dead
[carveJwlIkooP6JGAAIwe30JlM.git] / blender_export.py
1 #
2 # =============================================================================
3 #
4 # Copyright . . . -----, ,----- ,---. .---.
5 # 2021-2022 |\ /| | / | | | | /|
6 # | \ / | +-- / +----- +---' | / |
7 # | \ / | | / | | \ | / |
8 # | \/ | | / | | \ | / |
9 # ' ' '--' [] '----- '----- ' ' '---' SOFTWARE
10 #
11 # =============================================================================
12 #
13 # Python exporter for Blender, compiles .mdl format for Skate Rift.
14 #
15 # Its really slow, sorry, I don't know how to speed it up.
16 # Also not sure why you need to put # before {} in code blocks, there is errors
17 # otherwise
18 #
19
20 import bpy, math, gpu, os
21 import cProfile
22 from ctypes import *
23 from mathutils import *
24 from gpu_extras.batch import batch_for_shader
25
26 bl_info = {
27 "name":"Skate Rift model compiler",
28 "author": "Harry Godden (hgn)",
29 "version": (0,2),
30 "blender":(3,1,0),
31 "location":"Export",
32 "descriptin":"",
33 "warning":"",
34 "wiki_url":"",
35 "category":"Import/Export",
36 }
37
38 class mdl_vert(Structure): # 48 bytes. Quite large. Could compress
39 #{ # the normals and uvs to i16s. Not an
40 _pack_ = 1 # real issue, yet.
41 _fields_ = [("co",c_float*3),
42 ("norm",c_float*3),
43 ("uv",c_float*2),
44 ("colour",c_uint8*4),
45 ("weights",c_uint16*4),
46 ("groups",c_uint8*4)]
47 #}
48
49 class mdl_submesh(Structure):
50 #{
51 _pack_ = 1
52 _fields_ = [("indice_start",c_uint32),
53 ("indice_count",c_uint32),
54 ("vertex_start",c_uint32),
55 ("vertex_count",c_uint32),
56 ("bbx",(c_float*3)*2),
57 ("material_id",c_uint32)] # index into the material array
58 #}
59
60 class mdl_texture(Structure):
61 #{
62 _pack_ = 1
63 _fields_ = [("pstr_name",c_uint32),
64 ("pack_offset",c_uint32),
65 ("pack_length",c_uint32)]
66 #}
67
68 class mdl_material(Structure):
69 #{
70 _pack_ = 1
71 _fields_ = [("pstr_name",c_uint32),
72 ("shader",c_uint32),
73 ("flags",c_uint32),
74 ("surface_prop",c_uint32),
75 ("colour",c_float*4),
76 ("colour1",c_float*4),
77 ("tex_diffuse",c_uint32),
78 ("tex_decal",c_uint32),
79 ("tex_normal",c_uint32)]
80 #}
81
82 class mdl_node(Structure):
83 #{
84 _pack_ = 1
85 _fields_ = [("co",c_float*3),
86 ( "q",c_float*4),
87 ( "s",c_float*3),
88 ("sub_uid",c_uint32), # dont use
89 ("submesh_start",c_uint32),
90 ("submesh_count",c_uint32),
91 ("classtype",c_uint32),
92 ("offset",c_uint32),
93 ("parent",c_uint32),
94 ("pstr_name",c_uint32)]
95 #}
96
97 class mdl_header(Structure):
98 #{
99 _pack_ = 1
100 _fields_ = [("identifier",c_uint32),
101 ("version",c_uint32),
102 ("file_length",c_uint32),
103 ("pad0",c_uint32),
104
105 ("node_count",c_uint32),
106 ("node_offset",c_uint32),
107
108 ("submesh_count",c_uint32),
109 ("submesh_offset",c_uint32),
110
111 ("material_count",c_uint32),
112 ("material_offset",c_uint32),
113
114 ("texture_count",c_uint32),
115 ("texture_offset",c_uint32),
116
117 ("anim_count",c_uint32),
118 ("anim_offset",c_uint32),
119
120 ("entdata_size",c_uint32),
121 ("entdata_offset",c_uint32),
122
123 ("strings_size",c_uint32),
124 ("strings_offset",c_uint32),
125
126 ("keyframe_count",c_uint32),
127 ("keyframe_offset",c_uint32),
128
129 ("vertex_count",c_uint32),
130 ("vertex_offset",c_uint32),
131
132 ("indice_count",c_uint32),
133 ("indice_offset",c_uint32),
134
135 ("pack_size",c_uint32),
136 ("pack_offset",c_uint32)]
137 #}
138
139 class mdl_animation(Structure):
140 #{
141 _pack_ = 1
142 _fields_ = [("pstr_name",c_uint32),
143 ("length",c_uint32),
144 ("rate",c_float),
145 ("offset",c_uint32)]
146 #}
147
148 class mdl_keyframe(Structure):
149 #{
150 _pack_ = 1
151 _fields_ = [("co",c_float*3),
152 ("q",c_float*4),
153 ("s",c_float*3)]
154 #}
155
156 # ---------------------------------------------------------------------------- #
157 # #
158 # Entity definitions #
159 # #
160 # ---------------------------------------------------------------------------- #
161 #
162 # ctypes _fields_ defines the data which is filled in by:
163 # def encode_obj( _, node, node_def ):
164 #
165 # gizmos get drawn into the viewport via:
166 # @staticmethod
167 # def draw_scene_helpers( obj ):
168 #
169 # editor enterface, simiraliy:
170 # @staticmethod
171 # def editor_interface( layout, obj ):
172 #
173
174 # Classtype 1
175 #
176 # Purpose: A rift. must target another gate, the target gate can not have more
177 # than one target nodes of its own.
178 #
179 class classtype_gate(Structure):
180 #{
181 _pack_ = 1
182 _fields_ = [("target",c_uint32),
183 ("dims",c_float*3)]
184
185 def encode_obj(_, node,node_def):
186 #{
187 node.classtype = 1
188
189 obj = node_def['obj']
190
191 if obj.cv_data.target != None:
192 _.target = obj.cv_data.target.cv_data.uid
193
194 if obj.type == 'MESH':
195 #{
196 _.dims[0] = obj.data.cv_data.v0[0]
197 _.dims[1] = obj.data.cv_data.v0[1]
198 _.dims[2] = obj.data.cv_data.v0[2]
199 #}
200 else:
201 #{
202 _.dims[0] = obj.cv_data.v0[0]
203 _.dims[1] = obj.cv_data.v0[1]
204 _.dims[2] = obj.cv_data.v0[2]
205 #}
206 #}
207
208 @staticmethod
209 def draw_scene_helpers( obj ):
210 #{
211 global cv_view_verts, cv_view_colours
212
213 if obj.type == 'MESH':
214 dims = obj.data.cv_data.v0
215 else:
216 dims = obj.cv_data.v0
217
218 vs = [None]*9
219 c = Vector((0,0,dims[2]))
220
221 vs[0] = obj.matrix_world @ Vector((-dims[0],0.0,-dims[1]+dims[2]))
222 vs[1] = obj.matrix_world @ Vector((-dims[0],0.0, dims[1]+dims[2]))
223 vs[2] = obj.matrix_world @ Vector(( dims[0],0.0, dims[1]+dims[2]))
224 vs[3] = obj.matrix_world @ Vector(( dims[0],0.0,-dims[1]+dims[2]))
225 vs[4] = obj.matrix_world @ (c+Vector((-1,0,-2)))
226 vs[5] = obj.matrix_world @ (c+Vector((-1,0, 2)))
227 vs[6] = obj.matrix_world @ (c+Vector(( 1,0, 2)))
228 vs[7] = obj.matrix_world @ (c+Vector((-1,0, 0)))
229 vs[8] = obj.matrix_world @ (c+Vector(( 1,0, 0)))
230
231 indices = [(0,1),(1,2),(2,3),(3,0),(4,5),(5,6),(7,8)]
232
233 for l in indices:
234 #{
235 v0 = vs[l[0]]
236 v1 = vs[l[1]]
237 cv_view_verts += [(v0[0],v0[1],v0[2])]
238 cv_view_verts += [(v1[0],v1[1],v1[2])]
239 cv_view_colours += [(1,1,0,1),(1,1,0,1)]
240 #}
241
242 sw = (0.4,0.4,0.4,0.2)
243 if obj.cv_data.target != None:
244 cv_draw_arrow( obj.location, obj.cv_data.target.location, sw )
245 #}
246
247 @staticmethod
248 def editor_interface( layout, obj ):
249 #{
250 layout.prop( obj.cv_data, "target" )
251
252 mesh = obj.data
253 layout.label( text=F"(i) Data is stored in {mesh.name}" )
254 layout.prop( mesh.cv_data, "v0", text="Gate dimensions" )
255 #}
256 #}
257
258 # Classtype 3
259 #
260 # Purpose: player can reset here, its a safe place
261 # spawns can share the same name, the closest one will be picked
262 #
263 # when the world loads it will pick the one named 'start' first.
264 #
265 class classtype_spawn(Structure):
266 #{
267 _pack_ = 1
268 _fields_ = [("pstr_alias",c_uint32)]
269
270 def encode_obj(_, node,node_def):
271 #{
272 node.classtype = 3
273 _.pstr_alias = encoder_process_pstr( node_def['obj'].cv_data.strp )
274 #}
275
276 @staticmethod
277 def draw_scene_helpers( obj ):
278 #{
279 global cv_view_verts, cv_view_colours
280
281 vs = [None]*4
282 vs[0] = obj.matrix_world @ Vector((0,0,0))
283 vs[1] = obj.matrix_world @ Vector((0,2,0))
284 vs[2] = obj.matrix_world @ Vector((0.5,1,0))
285 vs[3] = obj.matrix_world @ Vector((-0.5,1,0))
286 indices = [(0,1),(1,2),(1,3)]
287
288 for l in indices:
289 #{
290 v0 = vs[l[0]]
291 v1 = vs[l[1]]
292
293 cv_view_verts += [(v0[0],v0[1],v0[2])]
294 cv_view_verts += [(v1[0],v1[1],v1[2])]
295 cv_view_colours += [(0,1,1,1),(0,1,1,1)]
296 #}
297
298 cv_draw_sphere( obj.location, 20.0, [0.1,0,0.9,0.4] )
299 #}
300
301 @staticmethod
302 def editor_interface( layout, obj ):
303 #{
304 layout.prop( obj.cv_data, "strp", text="Alias" )
305 #}
306 #}
307
308 # Classtype 4
309 #
310 # Purpose: Tells the game to draw water HERE, at this entity.
