9540d9ea5201f27a5a0757904ae72ad26fffb553
[carveJwlIkooP6JGAAIwe30JlM.git] / player.h
1 #ifndef PLAYER_H
2 #define PLAYER_H
3
4 #include "audio.h"
5 #include "common.h"
6 #include "character.h"
7 #include "bvh.h"
8
9 /*
10 * Constants
11 */
12
13 static float
14 k_walkspeed = 2.0f,
15 k_board_radius = 0.3f,
16 k_board_length = 0.55f,
17 k_board_allowance = 0.04f,
18 k_friction_lat = 8.68f,
19 k_friction_resistance = 0.02f,
20 k_max_push_speed = 16.0f,
21 k_push_accel = 5.0f,
22 k_push_cycle_rate = 8.0f,
23 k_steer_ground = 2.5f,
24 k_steer_air = 3.6f,
25 k_steer_air_lerp = 0.3f,
26 k_downforce = 5.0f;
27
28 static int freecam = 0;
29 static int walk_grid_iterations = 1;
30
31 static struct gplayer
32 {
33 /* Physics */
34 rigidbody rb;
35
36 v3f a, v_last, m, bob, vl;
37
38 /* Utility */
39 float vswitch, slip, slip_last,
40 reverse;
41
42 float iY; /* Yaw inertia */
43 int in_air, is_dead, on_board;
44
45 v2f board_xy;
46 float grab;
47 float pitch;
48
49 v3f land_target;
50 v3f land_target_log[22];
51 u32 land_target_colours[22];
52 int land_log_count;
53 m3x3f vr,vr_pstep;
54
55 struct character mdl;
56
57 v3f handl_target, handr_target,
58 handl, handr;
59
60 /* Camera */
61 float air_blend;
62
63 v3f camera_pos, smooth_localcam;
64 v2f angles;
65 m4x3f camera, camera_inverse;
66 }
67 player =
68 {
69 .on_board = 1,
70
71 .rb = { .type = k_rb_shape_capsule }
72 };
73
74 /*
75 * Player API
76 */
77
78
79 /*
80 * Free camera movement
81 */
82
83 static void player_mouseview(void)
84 {
85 if( gui_want_mouse() )
86 return;
87
88 static v2f mouse_last,
89 view_vel = { 0.0f, 0.0f };
90
91 if( vg_get_button_down( "primary" ) )
92 v2_copy( vg_mouse, mouse_last );
93
94 else if( vg_get_button( "primary" ) )
95 {
96 v2f delta;
97 v2_sub( vg_mouse, mouse_last, delta );
98 v2_copy( vg_mouse, mouse_last );
99
100 v2_muladds( view_vel, delta, 0.005f, view_vel );
101 }
102
103 v2_muladds( view_vel,
104 (v2f){ vg_get_axis("h1"), vg_get_axis("v1") },
105 0.05f, view_vel );
106 v2_muls( view_vel, 0.7f, view_vel );
107 v2_add( view_vel, player.angles, player.angles );
108 player.angles[1] = vg_clampf( player.angles[1], -VG_PIf*0.5f, VG_PIf*0.5f );
109 }
110
111 static void player_freecam(void)
112 {
113 player_mouseview();
114
115 float movespeed = 25.0f;
116 v3f lookdir = { 0.0f, 0.0f, -1.0f },
117 sidedir = { 1.0f, 0.0f, 0.0f };
118
119 m3x3_mulv( player.camera, lookdir, lookdir );
120 m3x3_mulv( player.camera, sidedir, sidedir );
121
122 static v3f move_vel = { 0.0f, 0.0f, 0.0f };
123 if( vg_get_button( "forward" ) )
124 v3_muladds( move_vel, lookdir, ktimestep * movespeed, move_vel );
125 if( vg_get_button( "back" ) )
126 v3_muladds( move_vel, lookdir, ktimestep *-movespeed, move_vel );
127 if( vg_get_button( "left" ) )
128 v3_muladds( move_vel, sidedir, ktimestep *-movespeed, move_vel );
129 if( vg_get_button( "right" ) )
130 v3_muladds( move_vel, sidedir, ktimestep * movespeed, move_vel );
131
132 v3_muls( move_vel, 0.7f, move_vel );
133 v3_add( move_vel, player.camera_pos, player.camera_pos );
134 }
135
136 /*
137 * Player Physics Implementation
138 */
139
140 static void apply_gravity( v3f vel, float const timestep )
141 {
142 v3f gravity = { 0.0f, -9.6f, 0.0f };
143 v3_muladds( vel, gravity, timestep, vel );
144 }
145
146 /*
147 * TODO: The angle bias should become greater when launching from a steeper
148 * angle and skewed towords more 'downwards' angles when launching from
149 * shallower trajectories
150 *
151 * it should also be tweaked by the controller left stick being pushed
152 * up or down
153 */
154 static void player_start_air(void)
155 {
156 if( player.in_air )
157 return;
158
159 player.in_air = 1;
160
161 float pstep = ktimestep*10.0f;
162
163 float best_velocity_mod = 0.0f,
164 best_velocity_delta = -9999.9f;
165
166 float k_bias = 0.97f;
167
168 v3f axis;
169 v3_cross( player.rb.up, player.rb.v, axis );
170 v3_normalize( axis );
171 player.land_log_count = 0;
172
173 m3x3_identity( player.vr );
174
175 for( int m=-3;m<=12; m++ )
176 {
177 float vmod = ((float)m / 15.0f)*0.09f;
178
179 v3f pco, pco1, pv;
180 v3_copy( player.rb.co, pco );
181 v3_muls( player.rb.v, k_bias, pv );
182
183 /*
184 * Try different 'rotations' of the velocity to find the best possible
185 * landing normal. This conserves magnitude at the expense of slightly
186 * unrealistic results
187 */
188
189 m3x3f vr;
190 v4f vr_q;
191
192 q_axis_angle( vr_q, axis, vmod );
193 q_m3x3( vr_q, vr );
194
195 m3x3_mulv( vr, pv, pv );
196 v3_muladds( pco, pv, pstep, pco );
197
198 for( int i=0; i<50; i++ )
199 {
200 v3_copy( pco, pco1 );
201 apply_gravity( pv, pstep );
202
203 m3x3_mulv( vr, pv, pv );
204 v3_muladds( pco, pv, pstep, pco );
205
206 ray_hit contact;
207 v3f vdir;
208
209 v3_sub( pco, pco1, vdir );
210 contact.dist = v3_length( vdir );
211 v3_divs( vdir, contact.dist, vdir);
212
213 if( ray_world( pco1, vdir, &contact ))
214 {
215 float land_delta = v3_dot( pv, contact.normal );
216 u32 scolour = (u8)(vg_minf(-land_delta * 2.0f, 255.0f));
217
218 /* Bias prediction towords ramps */
219 if( ray_hit_is_ramp( &contact ) )
220 {
221 land_delta *= 0.1f;
222 scolour |= 0x0000a000;
223 }
224
225 if( (land_delta < 0.0f) && (land_delta > best_velocity_delta) )
226 {
227 best_velocity_delta = land_delta;
228 best_velocity_mod = vmod;
229
230 v3_copy( contact.pos, player.land_target );
231
232 m3x3_copy( vr, player.vr_pstep );
233 q_axis_angle( vr_q, axis, vmod*0.1f );
234 q_m3x3( vr_q, player.vr );
235 }
236
237 v3_copy( contact.pos,
238 player.land_target_log[player.land_log_count] );
239 player.land_target_colours[player.land_log_count] =
240 0xff000000 | scolour;
241
242 player.land_log_count ++;
243
244 break;
245 }
246 }
247 }
248 }
249
250 static void draw_cross(v3f pos,u32 colour, float scale)
251 {
252 v3f p0, p1;
253 v3_add( (v3f){ scale,0.0f,0.0f}, pos, p0 );
254 v3_add( (v3f){-scale,0.0f,0.0f}, pos, p1 );
255 vg_line( p0, p1, colour );
256 v3_add( (v3f){0.0f, scale,0.0f}, pos, p0 );
257 v3_add( (v3f){0.0f,-scale,0.0f}, pos, p1 );
258 vg_line( p0, p1, colour );
259 v3_add( (v3f){0.0f,0.0f, scale}, pos, p0 );
260 v3_add( (v3f){0.0f,0.0f,-scale}, pos, p1 );
261 vg_line( p0, p1, colour );
262 }
263
264 static void player_physics_control(void)
265 {
266 /*
267 * Computing localized friction forces for controlling the character
268 * Friction across X is significantly more than Z
269 */
270
271 v3f vel;
272 m3x3_mulv( player.rb.to_local, player.rb.v, vel );
273 float slip = 0.0f;
274
275 if( fabsf(vel[2]) > 0.01f )
276 slip = fabsf(-vel[0] / vel[2]) * vg_signf(vel[0]);
277
278 if( fabsf( slip ) > 1.2f )
279 slip = vg_signf( slip ) * 1.2f;
280 player.slip = slip;
281 player.reverse = -vg_signf(vel[2]);
282
283 float substep = ktimestep * 0.2f;
