the better walkgrid
[carveJwlIkooP6JGAAIwe30JlM.git] / player.h
1 #ifndef PLAYER_H
2 #define PLAYER_H
3
4 #include "common.h"
5 #include "character.h"
6
7 static int freecam = 0;
8 static float k_walkspeed = 2.0f;
9 static int walk_grid_iterations = 1;
10
11 static struct gplayer
12 {
13 /* Physics */
14 v3f co, v, a, v_last, m, bob;
15 v4f rot;
16 float vswitch, slip, slip_last,
17 reverse;
18
19 float iY; /* Yaw inertia */
20 int in_air, is_dead, on_board;
21
22 /* Input */
23 v2f joy_l;
24
25 v2f board_xy;
26 float grab;
27 float pitch;
28
29 v3f land_target;
30 v3f land_target_log[22];
31 u32 land_target_colours[22];
32 int land_log_count;
33 m3x3f vr;
34
35 m4x3f to_world, to_local;
36
37 struct character mdl;
38
39 v3f handl_target, handr_target,
40 handl, handr;
41
42 /* Camera */
43 float air_blend;
44
45 v3f camera_pos, smooth_localcam;
46 v2f angles;
47 m4x3f camera, camera_inverse;
48 }
49 player;
50
51 static void player_transform_update(void)
52 {
53 q_normalize( player.rot );
54 q_m3x3( player.rot, player.to_world );
55 v3_copy( player.co, player.to_world[3] );
56
57 m4x3_invert_affine( player.to_world, player.to_local );
58 }
59
60 static int reset_player( int argc, char const *argv[] )
61 {
62 v3_copy( (v3f){ 0.0f, -2.0f, 0.0f }, player.co );
63
64 if( argc == 1 )
65 {
66 if( !strcmp( argv[0], "tutorial" ))
67 v3_copy( world.tutorial, player.co );
68 }
69
70 v3_copy( (v3f){ 0.0f, 0.0f, -0.2f }, player.v );
71 q_identity( player.rot );
72 player.vswitch = 1.0f;
73 player.slip_last = 0.0f;
74 player.is_dead = 0;
75 player.in_air = 1;
76 m3x3_identity( player.vr );
77
78 player.mdl.shoes[0] = 1;
79 player.mdl.shoes[1] = 1;
80
81 player_transform_update();
82 return 0;
83 }
84
85 static void player_mouseview(void)
86 {
87 static v2f mouse_last,
88 view_vel = { 0.0f, 0.0f };
89
90 if( vg_get_button_down( "primary" ) )
91 v2_copy( vg_mouse, mouse_last );
92 else if( vg_get_button( "primary" ) )
93 {
94 v2f delta;
95 v2_sub( vg_mouse, mouse_last, delta );
96 v2_copy( vg_mouse, mouse_last );
97
98 v2_muladds( view_vel, delta, 0.005f, view_vel );
99 }
100
101 v2_muls( view_vel, 0.7f, view_vel );
102 v2_add( view_vel, player.angles, player.angles );
103 player.angles[1] = vg_clampf( player.angles[1], -VG_PIf*0.5f, VG_PIf*0.5f );
104
105 }
106
107 static void player_freecam(void)
108 {
109 player_mouseview();
110
111 float movespeed = 25.0f;
112 v3f lookdir = { 0.0f, 0.0f, -1.0f },
113 sidedir = { 1.0f, 0.0f, 0.0f };
114
115 m3x3_mulv( player.camera, lookdir, lookdir );
116 m3x3_mulv( player.camera, sidedir, sidedir );
117
118 static v3f move_vel = { 0.0f, 0.0f, 0.0f };
119 if( vg_get_button( "forward" ) )
120 v3_muladds( move_vel, lookdir, ktimestep * movespeed, move_vel );
121 if( vg_get_button( "back" ) )
122 v3_muladds( move_vel, lookdir, ktimestep *-movespeed, move_vel );
123 if( vg_get_button( "left" ) )
124 v3_muladds( move_vel, sidedir, ktimestep *-movespeed, move_vel );
125 if( vg_get_button( "right" ) )
126 v3_muladds( move_vel, sidedir, ktimestep * movespeed, move_vel );
127
128 v3_muls( move_vel, 0.7f, move_vel );
129 v3_add( move_vel, player.camera_pos, player.camera_pos );
130 }
131
132 static void apply_gravity( v3f vel, float const timestep )
133 {
134 v3f gravity = { 0.0f, -9.6f, 0.0f };
135 v3_muladds( vel, gravity, timestep, vel );
136 }
137
138 static void player_start_air(void)
139 {
140 player.in_air = 1;
141
142 float pstep = ktimestep*10.0f;
143
144 float best_velocity_mod = 0.0f,
145 best_velocity_delta = -9999.9f;
146
147 v3f axis, vup;
148 m3x3_mulv( player.to_world, (v3f){0.0f,1.0f,0.0f}, vup );
149 v3_cross( vup, player.v, axis );
150 v3_normalize( axis );
151 player.land_log_count = 0;
152
153 m3x3_identity( player.vr );
154
155 for( int m=-3;m<=12; m++ )
156 {
157 float vmod = ((float)m / 15.0f)*0.09f;
158
159 v3f pco, pco1, pv;
160 v3_copy( player.co, pco );
161 v3_copy( player.v, pv );
162
163 /*
164 * Try different 'rotations' of the velocity to find the best possible
165 * landing normal. This conserves magnitude at the expense of slightly
166 * unrealistic results
167 */
168
169 m3x3f vr;
170 v4f vr_q;
171
172 q_axis_angle( vr_q, axis, vmod );
173 q_m3x3( vr_q, vr );
174
175 m3x3_mulv( vr, pv, pv );
176 v3_muladds( pco, pv, ktimestep, pco );
177
178 for( int i=0; i<50; i++ )
179 {
180 v3_copy( pco, pco1 );
181 apply_gravity( pv, pstep );
182
183 m3x3_mulv( vr, pv, pv );
184 v3_muladds( pco, pv, pstep, pco );
185
186 ray_hit contact;
187 v3f vdir;
188
189 v3_sub( pco, pco1, vdir );
190 contact.dist = v3_length( vdir );
191 v3_divs( vdir, contact.dist, vdir);
192
193 if( ray_world( pco1, vdir, &contact ))
194 {
195 float land_delta = v3_dot( pv, contact.normal );
196 u32 scolour = (u8)(vg_minf(-land_delta * 2.0f, 255.0f));
197
198 /* Bias prediction towords ramps */
199 if( ray_hit_is_ramp( &contact ) )
200 {
201 land_delta *= 0.1f;
202 scolour |= 0x0000a000;
203 }
204
205 if( (land_delta < 0.0f) && (land_delta > best_velocity_delta) )
206 {
207 best_velocity_delta = land_delta;
208 best_velocity_mod = vmod;
209
210 v3_copy( contact.pos, player.land_target );
211
212 q_axis_angle( vr_q, axis, vmod*0.1f );
213 q_m3x3( vr_q, player.vr );
214 }
215
216 v3_copy( contact.pos,
217 player.land_target_log[player.land_log_count] );
218 player.land_target_colours[player.land_log_count] =
219 0xff000000 | scolour;
220
221 player.land_log_count ++;
222
223 break;
224 }
225 }
226 }
227
228 //v3_rotate( player.v, best_velocity_mod, axis, player.v );
229
230 return;
231 v3_muls( player.v, best_velocity_mod, player.v );
232 }
233
234 static int sample_if_resistant( v3f pos )
235 {
236 v3f ground;
237 v3_copy( pos, ground );
238 ground[1] += 4.0f;
239
240 ray_hit hit;
241 hit.dist = INFINITY;
242
243 if( ray_world( ground, (v3f){0.0f,-1.0f,0.0f}, &hit ))
244 {
245 v3f angle;
246 v3_copy( player.v, angle );
247 v3_normalize( angle );
248 float resistance = v3_dot( hit.normal, angle );
249
250 if( resistance < 0.25f )
251 {
252 v3_copy( hit.pos, pos );
253 return 1;
254 }
255 }
256
257 return 0;
258 }
259
260 static float stable_force( float current, float diff )
261 {
262 float new = current + diff;
263
264 if( new * current < 0.0f )
265 return 0.0f;
266
267 return new;
268 }
269
270 static void player_physics_ground(void)
271 {
272 /*
273 * Getting surface collision points,
274 * the contact manifold is a triangle for simplicity.
