
2027 }
2028
2029 if( freecam )
2030 player_freecam();
2031
2032 player_camera_update();
2033 player_audio();
2034 }
2035
2036 static void draw_player(void)
2037 {
2038 /* Draw */
2039 #if 0
2040 m4x3_copy( player.rb.to_world, player.mdl.mroot );
2041
2042 if( player.is_dead )
2043 character_mimic_ragdoll( &player.mdl );
2044 else
2045 character_eval( &player.mdl );
2046
2047 float opacity = 1.0f-player.air_blend;
2048 if( player.is_dead )
2049 opacity = 0.0f;
2050
2051 character_draw( &player.mdl, opacity, player.camera );
2052 #endif
2053
2054 shader_viewchar_use();
2055 vg_tex2d_bind( &tex_characters, 0 );
2056 shader_viewchar_uTexMain( 0 );
2057 shader_viewchar_uCamera( player.camera[3] );
2058 shader_viewchar_uPv( vg_pv );
2059 shader_link_standard_ub( _shader_viewchar.id, 2 );
2060 glUniformMatrix4x3fv( _uniform_viewchar_uTransforms,
2061 player.mdl.sk.bone_count,
2062 0,
2063 (float *)player.mdl.sk.final_mtx );
2064
2065 mesh_bind( &player.mdl.mesh );
2066 mesh_draw( &player.mdl.mesh );
2067 }
2068
2069 #endif /* PLAYER_H */