284 float fwd_resistance = (vg_get_button( "break" )? 5.0f: 0.02f) * -substep;
285
286 for( int i=0; i<5; i++ )
287 {
288 vel[2] = stable_force( vel[2], vg_signf( vel[2] ) * fwd_resistance );
289 vel[0] = stable_force( vel[0], vg_signf( vel[0] ) * -8.78f *substep );
290 }
291
292 static double start_push = 0.0;
293 if( vg_get_button_down( "push" ) )
294 start_push = vg_time;
295
296 if( !vg_get_button("break") && vg_get_button( "push" ) )
297 {
298 float cycle_time = (vg_time-start_push)*k_push_cycle_rate,
299 amt = k_push_accel * (sinf(cycle_time)*0.5f+0.5f)*ktimestep,
300 current = v3_length( vel ),
301 new_vel = vg_minf( current + amt, k_max_push_speed );
302 new_vel -= vg_minf(current, k_max_push_speed);
303 vel[2] -= new_vel * player.reverse;
304 }
305
306 m3x3_mulv( player.rb.to_world, vel, player.rb.v );
307
308 float steer = vg_get_axis( "horizontal" );
309 player.iY -= vg_signf(steer)*powf(steer,2.0f) * k_steer_ground * ktimestep;
310
311 v2_lerp( player.board_xy, (v2f){ slip*0.25f, 0.0f },
312 ktimestep*5.0f, player.board_xy);
313 }
314
315 static void player_physics_control_air(void)
316 {
317 m3x3_mulv( player.vr, player.rb.v, player.rb.v );
318 draw_cross( player.land_target, 0xff0000ff, 0.25f );
319
320 ray_hit hit;
321
322 /*
323 * Prediction
324 */
325 float pstep = ktimestep*10.0f;
326
327 v3f pco, pco1, pv;
328 v3_copy( player.rb.co, pco );
329 v3_copy( player.rb.v, pv );
330
331 float time_to_impact = 0.0f;
332 float limiter = 1.0f;
333
334 for( int i=0; i<50; i++ )
335 {
336 v3_copy( pco, pco1 );
337 m3x3_mulv( player.vr_pstep, pv, pv );
338 apply_gravity( pv, pstep );
339 v3_muladds( pco, pv, pstep, pco );
340
341 //vg_line( pco, pco1, i&0x1?0xff000000:0xffffffff );
342
343 ray_hit contact;
344 v3f vdir;
345
346 v3_sub( pco, pco1, vdir );
347 contact.dist = v3_length( vdir );
348 v3_divs( vdir, contact.dist, vdir);
349
350 float orig_dist = contact.dist;
351 if( ray_world( pco1, vdir, &contact ))
352 {
353 float angle = v3_dot( player.rb.up, contact.normal );
354 v3f axis;
355 v3_cross( player.rb.up, contact.normal, axis );
356
357 time_to_impact += (contact.dist/orig_dist)*pstep;
358 limiter = vg_minf( 5.0f, time_to_impact )/5.0f;
359 limiter = 1.0f-limiter;
360 limiter *= limiter;
361 limiter = 1.0f-limiter;
362
363 if( angle < 0.99f )
364 {
365 v4f correction;
366 q_axis_angle( correction, axis, acosf(angle)*0.05f*(1.0f-limiter) );
367 q_mul( correction, player.rb.q, player.rb.q );
368 }
369
370 draw_cross( contact.pos, 0xffff0000, 0.25f );
371 break;
372 }
373 time_to_impact += pstep;
374 }
375
376 player.iY -= vg_get_axis( "horizontal" ) * k_steer_air * ktimestep;
377 {
378 float iX = vg_get_axis( "vertical" ) *
379 player.reverse * k_steer_air * limiter * ktimestep;
380
381 static float siX = 0.0f;
382 siX = vg_lerpf( siX, iX, k_steer_air_lerp );
383
384 v4f rotate;
385 q_axis_angle( rotate, player.rb.right, siX );
386 q_mul( rotate, player.rb.q, player.rb.q );
387 }
388
389 v2f target = {0.0f,0.0f};
390 v2_muladds( target, (v2f){ vg_get_axis("h1"), vg_get_axis("v1") },
391 player.grab, target );
392 v2_lerp( player.board_xy, target, ktimestep*3.0f, player.board_xy );
393 }
394
395 static void player_physics(void)
396 {
397 /*
398 * Player physics uses a customized routine seperate from the main
399 * rigidbody implementation. It requires some non-standard impulse
400 * responses being applied for example limiting the effect on certain axises
401 * ( especially for angular velocity )
402 *
403 * The capsule collider is also at a different angle to the players roation.
404 */
405
406 m4x3f mboard;
407 v3_copy( player.rb.to_world[0], mboard[0] );
408 v3_copy( player.rb.to_world[2], mboard[1] );
409 v3_copy( player.rb.to_world[1], mboard[2] );
410 m4x3_mulv( player.rb.to_world, (v3f){ 0.0f, 0.3f, 0.0f }, mboard[3] );
411
412 debug_capsule( mboard, k_board_length*2.0f, k_board_radius, 0xff0000ff );
413
414 boxf region = {{ -k_board_radius, -k_board_length, -k_board_radius },
415 { k_board_radius, k_board_length, k_board_radius }};
416 m4x3_transform_aabb( mboard, region );
417
418 u32 geo[256];
419 v3f tri[3];
420 int len = bh_select( &world.geo.bhtris, region, geo, 256 );
421
422 v3f poles[2];
423 m4x3_mulv(mboard, (v3f){0.0f,-k_board_length+k_board_radius,0.0f}, poles[0]);
424 m4x3_mulv(mboard, (v3f){0.0f, k_board_length-k_board_radius,0.0f}, poles[1]);
425
426 struct contact manifold[12];
427 int manifold_count = 0;
428
429 v3f surface_avg = {0.0f, 0.0f, 0.0f};
430
431 for( int i=0; i<len; i++ )
432 {
433 u32 *ptri = &world.geo.indices[ geo[i]*3 ];
434
435 for( int j=0; j<3; j++ )
436 v3_copy( world.geo.verts[ptri[j]].co, tri[j] );
437
438 vg_line(tri[0],tri[1],0xff00ff00 );
439 vg_line(tri[1],tri[2],0xff00ff00 );
440 vg_line(tri[2],tri[0],0xff00ff00 );
441
442 v3f co, norm;
443 float p;
444
445 for( int j=0; j<2; j++ )
446 {
447 if( sphere_vs_triangle( poles[j], k_board_radius, tri,co,norm,&p) )
448 {
449 if(manifold_count >= vg_list_size(manifold))
450 {
451 vg_error("Manifold overflow!\n");
452 break;
453 }
454
455 v3f p1;
456 v3_muladds( poles[j], norm, p, p1 );
457 vg_line( poles[j], p1, 0xffffffff );
458
459 struct contact *ct = &manifold[manifold_count ++];
460 v3_sub( co, player.rb.co, ct->delta );
461 v3_copy( co, ct->co );
462 v3_copy( norm, ct->n );
463
464 ct->bias = -0.2f*k_rb_rate*vg_minf(0.0f,-p+k_board_allowance);
465 ct->norm_impulse = 0.0f;
466
467 v3_add( norm, surface_avg, surface_avg );
468 }
469 }
470 }
471
472 if( !manifold_count )
473 {
474 player_start_air();
475 }
476 else
477 {
478 v3_normalize( surface_avg );
479
480 if( v3_dot( player.rb.v, surface_avg ) > 0.5f )
481 {
482 player_start_air();
483 }
484 else
485 player.in_air = 0;
486 }
487
488 for( int j=0; j<5; j++ )
489 {
490 for( int i=0; i<manifold_count; i++ )
491 {
492 struct contact *ct = &manifold[i];
493
494 v3f dv;
495 v3_cross( player.rb.w, ct->delta, dv );
496 v3_add( player.rb.v, dv, dv );
497
498 float vn = -v3_dot( dv, ct->n );
499 vn += ct->bias;
500
501 float temp = ct->norm_impulse;
502 ct->norm_impulse = vg_maxf( temp + vn, 0.0f );
503 vn = ct->norm_impulse - temp;
504
505 v3f impulse;
506
507 v3_muls( ct->n, vn, impulse );
508
509 if( fabsf(v3_dot( impulse, player.rb.forward )) > 10.0f ||
510 fabsf(v3_dot( impulse, player.rb.up )) > 50.0f )
511 {
512 player.is_dead = 1;
513 character_ragdoll_copypose( &player.mdl, player.rb.v );
514 return;
515 }
516
517 v3_add( impulse, player.rb.v, player.rb.v );
518 v3_cross( ct->delta, impulse, impulse );
519
520 /*
521 * W Impulses are limited to the Y and X axises, we don't really want
522 * roll angular velocities being included.
523 *
524 * Can also tweak the resistance of each axis here by scaling the wx,wy
525 * components.