275 */
276 v3f contact_front, contact_back, contact_norm, vup, vside,
277 axis;
278
279 float klength = 0.65f;
280 m4x3_mulv( player.to_world, (v3f){ 0.15f,0.0f,-klength}, contact_norm );
281 m4x3_mulv( player.to_world, (v3f){-0.15f,0.0f,-klength}, contact_front );
282 m4x3_mulv( player.to_world, (v3f){ 0.00f,0.0f, klength}, contact_back );
283 m3x3_mulv( player.to_world, (v3f){ 0.0f, 1.0f, 0.0f}, vup );
284 m3x3_mulv( player.to_world, (v3f){ 1.0f, 0.0f, 0.0f}, vside );
285
286 v3f cn0, cn1, cn2;
287
288 int contact_count =
289 sample_if_resistant( contact_front ) +
290 sample_if_resistant( contact_back ) +
291 sample_if_resistant( contact_norm );
292
293 if( contact_count < 3 )
294 {
295 player_start_air();
296 return;
297 }
298
299 v3f norm;
300 v3f v0, v1;
301 v3_sub( contact_norm, contact_front, v0 );
302 v3_sub( contact_back, contact_front, v1 );
303 v3_cross( v1, v0, norm );
304 v3_normalize( norm );
305
306 vg_line( contact_norm, contact_front, 0xff00ff00 );
307 vg_line( contact_back, contact_front, 0xff0000ff );
308
309 /* Surface alignment */
310 float angle = v3_dot( vup, norm );
311 v3_cross( vup, norm, axis );
312
313 if( angle < 0.999f )
314 {
315 v4f correction;
316 q_axis_angle( correction, axis, acosf(angle) );
317 q_mul( correction, player.rot, player.rot );
318 }
319
320 float resistance = v3_dot( norm, player.v );
321 if( resistance >= 0.0f )
322 {
323 player_start_air();
324 return;
325 }
326 else
327 {
328 v3_muladds( player.v, norm, -resistance, player.v );
329 }
330
331 /* This is where velocity integration used to be */
332
333 float slip = 0.0f;
334
335 player.co[1] = (contact_front[1]+contact_back[1])*0.5f;
336
337 v3f vel;
338 m3x3_mulv( player.to_local, player.v, vel );
339
340 /* Calculate local forces */
341
342 if( fabsf(vel[2]) > 0.01f )
343 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
344
345 if( fabsf( slip ) > 1.2f )
346 slip = vg_signf( slip ) * 1.2f;
347 player.slip = slip;
348 player.reverse = -vg_signf(vel[2]);
349
350 float substep = ktimestep * 0.2f;
351 float fwd_resistance = (vg_get_button( "break" )? 5.0f: 0.02f) * -substep;
352
353 for( int i=0; i<5; i++ )
354 {
355 vel[2] = stable_force( vel[2], vg_signf( vel[2] ) * fwd_resistance );
356 vel[0] = stable_force( vel[0], vg_signf( vel[0] ) * -7.0f *substep );
357 }
358
359 static double start_push = 0.0;
360 if( vg_get_button_down( "push" ) )
361 start_push = vg_time;
362
363 if( !vg_get_button("break") && vg_get_button( "push" ) )
364 {
365 float const k_maxpush = 16.0f,
366 k_pushaccel = 5.0f;
367
368 float cycle_time = vg_time-start_push,
369 amt = k_pushaccel * (sinf( cycle_time * 8.0f )*0.5f+0.5f)*ktimestep,
370 current = v3_length( vel ),
371 new_vel = vg_minf( current + amt, k_maxpush );
372 new_vel -= vg_minf(current, k_maxpush);
373 vel[2] -= new_vel * player.reverse;
374 }
375
376 m3x3_mulv( player.to_world, vel, player.v );
377
378 if( vg_get_button( "yawl" ) )
379 player.iY += 3.6f * ktimestep;
380 if( vg_get_button( "yawr" ) )
381 player.iY -= 3.6f * ktimestep;
382
383 float steer = vg_get_axis( "horizontal" );
384 player.iY -= vg_signf(steer)*powf(steer,2.0f) * 1.5f * ktimestep;
385
386 /* Too much lean and it starts to look like a snowboard here */
387 v2_lerp( player.board_xy, (v2f){ slip*0.25f, 0.0f },
388 ktimestep*5.0f, player.board_xy);
389 }
390
391 static void draw_cross(v3f pos,u32 colour, float scale)
392 {
393 v3f p0, p1;
394 v3_add( (v3f){ scale,0.0f,0.0f}, pos, p0 );
395 v3_add( (v3f){-scale,0.0f,0.0f}, pos, p1 );
396 vg_line( p0, p1, colour );
397 v3_add( (v3f){0.0f, scale,0.0f}, pos, p0 );
398 v3_add( (v3f){0.0f,-scale,0.0f}, pos, p1 );
399 vg_line( p0, p1, colour );
400 v3_add( (v3f){0.0f,0.0f, scale}, pos, p0 );
401 v3_add( (v3f){0.0f,0.0f,-scale}, pos, p1 );
402 vg_line( p0, p1, colour );
403 }
404
405 static void player_physics_air(void)
406 {
407 m3x3_mulv( player.vr, player.v, player.v );
408 for( int i=0; i<player.land_log_count; i++ )
409 draw_cross( player.land_target_log[i], player.land_target_colours[i], 1);
410
411 draw_cross( player.land_target, 0xff0000ff, 1 );
412
413 v3f ground_pos;
414 v3_copy( player.co, ground_pos );
415 ground_pos[1] += 4.0f;
416
417 ray_hit hit;
418 hit.dist = INFINITY;
419 if( ray_world( ground_pos, (v3f){0.0f,-1.0f,0.0f}, &hit ))
420 {
421 if( hit.pos[1] > player.co[1] )
422 {
423 player.in_air = 0;
424
425 if( !ray_hit_is_ramp( &hit ) )
426 {
427 player.is_dead = 1;
428 character_ragdoll_copypose( &player.mdl, player.v );
429 }
430
431 return;
432 }
433 }
434
435 /* Prediction
436 */
437 float pstep = ktimestep*10.0f;
438
439 v3f pco, pco1, pv;
440 v3_copy( player.co, pco );
441 v3_copy( player.v, pv );
442
443 float time_to_impact = 0.0f;
444 float limiter = 1.0f;
445
446 for( int i=0; i<50; i++ )
447 {
448 v3_copy( pco, pco1 );
449 apply_gravity( pv, pstep );
450 v3_muladds( pco, pv, pstep, pco );
451
452 //vg_line( pco, pco1, i&0x1?0xff000000:0xffffffff );
453
454 ray_hit contact;
455 v3f vdir;
456
457 v3_sub( pco, pco1, vdir );
458 contact.dist = v3_length( vdir );
459 v3_divs( vdir, contact.dist, vdir);
460
461 float orig_dist = contact.dist;
462 if( ray_world( pco1, vdir, &contact ))
463 {
464 v3f localup;
465 m3x3_mulv( player.to_world, (v3f){0.0f,1.0f,0.0f}, localup );
466
467 float angle = v3_dot( localup, contact.normal );
468 v3f axis;
469 v3_cross( localup, contact.normal, axis );
470
471 time_to_impact += (contact.dist/orig_dist)*pstep;
472 limiter = vg_minf( 5.0f, time_to_impact )/5.0f;
473 limiter = 1.0f-limiter;
474 limiter *= limiter;
475 limiter = 1.0f-limiter;
476
477 if( angle < 0.99f )
478 {
479 v4f correction;
480 q_axis_angle( correction, axis, acosf(angle)*0.05f*(1.0f-limiter) );
481 q_mul( correction, player.rot, player.rot );
482 }
483
484 draw_cross( contact.pos, 0xffff0000, 1 );
485 break;
486 }
487 time_to_impact += pstep;
488 }
489
490 player.iY -= vg_get_axis( "horizontal" ) * 3.6f * ktimestep;
491 {
492
493 float iX = vg_get_axis( "vertical" ) * 3.6f * limiter * ktimestep;
494 static float siX = 0.0f;
495 siX = vg_lerpf( siX, iX, 0.3f );
496
497 v4f rotate;
498 v3f vside;
499
500 m3x3_mulv( player.to_world, (v3f){1.0f,0.0f,0.0f}, vside );
501
502 q_axis_angle( rotate, vside, siX );
503 q_mul( rotate, player.rot, player.rot );
