grid based
[carveJwlIkooP6JGAAIwe30JlM.git] / blender_export.py
1 #
2 # =============================================================================
3 #
4 # Copyright . . . -----, ,----- ,---. .---.
5 # 2021-2023 |\ /| | / | | | | /|
6 # | \ / | +-- / +----- +---' | / |
7 # | \ / | | / | | \ | / |
8 # | \/ | | / | | \ | / |
9 # ' ' '--' [] '----- '----- ' ' '---' SOFTWARE
10 #
11 # =============================================================================
12 #
13 # Python exporter for Blender, compiles .mdl format for Skate Rift.
14 #
15 # Its really slow, sorry, I don't know how to speed it up.
16 # Also not sure why you need to put # before {} in code blocks, there is errors
17 # otherwise
18 #
19
20 import bpy, math, gpu, os
21 import cProfile
22 from ctypes import *
23 from mathutils import *
24 from gpu_extras.batch import batch_for_shader
25
26 bl_info = {
27 "name":"Skate Rift model compiler",
28 "author": "Harry Godden (hgn)",
29 "version": (0,2),
30 "blender":(3,1,0),
31 "location":"Export",
32 "descriptin":"",
33 "warning":"",
34 "wiki_url":"",
35 "category":"Import/Export",
36 }
37
38 class mdl_vert(Structure): # 48 bytes. Quite large. Could compress
39 #{ # the normals and uvs to i16s. Not an
40 _pack_ = 1 # real issue, yet.
41 _fields_ = [("co",c_float*3),
42 ("norm",c_float*3),
43 ("uv",c_float*2),
44 ("colour",c_uint8*4),
45 ("weights",c_uint16*4),
46 ("groups",c_uint8*4)]
47 #}
48
49 class mdl_submesh(Structure):
50 #{
51 _pack_ = 1
52 _fields_ = [("indice_start",c_uint32),
53 ("indice_count",c_uint32),
54 ("vertex_start",c_uint32),
55 ("vertex_count",c_uint32),
56 ("bbx",(c_float*3)*2),
57 ("material_id",c_uint32)] # index into the material array
58 #}
59
60 class mdl_texture(Structure):
61 #{
62 _pack_ = 1
63 _fields_ = [("pstr_name",c_uint32),
64 ("pack_offset",c_uint32),
65 ("pack_length",c_uint32)]
66 #}
67
68 class mdl_material(Structure):
69 #{
70 _pack_ = 1
71 _fields_ = [("pstr_name",c_uint32),
72 ("shader",c_uint32),
73 ("flags",c_uint32),
74 ("surface_prop",c_uint32),
75 ("colour",c_float*4),
76 ("colour1",c_float*4),
77 ("tex_diffuse",c_uint32),
78 ("tex_decal",c_uint32),
79 ("tex_normal",c_uint32)]
80 #}
81
82 class mdl_node(Structure):
83 #{
84 _pack_ = 1
85 _fields_ = [("co",c_float*3),
86 ( "q",c_float*4),
87 ( "s",c_float*3),
88 ("sub_uid",c_uint32), # dont use
89 ("submesh_start",c_uint32),
90 ("submesh_count",c_uint32),
91 ("classtype",c_uint32),
92 ("offset",c_uint32),
93 ("parent",c_uint32),
94 ("pstr_name",c_uint32)]
95 #}
96
97 class mdl_header(Structure):
98 #{
99 _pack_ = 1
100 _fields_ = [("identifier",c_uint32),
101 ("version",c_uint32),
102 ("file_length",c_uint32),
103 ("pad0",c_uint32),
104
105 ("node_count",c_uint32),
106 ("node_offset",c_uint32),
107
108 ("submesh_count",c_uint32),
109 ("submesh_offset",c_uint32),
110
111 ("material_count",c_uint32),
112 ("material_offset",c_uint32),
113