526 */
527
528 float wy = v3_dot( player.rb.up, impulse ),
529 wx = v3_dot( player.rb.right, impulse )*1.5f;
530
531 v3_muladds( player.rb.w, player.rb.up, wy, player.rb.w );
532 v3_muladds( player.rb.w, player.rb.right, wx, player.rb.w );
533 }
534 }
535
536 if( !player.in_air )
537 {
538 v3f axis;
539 float angle = v3_dot( player.rb.up, surface_avg );
540 v3_cross( player.rb.up, surface_avg, axis );
541
542 float cz = v3_dot( player.rb.forward, axis );
543 v3_muls( player.rb.forward, cz, axis );
544
545 if( angle < 0.999f )
546 {
547 v4f correction;
548 q_axis_angle( correction, axis, acosf(angle)*0.3f );
549 q_mul( correction, player.rb.q, player.rb.q );
550 }
551
552 v3_muladds( player.rb.v, player.rb.up,
553 -k_downforce*ktimestep, player.rb.v );
554 player_physics_control();
555 }
556 else
557 {
558 player_physics_control_air();
559 }
560 }
561
562 static void player_do_motion(void)
563 {
564 float horizontal = vg_get_axis("horizontal"),
565 vertical = vg_get_axis("vertical");
566
567 player_physics();
568
569 /* Integrate velocity */
570 v3f prevco;
571 v3_copy( player.rb.co, prevco );
572
573 apply_gravity( player.rb.v, ktimestep );
574 v3_muladds( player.rb.co, player.rb.v, ktimestep, player.rb.co );
575
576 /* Real angular velocity integration */
577 v3_lerp( player.rb.w, (v3f){0.0f,0.0f,0.0f}, 0.125f, player.rb.w );
578 if( v3_length2( player.rb.w ) > 0.0f )
579 {
580 v4f rotation;
581 v3f axis;
582 v3_copy( player.rb.w, axis );
583
584 float mag = v3_length( axis );
585 v3_divs( axis, mag, axis );
586 q_axis_angle( rotation, axis, mag*k_rb_delta );
587 q_mul( rotation, player.rb.q, player.rb.q );
588 }
589
590 /* Faux angular velocity */
591 v4f rotate;
592
593 static float siY = 0.0f;
594 float lerpq = player.in_air? 0.04f: 0.3f;
595 siY = vg_lerpf( siY, player.iY, lerpq );
596
597 q_axis_angle( rotate, player.rb.up, siY );
598 q_mul( rotate, player.rb.q, player.rb.q );
599 player.iY = 0.0f;
600
601 /*
602 * Gate intersection, by tracing a line over the gate planes
603 */
604 for( int i=0; i<world.gate_count; i++ )
605 {
606 teleport_gate *gate = &world.gates[i];
607
608 if( gate_intersect( gate, player.rb.co, prevco ) )
609 {
610 m4x3_mulv( gate->transport, player.rb.co, player.rb.co );
611 m3x3_mulv( gate->transport, player.rb.v, player.rb.v );
612 m3x3_mulv( gate->transport, player.vl, player.vl );
613 m3x3_mulv( gate->transport, player.v_last, player.v_last );
614 m3x3_mulv( gate->transport, player.m, player.m );
615 m3x3_mulv( gate->transport, player.bob, player.bob );
616
617 v4f transport_rotation;
618 m3x3_q( gate->transport, transport_rotation );
619 q_mul( transport_rotation, player.rb.q, player.rb.q );
620
621 break;
622 }
623 }
624
625 rb_update_transform( &player.rb );
626 }
627
628 /*
629 * Walkgrid implementation,
630 * loosely based of cmuratoris youtube video 'Killing the Walkmonster'
631 */
632
633 #define WALKGRID_SIZE 16
634 struct walkgrid
635 {
636 struct grid_sample
637 {
638 enum sample_type
639 {
640 k_sample_type_air, /* Nothing was hit. */
641 k_sample_type_invalid, /* The point is invalid, but there is a sample
642 underneath that can be used */
643 k_sample_type_valid, /* This point is good */
644 }
645 type;
646
647 v3f clip[2];
648 v3f pos;
649
650 enum traverse_state
651 {
652 k_traverse_none = 0x00,
653 k_traverse_h = 0x01,
654 k_traverse_v = 0x02
655 }
656 state;
657 }
658 samples[WALKGRID_SIZE][WALKGRID_SIZE];
659
660 boxf region;
661
662 float move; /* Current amount of movement we have left to apply */
663 v2f dir; /* The movement delta */
664 v2i cell_id;/* Current cell */
665 v2f pos; /* Local position (in cell) */
666 float h;
667 };
668
669 static int player_walkgrid_tri_walkable( u32 tri[3] )
670 {
671 return tri[0] > world.sm_geo_std_oob.vertex_count;
672 }
673
674 /*
675 * Get a sample at this pole location, will return 1 if the sample is valid,
676 * and pos will be updated to be the intersection location.
677 */
678 static void player_walkgrid_samplepole( struct grid_sample *s )
679 {
680 boxf region = {{ s->pos[0] -0.01f, s->pos[1] - 4.0f, s->pos[2] -0.01f},
681 { s->pos[0] +0.01f, s->pos[1] + 4.0f, s->pos[2] +0.01f}};
682
683 u32 geo[256];
684 v3f tri[3];
685 int len = bh_select( &world.geo.bhtris, region, geo, 256 );
686
687 const float k_minworld_y = -2000.0f;
688
689 float walk_height = k_minworld_y,
690 block_height = k_minworld_y;
691
692 s->type = k_sample_type_air;
693
694 for( int i=0; i<len; i++ )
695 {
696 u32 *ptri = &world.geo.indices[ geo[i]*3 ];
697
698 for( int j=0; j<3; j++ )
699 v3_copy( world.geo.verts[ptri[j]].co, tri[j] );
700
701 v3f vdown = {0.0f,-1.0f,0.0f};
702 v3f sample_from;
703 v3_copy( s->pos, sample_from );
704 sample_from[1] = region[1][1];
705
706 float dist;
707 if( ray_tri( tri, sample_from, vdown, &dist ))
708 {
709 v3f p0;
710 v3_muladds( sample_from, vdown, dist, p0 );
711
712 if( player_walkgrid_tri_walkable(ptri) )
713 {
714 if( p0[1] > walk_height )
715 {
716 walk_height = p0[1];
717 }
718 }
719 else
720 {
721 if( p0[1] > block_height )
722 block_height = p0[1];
723 }
724 }
725 }
726
727 s->pos[1] = walk_height;
728
729 if( walk_height > k_minworld_y )
730 if( block_height > walk_height )
731 s->type = k_sample_type_invalid;
732 else
733 s->type = k_sample_type_valid;
734 else
735 s->type = k_sample_type_air;
736 }
737
738 float const k_gridscale = 0.5f;
739
740 enum eclipdir
741 {
742 k_eclipdir_h = 0,
743 k_eclipdir_v = 1
744 };
745
746 static void player_walkgrid_clip_blocker( struct grid_sample *sa,
747 struct grid_sample *sb,
748 struct grid_sample *st,
749 enum eclipdir dir )
750 {
751 v3f clipdir, pos;
752 int valid_a = sa->type == k_sample_type_valid,
753 valid_b = sb->type == k_sample_type_valid;
754 struct grid_sample *target = valid_a? sa: sb,
755 *other = valid_a? sb: sa;
756 v3_copy( target->pos, pos );
757 v3_sub( other->pos, target->pos, clipdir );
758
759 boxf cell_region;
760 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, -k_gridscale*2.1f, cell_region[0]);
761 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, k_gridscale*2.1f, cell_region[1]);
762
763 u32 geo[256];
764 v3f tri[3];
765 int len = bh_select( &world.geo.bhtris, cell_region, geo, 256 );
766
767 float start_time = v3_length( clipdir ),
768 min_time = start_time;
769 v3_normalize( clipdir );
770 v3_muls( clipdir, 0.0001f, st->clip[dir] );
771
772 for( int i=0; i<len; i++ )
773 {
774 u32 *ptri = &world.geo.indices[ geo[i]*3 ];
775 for( int j=0; j<3; j++ )
776 v3_copy( world.geo.verts[ptri[j]].co, tri[j] );
777
778 if( player_walkgrid_tri_walkable(ptri) )
779 continue;
780
781 float dist;
782 if(ray_tri( tri, pos, clipdir, &dist ))
783 {
784 if( dist > 0.0f && dist < min_time )
785 {
786 min_time = dist;
787 sb->type = k_sample_type_air;
788 }
789 }
790 }
791
792 if( !(min_time < start_time) )
793 min_time = 0.5f * k_gridscale;
794
795 min_time = vg_clampf( min_time/k_gridscale, 0.01f, 0.99f );
796
797 v3_muls( clipdir, min_time, st->clip[dir] );
798
799 v3f p0;
800 v3_muladds( target->pos, st->clip[dir], k_gridscale, p0 );
801 }
802
803 static void player_walkgrid_clip_edge( struct grid_sample *sa,
804 struct grid_sample *sb,
805 struct grid_sample *st, /* data store */
806 enum eclipdir dir )
807 {
808 v3f clipdir = { 0.0f, 0.0f, 0.0f }, pos;
809 int valid_a = sa->type == k_sample_type_valid,
810 valid_b = sb->type == k_sample_type_valid;
811
812 struct grid_sample *target = valid_a? sa: sb,
813 *other = valid_a? sb: sa;
814
815 v3_sub( other->pos, target->pos, clipdir );
816 clipdir[1] = 0.0f;
817
818 v3_copy( target->pos, pos );
819
820 boxf cell_region;
821 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, -k_gridscale*1.1f, cell_region[0]);
822 v3_muladds( pos, (v3f){1.0f,1.0f,1.0f}, k_gridscale*1.1f, cell_region[1]);
823
824 u32 geo[256];
825 int len = bh_select( &world.geo.bhtris, cell_region, geo, 256 );
826
827 float max_dist = 0.0f;
828 v3f tri[3];
829 v3f perp;
830 v3_cross( clipdir,(v3f){0.0f,1.0f,0.0f},perp );
831 v3_muls( clipdir, 0.001f, st->clip[dir] );
832
833 for( int i=0; i<len; i++ )
834 {
835 u32 *ptri = &world.geo.indices[ geo[i]*3 ];
836 for( int j=0; j<3; j++ )
837 v3_copy( world.geo.verts[ptri[j]].co, tri[j] );
838
839 if( !player_walkgrid_tri_walkable(ptri) )
840 continue;
841
842 for( int k=0; k<3; k++ )
843 {
844 int ia = k,
845 ib = (k+1)%3;
846
847 v3f v0, v1;
848 v3_sub( tri[ia], pos, v0 );
849 v3_sub( tri[ib], pos, v1 );
850
851 if( (clipdir[2]*v0[0] - clipdir[0]*v0[2]) *
852 (clipdir[2]*v1[0] - clipdir[0]*v1[2]) < 0.0f )
853 {
854 float da = v3_dot(v0,perp),
855 db = v3_dot(v1,perp),
856 d = da-db,
857 qa = da/d;
858
859 v3f p0;
860 v3_muls( v1, qa, p0 );
861 v3_muladds( p0, v0, 1.0f-qa, p0 );
862
863 float h = v3_dot(p0,clipdir)/v3_dot(clipdir,clipdir);
864
865 if( h >= max_dist && h <= 1.0f )
866 {
867 max_dist = h;
868 float l = 1.0f/v3_length(clipdir);
869 v3_muls( p0, l, st->clip[dir] );
870 }
871 }
872 }
873 }
874 }
875
876 static const struct conf
877 {
878 struct confedge
879 {
880 /* i: sample index
881 * d: data index
882 * a: axis index
883 * o: the 'other' point to do a A/B test with
884 * if its -1, all AB is done.