504 }
505
506 v2f target = {0.0f,0.0f};
507 v2_muladds( target, (v2f){ vg_get_axis("h1"), vg_get_axis("v1") },
508 player.grab, target );
509 v2_lerp( player.board_xy, target, ktimestep*3.0f, player.board_xy );
510 }
511
512 static void player_do_motion(void)
513 {
514 float horizontal = vg_get_axis("horizontal"),
515 vertical = vg_get_axis("vertical");
516
517 player.joy_l[0] = vg_signf(horizontal) * powf( horizontal, 2.0f );
518 player.joy_l[1] = vg_signf(vertical) * powf( vertical, 2.0f );
519
520 if( player.in_air )
521 player_physics_air();
522
523 if( !player.in_air )
524 player_physics_ground();
525
526 /* Integrate velocity */
527 v3f prevco;
528 v3_copy( player.co, prevco );
529
530 apply_gravity( player.v, ktimestep );
531 v3_muladds( player.co, player.v, ktimestep, player.co );
532
533 /* Integrate inertia */
534 v4f rotate; v3f vup = {0.0f,1.0f,0.0f};
535 m3x3_mulv( player.to_world, vup, vup );
536
537 static float siY = 0.0f;
538
539 float lerpq = player.in_air? 0.04f: 0.3f;
540 siY = vg_lerpf( siY, player.iY, lerpq );
541
542 q_axis_angle( rotate, vup, siY );
543 q_mul( rotate, player.rot, player.rot );
544
545 player.iY = 0.0f; /* temp */
546
547 #if 0
548 /* GATE COLLISION */
549 if( gate_intersect( &gate_a, player.co, prevco ) )
550 {
551 teleport_gate *gate = &gate_a;
552
553 m4x3f transport;
554 m4x3_mul( gate->other->to_world, gate->to_local, transport );
555 m4x3_mulv( transport, player.co, player.co );
556 m3x3_mulv( transport, player.v, player.v );
557 m3x3_mulv( transport, player.v_last, player.v_last );
558 m3x3_mulv( transport, player.m, player.m );
559 m3x3_mulv( transport, player.bob, player.bob );
560
561 v4f transport_rotation;
562 m3x3_q( transport, transport_rotation );
563 q_mul( transport_rotation, player.rot, player.rot );
564 }
565 #endif
566
567 /* Camera and character */
568 player_transform_update();
569
570 player.angles[0] = atan2f( player.v[0], -player.v[2] );
571 player.angles[1] = atan2f( -player.v[1], sqrtf(player.v[0]*player.v[0]+
572 player.v[2]*player.v[2]) ) * 0.3f;
573
574 player.air_blend = vg_lerpf( player.air_blend, player.in_air, 0.04f );
575 v3_muladds( player.camera_pos, player.v, -0.05f*player.air_blend,
576 player.camera_pos );
577 }
578
579 static int player_walkgrid_tri_walkable( u32 tri[3] )
580 {
581 return tri[0] < world.sm_road.vertex_count;
582 }
583
584 #define WALKGRID_SIZE 16
585 struct walkgrid
586 {
587 struct grid_sample
588 {
589 enum sample_type
590 {
591 k_sample_type_air, /* Nothing was hit. */
592 k_sample_type_invalid, /* The point is invalid, but there is a sample
593 underneath that can be used */
594 k_sample_type_valid, /* This point is good */
595 }
596 type;
597
598 v3f clip[2];
599 v3f pos;
600
601 enum traverse_state
602 {
603 k_traverse_none = 0x00,
604 k_traverse_h = 0x01,
605 k_traverse_v = 0x02
606 }
607 state;
608 }
609 samples[WALKGRID_SIZE][WALKGRID_SIZE];
610
611 #if 0
612 u32 geo[256];
613 #endif
614
615 boxf region;
616
617 float move; /* Current amount of movement we have left to apply */
618 v2f dir; /* The movement delta */
619 v2i cell_id;/* Current cell */
620 v2f pos; /* Local position (in cell) */
621 float h;
622 };
623
624 /*
625 * Get a sample at this pole location, will return 1 if the sample is valid,
626 * and pos will be updated to be the intersection location.
627 */
628 static void player_walkgrid_samplepole( struct grid_sample *s )
629 {
630 boxf region = {{ s->pos[0] -0.01f, s->pos[1] - 4.0f, s->pos[2] -0.01f},
631 { s->pos[0] +0.01f, s->pos[1] + 4.0f, s->pos[2] +0.01f}};
632
633 #if 0
634 vg_line( region[0],region[1], 0x20ffffff );
635 #endif
636
637 u32 geo[256];
638 v3f tri[3];
639 int len = bvh_select_triangles( &world.geo, region, geo, 256 );
640
641 const float k_minworld_y = -2000.0f;
642
643 float walk_height = k_minworld_y,
644 block_height = k_minworld_y;
645
646 s->type = k_sample_type_air;
647
648 for( int i=0; i<len; i++ )
649 {
650 u32 *ptri = &world.geo.indices[ geo[i] ];
651
652 for( int j=0; j<3; j++ )
653 v3_copy( world.geo.verts[ptri[j]].co, tri[j] );
654
655 v3f vdown = {0.0f,-1.0f,0.0f};
656 v3f sample_from;
657 v3_copy( s->pos, sample_from );
658 sample_from[1] = region[1][1];
659
660 float dist;
661 if( ray_tri( tri, sample_from, vdown, &dist ))
662 {
663 v3f p0;
664 v3_muladds( sample_from, vdown, dist, p0 );
665
666 if( player_walkgrid_tri_walkable(ptri) )
667 {
668 if( p0[1] > walk_height )
669 {
670 walk_height = p0[1];
671 }
672
673 #if 0
674 draw_cross( p0, 0xffffffff, 0.05f );
675 #endif
676 }
677 else
678 {
679 if( p0[1] > block_height )
680 block_height = p0[1];
681 #if 0
682 draw_cross( p0, 0xff0000ff, 0.05f );
683 #endif
684 }
685 }
686 }
687
688 s->pos[1] = walk_height;
689
690 if( walk_height > k_minworld_y )
691 if( block_height > walk_height )
692 s->type = k_sample_type_invalid;
693 else
694 s->type = k_sample_type_valid;
695 else
696 s->type = k_sample_type_air;
697
698 #if 0
699 if( s->type == k_sample_type_valid )
700 {
701 vg_line_pt3( s->pos, 0.01f, 0xff00ff00 );
702 }
703 #endif
704
705 #if 0
706 int count = 0;
707
708 ray_hit hit;
709 hit.dist = 10.0f;
710 count = bvh_raycast( &world.geo, sample_pos, vdir, &hit );
711
712 if( count )
713 {
714 v3_copy( hit.pos, s->pos );
715
716 if( !player_walkgrid_tri_walkable( hit.tri ) )
717 {
718 draw_cross( pos, 0xff0000ff, 0.05f );
719 return 0;
720 }
721 else
722 {
723 draw_cross( pos, 0xff00ff00, 0.05f );
724 return count;
725 }
726 }
727 else
728 return 0;
729 #endif
730 }
731
732 float const k_gridscale = 0.5f;
733
734 enum eclipdir
735 {
736 k_eclipdir_h = 0,
737 k_eclipdir_v = 1
738 };
739
740 static void player_walkgrid_clip_blocker( struct grid_sample *sa,
741 struct grid_sample *sb,
742 struct grid_sample *st,
743 enum eclipdir dir )
744 {
745 v3f clipdir, pos;
746 int valid_a = sa->type == k_sample_type_valid,
747 valid_b = sb->type == k_sample_type_valid;
748 struct grid_sample *target = valid_a? sa: sb,
749 *other = valid_a? sb: sa;
750 v3_copy( target->pos, pos );
751 v3_sub( other->pos, target->pos, clipdir );
752
753 boxf cell_region;
754 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, -k_gridscale*2.1f, cell_region[0]);
755 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, k_gridscale*2.1f, cell_region[1]);