114 ("texture_count",c_uint32),
115 ("texture_offset",c_uint32),
116
117 ("anim_count",c_uint32),
118 ("anim_offset",c_uint32),
119
120 ("entdata_size",c_uint32),
121 ("entdata_offset",c_uint32),
122
123 ("strings_size",c_uint32),
124 ("strings_offset",c_uint32),
125
126 ("keyframe_count",c_uint32),
127 ("keyframe_offset",c_uint32),
128
129 ("vertex_count",c_uint32),
130 ("vertex_offset",c_uint32),
131
132 ("indice_count",c_uint32),
133 ("indice_offset",c_uint32),
134
135 ("pack_size",c_uint32),
136 ("pack_offset",c_uint32)]
137 #}
138
139 class mdl_animation(Structure):
140 #{
141 _pack_ = 1
142 _fields_ = [("pstr_name",c_uint32),
143 ("length",c_uint32),
144 ("rate",c_float),
145 ("offset",c_uint32)]
146 #}
147
148 class mdl_keyframe(Structure):
149 #{
150 _pack_ = 1
151 _fields_ = [("co",c_float*3),
152 ("q",c_float*4),
153 ("s",c_float*3)]
154 #}
155
156 # ---------------------------------------------------------------------------- #
157 # #
158 # Entity definitions #
159 # #
160 # ---------------------------------------------------------------------------- #
161 #
162 # ctypes _fields_ defines the data which is filled in by:
163 # def encode_obj( _, node, node_def ):
164 #
165 # gizmos get drawn into the viewport via:
166 # @staticmethod
167 # def draw_scene_helpers( obj ):
168 #
169 # editor enterface, simiraliy:
170 # @staticmethod
171 # def editor_interface( layout, obj ):
172 #
173
174 # Classtype 1
175 #
176 # Purpose: A rift. must target another gate, the target gate can not have more
177 # than one target nodes of its own.
178 #
179 class classtype_gate(Structure):
180 #{
181 _pack_ = 1
182 _fields_ = [("target",c_uint32),
183 ("dims",c_float*3)]
184
185 def encode_obj(_, node,node_def):
186 #{
187 node.classtype = 1
188
189 obj = node_def['obj']
190
191 if obj.cv_data.target != None:
192 _.target = obj.cv_data.target.cv_data.uid
193
194 if obj.type == 'MESH':
195 #{
196 _.dims[0] = obj.data.cv_data.v0[0]
197 _.dims[1] = obj.data.cv_data.v0[1]
198 _.dims[2] = obj.data.cv_data.v0[2]
199 #}
200 else:
201 #{
202 _.dims[0] = obj.cv_data.v0[0]
203 _.dims[1] = obj.cv_data.v0[1]
204 _.dims[2] = obj.cv_data.v0[2]
205 #}
206 #}
207
208 @staticmethod
209 def draw_scene_helpers( obj ):
210 #{
211 global cv_view_verts, cv_view_colours
212
213 if obj.type == 'MESH':
214 dims = obj.data.cv_data.v0
215 else:
216 dims = obj.cv_data.v0
217
218 vs = [None]*9
219 c = Vector((0,0,dims[2]))
220
221 vs[0] = obj.matrix_world @ Vector((-dims[0],0.0,-dims[1]+dims[2]))
222 vs[1] = obj.matrix_world @ Vector((-dims[0],0.0, dims[1]+dims[2]))
223 vs[2] = obj.matrix_world @ Vector(( dims[0],0.0, dims[1]+dims[2]))
224 vs[3] = obj.matrix_world @ Vector(( dims[0],0.0,-dims[1]+dims[2]))
225 vs[4] = obj.matrix_world @ (c+Vector((-1,0,-2)))
226 vs[5] = obj.matrix_world @ (c+Vector((-1,0, 2)))
227 vs[6] = obj.matrix_world @ (c+Vector(( 1,0, 2)))
228 vs[7] = obj.matrix_world @ (c+Vector((-1,0, 0)))