885 */
886 int i0, i1,
887 d0, d1,
888 a0, a1,
889 o0, o1;
890 }
891 edges[2];
892 int edge_count;
893 }
894 k_walkgrid_configs[16] = {
895 {{},0},
896 {{{ 3,3, 3,0, 1,0, -1,-1 }}, 1},
897 {{{ 2,2, 1,3, 0,1, -1,-1 }}, 1},
898 {{{ 2,3, 1,0, 0,0, 3,-1 }}, 1},
899
900 {{{ 1,1, 0,1, 1,0, -1,-1 }}, 1},
901 {{{ 3,3, 3,0, 1,0, -1,-1 },
902 { 1,1, 0,1, 1,0, -1,-1 }}, 2},
903 {{{ 1,2, 0,3, 1,1, 2,-1 }}, 1},
904 {{{ 1,3, 0,0, 1,0, 2, 2 }}, 1},
905
906 {{{ 0,0, 0,0, 0,1, -1,-1 }}, 1},
907 {{{ 3,0, 3,0, 1,1, 0,-1 }}, 1},
908 {{{ 2,2, 1,3, 0,1, -1,-1 },
909 { 0,0, 0,0, 0,1, -1,-1 }}, 2},
910 {{{ 2,0, 1,0, 0,1, 3, 3 }}, 1},
911
912 {{{ 0,1, 0,1, 0,0, 1,-1 }}, 1},
913 {{{ 3,1, 3,1, 1,0, 0, 0 }}, 1},
914 {{{ 0,2, 0,3, 0,1, 1, 1 }}, 1},
915 {{},0},
916 };
917
918 /*
919 * Get a buffer of edges from cell location
920 */
921 static const struct conf *player_walkgrid_conf( struct walkgrid *wg,
922 v2i cell,
923 struct grid_sample *corners[4] )
924 {
925 corners[0] = &wg->samples[cell[1] ][cell[0] ];
926 corners[1] = &wg->samples[cell[1]+1][cell[0] ];
927 corners[2] = &wg->samples[cell[1]+1][cell[0]+1];
928 corners[3] = &wg->samples[cell[1] ][cell[0]+1];
929
930 u32 vd0 = corners[0]->type == k_sample_type_valid,
931 vd1 = corners[1]->type == k_sample_type_valid,
932 vd2 = corners[2]->type == k_sample_type_valid,
933 vd3 = corners[3]->type == k_sample_type_valid,
934 config = (vd0<<3) | (vd1<<2) | (vd2<<1) | vd3;
935
936 return &k_walkgrid_configs[ config ];
937 }
938
939 static void player_walkgrid_floor(v3f pos)
940 {
941 v3_muls( pos, 1.0f/k_gridscale, pos );
942 v3_floor( pos, pos );
943 v3_muls( pos, k_gridscale, pos );
944 }
945
946 /*
947 * Computes the barycentric coordinate of location on a triangle (vertical),
948 * then sets the Y position to the interpolation of the three points
949 */
950 static void player_walkgrid_stand_tri( v3f a, v3f b, v3f c, v3f pos )
951 {
952 v3f v0,v1,v2;
953 v3_sub( b, a, v0 );
954 v3_sub( c, a, v1 );
955 v3_sub( pos, a, v2 );
956
957 float d = v0[0]*v1[2] - v1[0]*v0[2],
958 v = (v2[0]*v1[2] - v1[0]*v2[2]) / d,
959 w = (v0[0]*v2[2] - v2[0]*v0[2]) / d,
960 u = 1.0f - v - w;
961
962 vg_line( pos, a, 0xffff0000 );
963 vg_line( pos, b, 0xff00ff00 );
964 vg_line( pos, c, 0xff0000ff );
965 pos[1] = u*a[1] + v*b[1] + w*c[1];
966 }
967
968 /*
969 * Get the minimum time value of pos+dir until a cell edge
970 *
971 * t[0] -> t[3] are the individual time values
972 * t[5] & t[6] are the maximum axis values
973 * t[6] is the minimum value
974 *
975 */
976 static void player_walkgrid_min_cell( float t[7], v2f pos, v2f dir )
977 {
978 v2f frac = { 1.0f/dir[0], 1.0f/dir[1] };
979
980 t[0] = 999.9f;
981 t[1] = 999.9f;
982 t[2] = 999.9f;
983 t[3] = 999.9f;
984
985 if( fabsf(dir[0]) > 0.0001f )
986 {
987 t[0] = (0.0f-pos[0]) * frac[0];
988 t[1] = (1.0f-pos[0]) * frac[0];
989 }
990 if( fabsf(dir[1]) > 0.0001f )
991 {
992 t[2] = (0.0f-pos[1]) * frac[1];
993 t[3] = (1.0f-pos[1]) * frac[1];
994 }
995
996 t[4] = vg_maxf(t[0],t[1]);
997 t[5] = vg_maxf(t[2],t[3]);
998 t[6] = vg_minf(t[4],t[5]);
999 }
1000
1001 static void player_walkgrid_iter(struct walkgrid *wg, int iter)
1002 {
1003
1004 /*
1005 * For each walkgrid iteration we are stepping through cells and determining
1006 * the intersections with the grid, and any edges that are present
1007 */
1008
1009 u32 icolours[] = { 0xffff00ff, 0xff00ffff, 0xffffff00 };
1010
1011 v3f pa, pb, pc, pd, pl0, pl1;
1012 pa[0] = wg->region[0][0] + (float)wg->cell_id[0] *k_gridscale;
1013 pa[1] = (wg->region[0][1] + wg->region[1][1]) * 0.5f + k_gridscale;
1014 pa[2] = wg->region[0][2] + (float)wg->cell_id[1] *k_gridscale;
1015 pb[0] = pa[0];
1016 pb[1] = pa[1];
1017 pb[2] = pa[2] + k_gridscale;
1018 pc[0] = pa[0] + k_gridscale;
1019 pc[1] = pa[1];
1020 pc[2] = pa[2] + k_gridscale;
1021 pd[0] = pa[0] + k_gridscale;
1022 pd[1] = pa[1];
1023 pd[2] = pa[2];
1024 #if 0
1025 /* if you want to draw the current cell */
1026 vg_line( pa, pb, 0xff00ffff );
1027 vg_line( pb, pc, 0xff00ffff );
1028 vg_line( pc, pd, 0xff00ffff );
1029 vg_line( pd, pa, 0xff00ffff );
1030 #endif
1031 pl0[0] = pa[0] + wg->pos[0]*k_gridscale;
1032 pl0[1] = pa[1];
1033 pl0[2] = pa[2] + wg->pos[1]*k_gridscale;
1034
1035 /*
1036 * If there are edges present, we need to create a 'substep' event, where
1037 * we find the intersection point, find the fully resolved position,
1038 * then the new pos dir is the intersection->resolution
1039 *
1040 * the resolution is applied in non-discretized space in order to create a
1041 * suitable vector for finding outflow, we want it to leave the cell so it
1042 * can be used by the quad
1043 */
1044
1045 v2f pos, dir;
1046 v2_copy( wg->pos, pos );
1047 v2_muls( wg->dir, wg->move, dir );
1048
1049 struct grid_sample *corners[4];
1050 v2f corners2d[4] = {{0.0f,0.0f},{0.0f,1.0f},{1.0f,1.0f},{1.0f,0.0f}};
1051 const struct conf *conf = player_walkgrid_conf( wg, wg->cell_id, corners );
1052
1053 float t[7];
1054 player_walkgrid_min_cell( t, pos, dir );
1055
1056 for( int i=0; i<conf->edge_count; i++ )
1057 {
1058 const struct confedge *edge = &conf->edges[i];
1059
1060 v2f e0, e1, n, r, target, res, tangent;
1061 e0[0] = corners2d[edge->i0][0] + corners[edge->d0]->clip[edge->a0][0];
1062 e0[1] = corners2d[edge->i0][1] + corners[edge->d0]->clip[edge->a0][2];
1063 e1[0] = corners2d[edge->i1][0] + corners[edge->d1]->clip[edge->a1][0];
1064 e1[1] = corners2d[edge->i1][1] + corners[edge->d1]->clip[edge->a1][2];
1065
1066 v3f pe0 = { pa[0] + e0[0]*k_gridscale,
1067 pa[1],
1068 pa[2] + e0[1]*k_gridscale };
1069 v3f pe1 = { pa[0] + e1[0]*k_gridscale,
1070 pa[1],
1071 pa[2] + e1[1]*k_gridscale };
1072
1073 v2_sub( e1, e0, tangent );
1074 n[0] = -tangent[1];
1075 n[1] = tangent[0];
1076 v2_normalize( n );
1077
1078 /*