311 #
312 class classtype_water(Structure):
313 #{
314 _pack_ = 1
315 _fields_ = [("temp",c_uint32)]
316
317 def encode_obj(_, node,node_def):
318 #{
319 node.classtype = 4
320 # no data, spooky
321 #}
322 #}
323
324 # Classtype 8
325 #
326 # Purpose: Defines a route node and links to up to two more nodes
327 #
328 class classtype_route_node(Structure):
329 #{
330 _pack_ = 1
331 _fields_ = [("target",c_uint32),
332 ("target1",c_uint32)]
333
334 def encode_obj(_, node,node_def):
335 #{
336 node.classtype = 8
337 obj = node_def['obj']
338
339 if obj.cv_data.target != None:
340 _.target = obj.cv_data.target.cv_data.uid
341 if obj.cv_data.target1 != None:
342 _.target1 = obj.cv_data.target1.cv_data.uid
343 #}
344
345 @staticmethod
346 def draw_scene_helpers( obj ):
347 #{
348 global cv_view_verts, cv_view_colours
349
350 sw = Vector((0.4,0.4,0.4,0.2))
351 sw2 = Vector((1.5,0.2,0.2,0.0))
352 if obj.cv_data.target != None:
353 cv_draw_bpath( obj, obj.cv_data.target, sw, sw )
354 if obj.cv_data.target1 != None:
355 cv_draw_bpath( obj, obj.cv_data.target1, sw, sw )
356
357 cv_draw_bhandle( obj, 1.0, (0.8,0.8,0.8,1.0) )
358 cv_draw_bhandle( obj, -1.0, (0.4,0.4,0.4,1.0) )
359
360 p1 = obj.location+ \
361 obj.matrix_world.to_quaternion() @ Vector((0,0,-6+1.5))
362 cv_draw_arrow( obj.location, p1, sw )
363 #}
364
365 @staticmethod
366 def editor_interface( layout, obj ):
367 #{
368 layout.prop( obj.cv_data, "target", text="Left" )
369 layout.prop( obj.cv_data, "target1", text="Right" )
370 #}
371 #}
372
373 # Classtype 9
374 #
375 # Purpose: Defines a route, its 'starting' point, and the colour to use for it
376 #
377 class classtype_route(Structure):
378 #{
379 _pack_ = 1
380 _fields_ = [("id_start",c_uint32),
381 ("pstr_name",c_uint32),
382 ("colour",c_float*3)]
383
384 def encode_obj(_, node,node_def):
385 #{
386 node.classtype = 9
387 obj = node_def['obj']
388
389 _.colour[0] = obj.cv_data.colour[0]
390 _.colour[1] = obj.cv_data.colour[1]
391 _.colour[2] = obj.cv_data.colour[2]
392 _.pstr_name = encoder_process_pstr( obj.cv_data.strp )
393
394 if obj.cv_data.target != None:
395 _.id_start = obj.cv_data.target.cv_data.uid
396 #}
397
398 @staticmethod
399 def draw_scene_helpers( obj ):
400 #{
401 global cv_view_verts, cv_view_colours, cv_view_course_i
402
403 if obj.cv_data.target:
404 cv_draw_arrow( obj.location, obj.cv_data.target.location, [1,1,1,1] )
405
406 # Tries to simulate how we do it in the game
407 #
408 stack = [None]*64
409 stack_i = [0]*64
410 stack[0] = obj.cv_data.target
411 si = 1
412 loop_complete = False
413
414 while si > 0:
415 #{
416 if stack_i[si-1] == 2:
417 #{
418 si -= 1
419 continue
420
421 if si == 0: # Loop failed to complete
422 break
423 #}
424
425 node = stack[si-1]
426
427 targets = [None,None]
428 targets[0] = node.cv_data.target
429
430 if node.cv_data.classtype == 'classtype_route_node':
431 #{
432 targets[1] = node.cv_data.target1
433 #}
434
435 nextnode = targets[stack_i[si-1]]
436 stack_i[si-1] += 1
437
438 if nextnode != None: # branch
439 #{
440 if nextnode == stack[0]: # Loop completed
441 #{
442 loop_complete = True
443 break
444 #}
445
446 valid=True
447 for sj in range(si):
448 #{
449 if stack[sj] == nextnode: # invalidated path
450 #{
451 valid=False
452 break
453 #}
454 #}
455
456 if valid:
457 #{
458 stack_i[si] = 0
459 stack[si] = nextnode
460 si += 1
461 continue
462 #}
463 #}
464 #}
465
466 if loop_complete:
467 #{
468 cc = Vector((obj.cv_data.colour[0],\
469 obj.cv_data.colour[1],\
470 obj.cv_data.colour[2],\
471 1.0))
472
473 for sj in range(si):
474 #{
475 sk = (sj+1)%si
476
477 if stack[sj].cv_data.classtype == 'classtype_gate' and \
478 stack[sk].cv_data.classtype == 'classtype_gate':
479 #{
480 dist = (stack[sj].location-stack[sk].location).magnitude
481 cv_draw_sbpath( stack[sj], stack[sk], cc*0.4, cc, dist, dist )
482 #}
483 else:
484 cv_draw_bpath( stack[sj], stack[sk], cc, cc )
485 #}
486
487 cv_view_course_i += 1
488 #}
489 #}
490
491 @staticmethod
492 def editor_interface( layout, obj ):
493 #{
494 layout.prop( obj.cv_data, "target", text="'Start' from" )
495 layout.prop( obj.cv_data, "colour" )
496 layout.prop( obj.cv_data, "strp", text="Name" )
497 #}
498 #}
499
500 # Classtype 12
501 #
502 # Purpose: links an mesh node to a type 11
503 #
504 class classtype_skin(Structure):
505 #{
506 _pack_ = 1
507 _fields_ = [("skeleton",c_uint32)]
508
509 def encode_obj(_, node,node_def):
510 #{
511 node.classtype = 12
512
513 armature_def = node_def['linked_armature']
514 _.skeleton = armature_def['obj'].cv_data.uid
515 #}
516 #}
517
518 # Classtype 11
519 #
520 # Purpose: defines the allocation requirements for a skeleton
521 #
522 class classtype_skeleton(Structure):
523 #{
524 _pack_ = 1
525 _fields_ = [("channels",c_uint32),
526 ("ik_count",c_uint32),
527 ("collider_count",c_uint32),
528 ("anim_start",c_uint32),
529 ("anim_count",c_uint32)]
530
531 def encode_obj(_, node,node_def):
532 #{
533 node.classtype = 11
534
535 _.channels = len( node_def['bones'] )
536 _.ik_count = node_def['ik_count']
537 _.collider_count = node_def['collider_count']
538 _.anim_start = node_def['anim_start']
539 _.anim_count = node_def['anim_count']
540 #}
541 #}
542
543
544 # Classtype 10
545 #
546 # Purpose: intrinsic bone type, stores collision information and limits too
547 #
548 class classtype_bone(Structure):
549 #{
550 _pack_ = 1
551 _fields_ = [("flags",c_uint32),
552 ("ik_target",c_uint32),
553 ("ik_pole",c_uint32),
554 ("hitbox",(c_float*3)*2),
555 ("conevx",c_float*3),
556 ("conevy",c_float*3),
557 ("coneva",c_float*3),
558 ("conet",c_float)]
559
560 def encode_obj(_, node,node_def):
561 #{
562 node.classtype = 10
563
564 armature_def = node_def['linked_armature']
565 obj = node_def['bone']
566
567 _.flags = node_def['deform']
568
569 if 'ik_target' in node_def:
570 #{
571 _.flags |= 0x2
572 _.ik_target = armature_def['bones'].index( node_def['ik_target'] )
573 _.ik_pole = armature_def['bones'].index( node_def['ik_pole'] )
574 #}
575
576 # For ragdolls
577 #
578 if obj.cv_data.collider != 'collider_none':
579 #{
580 if obj.cv_data.collider == 'collider_box':
581 _.flags |= 0x4
582 else:
583 _.flags |= 0x8
584
585 _.hitbox[0][0] = obj.cv_data.v0[0]
586 _.hitbox[0][1] = obj.cv_data.v0[2]
587 _.hitbox[0][2] = -obj.cv_data.v1[1]
588 _.hitbox[1][0] = obj.cv_data.v1[0]
589 _.hitbox[1][1] = obj.cv_data.v1[2]
590 _.hitbox[1][2] = -obj.cv_data.v0[1]
591 #}
592
593 if obj.cv_data.con0:
594 #{
595 _.flags |= 0x100
596 _.conevx[0] = obj.cv_data.conevx[0]
597 _.conevx[1] = obj.cv_data.conevx[2]
598 _.conevx[2] = -obj.cv_data.conevx[1]
599 _.conevy[0] = obj.cv_data.conevy[0]
600 _.conevy[1] = obj.cv_data.conevy[2]
601 _.conevy[2] = -obj.cv_data.conevy[1]
602 _.coneva[0] = obj.cv_data.coneva[0]
603 _.coneva[1] = obj.cv_data.coneva[2]
604 _.coneva[2] = -obj.cv_data.coneva[1]
605 _.conet = obj.cv_data.conet
606 #}
607 #}
608 #}
609
610 # Classtype 100
611 #
612 # Purpose: sends a signal to another entity
613 #
614 class classtype_trigger(Structure):
615 #{
616 _pack_ = 1
617 _fields_ = [("target",c_uint32)]
618
619 def encode_obj(_, node,node_def ):
620 #{
621 node.classtype = 100
622 if node_def['obj'].cv_data.target:
623 _.target = node_def['obj'].cv_data.target.cv_data.uid
624 #}
625
626 @staticmethod
627 def draw_scene_helpers( obj ):
628 #{
629 global cv_view_verts, cv_view_colours
630 cv_draw_ucube( obj.matrix_world, [0,1,0,1] )
631
632 if obj.cv_data.target:
633 cv_draw_arrow( obj.location, obj.cv_data.target.location, [1,1,1,1] )
634 #}
635
636 @staticmethod
637 def editor_interface( layout, obj ):
638 #{
639 layout.prop( obj.cv_data, "target", text="Triggers" )
640 #}
641 #}
642
643 # Classtype 101
644 #
645 # Purpose: Gives the player an achievement.
646 # No cheating! You shouldn't use this entity anyway, since only ME can
647 # add achievements to the steam ;)
648 #
649 class classtype_logic_achievement(Structure):
650 #{
651 _pack_ = 1
652 _fields_ = [("pstr_name",c_uint32)]
653
654 def encode_obj(_, node,node_def ):
655 #{
656 node.classtype = 101
657 _.pstr_name = encoder_process_pstr( node_def['obj'].cv_data.strp )
658 #}
659
660 @staticmethod
661 def editor_interface( layout, obj ):
662 #{
663 layout.prop( obj.cv_data, "strp", text="Achievement ID" )
664 #}
665 #}
666
667 # Classtype 102
668 #
669 # Purpose: sends a signal to another entity
670 #
671 class classtype_logic_relay(Structure):
672 #{
673 _pack_ = 1
674 _fields_ = [("targets",c_uint32*4)]
675
676 def encode_obj(_, node,node_def ):
677 #{
678 node.classtype = 102
679 obj = node_def['obj']
680 if obj.cv_data.target:
681 _.targets[0] = obj.cv_data.target.cv_data.uid
682 if obj.cv_data.target1:
683 _.targets[1] = obj.cv_data.target1.cv_data.uid
684 if obj.cv_data.target2:
685 _.targets[2] = obj.cv_data.target2.cv_data.uid
686 if obj.cv_data.target3:
687 _.targets[3] = obj.cv_data.target3.cv_data.uid
688 #}
689
690 @staticmethod
691 def draw_scene_helpers( obj ):
692 #{
693 global cv_view_verts, cv_view_colours
694
695 if obj.cv_data.target:
696 cv_draw_arrow( obj.location, obj.cv_data.target.location, [1,1,1,1] )
697 if obj.cv_data.target1:
698 cv_draw_arrow( obj.location, obj.cv_data.target1.location, [1,1,1,1] )
699 if obj.cv_data.target2:
700 cv_draw_arrow( obj.location, obj.cv_data.target2.location, [1,1,1,1] )
701 if obj.cv_data.target3:
702 cv_draw_arrow( obj.location, obj.cv_data.target3.location, [1,1,1,1] )
703 #}
704
705 @staticmethod
706 def editor_interface( layout, obj ):
707 #{
708 layout.prop( obj.cv_data, "target", text="Triggers" )
709 layout.prop( obj.cv_data, "target1", text="Triggers" )
710 layout.prop( obj.cv_data, "target2", text="Triggers" )
711 layout.prop( obj.cv_data, "target3", text="Triggers" )
712 #}
713 #}
714
715 # Classtype 14
716 #
717 # Purpose: Plays some audio (44100hz .ogg vorbis only)
718 # NOTE: There is a 32mb limit on the audio buffer, world audio is
719 # decompressed and stored in signed 16 bit integers (2 bytes)
720 # per sample.
721 #
722 # volume: not used if has 3D flag
723 # flags:
724 # AUDIO_FLAG_LOOP 0x1
725 # AUDIO_FLAG_ONESHOT 0x2 (DONT USE THIS, it breaks semaphores)
726 # AUDIO_FLAG_SPACIAL_3D 0x4 (Probably what you want)
727 # AUDIO_FLAG_AUTO_START 0x8 (Play when the world starts)
728 # ......
729 # the rest are just internal flags, only use the above 3.
730 #
731 class classtype_audio(Structure):
732 #{
733 _pack_ = 1
734 _fields_ = [("pstr_file",c_uint32),
735 ("flags",c_uint32),
736 ("volume",c_float)]
737
738 def encode_obj(_, node,node_def ):
739 #{
740 node.classtype = 14
741
742 obj = node_def['obj']
743
744 _.pstr_file = encoder_process_pstr( obj.cv_data.strp )
745
746 flags = 0x00
747 if obj.cv_data.bp0: flags |= 0x1
748 if obj.cv_data.bp1: flags |= 0x4
749 if obj.cv_data.bp2: flags |= 0x8
750
751 _.flags = flags
752 _.volume = obj.cv_data.fltp
753 #}
754
755 @staticmethod
756 def editor_interface( layout, obj ):
757 #{
758 layout.prop( obj.cv_data, "strp" )
759
760 layout.prop( obj.cv_data, "bp0", text = "Looping" )
761 layout.prop( obj.cv_data, "bp1", text = "3D Audio" )
762 layout.prop( obj.cv_data, "bp2", text = "Auto Start" )
763 #}
764
765 @staticmethod
766 def draw_scene_helpers( obj ):
767 #{
768 global cv_view_verts, cv_view_colours
769
770 cv_draw_sphere( obj.location, obj.scale[0], [1,1,0,1] )
771 #}
772 #}
773
774 class classtype_spawn_link(Structure):
775 #{
776 _pack_ = 1
777 _fields_ = [("connections",c_uint32*4)]
778
779 def encode_obj(_, node,node_def ):
780 #{
781 node.classtype = 0
782 #}
783
784 @staticmethod
785 def editor_interface( layout, obj ):
786 #{
787 pass
788 #}
789
790 @staticmethod
791 def draw_scene_helpers( obj ):
792 #{
793 global cv_view_verts, cv_view_colours
794
795 count = 0
796
797 for obj1 in bpy.context.collection.objects:
798 #{
799 if (obj1.cv_data.classtype != 'classtype_spawn_link') and \
800 (obj1.cv_data.classtype != 'classtype_spawn') :
801 continue
802
803 if (obj1.location - obj.location).length < 40.0:
804 #{
805 cv_draw_line( obj.location, obj1.location, [1,1,1,1] )
806 count +=1
807 #}
808
809 if count == 4:
810 break
811 #}
812
813 cv_draw_sphere( obj.location, 20.0, [0.5,0,0.2,0.4] )
814 #}
815 #}
816
817 # ---------------------------------------------------------------------------- #
818 # #
819 # Compiler section #
820 # #
821 # ---------------------------------------------------------------------------- #
822
823 # Current encoder state
824 #
825 g_encoder = None
826
827 # Reset encoder
828 #
829 def encoder_init( collection ):
830 #{
831 global g_encoder
832
833 g_encoder = \
834 {
835 # The actual file header
836 #
837 'header': mdl_header(),
838
839 # Options
840 #
841 'pack_textures': collection.cv_data.pack_textures,
842
843 # Compiled data chunks (each can be read optionally by the client)
844 #
845 'data':
846 {
847 #1---------------------------------
848 'node': [], # Metadata 'chunk'
849 'submesh': [],
850 'material': [],
851 'texture': [],
852 'anim': [],
853 'entdata': bytearray(), # variable width
854 'strings': bytearray(), # .