229 vs[8] = obj.matrix_world @ (c+Vector(( 1,0, 0)))
230
231 indices = [(0,1),(1,2),(2,3),(3,0),(4,5),(5,6),(7,8)]
232
233 for l in indices:
234 #{
235 v0 = vs[l[0]]
236 v1 = vs[l[1]]
237 cv_view_verts += [(v0[0],v0[1],v0[2])]
238 cv_view_verts += [(v1[0],v1[1],v1[2])]
239 cv_view_colours += [(1,1,0,1),(1,1,0,1)]
240 #}
241
242 sw = (0.4,0.4,0.4,0.2)
243 if obj.cv_data.target != None:
244 cv_draw_arrow( obj.location, obj.cv_data.target.location, sw )
245 #}
246
247 @staticmethod
248 def editor_interface( layout, obj ):
249 #{
250 layout.prop( obj.cv_data, "target" )
251
252 mesh = obj.data
253 layout.label( text=F"(i) Data is stored in {mesh.name}" )
254 layout.prop( mesh.cv_data, "v0", text="Gate dimensions" )
255 #}
256 #}
257
258 class classtype_nonlocal_gate(classtype_gate):
259 #{
260 def encode_obj(_,node,node_def):
261 #{
262 node.classtype = 300
263
264 obj = node_def['obj']
265 _.target = encoder_process_pstr( node_def['obj'].cv_data.strp )
266
267 if obj.type == 'MESH':
268 #{
269 _.dims[0] = obj.data.cv_data.v0[0]
270 _.dims[1] = obj.data.cv_data.v0[1]
271 _.dims[2] = obj.data.cv_data.v0[2]
272 #}
273 else:
274 #{
275 _.dims[0] = obj.cv_data.v0[0]
276 _.dims[1] = obj.cv_data.v0[1]
277 _.dims[2] = obj.cv_data.v0[2]
278 #}
279 #}
280
281 @staticmethod
282 def editor_interface( layout, obj ):
283 #{
284 layout.prop( obj.cv_data, "strp", text="Nonlocal ID" )
285
286 mesh = obj.data
287 layout.label( text=F"(i) Data is stored in {mesh.name}" )
288 layout.prop( mesh.cv_data, "v0", text="Gate dimensions" )
289 #}
290 #}
291
292 # Classtype 3
293 #
294 # Purpose: player can reset here, its a safe place
295 # spawns can share the same name, the closest one will be picked
296 #
297 # when the world loads it will pick the one named 'start' first.
298 #
299 class classtype_spawn(Structure):
300 #{
301 _pack_ = 1
302 _fields_ = [("pstr_alias",c_uint32)]
303
304 def encode_obj(_, node,node_def):
305 #{
306 node.classtype = 3
307 _.pstr_alias = encoder_process_pstr( node_def['obj'].cv_data.strp )
308 #}
309
310 @staticmethod
311 def draw_scene_helpers( obj ):
312 #{
313 global cv_view_verts, cv_view_colours
314
315 vs = [None]*4
316 vs[0] = obj.matrix_world @ Vector((0,0,0))
317 vs[1] = obj.matrix_world @ Vector((0,2,0))
318 vs[2] = obj.matrix_world @ Vector((0.5,1,0))
319 vs[3] = obj.matrix_world @ Vector((-0.5,1,0))
320 indices = [(0,1),(1,2),(1,3)]
321
322 for l in indices:
323 #{
324 v0 = vs[l[0]]
325 v1 = vs[l[1]]
326
327 cv_view_verts += [(v0[0],v0[1],v0[2])]
328 cv_view_verts += [(v1[0],v1[1],v1[2])]
329 cv_view_colours += [(0,1,1,1),(0,1,1,1)]
330 #}
331
332 cv_draw_sphere( obj.location, 20.0, [0.1,0,0.9,0.4] )
333 #}
334
335 @staticmethod
336 def editor_interface( layout, obj ):
337 #{
338 layout.prop( obj.cv_data, "strp", text="Alias" )
339 #}
340 #}
341
342 # Classtype 4
343 #
344 # Purpose: Tells the game to draw water HERE, at this entity.