1079 * If we find ourselfs already penetrating the edge, move back out a
1080 * little
1081 */
1082 v2_sub( e0, pos, r );
1083 float p1 = v2_dot(r,n);
1084
1085 if( -p1 < 0.0001f )
1086 {
1087 v2_muladds( pos, n, p1+0.0001f, pos );
1088 v2_copy( pos, wg->pos );
1089 v3f p_new = { pa[0] + pos[0]*k_gridscale,
1090 pa[1],
1091 pa[2] + pos[1]*k_gridscale };
1092 v3_copy( p_new, pl0 );
1093 }
1094
1095 v2_add( pos, dir, target );
1096
1097 v2f v1, v2, v3;
1098 v2_sub( e0, pos, v1 );
1099 v2_sub( target, pos, v2 );
1100
1101 v2_copy( n, v3 );
1102
1103 v2_sub( e0, target, r );
1104 float p = v2_dot(r,n),
1105 t1 = v2_dot(v1,v3)/v2_dot(v2,v3);
1106
1107 if( t1 < t[6] && t1 > 0.0f && -p < 0.001f )
1108 {
1109 v2_muladds( target, n, p+0.0001f, res );
1110
1111 v2f intersect;
1112 v2_muladds( pos, dir, t1, intersect );
1113 v2_copy( intersect, pos );
1114 v2_sub( res, intersect, dir );
1115
1116 v3f p_res = { pa[0] + res[0]*k_gridscale,
1117 pa[1],
1118 pa[2] + res[1]*k_gridscale };
1119 v3f p_int = { pa[0] + intersect[0]*k_gridscale,
1120 pa[1],
1121 pa[2] + intersect[1]*k_gridscale };
1122
1123 vg_line( pl0, p_int, icolours[iter%3] );
1124 v3_copy( p_int, pl0 );
1125 v2_copy( pos, wg->pos );
1126
1127 player_walkgrid_min_cell( t, pos, dir );
1128 }
1129 }
1130
1131 /*
1132 * Compute intersection with grid cell moving outwards
1133 */
1134 t[6] = vg_minf( t[6], 1.0f );
1135
1136 pl1[0] = pl0[0] + dir[0]*k_gridscale*t[6];
1137 pl1[1] = pl0[1];
1138 pl1[2] = pl0[2] + dir[1]*k_gridscale*t[6];
1139 vg_line( pl0, pl1, icolours[iter%3] );
1140
1141 if( t[6] < 1.0f )
1142 {
1143 /*
1144 * To figure out what t value created the clip so we know which edge
1145 * to wrap around
1146 */
1147
1148 if( t[4] < t[5] )
1149 {
1150 wg->pos[1] = pos[1] + dir[1]*t[6];
1151
1152 if( t[0] > t[1] ) /* left edge */
1153 {
1154 wg->pos[0] = 0.9999f;
1155 wg->cell_id[0] --;
1156
1157 if( wg->cell_id[0] == 0 )
1158 wg->move = -1.0f;
1159 }
1160 else /* Right edge */
1161 {
1162 wg->pos[0] = 0.0001f;
1163 wg->cell_id[0] ++;
1164
1165 if( wg->cell_id[0] == WALKGRID_SIZE-2 )
1166 wg->move = -1.0f;
1167 }
1168 }
1169 else
1170 {
1171 wg->pos[0] = pos[0] + dir[0]*t[6];
1172
1173 if( t[2] > t[3] ) /* bottom edge */
1174 {
1175 wg->pos[1] = 0.9999f;
1176 wg->cell_id[1] --;
1177
1178 if( wg->cell_id[1] == 0 )
1179 wg->move = -1.0f;
1180 }
1181 else /* top edge */
1182 {
1183 wg->pos[1] = 0.0001f;
1184 wg->cell_id[1] ++;
1185
1186 if( wg->cell_id[1] == WALKGRID_SIZE-2 )
1187 wg->move = -1.0f;
1188 }
1189 }
1190
1191 wg->move -= t[6];
1192 }
1193 else
1194 {
1195 v2_muladds( wg->pos, dir, wg->move, wg->pos );
1196 wg->move = 0.0f;
1197 }
1198 }
1199
1200 static void player_walkgrid_stand_cell(struct walkgrid *wg)
1201 {
1202 /*
1203 * NOTE: as opposed to the other function which is done in discretized space
1204 * this use a combination of both.
1205 */
1206
1207 v3f world;
1208 world[0] = wg->region[0][0]+((float)wg->cell_id[0]+wg->pos[0])*k_gridscale;
1209 world[1] = player.rb.co[1];
1210 world[2] = wg->region[0][2]+((float)wg->cell_id[1]+wg->pos[1])*k_gridscale;
1211
1212 struct grid_sample *corners[4];
1213 const struct conf *conf = player_walkgrid_conf( wg, wg->cell_id, corners );
1214
1215 if( conf != k_walkgrid_configs )
1216 {
1217 if( conf->edge_count == 0 )
1218 {
1219 v3f v0;
1220
1221 /* Split the basic quad along the shortest diagonal */
1222 if( fabsf(corners[2]->pos[1] - corners[0]->pos[1]) <
1223 fabsf(corners[3]->pos[1] - corners[1]->pos[1]) )
1224 {
1225 vg_line( corners[2]->pos, corners[0]->pos, 0xffaaaaaa );
1226
1227 if( wg->pos[0] > wg->pos[1] )
1228 player_walkgrid_stand_tri( corners[0]->pos,
1229 corners[3]->pos,
1230 corners[2]->pos, world );
1231 else
1232 player_walkgrid_stand_tri( corners[0]->pos,
1233 corners[2]->pos,
1234 corners[1]->pos, world );
1235 }
1236 else
1237 {
1238 vg_line( corners[3]->pos, corners[1]->pos, 0xffaaaaaa );
1239
1240 if( wg->pos[0] < 1.0f-wg->pos[1] )
1241 player_walkgrid_stand_tri( corners[0]->pos,
1242 corners[3]->pos,
1243 corners[1]->pos, world );
1244 else
1245 player_walkgrid_stand_tri( corners[3]->pos,
1246 corners[2]->pos,
1247 corners[1]->pos, world );
1248 }
1249 }
1250 else
1251 {
1252 for( int i=0; i<conf->edge_count; i++ )
1253 {
1254 const struct confedge *edge = &conf->edges[i];
1255
1256 v3f p0, p1;
1257 v3_muladds( corners[edge->i0]->pos,
1258 corners[edge->d0]->clip[edge->a0], k_gridscale, p0 );
1259 v3_muladds( corners[edge->i1]->pos,
1260 corners[edge->d1]->clip[edge->a1], k_gridscale, p1 );
1261
1262 /*
1263 * Find penetration distance between player position and the edge
1264 */
1265
1266 v2f normal = { -(p1[2]-p0[2]), p1[0]-p0[0] },
1267 rel = { world[0]-p0[0], world[2]-p0[2] };
1268
1269 if( edge->o0 == -1 )
1270 {
1271 /* No subregions (default case), just use triangle created by
1272 * i0, e0, e1 */
1273 player_walkgrid_stand_tri( corners[edge->i0]->pos,
1274 p0,
1275 p1, world );
1276 }
1277 else
1278 {
1279 /*
1280 * Test if we are in the first region, which is
1281 * edge.i0, edge.e0, edge.o0,
1282 */
1283 v3f v0, ref;
1284 v3_sub( p0, corners[edge->o0]->pos, ref );
1285 v3_sub( world, corners[edge->o0]->pos, v0 );
1286
1287 vg_line( corners[edge->o0]->pos, p0, 0xffffff00 );
1288 vg_line( corners[edge->o0]->pos, world, 0xff000000 );
1289
1290 if( ref[0]*v0[2] - ref[2]*v0[0] < 0.0f )
1291 {
1292 player_walkgrid_stand_tri( corners[edge->i0]->pos,
1293 p0,
1294 corners[edge->o0]->pos, world );
1295 }
1296 else
1297 {
1298 if( edge->o1 == -1 )
1299 {
1300 /*
1301 * No other edges mean we just need to use the opposite
1302 *
1303 * e0, e1, o0 (in our case, also i1)
1304 */
1305 player_walkgrid_stand_tri( p0,
1306 p1,
1307 corners[edge->o0]->pos, world );
1308 }
1309 else
1310 {
1311 /*
1312 * Note: this v0 calculation can be ommited with the
1313 * current tileset.