855 #2---------------------------------
856 'keyframe': [], # Animations
857 #3---------------------------------
858 'vertex': [], # Mesh data
859 'indice': [],
860 #4---------------------------------
861 'pack': bytearray() # Other generic packed data
862 },
863
864 # All objects of the model in their final heirachy
865 #
866 "uid_count": 1,
867 "scene_graph":{},
868 "graph_lookup":{},
869
870 # Allows us to reuse definitions
871 #
872 'string_cache':{},
873 'mesh_cache': {},
874 'material_cache': {},
875 'texture_cache': {}
876 }
877
878 g_encoder['header'].identifier = 0xABCD0000
879 g_encoder['header'].version = 1
880
881 # Add fake NoneID material and texture
882 #
883 none_material = mdl_material()
884 none_material.pstr_name = encoder_process_pstr( "" )
885 none_material.texture_id = 0
886
887 none_texture = mdl_texture()
888 none_texture.pstr_name = encoder_process_pstr( "" )
889 none_texture.pack_offset = 0
890 none_texture.pack_length = 0
891
892 g_encoder['data']['material'] += [none_material]
893 g_encoder['data']['texture'] += [none_texture]
894
895 g_encoder['data']['pack'].extend( b'datapack\0\0\0\0\0\0\0\0' )
896
897 # Add root node
898 #
899 root = mdl_node()
900 root.co[0] = 0
901 root.co[1] = 0
902 root.co[2] = 0
903 root.q[0] = 0
904 root.q[1] = 0
905 root.q[2] = 0
906 root.q[3] = 1
907 root.s[0] = 1
908 root.s[1] = 1
909 root.s[2] = 1
910 root.pstr_name = encoder_process_pstr('')
911 root.submesh_start = 0
912 root.submesh_count = 0
913 root.offset = 0
914 root.classtype = 0
915 root.parent = 0xffffffff
916
917 g_encoder['data']['node'] += [root]
918 #}
919
920
921 # fill with 0x00 until a multiple of align. Returns how many bytes it added
922 #
923 def bytearray_align_to( buffer, align, offset=0 ):
924 #{
925 count = 0
926
927 while ((len(buffer)+offset) % align) != 0:
928 #{
929 buffer.extend( b'\0' )
930 count += 1
931 #}
932
933 return count
934 #}
935
936 # Add a string to the string buffer except if it already exists there then we
937 # just return its ID.
938 #
939 def encoder_process_pstr( s ):
940 #{
941 global g_encoder
942
943 cache = g_encoder['string_cache']
944
945 if s in cache:
946 return cache[s]
947
948 cache[s] = len( g_encoder['data']['strings'] )
949
950 buffer = g_encoder['data']['strings']
951 buffer.extend( s.encode('utf-8') )
952 buffer.extend( b'\0' )
953
954 bytearray_align_to( buffer, 4 )
955 return cache[s]
956 #}
957
958 def get_texture_resource_name( img ):
959 #{
960 return os.path.splitext( img.name )[0]
961 #}
962
963 # Pack a texture
964 #
965 def encoder_process_texture( img ):
966 #{
967 global g_encoder
968
969 if img == None:
970 return 0
971
972 cache = g_encoder['texture_cache']
973 buffer = g_encoder['data']['texture']
974 pack = g_encoder['data']['pack']
975
976 name = get_texture_resource_name( img )
977
978 if name in cache:
979 return cache[name]
980
981 cache[name] = len( buffer )
982
983 tex = mdl_texture()
984 tex.pstr_name = encoder_process_pstr( name )
985
986 if g_encoder['pack_textures']:
987 #{
988 tex.pack_offset = len( pack )
989 pack.extend( qoi_encode( img ) )
990 tex.pack_length = len( pack ) - tex.pack_offset
991 #}
992 else:
993 tex.pack_offset = 0
994
995 buffer += [ tex ]
996 return cache[name]
997 #}
998
999 def material_tex_image(v):
1000 #{
1001 return {
1002 "Image Texture":
1003 {
1004 "image": F"{v}"
1005 }
1006 }
1007 #}
1008
1009 cxr_graph_mapping = \
1010 {
1011 # Default shader setup
1012 "Principled BSDF":
1013 {
1014 "Base Color":
1015 {
1016 "Image Texture":
1017 {
1018 "image": "tex_diffuse"
1019 },
1020 "Mix":
1021 {
1022 "A": material_tex_image("tex_diffuse"),
1023 "B": material_tex_image("tex_decal")
1024 },
1025 },
1026 "Normal":
1027 {
1028 "Normal Map":
1029 {
1030 "Color": material_tex_image("tex_normal")
1031 }
1032 }
1033 }
1034 }
1035
1036 # https://harrygodden.com/git/?p=convexer.git;a=blob;f=__init__.py;#l1164
1037 #
1038 def material_info(mat):
1039 #{
1040 info = {}
1041
1042 # Using the cv_graph_mapping as a reference, go through the shader
1043 # graph and gather all $props from it.
1044 #
1045 def _graph_read( node_def, node=None, depth=0 ):
1046 #{
1047 nonlocal mat
1048 nonlocal info
1049
1050 # Find rootnodes
1051 #
1052 if node == None:
1053 #{
1054 _graph_read.extracted = []
1055
1056 for node_idname in node_def:
1057 #{
1058 for n in mat.node_tree.nodes:
1059 #{
1060 if n.name == node_idname:
1061 #{
1062 node_def = node_def[node_idname]
1063 node = n
1064 break
1065 #}
1066 #}
1067 #}
1068 #}
1069
1070 for link in node_def:
1071 #{
1072 link_def = node_def[link]
1073
1074 if isinstance( link_def, dict ):
1075 #{
1076 node_link = None
1077 for x in node.inputs:
1078 #{
1079 if isinstance( x, bpy.types.NodeSocketColor ):
1080 #{
1081 if link == x.name:
1082 #{
1083 node_link = x
1084 break
1085 #}
1086 #}
1087 #}
1088
1089 if node_link and node_link.is_linked:
1090 #{
1091 # look for definitions for the connected node type
1092 #
1093 from_node = node_link.links[0].from_node
1094
1095 node_name = from_node.name.split('.')[0]
1096 if node_name in link_def:
1097 #{
1098 from_node_def = link_def[ node_name ]
1099
1100 _graph_read( from_node_def, from_node, depth+1 )
1101 #}
1102
1103 # No definition! :(
1104 # TODO: Make a warning for this?
1105 #}
1106 else:
1107 #{
1108 if "default" in link_def:
1109 #{
1110 prop = link_def['default']
1111 info[prop] = node_link.default_value
1112 #}
1113 #}
1114 #}
1115 else:
1116 #{
1117 prop = link_def
1118 info[prop] = getattr( node, link )
1119 #}
1120 #}
1121 #}
1122
1123 _graph_read( cxr_graph_mapping )
1124 return info
1125 #}
1126
1127 # Add a material to the material buffer. Returns 0 (None ID) if invalid
1128 #
1129 def encoder_process_material( mat ):
1130 #{
1131 global g_encoder
1132
1133 if mat == None:
1134 return 0
1135
1136 cache = g_encoder['material_cache']
1137 buffer = g_encoder['data']['material']
1138
1139 if mat.name in cache:
1140 return cache[mat.name]
1141
1142 cache[mat.name] = len( buffer )
1143
1144 dest = mdl_material()
1145 dest.pstr_name = encoder_process_pstr( mat.name )
1146
1147 flags = 0x00
1148 if mat.cv_data.collision:
1149 flags |= 0x2
1150 if mat.cv_data.skate_surface: flags |= 0x1
1151 if mat.cv_data.grind_surface: flags |= (0x8|0x1)
1152
1153 if mat.cv_data.grow_grass: flags |= 0x4
1154 dest.flags = flags
1155
1156 if mat.cv_data.surface_prop == 'concrete': dest.surface_prop = 0
1157 if mat.cv_data.surface_prop == 'wood': dest.surface_prop = 1
1158 if mat.cv_data.surface_prop == 'grass': dest.surface_prop = 2
1159
1160 if mat.cv_data.shader == 'standard': dest.shader = 0
1161 if mat.cv_data.shader == 'standard_cutout': dest.shader = 1
1162 if mat.cv_data.shader == 'terrain_blend':
1163 #{
1164 dest.shader = 2
1165
1166 dest.colour[0] = pow( mat.cv_data.sand_colour[0], 1.0/2.2 )
1167 dest.colour[1] = pow( mat.cv_data.sand_colour[1], 1.0/2.2 )
1168 dest.colour[2] = pow( mat.cv_data.sand_colour[2], 1.0/2.2 )
1169 dest.colour[3] = 1.0
1170
1171 dest.colour1[0] = mat.cv_data.blend_offset[0]
1172 dest.colour1[1] = mat.cv_data.blend_offset[1]
1173 #}
1174
1175 if mat.cv_data.shader == 'vertex_blend':
1176 #{
1177 dest.shader = 3
1178
1179 dest.colour1[0] = mat.cv_data.blend_offset[0]
1180 dest.colour1[1] = mat.cv_data.blend_offset[1]
1181 #}
1182
1183 if mat.cv_data.shader == 'water':
1184 #{
1185 dest.shader = 4
1186
1187 dest.colour[0] = pow( mat.cv_data.shore_colour[0], 1.0/2.2 )
1188 dest.colour[1] = pow( mat.cv_data.shore_colour[1], 1.0/2.2 )
1189 dest.colour[2] = pow( mat.cv_data.shore_colour[2], 1.0/2.2 )
1190 dest.colour[3] = 1.0
1191 dest.colour1[0] = pow( mat.cv_data.ocean_colour[0], 1.0/2.2 )
1192 dest.colour1[1] = pow( mat.cv_data.ocean_colour[1], 1.0/2.2 )
1193 dest.colour1[2] = pow( mat.cv_data.ocean_colour[2], 1.0/2.2 )
1194 dest.colour1[3] = 1.0
1195 #}
1196
1197 inf = material_info( mat )
1198
1199 if mat.cv_data.shader == 'standard' or \
1200 mat.cv_data.shader == 'standard_cutout' or \
1201 mat.cv_data.shader == 'terrain_blend' or \
1202 mat.cv_data.shader == 'vertex_blend':
1203 #{
1204 if 'tex_diffuse' in inf:
1205 dest.tex_diffuse = encoder_process_texture(inf['tex_diffuse'])
1206 #}
1207
1208 buffer += [dest]
1209 return cache[mat.name]
1210 #}
1211
1212 # Create a tree structure containing all the objects in the collection
1213 #
1214 def encoder_build_scene_graph( collection ):
1215 #{
1216 global g_encoder
1217
1218 print( " creating scene graph" )
1219
1220 # initialize root
1221 #
1222 graph = g_encoder['scene_graph']
1223 graph_lookup = g_encoder['graph_lookup']
1224 graph["obj"] = None
1225 graph["depth"] = 0
1226 graph["children"] = []
1227 graph["uid"] = 0
1228 graph["parent"] = None
1229
1230 def _new_uid():
1231 #{
1232 global g_encoder
1233 uid = g_encoder['uid_count']
1234 g_encoder['uid_count'] += 1
1235 return uid
1236 #}
1237
1238 for obj in collection.all_objects:
1239 #{
1240 if obj.parent: continue
1241
1242 def _extend( p, n, d ):
1243 #{
1244 nonlocal collection
1245
1246 uid = _new_uid()
1247 tree = {}
1248 tree["uid"] = uid
1249 tree["children"] = []
1250 tree["depth"] = d
1251 tree["obj"] = n
1252 tree["parent"] = p
1253 n.cv_data.uid = uid
1254
1255 # Descend into amature
1256 #
1257 if n.type == 'ARMATURE':
1258 #{
1259 tree["bones"] = [None] # None is the root transform
1260 tree["ik_count"] = 0
1261 tree["collider_count"] = 0
1262 tree["compile_animation"] = collection.cv_data.animations
1263
1264 # Here also collects some information about constraints, ik and
1265 # counts colliders for the armature.