756
757 u32 geo[256];
758 v3f tri[3];
759 int len = bvh_select_triangles( &world.geo, cell_region, geo, 256 );
760
761
762 float start_time = v3_length( clipdir ),
763 min_time = start_time;
764 v3_normalize( clipdir );
765 v3_muls( clipdir, 0.0001f, st->clip[dir] );
766
767 for( int i=0; i<len; i++ )
768 {
769 u32 *ptri = &world.geo.indices[ geo[i] ];
770 for( int j=0; j<3; j++ )
771 v3_copy( world.geo.verts[ptri[j]].co, tri[j] );
772
773 if( player_walkgrid_tri_walkable(ptri) )
774 continue;
775
776 float dist;
777 if(ray_tri( tri, pos, clipdir, &dist ))
778 {
779 if( dist > 0.0f && dist < min_time )
780 {
781 min_time = dist;
782 sb->type = k_sample_type_air;
783 }
784 }
785 }
786
787 if( !(min_time < start_time) )
788 min_time = 0.5f * k_gridscale;
789
790 v3_muls( clipdir, min_time/k_gridscale, st->clip[dir] );
791
792 v3f p0;
793 v3_muladds( target->pos, st->clip[dir], k_gridscale, p0 );
794 }
795
796 static void player_walkgrid_clip_edge( struct grid_sample *sa,
797 struct grid_sample *sb,
798 struct grid_sample *st, /* data store */
799 enum eclipdir dir )
800 {
801 v3f clipdir = { 0.0f, 0.0f, 0.0f }, pos;
802 int valid_a = sa->type == k_sample_type_valid,
803 valid_b = sb->type == k_sample_type_valid;
804
805 struct grid_sample *target = valid_a? sa: sb,
806 *other = valid_a? sb: sa;
807
808 v3_sub( other->pos, target->pos, clipdir );
809 clipdir[1] = 0.0f;
810
811 v3_copy( target->pos, pos );
812
813 boxf cell_region;
814 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, -k_gridscale*1.1f, cell_region[0]);
815 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, k_gridscale*1.1f, cell_region[1]);
816
817 u32 geo[256];
818 int len = bvh_select_triangles( &world.geo, cell_region, geo, 256 );
819
820 float max_dist = 0.0f;
821 v3f tri[3];
822 v3f perp;
823 v3_cross( clipdir,(v3f){0.0f,1.0f,0.0f},perp );
824 v3_muls( clipdir, 0.001f, st->clip[dir] );
825
826 for( int i=0; i<len; i++ )
827 {
828 u32 *ptri = &world.geo.indices[ geo[i] ];
829 for( int j=0; j<3; j++ )
830 v3_copy( world.geo.verts[ptri[j]].co, tri[j] );
831
832 if( !player_walkgrid_tri_walkable(ptri) )
833 continue;
834
835 for( int k=0; k<3; k++ )
836 {
837 int ia = k,
838 ib = (k+1)%3;
839
840 v3f v0, v1;
841 v3_sub( tri[ia], pos, v0 );
842 v3_sub( tri[ib], pos, v1 );
843
844 if( (clipdir[2]*v0[0] - clipdir[0]*v0[2]) *
845 (clipdir[2]*v1[0] - clipdir[0]*v1[2]) < 0.0f )
846 {
847 float da = v3_dot(v0,perp),
848 db = v3_dot(v1,perp),
849 d = da-db,
850 qa = da/d;
851
852 v3f p0;
853 v3_muls( v1, qa, p0 );
854 v3_muladds( p0, v0, 1.0f-qa, p0 );
855
856 float h = v3_dot(p0,clipdir)/v3_dot(clipdir,clipdir);
857
858 if( h >= max_dist && h <= 1.0f )
859 {
860 max_dist = h;
861 float l = 1.0f/v3_length(clipdir);
862 v3_muls( p0, l, st->clip[dir] );
863 }
864 }
865 }
866 }
867 }
868
869 static void player_walkgrid_clip( struct grid_sample *sa,
870 struct grid_sample *sb,
871 enum eclipdir dir )
872 {
873 int mintype = VG_MIN( sa->type, sb->type ),
874 maxtype = VG_MAX( sa->type, sb->type );
875
876 if( maxtype == k_sample_type_valid )
877 {
878 if( mintype == k_sample_type_air || mintype == k_sample_type_invalid )
879 {
880 player_walkgrid_clip_edge( sa, sb, sa, dir );
881 }
882
883 #if 0
884 else if( mintype == k_sample_type_invalid )
885 {
886 player_walkgrid_clip_blocker( sa, sb, dir );
887 }
888 #endif
889 }
890 }
891
892 static const struct conf
893 {
894 struct confedge
895 {
896 /* i: sample index
897 * d: data index
898 * a: axis index
899 * o: the 'other' point to do a A/B test with
900 * if its -1, all AB is done.
901 */
902 int i0, i1,
903 d0, d1,
904 a0, a1,
905 o0, o1;
906 }
907 edges[2];
908 int edge_count;
909 }
910 k_walkgrid_configs[16] = {
911 {{},0},
912 {{{ 3,3, 3,0, 1,0, -1,-1 }}, 1},
913 {{{ 2,2, 1,3, 0,1, -1,-1 }}, 1},
914 {{{ 2,3, 1,0, 0,0, 3,-1 }}, 1},
915
916 {{{ 1,1, 0,1, 1,0, -1,-1 }}, 1},
917 {{{ 3,3, 3,0, 1,0, -1,-1 },
918 { 1,1, 0,1, 1,0, -1,-1 }}, 2},
919 {{{ 1,2, 0,3, 1,1, 2,-1 }}, 1},
920 {{{ 1,3, 0,0, 1,0, 2, 2 }}, 1},
921
922 {{{ 0,0, 0,0, 0,1, -1,-1 }}, 1},
923 {{{ 3,0, 3,0, 1,1, 0,-1 }}, 1},
924 {{{ 2,2, 1,3, 0,1, -1,-1 },
925 { 0,0, 0,0, 0,1, -1,-1 }}, 2},
926 {{{ 2,0, 1,0, 0,1, 3, 3 }}, 1},
927
928 {{{ 0,1, 0,1, 0,0, 1,-1 }}, 1},
929 {{{ 3,1, 3,1, 1,0, 0, 0 }}, 1},
930 {{{ 0,2, 0,3, 0,1, 1, 1 }}, 1},
931 {{},0},
932 };
933
934 /*
935 * Get a buffer of edges from cell location
936 */
937 static const struct conf *player_walkgrid_conf( struct walkgrid *wg,
938 v2i cell,
939 struct grid_sample *corners[4] )
940 {
941 corners[0] = &wg->samples[cell[1] ][cell[0] ];
942 corners[1] = &wg->samples[cell[1]+1][cell[0] ];
943 corners[2] = &wg->samples[cell[1]+1][cell[0]+1];
944 corners[3] = &wg->samples[cell[1] ][cell[0]+1];
945
946 u32 vd0 = corners[0]->type == k_sample_type_valid,
947 vd1 = corners[1]->type == k_sample_type_valid,
948 vd2 = corners[2]->type == k_sample_type_valid,
949 vd3 = corners[3]->type == k_sample_type_valid,
950 config = (vd0<<3) | (vd1<<2) | (vd2<<1) | vd3;
951
952 return &k_walkgrid_configs[ config ];
953 }
954
955 static void player_walkgrid_floor(v3f pos)
956 {
957 v3_muls( pos, 1.0f/k_gridscale, pos );
958 v3_floor( pos, pos );
959 v3_muls( pos, k_gridscale, pos );
960 }
961
962 /*
963 * Computes the barycentric coordinate of location on a triangle (vertical),
964 * then sets the Y position to the interpolation of the three points
965 */
966 static void player_walkgrid_stand_tri( v3f a, v3f b, v3f c, v3f pos )
967 {
968 v3f v0,v1,v2;
969 v3_sub( b, a, v0 );
970 v3_sub( c, a, v1 );
971 v3_sub( pos, a, v2 );
972
973 float d = v0[0]*v1[2] - v1[0]*v0[2],
974 v = (v2[0]*v1[2] - v1[0]*v2[2]) / d,
975 w = (v0[0]*v2[2] - v2[0]*v0[2]) / d,
976 u = 1.0f - v - w;
977
978 vg_line( pos, a, 0xffff0000 );
979 vg_line( pos, b, 0xff00ff00 );
980 vg_line( pos, c, 0xff0000ff );
981 pos[1] = u*a[1] + v*b[1] + w*c[1];
982 }
983
984 /*
985 * Get the minimum time value of pos+dir until a cell edge
986 *
987 * t[0] -> t[3] are the individual time values
988 * t[5] & t[6] are the maximum axis values
989 * t[6] is the minimum value
990 *
991 */
992 static void player_walkgrid_min_cell( float t[7], v2f pos, v2f dir )
993 {
994 v2f frac = { 1.0f/dir[0], 1.0f/dir[1] };
995
996 t[0] = 999.9f;