1314 *
1315 * the last two triangles we have are:
1316 * e0, e1, o1
1317 * and
1318 * e1, i1, o1
1319 */
1320 v3_sub( p1, corners[edge->o1]->pos, ref );
1321 v3_sub( world, corners[edge->o1]->pos, v0 );
1322 vg_line( corners[edge->o1]->pos, p1, 0xff00ffff );
1323
1324 if( ref[0]*v0[2] - ref[2]*v0[0] < 0.0f )
1325 {
1326 player_walkgrid_stand_tri( p0,
1327 p1,
1328 corners[edge->o1]->pos,
1329 world );
1330 }
1331 else
1332 {
1333 player_walkgrid_stand_tri( p1,
1334 corners[edge->i1]->pos,
1335 corners[edge->o1]->pos,
1336 world );
1337 }
1338 }
1339 }
1340 }
1341 }
1342 }
1343 }
1344
1345 v3_copy( world, player.rb.co );
1346 }
1347
1348 static void player_walkgrid_getsurface(void)
1349 {
1350 float const k_stepheight = 0.5f;
1351 float const k_miny = 0.6f;
1352 float const k_height = 1.78f;
1353 float const k_region_size = (float)WALKGRID_SIZE/2.0f * k_gridscale;
1354
1355 static struct walkgrid wg;
1356
1357 v3f cell;
1358 v3_copy( player.rb.co, cell );
1359 player_walkgrid_floor( cell );
1360
1361 v3_muladds( cell, (v3f){-1.0f,-1.0f,-1.0f}, k_region_size, wg.region[0] );
1362 v3_muladds( cell, (v3f){ 1.0f, 1.0f, 1.0f}, k_region_size, wg.region[1] );
1363
1364
1365 /*
1366 * Create player input vector
1367 */
1368 v3f delta = {0.0f,0.0f,0.0f};
1369 v3f fwd = { -sinf(-player.angles[0]), 0.0f, -cosf(-player.angles[0]) },
1370 side = { -fwd[2], 0.0f, fwd[0] };
1371
1372 /* Temp */
1373 if( !vg_console_enabled() )
1374 {
1375 if( glfwGetKey( vg_window, GLFW_KEY_W ) )
1376 v3_muladds( delta, fwd, ktimestep*k_walkspeed, delta );
1377 if( glfwGetKey( vg_window, GLFW_KEY_S ) )
1378 v3_muladds( delta, fwd, -ktimestep*k_walkspeed, delta );
1379
1380 if( glfwGetKey( vg_window, GLFW_KEY_A ) )
1381 v3_muladds( delta, side, -ktimestep*k_walkspeed, delta );
1382 if( glfwGetKey( vg_window, GLFW_KEY_D ) )
1383 v3_muladds( delta, side, ktimestep*k_walkspeed, delta );
1384
1385 v3_muladds( delta, fwd,
1386 vg_get_axis("vertical")*-ktimestep*k_walkspeed, delta );
1387 v3_muladds( delta, side,
1388 vg_get_axis("horizontal")*ktimestep*k_walkspeed, delta );
1389 }
1390
1391 /*
1392 * Create our move in grid space
1393 */
1394 wg.dir[0] = delta[0] * (1.0f/k_gridscale);
1395 wg.dir[1] = delta[2] * (1.0f/k_gridscale);
1396 wg.move = 1.0f;
1397
1398 v2f region_pos =
1399 {
1400 (player.rb.co[0] - wg.region[0][0]) * (1.0f/k_gridscale),
1401 (player.rb.co[2] - wg.region[0][2]) * (1.0f/k_gridscale)
1402 };
1403 v2f region_cell_pos;
1404 v2_floor( region_pos, region_cell_pos );
1405 v2_sub( region_pos, region_cell_pos, wg.pos );
1406
1407 wg.cell_id[0] = region_cell_pos[0];
1408 wg.cell_id[1] = region_cell_pos[1];
1409
1410 for(int y=0; y<WALKGRID_SIZE; y++ )
1411 {
1412 for(int x=0; x<WALKGRID_SIZE; x++ )
1413 {
1414 struct grid_sample *s = &wg.samples[y][x];
1415 v3_muladds( wg.region[0], (v3f){ x, 0, y }, k_gridscale, s->pos );
1416 s->state = k_traverse_none;
1417 s->type = k_sample_type_air;
1418 v3_zero( s->clip[0] );
1419 v3_zero( s->clip[1] );
1420 }
1421 }
1422
1423 v2i border[WALKGRID_SIZE*WALKGRID_SIZE];
1424 v2i *cborder = border;
1425 u32 border_length = 1;
1426
1427 struct grid_sample *base = NULL;
1428
1429 v2i starters[] = {{0,0},{1,1},{0,1},{1,0}};
1430
1431 for( int i=0;i<4;i++ )
1432 {
1433 v2i test;
1434 v2i_add( wg.cell_id, starters[i], test );
1435 v2i_copy( test, border[0] );
1436 base = &wg.samples[test[1]][test[0]];
1437
1438 base->pos[1] = cell[1];
1439 player_walkgrid_samplepole( base );
1440
1441 if( base->type == k_sample_type_valid )
1442 break;
1443 else
1444 base->type = k_sample_type_air;
1445 }
1446
1447 vg_line_pt3( base->pos, 0.1f, 0xffffffff );
1448
1449 int iter = 0;
1450
1451 while( border_length )
1452 {
1453 v2i directions[] = {{1,0},{0,1},{-1,0},{0,-1}};
1454
1455 v2i *old_border = cborder;
1456 int len = border_length;
1457
1458 border_length = 0;
1459 cborder = old_border+len;
1460
1461 for( int i=0; i<len; i++ )
1462 {
1463 v2i co;
1464 v2i_copy( old_border[i], co );
1465 struct grid_sample *sa = &wg.samples[co[1]][co[0]];
1466
1467 for( int j=0; j<4; j++ )
1468 {
1469 v2i newp;
1470 v2i_add( co, directions[j], newp );
1471
1472 if( newp[0] < 0 || newp[1] < 0 ||
1473 newp[0] == WALKGRID_SIZE || newp[1] == WALKGRID_SIZE )
1474 continue;
1475
1476 struct grid_sample *sb = &wg.samples[newp[1]][newp[0]];
1477 enum traverse_state thismove = j%2==0? 1: 2;
1478
1479 if( (sb->state & thismove) == 0x00 ||
1480 sb->type == k_sample_type_air )
1481 {
1482 sb->pos[1] = sa->pos[1];
1483
1484 player_walkgrid_samplepole( sb );
1485
1486 if( sb->type != k_sample_type_air )
1487 {
1488 /*
1489 * Need to do a blocker pass
1490 */
1491
1492 struct grid_sample *store = (j>>1 == 0)? sa: sb;
1493 player_walkgrid_clip_blocker( sa, sb, store, j%2 );
1494
1495
1496 if( sb->type != k_sample_type_air )
1497 {
1498 vg_line( sa->pos, sb->pos, 0xffffffff );
1499
1500 if( sb->state == k_traverse_none )
1501 v2i_copy( newp, cborder[ border_length ++ ] );
1502 }
1503 else
1504 {
1505 v3f p1;
1506 v3_muladds( sa->pos, store->clip[j%2], k_gridscale, p1 );
1507 vg_line( sa->pos, p1, 0xffffffff );
1508 }
1509 }
1510 else
1511 {
1512 /*
1513 * A clipping pass is now done on the edge of the walkable
1514 * surface
1515 */
1516
1517 struct grid_sample *store = (j>>1 == 0)? sa: sb;
1518 player_walkgrid_clip_edge( sa, sb, store, j%2 );
1519
1520 v3f p1;
1521 v3_muladds( sa->pos, store->clip[j%2], k_gridscale, p1 );
1522 vg_line( sa->pos, p1, 0xffffffff );
1523 }
1524
1525 sb->state |= thismove;
1526 }
1527 }
1528
1529 sa->state = k_traverse_h|k_traverse_v;
1530 }
1531
1532 iter ++;
1533 if( iter == walk_grid_iterations )
1534 break;
1535 }
1536
1537 /* Draw connections */
1538 struct grid_sample *corners[4];
1539 for( int x=0; x<WALKGRID_SIZE-1; x++ )
1540 {
1541 for( int z=0; z<WALKGRID_SIZE-1; z++ )
1542 {
1543 const struct conf *conf =
1544 player_walkgrid_conf( &wg, (v2i){x,z}, corners );
1545
1546 for( int i=0; i<conf->edge_count; i++ )
1547 {
1548 const struct confedge *edge = &conf->edges[i];
1549
1550 v3f p0, p1;
1551 v3_muladds( corners[edge->i0]->pos,
1552 corners[edge->d0]->clip[edge->a0], k_gridscale, p0 );
1553 v3_muladds( corners[edge->i1]->pos,
1554 corners[edge->d1]->clip[edge->a1], k_gridscale, p1 );
1555
1556 vg_line( p0, p1, 0xff0000ff );
1557 }
1558 }
1559 }
1560
1561 /*
1562 * Commit player movement into the grid
1563 */
1564
1565 if( v3_length2(delta) <= 0.00001f )
1566 return;
1567
1568 int i=0;
1569 for(; i<8 && wg.move > 0.001f; i++ )