1266 #
1267 def _extendb( p, n, d ):
1268 #{
1269 nonlocal tree
1270
1271 btree = {}
1272 btree["bone"] = n
1273 btree["linked_armature"] = tree
1274 btree["uid"] = _new_uid()
1275 btree["children"] = []
1276 btree["depth"] = d
1277 btree["parent"] = p
1278 tree["bones"] += [n.name]
1279
1280 for c in n.children:
1281 #{
1282 _extendb( btree, c, d+1 )
1283 #}
1284
1285 for c in tree['obj'].pose.bones[n.name].constraints:
1286 #{
1287 if c.type == 'IK':
1288 #{
1289 btree["ik_target"] = c.subtarget
1290 btree["ik_pole"] = c.pole_subtarget
1291 tree["ik_count"] += 1
1292 #}
1293 #}
1294
1295 if n.cv_data.collider != 'collider_none':
1296 tree['collider_count'] += 1
1297
1298 btree['deform'] = n.use_deform
1299 p['children'] += [btree]
1300 #}
1301
1302 for b in n.data.bones:
1303 if not b.parent:
1304 _extendb( tree, b, d+1 )
1305 #}
1306
1307 # Recurse into children of this object
1308 #
1309 for obj1 in n.children:
1310 #{
1311 for c1 in obj1.users_collection:
1312 #{
1313 if c1 == collection:
1314 #{
1315 _extend( tree, obj1, d+1 )
1316 break
1317 #}
1318 #}
1319 #}
1320
1321 p["children"] += [tree]
1322 graph_lookup[n] = tree
1323
1324 #}
1325
1326 _extend( graph, obj, 1 )
1327
1328 #}
1329 #}
1330
1331
1332 # Kind of a useless thing i made but it looks cool and adds complexity!!1
1333 #
1334 def encoder_graph_iterator( root ):
1335 #{
1336 for c in root['children']:
1337 #{
1338 yield c
1339 yield from encoder_graph_iterator(c)
1340 #}
1341 #}
1342
1343
1344 # Push a vertex into the model file, or return a cached index (c_uint32)
1345 #
1346 def encoder_vertex_push( vertex_reference, co,norm,uv,colour,groups,weights ):
1347 #{
1348 global g_encoder
1349 buffer = g_encoder['data']['vertex']
1350
1351 TOLERENCE = 4
1352 m = float(10**TOLERENCE)
1353
1354 # Would be nice to know if this can be done faster than it currently runs,
1355 # its quite slow.
1356 #
1357 key = (int(co[0]*m+0.5),
1358 int(co[1]*m+0.5),
1359 int(co[2]*m+0.5),
1360 int(norm[0]*m+0.5),
1361 int(norm[1]*m+0.5),
1362 int(norm[2]*m+0.5),
1363 int(uv[0]*m+0.5),
1364 int(uv[1]*m+0.5),
1365 colour[0], # these guys are already quantized
1366 colour[1], # .
1367 colour[2], # .
1368 colour[3], # .
1369 weights[0], # v
1370 weights[1],
1371 weights[2],
1372 weights[3],
1373 groups[0],
1374 groups[1],
1375 groups[2],
1376 groups[3])
1377
1378 if key in vertex_reference:
1379 return vertex_reference[key]
1380 else:
1381 #{
1382 index = c_uint32( len(vertex_reference) )
1383 vertex_reference[key] = index
1384
1385 v = mdl_vert()
1386 v.co[0] = co[0]
1387 v.co[1] = co[2]
1388 v.co[2] = -co[1]
1389 v.norm[0] = norm[0]
1390 v.norm[1] = norm[2]
1391 v.norm[2] = -norm[1]
1392 v.uv[0] = uv[0]
1393 v.uv[1] = uv[1]
1394 v.colour[0] = colour[0]
1395 v.colour[1] = colour[1]
1396 v.colour[2] = colour[2]
1397 v.colour[3] = colour[3]
1398 v.weights[0] = weights[0]
1399 v.weights[1] = weights[1]
1400 v.weights[2] = weights[2]
1401 v.weights[3] = weights[3]
1402 v.groups[0] = groups[0]
1403 v.groups[1] = groups[1]
1404 v.groups[2] = groups[2]
1405 v.groups[3] = groups[3]
1406
1407 buffer += [v]
1408 return index
1409 #}
1410 #}
1411
1412
1413 # Compile a mesh (or use one from the cache) onto node, based on node_def
1414 # No return value
1415 #
1416 def encoder_compile_mesh( node, node_def ):
1417 #{
1418 global g_encoder
1419
1420 graph = g_encoder['scene_graph']
1421 graph_lookup = g_encoder['graph_lookup']
1422 mesh_cache = g_encoder['mesh_cache']
1423 obj = node_def['obj']
1424 armature_def = None
1425 can_use_cache = True
1426
1427 # Check for modifiers that typically change the data per-instance
1428 # there is no well defined rule for the choices here, its just what i've
1429 # needed while producing the game.
1430 #
1431 # It may be possible to detect these cases automatically.
1432 #
1433 for mod in obj.modifiers:
1434 #{
1435 if mod.type == 'DATA_TRANSFER' or mod.type == 'SHRINKWRAP' or \
1436 mod.type == 'BOOLEAN' or mod.type == 'CURVE' or \
1437 mod.type == 'ARRAY':
1438 #{
1439 can_use_cache = False
1440 #}
1441
1442 if mod.type == 'ARMATURE':
1443 armature_def = graph_lookup[mod.object]
1444
1445 # Check the cache first
1446 #
1447 if can_use_cache and (obj.data.name in mesh_cache):
1448 #{
1449 ref = mesh_cache[obj.data.name]
1450 node.submesh_start = ref.submesh_start
1451 node.submesh_count = ref.submesh_count
1452 return
1453 #}
1454
1455 # Compile a whole new mesh
1456 #
1457 node.submesh_start = len( g_encoder['data']['submesh'] )
1458 node.submesh_count = 0
1459
1460 dgraph = bpy.context.evaluated_depsgraph_get()
1461 data = obj.evaluated_get(dgraph).data
1462 data.calc_loop_triangles()
1463 data.calc_normals_split()
1464
1465 # Mesh is split into submeshes based on their material
1466 #
1467 mat_list = data.materials if len(data.materials) > 0 else [None]
1468 for material_id, mat in enumerate(mat_list):
1469 #{
1470 mref = {}
1471
1472 sm = mdl_submesh()
1473 sm.indice_start = len( g_encoder['data']['indice'] )
1474 sm.vertex_start = len( g_encoder['data']['vertex'] )
1475 sm.vertex_count = 0
1476 sm.indice_count = 0
1477 sm.material_id = encoder_process_material( mat )
1478
1479 for i in range(3):
1480 #{
1481 sm.bbx[0][i] = 999999
1482 sm.bbx[1][i] = -999999
1483 #}
1484
1485 # Keep a reference to very very very similar vertices
1486 #
1487 vertex_reference = {}
1488
1489 # Write the vertex / indice data
1490 #
1491 for tri_index, tri in enumerate(data.loop_triangles):
1492 #{
1493 if tri.material_index != material_id:
1494 continue
1495
1496 for j in range(3):
1497 #{
1498 vert = data.vertices[tri.vertices[j]]
1499 li = tri.loops[j]
1500 vi = data.loops[li].vertex_index
1501
1502 # Gather vertex information
1503 #
1504 co = vert.co
1505 norm = data.loops[li].normal
1506 uv = (0,0)
1507 colour = (255,255,255,255)
1508 groups = [0,0,0,0]
1509 weights = [0,0,0,0]
1510
1511 # Uvs
1512 #
1513 if data.uv_layers:
1514 uv = data.uv_layers.active.data[li].uv
1515
1516 # Vertex Colours
1517 #
1518 if data.vertex_colors:
1519 #{
1520 colour = data.vertex_colors.active.data[li].color
1521 colour = (int(colour[0]*255.0),\
1522 int(colour[1]*255.0),\
1523 int(colour[2]*255.0),\
1524 int(colour[3]*255.0))
1525 #}
1526
1527 # Weight groups: truncates to the 3 with the most influence. The
1528 # fourth bone ID is never used by the shader so it is
1529 # always 0
1530 #
1531 if armature_def:
1532 #{
1533 src_groups = [_ for _ in data.vertices[vi].groups \
1534 if obj.vertex_groups[_.group].name in \
1535 armature_def['bones']]
1536
1537 weight_groups = sorted( src_groups, key = \
1538 lambda a: a.weight, reverse=True )
1539 tot = 0.0
1540 for ml in range(3):
1541 #{
1542 if len(weight_groups) > ml:
1543 #{
1544 g = weight_groups[ml]
1545 name = obj.vertex_groups[g.group].name
1546 weight = g.weight
1547
1548 weights[ml] = weight
1549 groups[ml] = armature_def['bones'].index(name)
1550 tot += weight
1551 #}
1552 #}
1553
1554 if len(weight_groups) > 0:
1555 #{
1556 inv_norm = (1.0/tot) * 65535.0
1557 for ml in range(3):
1558 #{
1559 weights[ml] = int( weights[ml] * inv_norm )
1560 weights[ml] = min( weights[ml], 65535 )
1561 weights[ml] = max( weights[ml], 0 )
1562 #}
1563 #}
1564 #}
1565 else:
1566 #{
1567 li1 = tri.loops[(j+1)%3]
1568 vi1 = data.loops[li1].vertex_index
1569 e0 = data.edges[ data.loops[li].edge_index ]
1570
1571 if e0.use_freestyle_mark and \
1572 ((e0.vertices[0] == vi and e0.vertices[1] == vi1) or \
1573 (e0.vertices[0] == vi1 and e0.vertices[1] == vi)):
1574 #{
1575 weights[0] = 1
1576 #}
1577 #}
1578
1579 # Add vertex and expand bound box
1580 #
1581 index = encoder_vertex_push( vertex_reference, co, \
1582 norm, \
1583 uv, \
1584 colour, \
1585 groups, \
1586 weights )
1587 g_encoder['data']['indice'] += [index]
1588 #}
1589 #}
1590
1591 # How many unique verts did we add in total
1592 #
1593 sm.vertex_count = len(g_encoder['data']['vertex']) - sm.vertex_start
1594 sm.indice_count = len(g_encoder['data']['indice']) - sm.indice_start
1595
1596 # Make sure bounding box isn't -inf -> inf if no vertices
1597 #
1598 if sm.vertex_count == 0:
1599 for j in range(2):
1600 for i in range(3):
1601 sm.bbx[j][i] = 0
1602 else:
1603 #{
1604 for j in range(sm.vertex_count):
1605 #{
1606 vert = g_encoder['data']['vertex'][ sm.vertex_start + j ]
1607
1608 for i in range(3):
1609 #{
1610 sm.bbx[0][i] = min( sm.bbx[0][i], vert.co[i] )
1611 sm.bbx[1][i] = max( sm.bbx[1][i], vert.co[i] )
1612 #}
1613 #}
1614 #}
1615
1616 # Add submesh to encoder
1617 #
1618 g_encoder['data']['submesh'] += [sm]
1619 node.submesh_count += 1
1620
1621 #}
1622
1623 # Save a reference to this node since we want to reuse the submesh indices
1624 # later.