997 t[1] = 999.9f;
998 t[2] = 999.9f;
999 t[3] = 999.9f;
1000
1001 if( fabsf(dir[0]) > 0.0001f )
1002 {
1003 t[0] = (0.0f-pos[0]) * frac[0];
1004 t[1] = (1.0f-pos[0]) * frac[0];
1005 }
1006 if( fabsf(dir[1]) > 0.0001f )
1007 {
1008 t[2] = (0.0f-pos[1]) * frac[1];
1009 t[3] = (1.0f-pos[1]) * frac[1];
1010 }
1011
1012 t[4] = vg_maxf(t[0],t[1]);
1013 t[5] = vg_maxf(t[2],t[3]);
1014 t[6] = vg_minf(t[4],t[5]);
1015 }
1016
1017 static void player_walkgrid_iter(struct walkgrid *wg, int iter)
1018 {
1019
1020 /*
1021 * For each walkgrid iteration we are stepping through cells and determining
1022 * the intersections with the grid, and any edges that are present
1023 */
1024
1025 #if 0
1026 if( wg->cell_id[0] < 0 || wg->cell_id[0] >= WALKGRID_SIZE-1 ||
1027 wg->cell_id[1] < 0 || wg->cell_id[1] >= WALKGRID_SIZE-1 )
1028 {
1029 /*
1030 * This condition should never be reached if the grid size is big
1031 * enough
1032 */
1033 wg->move = -1.0f;
1034 return;
1035 }
1036 #endif
1037
1038 u32 icolours[] = { 0xffff00ff, 0xff00ffff, 0xffffff00 };
1039
1040 v3f pa, pb, pc, pd, pl0, pl1;
1041 pa[0] = wg->region[0][0] + (float)wg->cell_id[0] *k_gridscale;
1042 pa[1] = (wg->region[0][1] + wg->region[1][1]) * 0.5f + k_gridscale;
1043 pa[2] = wg->region[0][2] + (float)wg->cell_id[1] *k_gridscale;
1044 pb[0] = pa[0];
1045 pb[1] = pa[1];
1046 pb[2] = pa[2] + k_gridscale;
1047 pc[0] = pa[0] + k_gridscale;
1048 pc[1] = pa[1];
1049 pc[2] = pa[2] + k_gridscale;
1050 pd[0] = pa[0] + k_gridscale;
1051 pd[1] = pa[1];
1052 pd[2] = pa[2];
1053 #if 0
1054 vg_line( pa, pb, 0xff00ffff );
1055 vg_line( pb, pc, 0xff00ffff );
1056 vg_line( pc, pd, 0xff00ffff );
1057 vg_line( pd, pa, 0xff00ffff );
1058 #endif
1059 pl0[0] = pa[0] + wg->pos[0]*k_gridscale;
1060 pl0[1] = pa[1];
1061 pl0[2] = pa[2] + wg->pos[1]*k_gridscale;
1062
1063 /*
1064 * If there are edges present, we need to create a 'substep' event, where
1065 * we find the intersection point, find the fully resolved position,
1066 * then the new pos dir is the intersection->resolution
1067 *
1068 * the resolution is applied in non-discretized space in order to create a
1069 * suitable vector for finding outflow, we want it to leave the cell so it
1070 * can be used by the quad
1071 */
1072
1073 v2f pos, dir;
1074 v2_copy( wg->pos, pos );
1075 v2_muls( wg->dir, wg->move, dir );
1076
1077 struct grid_sample *corners[4];
1078 v2f corners2d[4] = {{0.0f,0.0f},{0.0f,1.0f},{1.0f,1.0f},{1.0f,0.0f}};
1079 const struct conf *conf = player_walkgrid_conf( wg, wg->cell_id, corners );
1080
1081 float t[7];
1082 player_walkgrid_min_cell( t, pos, dir );
1083
1084 for( int i=0; i<conf->edge_count; i++ )
1085 {
1086 const struct confedge *edge = &conf->edges[i];
1087
1088 v2f e0, e1, n, r, target, res, tangent;
1089 e0[0] = corners2d[edge->i0][0] + corners[edge->d0]->clip[edge->a0][0];
1090 e0[1] = corners2d[edge->i0][1] + corners[edge->d0]->clip[edge->a0][2];
1091 e1[0] = corners2d[edge->i1][0] + corners[edge->d1]->clip[edge->a1][0];
1092 e1[1] = corners2d[edge->i1][1] + corners[edge->d1]->clip[edge->a1][2];
1093
1094 v3f pe0 = { pa[0] + e0[0]*k_gridscale,
1095 pa[1],
1096 pa[2] + e0[1]*k_gridscale };
1097 v3f pe1 = { pa[0] + e1[0]*k_gridscale,
1098 pa[1],
1099 pa[2] + e1[1]*k_gridscale };
1100
1101 v2_sub( e1, e0, tangent );
1102 n[0] = -tangent[1];
1103 n[1] = tangent[0];
1104 v2_normalize( n );
1105
1106 /*
1107 * If we find ourselfs already penetrating the edge, move back out a
1108 * little
1109 */
1110 v2_sub( e0, pos, r );
1111 float p1 = v2_dot(r,n);
1112
1113 if( -p1 < 0.0001f )
1114 {
1115 v2_muladds( pos, n, p1+0.0001f, pos );
1116 v2_copy( pos, wg->pos );
1117 v3f p_new = { pa[0] + pos[0]*k_gridscale,
1118 pa[1],
1119 pa[2] + pos[1]*k_gridscale };
1120 v3_copy( p_new, pl0 );
1121 }
1122
1123 v2_add( pos, dir, target );
1124
1125 v2f v1, v2, v3;
1126 v2_sub( e0, pos, v1 );
1127 v2_sub( target, pos, v2 );
1128
1129 v2_copy( n, v3 );
1130
1131 v2_sub( e0, target, r );
1132 float p = v2_dot(r,n),
1133 t1 = v2_dot(v1,v3)/v2_dot(v2,v3);
1134
1135 if( t1 < t[6] && t1 > 0.0f && -p < 0.001f )
1136 {
1137 v2_muladds( target, n, p+0.0001f, res );
1138
1139 v2f intersect;
1140 v2_muladds( pos, dir, t1, intersect );
1141 v2_copy( intersect, pos );
1142 v2_sub( res, intersect, dir );
1143
1144 v3f p_res = { pa[0] + res[0]*k_gridscale,
1145 pa[1],
1146 pa[2] + res[1]*k_gridscale };
1147 v3f p_int = { pa[0] + intersect[0]*k_gridscale,
1148 pa[1],
1149 pa[2] + intersect[1]*k_gridscale };
1150
1151 vg_line( pl0, p_int, icolours[iter%3] );
1152 v3_copy( p_int, pl0 );
1153 v2_copy( pos, wg->pos );
1154
1155 player_walkgrid_min_cell( t, pos, dir );
1156 }
1157 }
1158
1159 /*
1160 * Compute intersection with grid cell moving outwards
1161 */
1162 t[6] = vg_minf( t[6], 1.0f );
1163
1164 pl1[0] = pl0[0] + dir[0]*k_gridscale*t[6];
1165 pl1[1] = pl0[1];
1166 pl1[2] = pl0[2] + dir[1]*k_gridscale*t[6];
1167 vg_line( pl0, pl1, icolours[iter%3] );
1168
1169 if( t[6] < 1.0f )
1170 {
1171 /*
1172 * To figure out what t value created the clip so we know which edge
1173 * to wrap around
1174 */
1175
1176 if( t[4] < t[5] )
1177 {
1178 wg->pos[1] = pos[1] + dir[1]*t[6];
1179
1180 if( t[0] > t[1] ) /* left edge */
1181 {
1182 wg->pos[0] = 0.9999f;
1183 wg->cell_id[0] --;
1184
1185 if( wg->cell_id[0] == 0 )
1186 wg->move = -1.0f;
1187 }
1188 else /* Right edge */
1189 {
1190 wg->pos[0] = 0.0001f;
1191 wg->cell_id[0] ++;
1192
1193 if( wg->cell_id[0] == WALKGRID_SIZE-2 )
1194 wg->move = -1.0f;
1195 }
1196 }
1197 else
1198 {
1199 wg->pos[0] = pos[0] + dir[0]*t[6];
1200
1201 if( t[2] > t[3] ) /* bottom edge */
1202 {
1203 wg->pos[1] = 0.9999f;
1204 wg->cell_id[1] --;
1205
1206 if( wg->cell_id[1] == 0 )
1207 wg->move = -1.0f;
1208 }
1209 else /* top edge */
1210 {
1211 wg->pos[1] = 0.0001f;
1212 wg->cell_id[1] ++;
1213
1214 if( wg->cell_id[1] == WALKGRID_SIZE-2 )
1215 wg->move = -1.0f;
1216 }
1217 }
1218
1219 wg->move -= t[6];
1220 }
1221 else
1222 {
1223 v2_muladds( wg->pos, dir, wg->move, wg->pos );
1224 wg->move = 0.0f;
1225 }
1226 }
1227
1228 static void player_walkgrid_stand_cell(struct walkgrid *wg)
1229 {
1230 /*
1231 * NOTE: as opposed to the other function which is done in discretized space
1232 * this use a combination of both.