1570 player_walkgrid_iter( &wg, i );
1571
1572 player_walkgrid_stand_cell( &wg );
1573 }
1574
1575 static void player_walkgrid(void)
1576 {
1577 player_walkgrid_getsurface();
1578
1579 m4x3_mulv( player.rb.to_world, (v3f){0.0f,1.8f,0.0f}, player.camera_pos );
1580 player_mouseview();
1581 rb_update_transform( &player.rb );
1582 }
1583
1584 /*
1585 * Animation
1586 */
1587
1588 static void player_animate(void)
1589 {
1590 /* Camera position */
1591 v3_sub( player.rb.v, player.v_last, player.a );
1592 v3_copy( player.rb.v, player.v_last );
1593
1594 v3_add( player.m, player.a, player.m );
1595 v3_lerp( player.m, (v3f){0.0f,0.0f,0.0f}, 0.1f, player.m );
1596
1597 player.m[0] = vg_clampf( player.m[0], -2.0f, 2.0f );
1598 player.m[1] = vg_clampf( player.m[1], -2.0f, 2.0f );
1599 player.m[2] = vg_clampf( player.m[2], -2.0f, 2.0f );
1600 v3_lerp( player.bob, player.m, 0.2f, player.bob );
1601
1602 /* Head */
1603 float lslip = fabsf(player.slip);
1604
1605 float grabt = vg_get_axis( "grabr" )*0.5f+0.5f;
1606 player.grab = vg_lerpf( player.grab, grabt, 0.04f );
1607
1608 float kheight = 2.0f,
1609 kleg = 0.6f;
1610
1611 v3f offset;
1612 m3x3_mulv( player.rb.to_local, player.bob, offset );
1613
1614 static float speed_wobble = 0.0f, speed_wobble_2 = 0.0f;
1615
1616 float kickspeed = vg_clampf(v3_length(player.rb.v)*(1.0f/40.0f), 0.0f, 1.0f);
1617 float kicks = (vg_randf()-0.5f)*2.0f*kickspeed;
1618 float sign = vg_signf( kicks );
1619 speed_wobble = vg_lerpf( speed_wobble, kicks*kicks*sign, 0.1f );
1620 speed_wobble_2 = vg_lerpf( speed_wobble_2, speed_wobble, 0.04f );
1621
1622 offset[0] *= 0.26f;
1623 offset[0] += speed_wobble_2*3.0f;
1624
1625 offset[1] *= -0.3f;
1626 offset[2] *= 0.01f;
1627
1628 offset[0] = vg_clampf( offset[0], -0.8f, 0.8f );
1629 offset[1] = vg_clampf( offset[1], -0.5f, 0.0f );
1630
1631
1632 /*
1633 * Animation blending
1634 * ===========================================
1635 */
1636
1637 static float fslide = 0.0f;
1638 static float fdirz = 0.0f;
1639 static float fdirx = 0.0f;
1640 static float fstand = 0.0f;
1641 static float ffly = 0.0f;
1642
1643 float speed = v3_length( player.rb.v );
1644
1645 fstand = vg_lerpf(fstand, 1.0f-vg_clampf(speed*0.03f,0.0f,1.0f),0.1f);
1646 fslide = vg_lerpf(fslide, vg_clampf(lslip,0.0f,1.0f), 0.04f);
1647 fdirz = vg_lerpf(fdirz, player.reverse > 0.0f? 1.0f: 0.0f, 0.04f );
1648 fdirx = vg_lerpf(fdirx, player.slip < 0.0f? 1.0f: 0.0f, 0.01f );
1649 ffly = vg_lerpf(ffly, player.in_air? 1.0f: 0.0f, 0.04f );
1650
1651 character_pose_reset( &player.mdl );
1652
1653 /* TODO */
1654 float fstand1 = 1.0f-(1.0f-fstand)*0.3f;
1655
1656 float amt_air = ffly*ffly,
1657 amt_ground = 1.0f-amt_air,
1658 amt_std = (1.0f-fslide) * amt_ground,
1659 amt_stand = amt_std * fstand1,
1660 amt_aero = amt_std * (1.0f-fstand1),
1661 amt_slide = amt_ground * fslide;
1662
1663 character_final_pose( &player.mdl, offset, &pose_stand, amt_stand*fdirz );
1664 character_final_pose( &player.mdl, offset,
1665 &pose_stand_reverse, amt_stand * (1.0f-fdirz) );
1666
1667 character_final_pose( &player.mdl, offset, &pose_aero, amt_aero*fdirz );
1668 character_final_pose( &player.mdl, offset,
1669 &pose_aero_reverse, amt_aero * (1.0f-fdirz) );
1670
1671 character_final_pose( &player.mdl, offset, &pose_slide, amt_slide*fdirx );
1672 character_final_pose( &player.mdl, offset,
1673 &pose_slide1, amt_slide*(1.0f-fdirx) );
1674
1675 character_final_pose( &player.mdl, (v3f){0.0f,0.0f,0.0f},
1676 &pose_fly, amt_air );
1677
1678
1679 /*
1680 * Additive effects
1681 * ==========================
1682 */
1683 struct ik_basic *arm_l = &player.mdl.ik_arm_l,
1684 *arm_r = &player.mdl.ik_arm_r;
1685
1686 v3f localv;
1687 m3x3_mulv( player.rb.to_local, player.rb.v, localv );
1688
1689 /* New board transformation */
1690 v4f board_rotation; v3f board_location;
1691
1692 v4f rz, rx;
1693 q_axis_angle( rz, (v3f){ 0.0f, 0.0f, 1.0f }, player.board_xy[0] );
1694 q_axis_angle( rx, (v3f){ 1.0f, 0.0f, 0.0f }, player.board_xy[1] );
1695 q_mul( rx, rz, board_rotation );
1696
1697 v3f *mboard = player.mdl.matrices[k_chpart_board];// player.mboard;
1698 q_m3x3( board_rotation, mboard );
1699 m3x3_mulv( mboard, (v3f){ 0.0f, -0.5f, 0.0f }, board_location );
1700 v3_add( (v3f){0.0f,0.5f,0.0f}, board_location, board_location );
1701 v3_copy( board_location, mboard[3] );
1702
1703
1704 float wheel_r = offset[0]*-0.4f;
1705 v4f qwheel;
1706 q_axis_angle( qwheel, (v3f){0.0f,1.0f,0.0f}, wheel_r );
1707
1708 q_m3x3( qwheel, player.mdl.matrices[k_chpart_wb] );
1709
1710 m3x3_transpose( player.mdl.matrices[k_chpart_wb],
1711 player.mdl.matrices[k_chpart_wf] );
1712 v3_copy( player.mdl.offsets[k_chpart_wb],
1713 player.mdl.matrices[k_chpart_wb][3] );
1714 v3_copy( player.mdl.offsets[k_chpart_wf],
1715 player.mdl.matrices[k_chpart_wf][3] );
1716
1717 m4x3_mul( mboard, player.mdl.matrices[k_chpart_wb],
1718 player.mdl.matrices[k_chpart_wb] );
1719 m4x3_mul( mboard, player.mdl.matrices[k_chpart_wf],
1720 player.mdl.matrices[k_chpart_wf] );
1721
1722 m4x3_mulv( mboard, player.mdl.ik_leg_l.end, player.mdl.ik_leg_l.end );
1723 m4x3_mulv( mboard, player.mdl.ik_leg_r.end, player.mdl.ik_leg_r.end );
1724
1725
1726 v3_copy( player.mdl.ik_arm_l.end, player.handl_target );
1727 v3_copy( player.mdl.ik_arm_r.end, player.handr_target );
1728
1729 if( 1||player.in_air )
1730 {
1731 float tuck = player.board_xy[1],
1732 tuck_amt = fabsf( tuck ) * (1.0f-fabsf(player.board_xy[0]));
1733
1734 float crouch = player.grab*0.3f;
1735 v3_muladds( player.mdl.ik_body.base, (v3f){0.0f,-1.0f,0.0f},
1736 crouch, player.mdl.ik_body.base );
1737 v3_muladds( player.mdl.ik_body.end, (v3f){0.0f,-1.0f,0.0f},
1738 crouch*1.2f, player.mdl.ik_body.end );
1739
1740 if( tuck < 0.0f )
1741 {
1742 //foot_l *= 1.0f-tuck_amt*1.5f;
1743
1744 if( player.grab > 0.1f )
1745 {
1746 m4x3_mulv( mboard, (v3f){0.1f,0.14f,0.6f},
1747 player.handl_target );
1748 }
1749 }
1750 else
1751 {
1752 //foot_r *= 1.0f-tuck_amt*1.4f;
1753
1754 if( player.grab > 0.1f )
1755 {
1756 m4x3_mulv( mboard, (v3f){0.1f,0.14f,-0.6f},
1757 player.handr_target );
1758 }
1759 }
1760 }
1761
1762 v3_lerp( player.handl, player.handl_target, 1.0f, player.handl );
1763 v3_lerp( player.handr, player.handr_target, 1.0f, player.handr );
1764
1765 v3_copy( player.handl, player.mdl.ik_arm_l.end );
1766 v3_copy( player.handr, player.mdl.ik_arm_r.end );
1767
1768 /* Head rotation */
1769
1770 static float rhead = 0.0f;