1625 g_encoder['mesh_cache'][obj.data.name] = node
1626 #}
1627
1628
1629 def encoder_compile_ent_as( name, node, node_def ):
1630 #{
1631 global g_encoder
1632
1633 if name == 'classtype_none':
1634 #{
1635 node.offset = 0
1636 node.classtype = 0
1637 return
1638 #}
1639 elif name not in globals():
1640 #{
1641 print( "Classtype '" +name + "' is unknown!" )
1642 return
1643 #}
1644
1645 buffer = g_encoder['data']['entdata']
1646 node.offset = len(buffer)
1647
1648 cl = globals()[ name ]
1649 inst = cl()
1650 inst.encode_obj( node, node_def )
1651
1652 buffer.extend( bytearray(inst) )
1653 bytearray_align_to( buffer, 4 )
1654 #}
1655
1656 # Compiles animation data into model and gives us some extra node_def entries
1657 #
1658 def encoder_compile_armature( node, node_def ):
1659 #{
1660 global g_encoder
1661
1662 entdata = g_encoder['data']['entdata']
1663 animdata = g_encoder['data']['anim']
1664 keyframedata = g_encoder['data']['keyframe']
1665 mesh_cache = g_encoder['mesh_cache']
1666 obj = node_def['obj']
1667 bones = node_def['bones']
1668
1669 # extra info
1670 node_def['anim_start'] = len(animdata)
1671 node_def['anim_count'] = 0
1672
1673 if not node_def['compile_animation']:
1674 #{
1675 return
1676 #}
1677
1678 # Compile anims
1679 #
1680 if obj.animation_data:
1681 #{
1682 # So we can restore later
1683 #
1684 previous_frame = bpy.context.scene.frame_current
1685 previous_action = obj.animation_data.action
1686 POSE_OR_REST_CACHE = obj.data.pose_position
1687 obj.data.pose_position = 'POSE'
1688
1689 for NLALayer in obj.animation_data.nla_tracks:
1690 #{
1691 for NLAStrip in NLALayer.strips:
1692 #{
1693 # set active
1694 #
1695 for a in bpy.data.actions:
1696 #{
1697 if a.name == NLAStrip.name:
1698 #{
1699 obj.animation_data.action = a
1700 break
1701 #}
1702 #}
1703
1704 # Clip to NLA settings
1705 #
1706 anim_start = int(NLAStrip.action_frame_start)
1707 anim_end = int(NLAStrip.action_frame_end)
1708
1709 # Export strips
1710 #
1711 anim = mdl_animation()
1712 anim.pstr_name = encoder_process_pstr( NLAStrip.action.name )
1713 anim.rate = 30.0
1714 anim.offset = len(keyframedata)
1715 anim.length = anim_end-anim_start
1716
1717 # Export the keyframes
1718 for frame in range(anim_start,anim_end):
1719 #{
1720 bpy.context.scene.frame_set(frame)
1721
1722 for bone_name in bones:
1723 #{
1724 for pb in obj.pose.bones:
1725 #{
1726 if pb.name != bone_name: continue
1727
1728 rb = obj.data.bones[ bone_name ]
1729
1730 # relative bone matrix
1731 if rb.parent is not None:
1732 #{
1733 offset_mtx = rb.parent.matrix_local
1734 offset_mtx = offset_mtx.inverted_safe() @ \
1735 rb.matrix_local
1736
1737 inv_parent = pb.parent.matrix @ offset_mtx
1738 inv_parent.invert_safe()
1739 fpm = inv_parent @ pb.matrix
1740 #}
1741 else:
1742 #{
1743 bone_mtx = rb.matrix.to_4x4()
1744 local_inv = rb.matrix_local.inverted_safe()
1745 fpm = bone_mtx @ local_inv @ pb.matrix
1746 #}
1747
1748 loc, rot, sca = fpm.decompose()
1749
1750 # local position
1751 final_pos = Vector(( loc[0], loc[2], -loc[1] ))
1752
1753 # rotation
1754 lc_m = pb.matrix_channel.to_3x3()
1755 if pb.parent is not None:
1756 #{
1757 smtx = pb.parent.matrix_channel.to_3x3()
1758 lc_m = smtx.inverted() @ lc_m
1759 #}
1760 rq = lc_m.to_quaternion()
1761
1762 kf = mdl_keyframe()
1763 kf.co[0] = final_pos[0]
1764 kf.co[1] = final_pos[1]
1765 kf.co[2] = final_pos[2]
1766
1767 kf.q[0] = rq[1]
1768 kf.q[1] = rq[3]
1769 kf.q[2] = -rq[2]
1770 kf.q[3] = rq[0]
1771
1772 # scale
1773 kf.s[0] = sca[0]
1774 kf.s[1] = sca[2]
1775 kf.s[2] = sca[1]
1776
1777 keyframedata += [kf]
1778 break
1779 #}
1780 #}
1781 #}
1782
1783 # Add to animation buffer
1784 #
1785 animdata += [anim]
1786 node_def['anim_count'] += 1
1787
1788 # Report progress
1789 #
1790 status_name = F" " + " |"*(node_def['depth']-1)
1791 print( F"{status_name} | *anim: {NLAStrip.action.name}" )
1792 #}
1793 #}
1794
1795 # Restore context to how it was before
1796 #
1797 bpy.context.scene.frame_set( previous_frame )
1798 obj.animation_data.action = previous_action
1799 obj.data.pose_position = POSE_OR_REST_CACHE
1800 #}
1801 #}
1802
1803 # We are trying to compile this node_def
1804 #
1805 def encoder_process_definition( node_def ):
1806 #{
1807 global g_encoder
1808
1809 # data sources for object/bone are taken differently
1810 #
1811 if 'obj' in node_def:
1812 #{
1813 obj = node_def['obj']
1814 obj_type = obj.type
1815 obj_co = obj.location
1816
1817 if obj_type == 'ARMATURE':
1818 obj_classtype = 'classtype_skeleton'
1819 else:
1820 #{
1821 obj_classtype = obj.cv_data.classtype
1822
1823 # Check for armature deform
1824 #
1825 for mod in obj.modifiers:
1826 #{
1827 if mod.type == 'ARMATURE':
1828 #{
1829 obj_classtype = 'classtype_skin'
1830
1831 # Make sure to freeze armature in rest while we collect
1832 # vertex information
1833 #
1834 armature_def = g_encoder['graph_lookup'][mod.object]
1835 POSE_OR_REST_CACHE = armature_def['obj'].data.pose_position
1836 armature_def['obj'].data.pose_position = 'REST'
1837 node_def['linked_armature'] = armature_def
1838 break
1839 #}
1840 #}
1841 #}
1842 #}
1843
1844 elif 'bone' in node_def:
1845 #{
1846 obj = node_def['bone']
1847 obj_type = 'BONE'
1848 obj_co = obj.head_local
1849 obj_classtype = 'classtype_bone'
1850 #}
1851
1852 # Create node
1853 #
1854 node = mdl_node()
1855 node.pstr_name = encoder_process_pstr( obj.name )
1856
1857 if node_def["parent"]:
1858 node.parent = node_def["parent"]["uid"]
1859
1860 # Setup transform
1861 #
1862 node.co[0] = obj_co[0]
1863 node.co[1] = obj_co[2]
1864 node.co[2] = -obj_co[1]
1865
1866 # Convert rotation quat to our space type
1867 #
1868 quat = obj.matrix_local.to_quaternion()
1869 node.q[0] = quat[1]
1870 node.q[1] = quat[3]
1871 node.q[2] = -quat[2]
1872 node.q[3] = quat[0]
1873
1874 # Bone scale is just a vector to the tail
1875 #
1876 if obj_type == 'BONE':
1877 #{
1878 node.s[0] = obj.tail_local[0] - node.co[0]
1879 node.s[1] = obj.tail_local[2] - node.co[1]
1880 node.s[2] = -obj.tail_local[1] - node.co[2]
1881 #}
1882 else:
1883 #{
1884 node.s[0] = obj.scale[0]
1885 node.s[1] = obj.scale[2]
1886 node.s[2] = obj.scale[1]
1887 #}
1888
1889 # Report status
1890 #
1891 tot_uid = g_encoder['uid_count']-1
1892 obj_uid = node_def['uid']
1893 obj_depth = node_def['depth']-1
1894
1895 status_id = F" [{obj_uid: 3}/{tot_uid}]" + " |"*obj_depth
1896 status_name = status_id + F" L {obj.name}"
1897
1898 if obj_classtype != 'classtype_none': status_type = obj_classtype
1899 else: status_type = obj_type
1900
1901 status_parent = F"{node.parent: 3}"
1902 status_armref = ""
1903
1904 if obj_classtype == 'classtype_skin':
1905 status_armref = F" [armature -> {armature_def['obj'].cv_data.uid}]"
1906
1907 print(F"{status_name:<32} {status_type:<22} {status_parent} {status_armref}")
1908
1909 # Process mesh if needed
1910 #
1911 if obj_type == 'MESH':
1912 #{
1913 encoder_compile_mesh( node, node_def )
1914 #}
1915 elif obj_type == 'ARMATURE':
1916 #{
1917 encoder_compile_armature( node, node_def )
1918 #}
1919
1920 encoder_compile_ent_as( obj_classtype, node, node_def )
1921
1922 # Make sure to reset the armature we just mucked about with
1923 #
1924 if obj_classtype == 'classtype_skin':
1925 armature_def['obj'].data.pose_position = POSE_OR_REST_CACHE
1926
1927 g_encoder['data']['node'] += [node]
1928 #}
1929
1930 # The post processing step or the pre processing to the writing step
1931 #
1932 def encoder_write_to_file( path ):
1933 #{
1934 global g_encoder
1935
1936 # Compile down to a byte array
1937 #
1938 header = g_encoder['header']
1939 file_pos = sizeof(header)
1940 file_data = bytearray()
1941 print( " Compositing data arrays" )
1942
1943 for array_name in g_encoder['data']:
1944 #{
1945 file_pos += bytearray_align_to( file_data, 16, sizeof(header) )
1946 arr = g_encoder['data'][array_name]
1947
1948 setattr( header, array_name + "_offset", file_pos )
1949
1950 print( F" {array_name:<16} @{file_pos:> 8X}[{len(arr)}]" )
1951
1952 if isinstance( arr, bytearray ):
1953 #{
1954 setattr( header, array_name + "_size", len(arr) )
1955
1956 file_data.extend( arr )
1957 file_pos += len(arr)
1958 #}
1959 else:
1960 #{
1961 setattr( header, array_name + "_count", len(arr) )
1962
1963 for item in arr:
1964 #{
1965 bbytes = bytearray(item)
1966 file_data.extend( bbytes )
1967 file_pos += sizeof(item)
1968 #}
1969 #}
1970 #}
1971
1972 # This imperitive for this field to be santized in the future!