1233 */
1234
1235 v3f world;
1236 world[0] = wg->region[0][0]+((float)wg->cell_id[0]+wg->pos[0])*k_gridscale;
1237 world[1] = player.co[1];
1238 world[2] = wg->region[0][2]+((float)wg->cell_id[1]+wg->pos[1])*k_gridscale;
1239
1240 struct grid_sample *corners[4];
1241 const struct conf *conf = player_walkgrid_conf( wg, wg->cell_id, corners );
1242
1243 if( conf != k_walkgrid_configs )
1244 {
1245 if( conf->edge_count == 0 )
1246 {
1247 v3f v0;
1248
1249 /* Split the basic quad along the shortest diagonal */
1250 if( fabsf(corners[2]->pos[1] - corners[0]->pos[1]) <
1251 fabsf(corners[3]->pos[1] - corners[1]->pos[1]) )
1252 {
1253 vg_line( corners[2]->pos, corners[0]->pos, 0xffaaaaaa );
1254
1255 if( wg->pos[0] > wg->pos[1] )
1256 player_walkgrid_stand_tri( corners[0]->pos,
1257 corners[3]->pos,
1258 corners[2]->pos, world );
1259 else
1260 player_walkgrid_stand_tri( corners[0]->pos,
1261 corners[2]->pos,
1262 corners[1]->pos, world );
1263 }
1264 else
1265 {
1266 vg_line( corners[3]->pos, corners[1]->pos, 0xffaaaaaa );
1267
1268 if( wg->pos[0] < 1.0f-wg->pos[1] )
1269 player_walkgrid_stand_tri( corners[0]->pos,
1270 corners[3]->pos,
1271 corners[1]->pos, world );
1272 else
1273 player_walkgrid_stand_tri( corners[3]->pos,
1274 corners[2]->pos,
1275 corners[1]->pos, world );
1276 }
1277 }
1278 else
1279 {
1280 for( int i=0; i<conf->edge_count; i++ )
1281 {
1282 const struct confedge *edge = &conf->edges[i];
1283
1284 v3f p0, p1;
1285 v3_muladds( corners[edge->i0]->pos,
1286 corners[edge->d0]->clip[edge->a0], k_gridscale, p0 );
1287 v3_muladds( corners[edge->i1]->pos,
1288 corners[edge->d1]->clip[edge->a1], k_gridscale, p1 );
1289
1290 /*
1291 * Find penetration distance between player position and the edge
1292 */
1293
1294 v2f normal = { -(p1[2]-p0[2]), p1[0]-p0[0] },
1295 rel = { world[0]-p0[0], world[2]-p0[2] };
1296
1297 if( edge->o0 == -1 )
1298 {
1299 /* No subregions (default case), just use triangle created by
1300 * i0, e0, e1 */
1301 player_walkgrid_stand_tri( corners[edge->i0]->pos,
1302 p0,
1303 p1, world );
1304 }
1305 else
1306 {
1307 /*
1308 * Test if we are in the first region, which is
1309 * edge.i0, edge.e0, edge.o0,
1310 */
1311 v3f v0, ref;
1312 v3_sub( p0, corners[edge->o0]->pos, ref );
1313 v3_sub( world, corners[edge->o0]->pos, v0 );
1314
1315 vg_line( corners[edge->o0]->pos, p0, 0xffffff00 );
1316 vg_line( corners[edge->o0]->pos, world, 0xff000000 );
1317
1318 if( ref[0]*v0[2] - ref[2]*v0[0] < 0.0f )
1319 {
1320 player_walkgrid_stand_tri( corners[edge->i0]->pos,
1321 p0,
1322 corners[edge->o0]->pos, world );
1323 }
1324 else
1325 {
1326 if( edge->o1 == -1 )
1327 {
1328 /*
1329 * No other edges mean we just need to use the opposite
1330 *
1331 * e0, e1, o0 (in our case, also i1)
1332 */
1333 player_walkgrid_stand_tri( p0,
1334 p1,
1335 corners[edge->o0]->pos, world );
1336 }
1337 else
1338 {
1339 /*
1340 * Note: this v0 calculation can be ommited with the
1341 * current tileset.
1342 *
1343 * the last two triangles we have are:
1344 * e0, e1, o1
1345 * and
1346 * e1, i1, o1
1347 */
1348 v3_sub( p1, corners[edge->o1]->pos, ref );
1349 v3_sub( world, corners[edge->o1]->pos, v0 );
1350 vg_line( corners[edge->o1]->pos, p1, 0xff00ffff );
1351
1352 if( ref[0]*v0[2] - ref[2]*v0[0] < 0.0f )
1353 {
1354 player_walkgrid_stand_tri( p0,
1355 p1,
1356 corners[edge->o1]->pos,
1357 world );
1358 }
1359 else
1360 {
1361 player_walkgrid_stand_tri( p1,
1362 corners[edge->i1]->pos,
1363 corners[edge->o1]->pos,
1364 world );
1365 }
1366 }
1367 }
1368 }
1369 }
1370 }
1371 }
1372
1373 v3_copy( world, player.co );
1374 }
1375
1376 static void player_walkgrid_getsurface(void)
1377 {
1378 float const k_stepheight = 0.5f;
1379 float const k_miny = 0.6f;
1380 float const k_height = 1.78f;
1381 float const k_region_size = (float)WALKGRID_SIZE/2.0f * k_gridscale;
1382
1383 static struct walkgrid wg;
1384
1385 v3f cell;
1386 v3_copy( player.co, cell );
1387 player_walkgrid_floor( cell );
1388
1389 v3_muladds( cell, (v3f){-1.0f,-1.0f,-1.0f}, k_region_size, wg.region[0] );
1390 v3_muladds( cell, (v3f){ 1.0f, 1.0f, 1.0f}, k_region_size, wg.region[1] );
1391
1392
1393 /*
1394 * Create player input vector
1395 */
1396 v3f delta = {0.0f,0.0f,0.0f};
1397 v3f fwd = { -sinf(-player.angles[0]), 0.0f, -cosf(-player.angles[0]) },
1398 side = { -fwd[2], 0.0f, fwd[0] };
1399
1400 /* Temp */
1401 if( !vg_console_enabled() )
1402 {
1403 if( glfwGetKey( vg_window, GLFW_KEY_W ) )
1404 v3_muladds( delta, fwd, ktimestep*k_walkspeed, delta );
1405 if( glfwGetKey( vg_window, GLFW_KEY_S ) )
1406 v3_muladds( delta, fwd, -ktimestep*k_walkspeed, delta );
1407
1408 if( glfwGetKey( vg_window, GLFW_KEY_A ) )
1409 v3_muladds( delta, side, -ktimestep*k_walkspeed, delta );
1410 if( glfwGetKey( vg_window, GLFW_KEY_D ) )
1411 v3_muladds( delta, side, ktimestep*k_walkspeed, delta );
1412 }
1413
1414 /*
1415 * Create our move in grid space
1416 */
1417 wg.dir[0] = delta[0] * (1.0f/k_gridscale);
1418 wg.dir[1] = delta[2] * (1.0f/k_gridscale);
1419 wg.move = 1.0f;
1420
1421 v2f region_pos =
1422 {
1423 (player.co[0] - wg.region[0][0]) * (1.0f/k_gridscale),
1424 (player.co[2] - wg.region[0][2]) * (1.0f/k_gridscale)
1425 };
1426 v2f region_cell_pos;
1427 v2_floor( region_pos, region_cell_pos );
1428 v2_sub( region_pos, region_cell_pos, wg.pos );
1429
1430 wg.cell_id[0] = region_cell_pos[0];
1431 wg.cell_id[1] = region_cell_pos[1];
1432
1433
1434 #if 0
1435 /* Get surface samples
1436 *
1437 * TODO: Replace this with a spiral starting from the player position
1438 */
1439 for( int y=0; y<WALKGRID_SIZE; y++ )
1440 {
1441 for( int x=0; x<WALKGRID_SIZE; x++ )
1442 {
1443 struct grid_sample *s = &wg.samples[y][x];
1444 v3_muladds( wg.region[0], (v3f){ x, 0, y }, k_gridscale, s->pos );
1445 s->pos[1] = cell[1];
1446 player_walkgrid_samplepole( s );
1447 }
1448 }
1449
1450 /*
1451 * Calculate h+v clipping distances.
1452 * Distances are stored in A always, so you know that if the sample is
1453 * invalid, this signifies the start of the manifold as opposed to the
1454 * extent or bounds of it.