1771 static const float klook_max = 0.8f;
1772 rhead = vg_lerpf( rhead,
1773 vg_clampf( atan2f(localv[2],-localv[0]),-klook_max,klook_max), 0.04f );
1774 player.mdl.rhead = rhead;
1775 }
1776
1777 static void player_camera_update(void)
1778 {
1779 /* Update camera matrices */
1780 m4x3_identity( player.camera );
1781 m4x3_rotate_y( player.camera, -player.angles[0] );
1782 m4x3_rotate_x( player.camera, -player.angles[1] );
1783 v3_copy( player.camera_pos, player.camera[3] );
1784 m4x3_invert_affine( player.camera, player.camera_inverse );
1785 }
1786
1787 static void player_animate_death_cam(void)
1788 {
1789 v3f delta;
1790 v3f head_pos;
1791 v3_copy( player.mdl.ragdoll[k_chpart_head].co, head_pos );
1792
1793 v3_sub( head_pos, player.camera_pos, delta );
1794 v3_normalize( delta );
1795
1796 v3f follow_pos;
1797 v3_muladds( head_pos, delta, -2.5f, follow_pos );
1798 v3_lerp( player.camera_pos, follow_pos, 0.1f, player.camera_pos );
1799
1800 /*
1801 * Make sure the camera stays above the ground
1802 */
1803 v3f min_height = {0.0f,1.0f,0.0f};
1804
1805 v3f sample;
1806 v3_add( player.camera_pos, min_height, sample );
1807 ray_hit hit;
1808 hit.dist = min_height[1]*2.0f;
1809
1810 if( ray_world( sample, (v3f){0.0f,-1.0f,0.0f}, &hit ))
1811 v3_add( hit.pos, min_height, player.camera_pos );
1812
1813 player.camera_pos[1] =
1814 vg_maxf( wrender.height + 2.0f, player.camera_pos[1] );
1815
1816 player.angles[0] = atan2f( delta[0], -delta[2] );
1817 player.angles[1] = -asinf( delta[1] );
1818 }
1819
1820 static void player_animate_camera(void)
1821 {
1822 v3f offs = { -0.29f, 0.08f, 0.0f };
1823 m3x3_mulv( player.rb.to_world, offs, offs );
1824 m4x3_mulv( player.rb.to_world, player.mdl.ik_body.end, player.camera_pos );
1825 v3_add( offs, player.camera_pos, player.camera_pos );
1826
1827 /* Look angles */
1828 v3_lerp( player.vl, player.rb.v, 0.05f, player.vl );
1829
1830 float yaw = atan2f( player.vl[0], -player.vl[2] ),
1831 pitch = atan2f( -player.vl[1],
1832 sqrtf(
1833 player.vl[0]*player.vl[0] + player.vl[2]*player.vl[2]
1834 )) * 0.7f;
1835
1836 player.angles[0] = yaw;
1837 player.angles[1] = pitch + 0.30f;
1838
1839 /* Camera shake */
1840 static v2f shake_damp = {0.0f,0.0f};
1841 v2f shake = { vg_randf()-0.5f, vg_randf()-0.5f };
1842 v2_muls( shake, v3_length(player.rb.v)*0.3f
1843 * (1.0f+fabsf(player.slip)), shake);
1844
1845 v2_lerp( shake_damp, shake, 0.01f, shake_damp );
1846 shake_damp[0] *= 0.2f;
1847
1848 v2_muladds( player.angles, shake_damp, 0.1f, player.angles );
1849 }
1850
1851 /*
1852 * Audio
1853 */
1854 static void player_audio(void)
1855 {
1856 float speed = vg_minf(v3_length( player.rb.v )*0.1f,1.0f),
1857 attn = v3_dist( player.rb.co, player.camera[3] )+1.0f;
1858 attn = (1.0f/(attn*attn)) * speed;
1859
1860 static float air = 0.0f;
1861 air = vg_lerpf(air, player.in_air? 1.0f: 0.0f, 0.7f);
1862
1863 v3f ears = { 1.0f,0.0f,0.0f };
1864 v3f delta;
1865
1866 v3_sub( player.rb.co, player.camera[3], delta );
1867 v3_normalize( delta );
1868 m3x3_mulv( player.camera, ears, ears );
1869
1870 float pan = v3_dot( ears, delta );
1871 audio_player0.pan = pan;
1872 audio_player1.pan = pan;
1873 audio_player2.pan = pan;
1874
1875 if( freecam )
1876 {
1877 audio_player0.vol = 0.0f;
1878 audio_player1.vol = 0.0f;
1879 audio_player2.vol = 0.0f;
1880 }
1881 else
1882 {
1883 if( player.is_dead )
1884 {
1885 audio_player0.vol = 0.0f;
1886 audio_player1.vol = 0.0f;
1887 audio_player2.vol = 0.0f;
1888 }
1889 else
1890 {
1891 float slide = vg_clampf( fabsf(player.slip), 0.0f, 1.0f );
1892 audio_player0.vol = (1.0f-air)*attn*(1.0f-slide);
1893 audio_player1.vol = air *attn;
1894 audio_player2.vol = (1.0f-air)*attn*slide;
1895 }
1896 }
1897 }
1898
1899 /*
1900 * Public Endpoints
1901 */
1902 static float *player_cam_pos(void)
1903 {
1904 return player.camera_pos;
1905 }
1906
1907 static int reset_player( int argc, char const *argv[] )
1908 {
1909 struct respawn_point *rp = NULL, *r;
1910
1911 if( argc == 1 )
1912 {
1913 for( int i=0; i<world.spawn_count; i++ )
1914 {
1915 r = &world.spawns[i];
1916 if( !strcmp( r->name, argv[0] ) )
1917 {
1918 rp = r;
1919 break;
1920 }
1921 }
1922
1923 if( !rp )
1924 vg_warn( "No spawn named '%s'\n", argv[0] );
1925 }
1926
1927 if( !rp )
1928 {
1929 float min_dist = INFINITY;
1930
1931 for( int i=0; i<world.spawn_count; i++ )
1932 {
1933 r = &world.spawns[i];
1934 float d = v3_dist2( r->co, player.rb.co );
1935
1936 vg_info( "Dist %s : %f\n", r->name, d );
1937 if( d < min_dist )
1938 {
1939 min_dist = d;
1940 rp = r;
1941 }
1942 }
1943 }
1944
1945 if( !rp )
1946 {
1947 vg_error( "No spawn found\n" );
1948 if( !world.spawn_count )
1949 return 0;
1950
1951 rp = &world.spawns[0];
1952 }
1953
1954 v4_copy( rp->q, player.rb.q );
1955 v3_copy( rp->co, player.rb.co );
1956
1957 player.vswitch = 1.0f;
1958 player.slip_last = 0.0f;
1959 player.is_dead = 0;
1960 player.in_air = 1;
1961 m3x3_identity( player.vr );
1962
1963 player.mdl.shoes[0] = 1;
1964 player.mdl.shoes[1] = 1;
1965
1966 rb_update_transform( &player.rb );
1967 m3x3_mulv( player.rb.to_world, (v3f){ 0.0f, 0.0f, -1.2f }, player.rb.v );
1968 return 1;
1969 }
1970
1971 static void player_update(void)
1972 {
1973 for( int i=0; i<player.land_log_count; i++ )
1974 draw_cross( player.land_target_log[i],
1975 player.land_target_colours[i], 0.25f);
1976
1977 if( vg_get_axis("grabl")>0.0f)
1978 reset_player(0,NULL);
1979
1980 if( vg_get_button_down( "switchmode" ) )
1981 {
1982 player.on_board ^= 0x1;
1983 }
1984
1985 if( player.is_dead )
1986 {
1987 character_ragdoll_iter( &player.mdl );
1988 character_debug_ragdoll( &player.mdl );
1989
1990 if( !freecam )
1991 player_animate_death_cam();
1992 }
1993 else
1994 {
1995 if( player.on_board )
1996 {
1997 player_do_motion();
1998 player_animate();
1999
2000 if( !freecam )
2001 player_animate_camera();
2002 }
2003 else
2004 {
2005 player_walkgrid();
2006 }
2007 }
2008
2009 if( freecam )
2010 player_freecam();
2011
2012 player_camera_update();
2013 player_audio();
2014 }
2015
2016 static void draw_player(void)
2017 {
2018 /* Draw */
2019 m4x3_copy( player.rb.to_world, player.mdl.mroot );
2020
2021 if( player.is_dead )
2022 character_mimic_ragdoll( &player.mdl );
2023 else
2024 character_eval( &player.mdl );
2025
2026 float opacity = 1.0f-player.air_blend;
2027 if( player.is_dead )
2028 opacity = 0.0f;
2029
2030 character_draw( &player.mdl, opacity, player.camera );
2031 }
2032
2033 #endif /* PLAYER_H */