1973 #
1974 header.file_length = file_pos
1975
1976 print( " Writing file" )
1977 # Write header and data chunk to file
1978 #
1979 fp = open( path, "wb" )
1980 fp.write( bytearray( header ) )
1981 fp.write( file_data )
1982 fp.close()
1983 #}
1984
1985 # Main compiler, uses string as the identifier for the collection
1986 #
1987 def write_model(collection_name):
1988 #{
1989 global g_encoder
1990 print( F"Model graph | Create mode '{collection_name}'" )
1991 folder = bpy.path.abspath(bpy.context.scene.cv_data.export_dir)
1992 path = F"{folder}{collection_name}.mdl"
1993 print( path )
1994
1995 collection = bpy.data.collections[collection_name]
1996
1997 encoder_init( collection )
1998 encoder_build_scene_graph( collection )
1999
2000 # Compile
2001 #
2002 print( " Comping objects" )
2003 it = encoder_graph_iterator( g_encoder['scene_graph'] )
2004 for node_def in it:
2005 encoder_process_definition( node_def )
2006
2007 # Write
2008 #
2009 encoder_write_to_file( path )
2010
2011 print( F"Completed {collection_name}.mdl" )
2012 #}
2013
2014 # ---------------------------------------------------------------------------- #
2015 # #
2016 # GUI section #
2017 # #
2018 # ---------------------------------------------------------------------------- #
2019
2020 cv_view_draw_handler = None
2021 cv_view_shader = gpu.shader.from_builtin('3D_SMOOTH_COLOR')
2022 cv_view_verts = []
2023 cv_view_colours = []
2024 cv_view_course_i = 0
2025
2026 # Draw axis alligned sphere at position with radius
2027 #
2028 def cv_draw_sphere( pos, radius, colour ):
2029 #{
2030 global cv_view_verts, cv_view_colours
2031
2032 ly = pos + Vector((0,0,radius))
2033 lx = pos + Vector((0,radius,0))
2034 lz = pos + Vector((0,0,radius))
2035
2036 pi = 3.14159265358979323846264
2037
2038 for i in range(16):
2039 #{
2040 t = ((i+1.0) * 1.0/16.0) * pi * 2.0
2041 s = math.sin(t)
2042 c = math.cos(t)
2043
2044 py = pos + Vector((s*radius,0.0,c*radius))
2045 px = pos + Vector((s*radius,c*radius,0.0))
2046 pz = pos + Vector((0.0,s*radius,c*radius))
2047
2048 cv_view_verts += [ px, lx ]
2049 cv_view_verts += [ py, ly ]
2050 cv_view_verts += [ pz, lz ]
2051
2052 cv_view_colours += [ colour, colour, colour, colour, colour, colour ]
2053
2054 ly = py
2055 lx = px
2056 lz = pz
2057 #}
2058 cv_draw_lines()
2059 #}
2060
2061 # Draw axis alligned sphere at position with radius
2062 #
2063 def cv_draw_halfsphere( pos, tx, ty, tz, radius, colour ):
2064 #{
2065 global cv_view_verts, cv_view_colours
2066
2067 ly = pos + tz*radius
2068 lx = pos + ty*radius
2069 lz = pos + tz*radius
2070
2071 pi = 3.14159265358979323846264
2072
2073 for i in range(16):
2074 #{
2075 t = ((i+1.0) * 1.0/16.0) * pi
2076 s = math.sin(t)
2077 c = math.cos(t)
2078
2079 s1 = math.sin(t*2.0)
2080 c1 = math.cos(t*2.0)
2081
2082 py = pos + s*tx*radius + c *tz*radius
2083 px = pos + s*tx*radius + c *ty*radius
2084 pz = pos + s1*ty*radius + c1*tz*radius
2085
2086 cv_view_verts += [ px, lx ]
2087 cv_view_verts += [ py, ly ]
2088 cv_view_verts += [ pz, lz ]
2089
2090 cv_view_colours += [ colour, colour, colour, colour, colour, colour ]
2091
2092 ly = py
2093 lx = px
2094 lz = pz
2095 #}
2096 cv_draw_lines()
2097 #}
2098
2099 # Draw transformed -1 -> 1 cube
2100 #
2101 def cv_draw_ucube( transform, colour ):
2102 #{
2103 global cv_view_verts, cv_view_colours
2104
2105 a = Vector((-1,-1,-1))
2106 b = Vector((1,1,1))
2107
2108 vs = [None]*8
2109 vs[0] = transform @ Vector((a[0], a[1], a[2]))
2110 vs[1] = transform @ Vector((a[0], b[1], a[2]))
2111 vs[2] = transform @ Vector((b[0], b[1], a[2]))
2112 vs[3] = transform @ Vector((b[0], a[1], a[2]))
2113 vs[4] = transform @ Vector((a[0], a[1], b[2]))
2114 vs[5] = transform @ Vector((a[0], b[1], b[2]))
2115 vs[6] = transform @ Vector((b[0], b[1], b[2]))
2116 vs[7] = transform @ Vector((b[0], a[1], b[2]))
2117
2118 indices = [(0,1),(1,2),(2,3),(3,0),(4,5),(5,6),(6,7),(7,4),\
2119 (0,4),(1,5),(2,6),(3,7)]
2120
2121 for l in indices:
2122 #{
2123 v0 = vs[l[0]]
2124 v1 = vs[l[1]]
2125 cv_view_verts += [(v0[0],v0[1],v0[2])]
2126 cv_view_verts += [(v1[0],v1[1],v1[2])]
2127 cv_view_colours += [(0,1,0,1),(0,1,0,1)]
2128 #}
2129 cv_draw_lines()
2130 #}
2131
2132 # Draw line with colour
2133 #
2134 def cv_draw_line( p0, p1, colour ):
2135 #{
2136 global cv_view_verts, cv_view_colours
2137
2138 cv_view_verts += [p0,p1]
2139 cv_view_colours += [colour, colour]
2140 cv_draw_lines()
2141 #}
2142
2143 # Draw line with colour(s)
2144 #
2145 def cv_draw_line2( p0, p1, c0, c1 ):
2146 #{
2147 global cv_view_verts, cv_view_colours
2148
2149 cv_view_verts += [p0,p1]
2150 cv_view_colours += [c0,c1]
2151 cv_draw_lines()
2152 #}
2153
2154 #
2155 #
2156 def cv_tangent_basis( n, tx, ty ):
2157 #{
2158 if abs( n[0] ) >= 0.57735027:
2159 #{
2160 tx[0] = n[1]
2161 tx[1] = -n[0]
2162 tx[2] = 0.0
2163 #}
2164 else:
2165 #{
2166 tx[0] = 0.0
2167 tx[1] = n[2]
2168 tx[2] = -n[1]
2169 #}
2170
2171 tx.normalize()
2172 _ty = n.cross( tx )
2173
2174 ty[0] = _ty[0]
2175 ty[1] = _ty[1]
2176 ty[2] = _ty[2]
2177 #}
2178
2179 # Draw coloured arrow
2180 #
2181 def cv_draw_arrow( p0, p1, c0 ):
2182 #{
2183 global cv_view_verts, cv_view_colours
2184
2185 n = p1-p0
2186 midpt = p0 + n*0.5
2187 n.normalize()
2188
2189 tx = Vector((1,0,0))
2190 ty = Vector((1,0,0))
2191 cv_tangent_basis( n, tx, ty )
2192
2193 cv_view_verts += [p0,p1, midpt+(tx-n)*0.15,midpt, midpt+(-tx-n)*0.15,midpt ]
2194 cv_view_colours += [c0,c0,c0,c0,c0,c0]
2195 cv_draw_lines()
2196 #}
2197
2198 # Drawhandles of a bezier control point
2199 #
2200 def cv_draw_bhandle( obj, direction, colour ):
2201 #{
2202 global cv_view_verts, cv_view_colours
2203
2204 p0 = obj.location
2205 h0 = obj.matrix_world @ Vector((0,direction,0))
2206
2207 cv_view_verts += [p0]
2208 cv_view_verts += [h0]
2209 cv_view_colours += [colour,colour]
2210 cv_draw_lines()
2211 #}
2212
2213 # Draw a bezier curve (at fixed resolution 10)
2214 #
2215 def cv_draw_bezier( p0,h0,p1,h1,c0,c1 ):
2216 #{
2217 global cv_view_verts, cv_view_colours
2218
2219 last = p0
2220 for i in range(10):
2221 #{
2222 t = (i+1)/10
2223 a0 = 1-t
2224
2225 tt = t*t
2226 ttt = tt*t
2227 p=ttt*p1+(3*tt-3*ttt)*h1+(3*ttt-6*tt+3*t)*h0+(3*tt-ttt-3*t+1)*p0
2228
2229 cv_view_verts += [(last[0],last[1],last[2])]
2230 cv_view_verts += [(p[0],p[1],p[2])]
2231 cv_view_colours += [c0*a0+c1*(1-a0),c0*a0+c1*(1-a0)]
2232
2233 last = p
2234 #}
2235 cv_draw_lines()
2236 #}
2237
2238 # I think this one extends the handles of the bezier otwards......
2239 #
2240 def cv_draw_sbpath( o0,o1,c0,c1,s0,s1 ):
2241 #{
2242 global cv_view_course_i
2243
2244 offs = ((cv_view_course_i % 2)*2-1) * cv_view_course_i * 0.02
2245
2246 p0 = o0.matrix_world @ Vector((offs, 0,0))
2247 h0 = o0.matrix_world @ Vector((offs, s0,0))
2248 p1 = o1.matrix_world @ Vector((offs, 0,0))
2249 h1 = o1.matrix_world @ Vector((offs,-s1,0))
2250
2251 cv_draw_bezier( p0,h0,p1,h1,c0,c1 )
2252 cv_draw_lines()
2253 #}
2254
2255 # Flush the lines buffers. This is called often because god help you if you want
2256 # to do fixed, fast buffers in this catastrophic programming language.
2257 #
2258 def cv_draw_lines():
2259 #{
2260 global cv_view_shader, cv_view_verts, cv_view_colours
2261
2262 if len(cv_view_verts) < 2:
2263 return
2264
2265 lines = batch_for_shader(\
2266 cv_view_shader, 'LINES', \
2267 { "pos":cv_view_verts, "color":cv_view_colours })
2268
2269 lines.draw( cv_view_shader )
2270
2271 cv_view_verts = []
2272 cv_view_colours = []
2273 #}
2274
2275 # I dont remember what this does exactly
2276 #
2277 def cv_draw_bpath( o0,o1,c0,c1 ):
2278 #{
2279 cv_draw_sbpath( o0,o1,c0,c1,1.0,1.0 )
2280 #}
2281
2282 # Semi circle to show the limit. and some lines
2283 #
2284 def draw_limit( obj, center, major, minor, amin, amax, colour ):
2285 #{
2286 global cv_view_verts, cv_view_colours
2287 f = 0.05
2288 ay = major*f
2289 ax = minor*f
2290
2291 for x in range(16):
2292 #{
2293 t0 = x/16
2294 t1 = (x+1)/16
2295 a0 = amin*(1.0-t0)+amax*t0
2296 a1 = amin*(1.0-t1)+amax*t1
2297
2298 p0 = center + major*f*math.cos(a0) + minor*f*math.sin(a0)
2299 p1 = center + major*f*math.cos(a1) + minor*f*math.sin(a1)
2300
2301 p0=obj.matrix_world @ p0
2302 p1=obj.matrix_world @ p1
2303 cv_view_verts += [p0,p1]
2304 cv_view_colours += [colour,colour]
2305
2306 if x == 0:
2307 #{
2308 cv_view_verts += [p0,center]
2309 cv_view_colours += [colour,colour]
2310 #}
2311 if x == 15:
2312 #{
2313 cv_view_verts += [p1,center]
2314 cv_view_colours += [colour,colour]
2315 #}
2316 #}
2317
2318 cv_view_verts += [center+major*1.2*f,center+major*f*0.8]
2319 cv_view_colours += [colour,colour]
2320
2321 cv_draw_lines()
2322 #}
2323
2324 # Cone and twist limit
2325 #
2326 def draw_cone_twist( center, vx, vy, va ):
2327 #{
2328 global cv_view_verts, cv_view_colours
2329 axis = vy.cross( vx )
2330 axis.normalize()
2331
2332 size = 0.12
2333
2334 cv_view_verts += [center, center+va*size]
2335 cv_view_colours += [ (1,1,1,1), (1,1,1,1) ]
2336
2337 for x in range(32):
2338 #{
2339 t0 = (x/32) * math.tau
2340 t1 = ((x+1)/32) * math.tau
2341
2342 c0 = math.cos(t0)
2343 s0 = math.sin(t0)
2344 c1 = math.cos(t1)
2345 s1 = math.sin(t1)
2346
2347 p0 = center + (axis + vx*c0 + vy*s0).normalized() * size
2348 p1 = center + (axis + vx*c1 + vy*s1).normalized() * size
2349
2350 col0 = ( abs(c0), abs(s0), 0.0, 1.0 )
2351 col1 = ( abs(c1), abs(s1), 0.0, 1.0 )
2352
2353 cv_view_verts += [center, p0, p0, p1]
2354 cv_view_colours += [ (0,0,0,0), col0, col0, col1 ]
2355 #}
2356
2357 cv_draw_lines()
2358 #}
2359
2360 # Draws constraints and stuff for the skeleton. This isnt documented and wont be
2361 #
2362 def draw_skeleton_helpers( obj ):
2363 #{
2364 global cv_view_verts, cv_view_colours
2365
2366 if obj.data.pose_position != 'REST':
2367 #{
2368 return
2369 #}
2370
2371 for bone in obj.data.bones:
2372 #{
2373 c = bone.head_local
2374 a = Vector((bone.cv_data.v0[0], bone.cv_data.v0[1], bone.cv_data.v0[2]))
2375 b = Vector((bone.cv_data.v1[0], bone.cv_data.v1[1], bone.cv_data.v1[2]))
2376
2377 if bone.cv_data.collider == 'collider_box':
2378 #{
2379
2380 vs = [None]*8
2381 vs[0]=obj.matrix_world@Vector((c[0]+a[0],c[1]+a[1],c[2]+a[2]))
2382 vs[1]=obj.matrix_world@Vector((c[0]+a[0],c[1]+b[1],c[2]+a[2]))
2383 vs[2]=obj.matrix_world@Vector((c[0]+b[0],c[1]+b[1],c[2]+a[2]))
2384 vs[3]=obj.matrix_world@Vector((c[0]+b[0],c[1]+a[1],c[2]+a[2]))
2385 vs[4]=obj.matrix_world@Vector((c[0]+a[0],c[1]+a[1],c[2]+b[2]))