1455 */
1456 for( int i=0; i<2; i++ )
1457 {
1458 for( int x=0; x<WALKGRID_SIZE; x++ )
1459 {
1460 for( int z=0; z<WALKGRID_SIZE-1; z++ )
1461 {
1462 struct grid_sample *sa, *sb;
1463 if( i == 1 )
1464 {
1465 sa = &wg.samples[z][x];
1466 sb = &wg.samples[z+1][x];
1467 }
1468 else
1469 {
1470 sa = &wg.samples[x][z];
1471 sb = &wg.samples[x][z+1];
1472 }
1473
1474 player_walkgrid_clip( sa, sb, i );
1475
1476 if( sa->type == k_sample_type_valid &&
1477 sb->type == k_sample_type_valid )
1478 vg_line( sa->pos, sb->pos, 0xffffffff );
1479 #if 0
1480 if( sa->valid != sb->valid )
1481 {
1482 clipdir[i*2] = (float)(sa->valid - sb->valid) * k_gridscale;
1483
1484 player_walkgrid_clip( sa->valid? sa->pos: sb->pos,
1485 clipdir, sa->clip[i] );
1486 }
1487 else
1488 {
1489 if( sa->valid )
1490 {
1491 vg_line( sa->pos, sb->pos, 0xffffffff );
1492 }
1493 }
1494 #endif
1495 }
1496 }
1497 }
1498 #endif
1499
1500 for(int y=0; y<WALKGRID_SIZE; y++ )
1501 {
1502 for(int x=0; x<WALKGRID_SIZE; x++ )
1503 {
1504 struct grid_sample *s = &wg.samples[y][x];
1505 v3_muladds( wg.region[0], (v3f){ x, 0, y }, k_gridscale, s->pos );
1506 s->state = k_traverse_none;
1507 s->type = k_sample_type_air;
1508 v3_zero( s->clip[0] );
1509 v3_zero( s->clip[1] );
1510 }
1511 }
1512
1513 v2i border[WALKGRID_SIZE*WALKGRID_SIZE];
1514 v2i *cborder = border;
1515 u32 border_length = 1;
1516
1517 struct grid_sample *base = NULL;
1518
1519 v2i starters[] = {{0,0},{1,1},{0,1},{1,0}};
1520
1521 for( int i=0;i<4;i++ )
1522 {
1523 v2i test;
1524 v2i_add( wg.cell_id, starters[i], test );
1525 v2i_copy( test, border[0] );
1526 base = &wg.samples[test[1]][test[0]];
1527
1528 base->pos[1] = cell[1];
1529 player_walkgrid_samplepole( base );
1530
1531 if( base->type == k_sample_type_valid )
1532 break;
1533 else
1534 base->type = k_sample_type_air;
1535 }
1536
1537 vg_line_pt3( base->pos, 0.1f, 0xffffffff );
1538
1539 int iter = 0;
1540
1541 while( border_length )
1542 {
1543 v2i directions[] = {{1,0},{0,1},{-1,0},{0,-1}};
1544
1545 v2i *old_border = cborder;
1546 int len = border_length;
1547
1548 border_length = 0;
1549 cborder = old_border+len;
1550
1551 for( int i=0; i<len; i++ )
1552 {
1553 v2i co;
1554 v2i_copy( old_border[i], co );
1555 struct grid_sample *sa = &wg.samples[co[1]][co[0]];
1556
1557 for( int j=0; j<4; j++ )
1558 {
1559 v2i newp;
1560 v2i_add( co, directions[j], newp );
1561
1562 if( newp[0] < 0 || newp[1] < 0 ||
1563 newp[0] == WALKGRID_SIZE || newp[1] == WALKGRID_SIZE )
1564 continue;
1565
1566 struct grid_sample *sb = &wg.samples[newp[1]][newp[0]];
1567 enum traverse_state thismove = j%2==0? 1: 2;
1568
1569 if( (sb->state & thismove) == 0x00 ||
1570 sb->type == k_sample_type_air )
1571 {
1572 sb->pos[1] = sa->pos[1];
1573
1574 player_walkgrid_samplepole( sb );
1575
1576 if( sb->type != k_sample_type_air )
1577 {
1578 /*
1579 * Need to do a blocker pass
1580 */
1581
1582 struct grid_sample *store = (j>>1 == 0)? sa: sb;
1583 player_walkgrid_clip_blocker( sa, sb, store, j%2 );
1584
1585
1586 if( sb->type != k_sample_type_air )
1587 {
1588 vg_line( sa->pos, sb->pos, 0xffffffff );
1589
1590 if( sb->state == k_traverse_none )
1591 v2i_copy( newp, cborder[ border_length ++ ] );
1592 }
1593 else
1594 {
1595 v3f p1;
1596 v3_muladds( sa->pos, store->clip[j%2], k_gridscale, p1 );
1597 vg_line( sa->pos, p1, 0xffffffff );
1598 }
1599 }
1600 else
1601 {
1602 /*
1603 * A clipping pass is now done on the edge of the walkable
1604 * surface
1605 */
1606
1607 struct grid_sample *store = (j>>1 == 0)? sa: sb;
1608 player_walkgrid_clip_edge( sa, sb, store, j%2 );
1609
1610 v3f p1;
1611 v3_muladds( sa->pos, store->clip[j%2], k_gridscale, p1 );
1612 vg_line( sa->pos, p1, 0xffffffff );
1613 }
1614
1615 sb->state |= thismove;
1616 }
1617 }
1618
1619 sa->state = k_traverse_h|k_traverse_v;
1620 }
1621
1622 iter ++;
1623 if( iter == walk_grid_iterations )
1624 break;
1625 }
1626
1627 #if 0
1628 player.co[0] += wg.dir[0];
1629 player.co[2] += wg.dir[1];
1630 #endif
1631
1632
1633
1634 /* Draw connections */
1635 struct grid_sample *corners[4];
1636 for( int x=0; x<WALKGRID_SIZE-1; x++ )
1637 {
1638 for( int z=0; z<WALKGRID_SIZE-1; z++ )
1639 {
1640 const struct conf *conf =
1641 player_walkgrid_conf( &wg, (v2i){x,z}, corners );
1642
1643 for( int i=0; i<conf->edge_count; i++ )
1644 {
1645 const struct confedge *edge = &conf->edges[i];
1646
1647 v3f p0, p1;
1648 v3_muladds( corners[edge->i0]->pos,
1649 corners[edge->d0]->clip[edge->a0], k_gridscale, p0 );
1650 v3_muladds( corners[edge->i1]->pos,
1651 corners[edge->d1]->clip[edge->a1], k_gridscale, p1 );
1652
1653 vg_line( p0, p1, 0xff0000ff );
1654 }
1655 }
1656 }
1657
1658 /*
1659 * Commit player movement into the grid
1660 */
1661
1662 if( v3_length2(delta) <= 0.00001f )
1663 return;
1664
1665 int i=0;
1666 for(; i<8 && wg.move > 0.001f; i++ )
1667 player_walkgrid_iter( &wg, i );
1668
1669 player_walkgrid_stand_cell( &wg );
1670 }
1671
1672 static void player_walkgrid(void)
1673 {
1674 player_walkgrid_getsurface();
1675
1676 m4x3_mulv( player.to_world, (v3f){0.0f,1.8f,0.0f}, player.camera_pos );
1677 player_mouseview();
1678 player_transform_update();
1679 }
1680
1681 static void player_animate(void)
1682 {
1683 /* Camera position */
1684 v3_sub( player.v, player.v_last, player.a );
1685 v3_copy( player.v, player.v_last );
1686
1687 v3_add( player.m, player.a, player.m );
1688 v3_lerp( player.m, (v3f){0.0f,0.0f,0.0f}, 0.1f, player.m );
1689 v3f target;
1690
1691 player.m[0] = vg_clampf( player.m[0], -2.0f, 2.0f );
1692 player.m[1] = vg_clampf( player.m[1], -0.2f, 5.0f );
1693 player.m[2] = vg_clampf( player.m[2], -2.0f, 2.0f );
1694 v3_copy( player.m, target );
1695 v3_lerp( player.bob, target, 0.2f, player.bob );
1696
1697 /* Head */
1698 float lslip = fabsf(player.slip); //vg_minf( 0.4f, slip );
1699
1700 float grabt = vg_get_axis( "grabr" )*0.5f+0.5f;
1701 player.grab = vg_lerpf( player.grab, grabt, 0.04f );
1702
1703 float kheight = 2.0f,
1704 kleg = 0.6f;
1705
1706 v3f head;
1707 head[0] = 0.0f;
1708 head[1] = (0.3f+cosf(lslip)*0.5f*(1.0f-player.grab*0.7f)) * kheight;
1709 head[2] = 0.0f;
1710
1711 v3f offset;
1712 m3x3_mulv( player.to_local, player.bob, offset );
1713
1714 offset[0] *= 0.3333f;
1715 offset[1] *= -0.25f;
1716 offset[2] *= 0.7f;
1717 v3_muladds( head, offset, 0.7f, head );
1718 head[1] = vg_clampf( head[1], 0.3f, kheight );
1719
1720 #if 0