2386 vs[5]=obj.matrix_world@Vector((c[0]+a[0],c[1]+b[1],c[2]+b[2]))
2387 vs[6]=obj.matrix_world@Vector((c[0]+b[0],c[1]+b[1],c[2]+b[2]))
2388 vs[7]=obj.matrix_world@Vector((c[0]+b[0],c[1]+a[1],c[2]+b[2]))
2389
2390 indices = [(0,1),(1,2),(2,3),(3,0),(4,5),(5,6),(6,7),(7,4),\
2391 (0,4),(1,5),(2,6),(3,7)]
2392
2393 for l in indices:
2394 #{
2395 v0 = vs[l[0]]
2396 v1 = vs[l[1]]
2397
2398 cv_view_verts += [(v0[0],v0[1],v0[2])]
2399 cv_view_verts += [(v1[0],v1[1],v1[2])]
2400 cv_view_colours += [(0.5,0.5,0.5,0.5),(0.5,0.5,0.5,0.5)]
2401 #}
2402 #}
2403 elif bone.cv_data.collider == 'collider_capsule':
2404 #{
2405 v0 = b-a
2406 major_axis = 0
2407 largest = -1.0
2408
2409 for i in range(3):
2410 #{
2411 if abs(v0[i]) > largest:
2412 #{
2413 largest = abs(v0[i])
2414 major_axis = i
2415 #}
2416 #}
2417
2418 v1 = Vector((0,0,0))
2419 v1[major_axis] = 1.0
2420
2421 tx = Vector((0,0,0))
2422 ty = Vector((0,0,0))
2423
2424 cv_tangent_basis( v1, tx, ty )
2425 r = (abs(tx.dot( v0 )) + abs(ty.dot( v0 ))) * 0.25
2426 l = v0[ major_axis ] - r*2
2427
2428 p0 = obj.matrix_world@Vector( c + (a+b)*0.5 + v1*l*-0.5 )
2429 p1 = obj.matrix_world@Vector( c + (a+b)*0.5 + v1*l* 0.5 )
2430
2431 colour = [0.2,0.2,0.2,1.0]
2432 colour[major_axis] = 0.5
2433
2434 cv_draw_halfsphere( p0, -v1, ty, tx, r, colour )
2435 cv_draw_halfsphere( p1, v1, ty, tx, r, colour )
2436 cv_draw_line( p0+tx* r, p1+tx* r, colour )
2437 cv_draw_line( p0+tx*-r, p1+tx*-r, colour )
2438 cv_draw_line( p0+ty* r, p1+ty* r, colour )
2439 cv_draw_line( p0+ty*-r, p1+ty*-r, colour )
2440 #}
2441 else:
2442 #{
2443 continue
2444 #}
2445
2446 center = obj.matrix_world @ c
2447 if bone.cv_data.con0:
2448 #{
2449 vx = Vector([bone.cv_data.conevx[_] for _ in range(3)])
2450 vy = Vector([bone.cv_data.conevy[_] for _ in range(3)])
2451 va = Vector([bone.cv_data.coneva[_] for _ in range(3)])
2452 draw_cone_twist( center, vx, vy, va )
2453
2454 #draw_limit( obj, c, Vector((0,0,1)),Vector((0,-1,0)), \
2455 # bone.cv_data.mins[0], bone.cv_data.maxs[0], \
2456 # (1,0,0,1))
2457 #draw_limit( obj, c, Vector((0,-1,0)),Vector((1,0,0)), \
2458 # bone.cv_data.mins[1], bone.cv_data.maxs[1], \
2459 # (0,1,0,1))
2460 #draw_limit( obj, c, Vector((1,0,0)),Vector((0,0,1)), \
2461 # bone.cv_data.mins[2], bone.cv_data.maxs[2], \
2462 # (0,0,1,1))
2463 #}
2464 #}
2465 #}
2466
2467 def cv_draw():
2468 #{
2469 global cv_view_shader
2470 global cv_view_verts
2471 global cv_view_colours
2472 global cv_view_course_i
2473
2474 cv_view_course_i = 0
2475 cv_view_verts = []
2476 cv_view_colours = []
2477
2478 cv_view_shader.bind()
2479 gpu.state.depth_mask_set(False)
2480 gpu.state.line_width_set(2.0)
2481 gpu.state.face_culling_set('BACK')
2482 gpu.state.depth_test_set('LESS')
2483 gpu.state.blend_set('NONE')
2484
2485 for obj in bpy.context.collection.objects:
2486 #{
2487 if obj.type == 'ARMATURE':
2488 #{
2489 if obj.data.pose_position == 'REST':
2490 draw_skeleton_helpers( obj )
2491 #}
2492 else:
2493 #{
2494 classtype = obj.cv_data.classtype
2495 if (classtype != 'classtype_none') and (classtype in globals()):
2496 #{
2497 cl = globals()[ classtype ]
2498
2499 if getattr( cl, "draw_scene_helpers", None ):
2500 #{
2501 cl.draw_scene_helpers( obj )
2502 #}
2503 #}
2504 #}
2505 #}
2506
2507 cv_draw_lines()
2508 return
2509 #}
2510
2511
2512 # ---------------------------------------------------------------------------- #
2513 # #
2514 # Blender #
2515 # #
2516 # ---------------------------------------------------------------------------- #
2517
2518 # Checks whether this object has a classtype assigned. we can only target other
2519 # classes
2520 def cv_poll_target(scene, obj):
2521 #{
2522 if obj == bpy.context.active_object:
2523 return False
2524 if obj.cv_data.classtype == 'classtype_none':
2525 return False
2526
2527 return True
2528 #}
2529
2530 class CV_MESH_SETTINGS(bpy.types.PropertyGroup):
2531 #{
2532 v0: bpy.props.FloatVectorProperty(name="v0",size=3)
2533 v1: bpy.props.FloatVectorProperty(name="v1",size=3)
2534 v2: bpy.props.FloatVectorProperty(name="v2",size=3)
2535 v3: bpy.props.FloatVectorProperty(name="v3",size=3)
2536 #}
2537
2538 class CV_OBJ_SETTINGS(bpy.types.PropertyGroup):
2539 #{
2540 uid: bpy.props.IntProperty( name="" )
2541
2542 strp: bpy.props.StringProperty( name="strp" )
2543 intp: bpy.props.IntProperty( name="intp" )
2544 fltp: bpy.props.FloatProperty( name="fltp" )
2545 bp0: bpy.props.BoolProperty( name="bp0" )
2546 bp1: bpy.props.BoolProperty( name="bp1" )
2547 bp2: bpy.props.BoolProperty( name="bp2" )
2548 bp3: bpy.props.BoolProperty( name="bp3" )
2549
2550 target: bpy.props.PointerProperty( type=bpy.types.Object, name="target", \
2551 poll=cv_poll_target )
2552 target1: bpy.props.PointerProperty( type=bpy.types.Object, name="target1", \
2553 poll=cv_poll_target )
2554 target2: bpy.props.PointerProperty( type=bpy.types.Object, name="target2", \
2555 poll=cv_poll_target )
2556 target3: bpy.props.PointerProperty( type=bpy.types.Object, name="target3", \
2557 poll=cv_poll_target )
2558
2559 colour: bpy.props.FloatVectorProperty( name="colour",subtype='COLOR',\
2560 min=0.0,max=1.0)
2561
2562 classtype: bpy.props.EnumProperty(
2563 name="Format",
2564 items = [
2565 ('classtype_none', "classtype_none", "", 0),
2566 ('classtype_gate', "classtype_gate", "", 1),
2567 ('classtype_spawn', "classtype_spawn", "", 3),
2568 ('classtype_water', "classtype_water", "", 4),
2569 ('classtype_route_node', "classtype_route_node", "", 8 ),
2570 ('classtype_route', "classtype_route", "", 9 ),
2571 ('classtype_audio',"classtype_audio","",14),
2572 ('classtype_trigger',"classtype_trigger","",100),
2573 ('classtype_logic_achievement',"classtype_logic_achievement","",101),
2574 ('classtype_logic_relay',"classtype_logic_relay","",102),
2575 ('classtype_spawn_link',"classtype_spawn_link","",150),
2576 ])
2577 #}
2578
2579 class CV_BONE_SETTINGS(bpy.types.PropertyGroup):
2580 #{
2581 collider: bpy.props.EnumProperty(
2582 name="Collider Type",
2583 items = [
2584 ('collider_none', "collider_none", "", 0),
2585 ('collider_box', "collider_box", "", 1),
2586 ('collider_capsule', "collider_capsule", "", 2),
2587 ])
2588
2589 v0: bpy.props.FloatVectorProperty(name="v0",size=3)
2590 v1: bpy.props.FloatVectorProperty(name="v1",size=3)
2591
2592 con0: bpy.props.BoolProperty(name="Constriant 0",default=False)
2593 mins: bpy.props.FloatVectorProperty(name="mins",size=3)
2594 maxs: bpy.props.FloatVectorProperty(name="maxs",size=3)
2595
2596 conevx: bpy.props.FloatVectorProperty(name="conevx",size=3)
2597 conevy: bpy.props.FloatVectorProperty(name="conevy",size=3)
2598 coneva: bpy.props.FloatVectorProperty(name="coneva",size=3)
2599 conet: bpy.props.FloatProperty(name="conet")
2600 #}
2601
2602 class CV_BONE_PANEL(bpy.types.Panel):
2603 #{
2604 bl_label="Bone Config"
2605 bl_idname="SCENE_PT_cv_bone"
2606 bl_space_type='PROPERTIES'
2607 bl_region_type='WINDOW'
2608 bl_context='bone'
2609
2610 def draw(_,context):
2611 #{
2612 active_object = context.active_object
2613 if active_object == None: return
2614
2615 bone = active_object.data.bones.active
2616 if bone == None: return
2617
2618 _.layout.prop( bone.cv_data, "collider" )
2619 _.layout.prop( bone.cv_data, "v0" )
2620 _.layout.prop( bone.cv_data, "v1" )
2621
2622 _.layout.label( text="Angle Limits" )
2623 _.layout.prop( bone.cv_data, "con0" )
2624
2625 _.layout.prop( bone.cv_data, "conevx" )
2626 _.layout.prop( bone.cv_data, "conevy" )
2627 _.layout.prop( bone.cv_data, "coneva" )
2628 _.layout.prop( bone.cv_data, "conet" )
2629 #}
2630 #}
2631
2632 class CV_SCENE_SETTINGS(bpy.types.PropertyGroup):
2633 #{
2634 use_hidden: bpy.props.BoolProperty( name="use hidden", default=False )
2635 export_dir: bpy.props.StringProperty( name="Export Dir", subtype='DIR_PATH' )
2636 #}
2637
2638 class CV_COLLECTION_SETTINGS(bpy.types.PropertyGroup):
2639 #{
2640 pack_textures: bpy.props.BoolProperty( name="Pack Textures", default=False )
2641 animations: bpy.props.BoolProperty( name="Export animation", default=True)
2642 #}
2643
2644 class CV_MATERIAL_SETTINGS(bpy.types.PropertyGroup):
2645 #{
2646 shader: bpy.props.EnumProperty(
2647 name="Format",
2648 items = [
2649 ('standard',"standard","",0),
2650 ('standard_cutout', "standard_cutout", "", 1),
2651 ('terrain_blend', "terrain_blend", "", 2),
2652 ('vertex_blend', "vertex_blend", "", 3),
2653 ('water',"water","",4),
2654 ])
2655
2656 surface_prop: bpy.props.EnumProperty(
2657 name="Surface Property",
2658 items = [
2659 ('concrete','concrete','',0),
2660 ('wood','wood','',1),
2661 ('grass','grass','',2)
2662 ])
2663
2664 collision: bpy.props.BoolProperty( \
2665 name="Collisions Enabled",\
2666 default=True,\
2667 description = "Can the player collide with this material"\
2668 )
2669 skate_surface: bpy.props.BoolProperty( \
2670 name="Skate Surface", \
2671 default=True,\
2672 description = "Should the game try to target this surface?" \
2673 )
2674 grind_surface: bpy.props.BoolProperty( \
2675 name="Grind Surface", \
2676 default=False,\
2677 description = "Grind face?" \
2678 )
2679 grow_grass: bpy.props.BoolProperty( \
2680 name="Grow Grass", \
2681 default=False,\
2682 description = "Spawn grass sprites on this surface?" \
2683 )
2684 blend_offset: bpy.props.FloatVectorProperty( \
2685 name="Blend Offset", \
2686 size=2, \
2687 default=Vector((0.5,0.0)),\
2688 description="When surface is more than 45 degrees, add this vector " +\
2689 "to the UVs" \
2690 )
2691 sand_colour: bpy.props.FloatVectorProperty( \
2692 name="Sand Colour",\
2693 subtype='COLOR',\
2694 min=0.0,max=1.0,\
2695 default=Vector((0.79,0.63,0.48)),\
2696 description="Blend to this colour near the 0 coordinate on UP axis"\
2697 )
2698 shore_colour: bpy.props.FloatVectorProperty( \
2699 name="Shore Colour",\
2700 subtype='COLOR',\
2701 min=0.0,max=1.0,\
2702 default=Vector((0.03,0.32,0.61)),\
2703 description="Water colour at the shoreline"\
2704 )
2705 ocean_colour: bpy.props.FloatVectorProperty( \
2706 name="Ocean Colour",\
2707 subtype='COLOR',\
2708 min=0.0,max=1.0,\
2709 default=Vector((0.0,0.006,0.03)),\
2710 description="Water colour in the deep bits"\
2711 )
2712 #}
2713
2714 class CV_MATERIAL_PANEL(bpy.types.Panel):
2715 #{
2716 bl_label="Skate Rift material"
2717 bl_idname="MATERIAL_PT_cv_material"
2718 bl_space_type='PROPERTIES'
2719 bl_region_type='WINDOW'
2720 bl_context="material"
2721
2722 def draw(_,context):
2723 #{
2724 active_object = bpy.context.active_object
2725 if active_object == None: return
2726 active_mat = active_object.active_material
2727 if active_mat == None: return
2728
2729 info = material_info( active_mat )
2730
2731 if 'tex_diffuse' in info:
2732 #{
2733 _.layout.label( icon='INFO', \
2734 text=F"{info['tex_diffuse'].name} will be compiled" )
2735 #}
2736
2737 _.layout.prop( active_mat.cv_data, "shader" )
2738 _.layout.prop( active_mat.cv_data, "surface_prop" )
2739 _.layout.prop( active_mat.cv_data, "collision" )
2740
2741 if active_mat.cv_data.collision:
2742 _.layout.prop( active_mat.cv_data, "skate_surface" )
2743 _.layout.prop( active_mat.cv_data, "grind_surface" )
2744 _.layout.prop( active_mat.cv_data, "grow_grass" )
2745
2746 if active_mat.cv_data.shader == "terrain_blend":
2747 #{
2748 box = _.layout.box()
2749 box.prop( active_mat.cv_data, "blend_offset" )
2750 box.prop( active_mat.cv_data, "sand_colour" )
2751 #}
2752 elif active_mat.cv_data.shader == "vertex_blend":
2753 #{
2754 box = _.layout.box()
2755 box.label( icon='INFO', text="Uses vertex colours, the R channel" )
2756 box.prop( active_mat.cv_data, "blend_offset" )
2757 #}
2758 elif active_mat.cv_data.shader == "water":
2759 #{
2760 box = _.layout.box()
2761 box.label( icon='INFO', text="Depth scale of 16 meters" )
2762 box.prop( active_mat.cv_data, "shore_colour" )
2763 box.prop( active_mat.cv_data, "ocean_colour" )
2764 #}
2765 #}
2766 #}
2767
2768 class CV_OBJ_PANEL(bpy.types.Panel):
2769 #{
2770 bl_label="Entity Config"
2771 bl_idname="SCENE_PT_cv_entity"
2772 bl_space_type='PROPERTIES'
2773 bl_region_type='WINDOW'
2774 bl_context="object"
2775
2776 def draw(_,context):
2777 #{
2778 active_object = bpy.context.active_object
2779 if active_object == None: return
2780 if active_object.type == 'ARMATURE':
2781 #{
2782 row = _.layout.row()
2783 row.enabled = False
2784 row.label( text="This object has the intrinsic classtype of skeleton" )
2785 return
2786 #}
2787
2788 _.layout.prop( active_object.cv_data, "classtype" )
2789
2790 classtype = active_object.cv_data.classtype
2791
2792 if (classtype != 'classtype_none') and (classtype in globals()):
2793 #{
2794 cl = globals()[ classtype ]
2795
2796 if getattr( cl, "editor_interface", None ):
2797 #{
2798 cl.editor_interface( _.layout, active_object )
2799 #}
2800 #}
2801 #}
2802 #}
2803
2804 class CV_COMPILE(bpy.types.Operator):
2805 #{
2806 bl_idname="carve.compile_all"
2807 bl_label="Compile All"
2808
2809 def execute(_,context):
2810 #{
2811 view_layer = bpy.context.view_layer
2812 for col in view_layer.layer_collection.children["export"].children:
2813 if not col.hide_viewport or bpy.context.scene.cv_data.use_hidden:
2814 write_model( col.name )
2815
2816 return {'FINISHED'}
2817 #}
2818 #}
2819
2820 class CV_COMPILE_THIS(bpy.types.Operator):
2821 #{
2822 bl_idname="carve.compile_this"
2823 bl_label="Compile This collection"
2824
2825 def execute(_,context):
2826 #{
2827 col = bpy.context.collection
2828 write_model( col.name )
2829
2830 return {'FINISHED'}
2831 #}
2832 #}
2833
2834 class CV_INTERFACE(bpy.types.Panel):
2835 #{
2836 bl_idname = "VIEW3D_PT_carve"
2837 bl_label = "Skate Rift"
2838 bl_space_type = 'VIEW_3D'
2839 bl_region_type = 'UI'
2840 bl_category = "Skate Rift"
2841
2842 def draw(_, context):
2843 #{
2844 layout = _.layout
2845 layout.prop( context.scene.cv_data, "export_dir" )
2846
2847 col = bpy.context.collection
2848
2849 found_in_export = False
2850 export_count = 0
2851 view_layer = bpy.context.view_layer
2852 for c1 in view_layer.layer_collection.children["export"].children:
2853 #{
2854 if not c1.hide_viewport or bpy.context.scene.cv_data.use_hidden:
2855 export_count += 1
2856
2857 if c1.name == col.name:
2858 #{
2859 found_in_export = True
2860 #}
2861 #}
2862
2863 box = layout.box()
2864 if found_in_export:
2865 #{
2866 box.label( text=col.name + ".mdl" )
2867 box.prop( col.cv_data, "pack_textures" )
2868 box.prop( col.cv_data, "animations" )
2869 box.operator( "carve.compile_this" )
2870 #}
2871 else:
2872 #{
2873 row = box.row()
2874 row.enabled=False
2875 row.label( text=col.name )
2876 box.label( text="This collection is not in the export group" )
2877 #}
2878
2879 box = layout.box()
2880 row = box.row()
2881
2882 split = row.split( factor = 0.3, align=True )
2883 split.prop( context.scene.cv_data, "use_hidden", text="hidden" )
2884
2885 row1 = split.row()
2886 if export_count == 0:
2887 row1.enabled=False
2888 row1.operator( "carve.compile_all", \
2889 text=F"Compile all ({export_count} collections)" )
2890 #}
2891 #}
2892
2893
2894 classes = [CV_OBJ_SETTINGS,CV_OBJ_PANEL,CV_COMPILE,CV_INTERFACE,\
2895 CV_MESH_SETTINGS, CV_SCENE_SETTINGS, CV_BONE_SETTINGS,\
2896 CV_BONE_PANEL, CV_COLLECTION_SETTINGS, CV_COMPILE_THIS,\
2897 CV_MATERIAL_SETTINGS, CV_MATERIAL_PANEL ]
2898
2899 def register():
2900 #{
2901 global cv_view_draw_handler
2902
2903 for c in classes:
2904 bpy.utils.register_class(c)
2905
2906 bpy.types.Object.cv_data = bpy.props.PointerProperty(type=CV_OBJ_SETTINGS)
2907 bpy.types.Mesh.cv_data = bpy.props.PointerProperty(type=CV_MESH_SETTINGS)
2908 bpy.types.Scene.cv_data = bpy.props.PointerProperty(type=CV_SCENE_SETTINGS)
2909 bpy.types.Bone.cv_data = bpy.props.PointerProperty(type=CV_BONE_SETTINGS)
2910 bpy.types.Collection.cv_data = \
2911 bpy.props.PointerProperty(type=CV_COLLECTION_SETTINGS)
2912 bpy.types.Material.cv_data = \
2913 bpy.props.PointerProperty(type=CV_MATERIAL_SETTINGS)
2914
2915 cv_view_draw_handler = bpy.types.SpaceView3D.draw_handler_add(\
2916 cv_draw,(),'WINDOW','POST_VIEW')
2917 #}
2918
2919 def unregister():
2920 #{
2921 global cv_view_draw_handler
2922
2923 for c in classes:
2924 bpy.utils.unregister_class(c)
2925
2926 bpy.types.SpaceView3D.draw_handler_remove(cv_view_draw_handler,'WINDOW')
2927 #}
2928
2929 # ---------------------------------------------------------------------------- #
2930 # #
2931 # QOI encoder #
2932 # #
2933 # ---------------------------------------------------------------------------- #
2934 # #
2935 # Transliteration of: #
2936 # https://github.com/phoboslab/qoi/blob/master/qoi.h #
2937 # #
2938 # Copyright (c) 2021, Dominic Szablewski - https://phoboslab.org #
2939 # SPDX-License-Identifier: MIT #
2940 # QOI - The "Quite OK Image" format for fast, lossless image compression #
2941 # #
2942 # ---------------------------------------------------------------------------- #
2943
2944 class qoi_rgba_t(Structure):
2945 #{
2946 _pack_ = 1
2947 _fields_ = [("r",c_uint8),
2948 ("g",c_uint8),
2949 ("b",c_uint8),
2950 ("a",c_uint8)]
2951 #}
2952
2953 QOI_OP_INDEX = 0x00 # 00xxxxxx
2954 QOI_OP_DIFF = 0x40 # 01xxxxxx
2955 QOI_OP_LUMA = 0x80 # 10xxxxxx
2956 QOI_OP_RUN = 0xc0 # 11xxxxxx
2957 QOI_OP_RGB = 0xfe # 11111110
2958 QOI_OP_RGBA = 0xff # 11111111
2959
2960 QOI_MASK_2 = 0xc0 # 11000000
2961
2962 def qoi_colour_hash( c ):
2963 #{
2964 return c.r*3 + c.g*5 + c.b*7 + c.a*11
2965 #}
2966
2967 def qoi_eq( a, b ):
2968 #{
2969 return (a.r==b.r) and (a.g==b.g) and (a.b==b.b) and (a.a==b.a)
2970 #}
2971
2972 def qoi_32bit( v ):
2973 #{
2974 return bytearray([ (0xff000000 & v) >> 24, \
2975 (0x00ff0000 & v) >> 16, \
2976 (0x0000ff00 & v) >> 8, \
2977 (0x000000ff & v) ])
2978 #}
2979
2980 def qoi_encode( img ):
2981 #{
2982 data = bytearray()
2983
2984 print(F" . Encoding {img.name}.qoi[{img.size[0]},{img.size[1]}]")
2985
2986 index = [ qoi_rgba_t() for _ in range(64) ]
2987
2988 # Header
2989 #
2990 data.extend( bytearray(c_uint32(0x66696f71)) )
2991 data.extend( qoi_32bit( img.size[0] ) )
2992 data.extend( qoi_32bit( img.size[1] ) )
2993 data.extend( bytearray(c_uint8(4)) )
2994 data.extend( bytearray(c_uint8(0)) )
2995
2996 run = 0
2997 px_prev = qoi_rgba_t()
2998 px_prev.r = c_uint8(0)
2999 px_prev.g = c_uint8(0)
3000 px_prev.b = c_uint8(0)
3001 px_prev.a = c_uint8(255)
3002
3003 px = qoi_rgba_t()
3004 px.r = c_uint8(0)
3005 px.g = c_uint8(0)
3006 px.b = c_uint8(0)
3007 px.a = c_uint8(255)
3008
3009 px_len = img.size[0] * img.size[1]
3010
3011 paxels = [ int(min(max(_,0),1)*255) for _ in img.pixels ]
3012
3013 for px_pos in range( px_len ):
3014 #{
3015 idx = px_pos * img.channels
3016 nc = img.channels-1
3017
3018 px.r = paxels[idx+min(0,nc)]
3019 px.g = paxels[idx+min(1,nc)]
3020 px.b = paxels[idx+min(2,nc)]
3021 px.a = paxels[idx+min(3,nc)]
3022
3023 if qoi_eq( px, px_prev ):
3024 #{
3025 run += 1
3026
3027 if (run == 62) or (px_pos == px_len-1):
3028 #{
3029 data.extend( bytearray( c_uint8(QOI_OP_RUN | (run-1))) )
3030 run = 0
3031 #}
3032 #}
3033 else:
3034 #{
3035 if run > 0:
3036 #{
3037 data.extend( bytearray( c_uint8(QOI_OP_RUN | (run-1))) )
3038 run = 0
3039 #}
3040
3041 index_pos = qoi_colour_hash(px) % 64
3042
3043 if qoi_eq( index[index_pos], px ):
3044 #{
3045 data.extend( bytearray( c_uint8(QOI_OP_INDEX | index_pos)) )
3046 #}
3047 else:
3048 #{
3049 index[ index_pos ].r = px.r
3050 index[ index_pos ].g = px.g
3051 index[ index_pos ].b = px.b
3052 index[ index_pos ].a = px.a
3053
3054 if px.a == px_prev.a:
3055 #{
3056 vr = int(px.r) - int(px_prev.r)
3057 vg = int(px.g) - int(px_prev.g)
3058 vb = int(px.b) - int(px_prev.b)
3059
3060 vg_r = vr - vg
3061 vg_b = vb - vg
3062
3063 if (vr > -3) and (vr < 2) and\
3064 (vg > -3) and (vg < 2) and\
3065 (vb > -3) and (vb < 2):
3066 #{
3067 op = QOI_OP_DIFF | (vr+2) << 4 | (vg+2) << 2 | (vb+2)
3068 data.extend( bytearray( c_uint8(op) ))
3069 #}
3070 elif (vg_r > -9) and (vg_r < 8) and\
3071 (vg > -33) and (vg < 32 ) and\
3072 (vg_b > -9) and (vg_b < 8):
3073 #{
3074 op = QOI_OP_LUMA | (vg+32)
3075 delta = (vg_r+8) << 4 | (vg_b + 8)
3076 data.extend( bytearray( c_uint8(op) ) )
3077 data.extend( bytearray( c_uint8(delta) ))
3078 #}
3079 else:
3080 #{
3081 data.extend( bytearray( c_uint8(QOI_OP_RGB) ) )
3082 data.extend( bytearray( c_uint8(px.r) ))
3083 data.extend( bytearray( c_uint8(px.g) ))
3084 data.extend( bytearray( c_uint8(px.b) ))
3085 #}
3086 #}
3087 else:
3088 #{
3089 data.extend( bytearray( c_uint8(QOI_OP_RGBA) ) )
3090 data.extend( bytearray( c_uint8(px.r) ))
3091 data.extend( bytearray( c_uint8(px.g) ))
3092 data.extend( bytearray( c_uint8(px.b) ))
3093 data.extend( bytearray( c_uint8(px.a) ))
3094 #}
3095 #}
3096 #}
3097
3098 px_prev.r = px.r
3099 px_prev.g = px.g
3100 px_prev.b = px.b
3101 px_prev.a = px.a
3102 #}
3103
3104 # Padding
3105 for i in range(7):
3106 data.extend( bytearray( c_uint8(0) ))
3107 data.extend( bytearray( c_uint8(1) ))
3108 bytearray_align_to( data, 16, 0 )
3109
3110 return data
3111 #}