1721 if( !freecam )
1722 {
1723 v3_copy( head, player.view );
1724 v3f camoffs = {-0.2f,-0.6f,0.00f};
1725 v3_add( player.view, camoffs, player.view );
1726 }
1727 #endif
1728
1729 /*
1730 * Animation blending
1731 * ===========================================
1732 */
1733
1734 static float fslide = 0.0f;
1735 static float fdirz = 0.0f;
1736 static float fdirx = 0.0f;
1737 static float fstand = 0.0f;
1738 static float ffly = 0.0f;
1739
1740 float speed = v3_length( player.v );
1741
1742 fstand = vg_lerpf(fstand, 1.0f-vg_clampf(speed*0.03f,0.0f,1.0f),0.1f);
1743 fslide = vg_lerpf(fslide, vg_clampf(lslip+fabsf(offset[0])*0.2f,
1744 0.0f,1.0f), 0.04f);
1745 fdirz = vg_lerpf(fdirz, player.reverse > 0.0f? 1.0f: 0.0f, 0.04f );
1746 fdirx = vg_lerpf(fdirx, player.slip < 0.0f? 1.0f: 0.0f, 0.04f );
1747 ffly = vg_lerpf(ffly, player.in_air? 1.0f: 0.0f, 0.04f );
1748
1749 character_pose_reset( &player.mdl );
1750
1751 float amt_air = ffly*ffly,
1752 amt_ground = 1.0f-amt_air,
1753 amt_std = (1.0f-fslide) * amt_ground,
1754 amt_stand = amt_std * fstand,
1755 amt_aero = amt_std * (1.0f-fstand),
1756 amt_slide = amt_ground * fslide;
1757
1758 character_final_pose( &player.mdl, offset, &pose_stand, amt_stand );
1759 character_final_pose( &player.mdl, offset, &pose_aero, amt_aero*fdirz );
1760 character_final_pose( &player.mdl, offset,
1761 &pose_aero_reverse, amt_aero * (1.0f-fdirz) );
1762 character_final_pose( &player.mdl, offset, &pose_slide, amt_slide*fdirx );
1763 character_final_pose( &player.mdl, offset,
1764 &pose_slide1, amt_slide*(1.0f-fdirx) );
1765
1766 character_final_pose( &player.mdl, (v3f){0.0f,0.0f,0.0f},
1767 &pose_fly, amt_air );
1768
1769 /* Camera position */
1770 v3_lerp( player.smooth_localcam, player.mdl.cam_pos, 0.08f,
1771 player.smooth_localcam );
1772 v3_muladds( player.smooth_localcam, offset, 0.7f, player.camera_pos );
1773 player.camera_pos[1] = vg_clampf( player.camera_pos[1], 0.3f, kheight );
1774 m4x3_mulv( player.to_world, player.camera_pos, player.camera_pos );
1775
1776 /*
1777 * Additive effects
1778 * ==========================
1779 */
1780 struct ik_basic *arm_l = &player.mdl.ik_arm_l,
1781 *arm_r = &player.mdl.ik_arm_r;
1782
1783 v3f localv;
1784 m3x3_mulv( player.to_local, player.v, localv );
1785 v3_muladds( arm_l->end, localv, -0.01f, arm_l->end );
1786 v3_muladds( arm_r->end, localv, -0.01f, arm_r->end );
1787
1788 /* New board transformation */
1789 v4f board_rotation; v3f board_location;
1790
1791 v4f rz, rx;
1792 q_axis_angle( rz, (v3f){ 0.0f, 0.0f, 1.0f }, player.board_xy[0] );
1793 q_axis_angle( rx, (v3f){ 1.0f, 0.0f, 0.0f }, player.board_xy[1] );
1794 q_mul( rx, rz, board_rotation );
1795
1796 v3f *mboard = player.mdl.matrices[k_chpart_board];// player.mboard;
1797 q_m3x3( board_rotation, mboard );
1798 m3x3_mulv( mboard, (v3f){ 0.0f, -0.5f, 0.0f }, board_location );
1799 v3_add( (v3f){0.0f,0.5f,0.0f}, board_location, board_location );
1800 v3_copy( board_location, mboard[3] );
1801
1802
1803 float wheel_r = offset[0]*-0.4f;
1804 v4f qwheel;
1805 q_axis_angle( qwheel, (v3f){0.0f,1.0f,0.0f}, wheel_r );
1806
1807 q_m3x3( qwheel, player.mdl.matrices[k_chpart_wb] );
1808
1809 m3x3_transpose( player.mdl.matrices[k_chpart_wb],
1810 player.mdl.matrices[k_chpart_wf] );
1811 v3_copy( player.mdl.offsets[k_chpart_wb],
1812 player.mdl.matrices[k_chpart_wb][3] );
1813 v3_copy( player.mdl.offsets[k_chpart_wf],
1814 player.mdl.matrices[k_chpart_wf][3] );
1815
1816 m4x3_mul( mboard, player.mdl.matrices[k_chpart_wb],
1817 player.mdl.matrices[k_chpart_wb] );
1818 m4x3_mul( mboard, player.mdl.matrices[k_chpart_wf],
1819 player.mdl.matrices[k_chpart_wf] );
1820
1821 m4x3_mulv( mboard, player.mdl.ik_leg_l.end, player.mdl.ik_leg_l.end );
1822 m4x3_mulv( mboard, player.mdl.ik_leg_r.end, player.mdl.ik_leg_r.end );
1823
1824
1825 v3_copy( player.mdl.ik_arm_l.end, player.handl_target );
1826 v3_copy( player.mdl.ik_arm_r.end, player.handr_target );
1827
1828 if( 1||player.in_air )
1829 {
1830 float tuck = player.board_xy[1],
1831 tuck_amt = fabsf( tuck ) * (1.0f-fabsf(player.board_xy[0]));
1832
1833 float crouch = player.grab*0.3f;
1834 v3_muladds( player.mdl.ik_body.base, (v3f){0.0f,-1.0f,0.0f},
1835 crouch, player.mdl.ik_body.base );
1836 v3_muladds( player.mdl.ik_body.end, (v3f){0.0f,-1.0f,0.0f},
1837 crouch*1.2f, player.mdl.ik_body.end );
1838
1839 if( tuck < 0.0f )
1840 {
1841 //foot_l *= 1.0f-tuck_amt*1.5f;
1842
1843 if( player.grab > 0.1f )
1844 {
1845 m4x3_mulv( mboard, (v3f){0.1f,0.14f,0.6f},
1846 player.handl_target );
1847 }
1848 }
1849 else
1850 {
1851 //foot_r *= 1.0f-tuck_amt*1.4f;
1852
1853 if( player.grab > 0.1f )
1854 {
1855 m4x3_mulv( mboard, (v3f){0.1f,0.14f,-0.6f},
1856 player.handr_target );
1857 }
1858 }
1859 }
1860
1861 v3_lerp( player.handl, player.handl_target, 0.1f, player.handl );
1862 v3_lerp( player.handr, player.handr_target, 0.1f, player.handr );
1863
1864 v3_copy( player.handl, player.mdl.ik_arm_l.end );
1865 v3_copy( player.handr, player.mdl.ik_arm_r.end );
1866
1867 /* Head rotation */
1868
1869 static float rhead = 0.0f;
1870 rhead = vg_lerpf( rhead,
1871 vg_clampf(atan2f( localv[2], -localv[0] ),-1.0f,1.0f), 0.04f );
1872 player.mdl.rhead = rhead;
1873 }
1874
1875 static void player_update(void)
1876 {
1877 if( vg_get_axis("grabl")>0.0f)
1878 reset_player(0,NULL);
1879
1880 if( freecam )
1881 {
1882 player_freecam();
1883 }
1884 else
1885 {
1886 if( player.is_dead )
1887 {
1888 character_ragdoll_iter( &player.mdl );
1889 character_debug_ragdoll( &player.mdl );
1890 }
1891 else
1892 {
1893 if( player.on_board )
1894 {
1895 player_do_motion();
1896 player_animate();
1897 }
1898 else
1899 {
1900 player_walkgrid();
1901 }
1902 }
1903 }
1904
1905 /* Update camera matrices */
1906 m4x3_identity( player.camera );
1907 m4x3_rotate_y( player.camera, -player.angles[0] );
1908 m4x3_rotate_x( player.camera, -0.33f -player.angles[1] );
1909 v3_copy( player.camera_pos, player.camera[3] );
1910 m4x3_invert_affine( player.camera, player.camera_inverse );
1911 }
1912
1913 static void draw_player(void)
1914 {
1915 /* Draw */
1916 m4x3_copy( player.to_world, player.mdl.mroot );
1917
1918 if( player.is_dead )
1919 character_mimic_ragdoll( &player.mdl );
1920 else
1921 character_eval( &player.mdl );
1922
1923 character_draw( &player.mdl, (player.is_dead|player.in_air)? 0.0f: 1.0f );
1924 }
1925
1926 #endif /* PLAYER_H */