345 #
346 class classtype_water(Structure):
347 #{
348 _pack_ = 1
349 _fields_ = [("temp",c_uint32)]
350
351 def encode_obj(_, node,node_def):
352 #{
353 node.classtype = 4
354 # no data, spooky
355 #}
356 #}
357
358 # Classtype 8
359 #
360 # Purpose: Defines a route node and links to up to two more nodes
361 #
362 class classtype_route_node(Structure):
363 #{
364 _pack_ = 1
365 _fields_ = [("target",c_uint32),
366 ("target1",c_uint32)]
367
368 def encode_obj(_, node,node_def):
369 #{
370 node.classtype = 8
371 obj = node_def['obj']
372
373 if obj.cv_data.target != None:
374 _.target = obj.cv_data.target.cv_data.uid
375 if obj.cv_data.target1 != None:
376 _.target1 = obj.cv_data.target1.cv_data.uid
377 #}
378
379 @staticmethod
380 def draw_scene_helpers( obj ):
381 #{
382 global cv_view_verts, cv_view_colours
383
384 sw = Vector((0.4,0.4,0.4,0.2))
385 sw2 = Vector((1.5,0.2,0.2,0.0))
386 if obj.cv_data.target != None:
387 cv_draw_bpath( obj, obj.cv_data.target, sw, sw )
388 if obj.cv_data.target1 != None:
389 cv_draw_bpath( obj, obj.cv_data.target1, sw, sw )
390
391 cv_draw_bhandle( obj, 1.0, (0.8,0.8,0.8,1.0) )
392 cv_draw_bhandle( obj, -1.0, (0.4,0.4,0.4,1.0) )
393
394 p1 = obj.location+ \
395 obj.matrix_world.to_quaternion() @ Vector((0,0,-6+1.5))
396 cv_draw_arrow( obj.location, p1, sw )
397 #}
398
399 @staticmethod
400 def editor_interface( layout, obj ):
401 #{
402 layout.prop( obj.cv_data, "target", text="Left" )
403 layout.prop( obj.cv_data, "target1", text="Right" )
404 #}
405 #}
406
407 # Classtype 9
408 #
409 # Purpose: Defines a route, its 'starting' point, and the colour to use for it
410 #
411 class classtype_route(Structure):
412 #{
413 _pack_ = 1
414 _fields_ = [("id_start",c_uint32),
415 ("pstr_name",c_uint32),
416 ("colour",c_float*3)]
417
418 def encode_obj(_, node,node_def):
419 #{
420 node.classtype = 9
421 obj = node_def['obj']
422
423 _.colour[0] = obj.cv_data.colour[0]
424 _.colour[1] = obj.cv_data.colour[1]
425 _.colour[2] = obj.cv_data.colour[2]
426 _.pstr_name = encoder_process_pstr( obj.cv_data.strp )
427
428 if obj.cv_data.target != None:
429 _.id_start = obj.cv_data.target.cv_data.uid
430 #}
431
432 @staticmethod
433 def draw_scene_helpers( obj ):
434 #{
435 global cv_view_verts, cv_view_colours, cv_view_course_i
436
437 if obj.cv_data.target:
438 cv_draw_arrow( obj.location, obj.cv_data.target.location, [1,1,1,1] )
439
440 # Tries to simulate how we do it in the game
441 #
442 stack = [None]*64
443 stack_i = [0]*64
444 stack[0] = obj.cv_data.target
445 si = 1
446 loop_complete = False
447
448 while si > 0:
449 #{
450 if stack_i[si-1] == 2:
451 #{
452 si -= 1
453 continue
454
455 if si == 0: # Loop failed to complete
456 break
457 #}
458
459 node = stack[si-1]
460
461 targets = [None,None]
462 targets[0] = node.cv_data.target
463
464 if node.cv_data.classtype == 'classtype_route_node':
465 #{
466 targets[1] = node.cv_data.target1
467 #}
468
469 nextnode = targets[stack_i[si-1]]
470 stack_i[si-1] += 1
471
472 if nextnode != None: # branch
473 #{
474 if nextnode == stack[0]: # Loop completed
475 #{
476 loop_complete = True
477 break
478 #}
479
480 valid=True
481 for sj in range(si):
482 #{
483 if stack[sj] == nextnode: # invalidated path
484 #{
485 valid=False
486 break
487 #}
488 #}
489
490 if valid:
491 #{
492 stack_i[si] = 0
493 stack[si] = nextnode
494 si += 1
495 continue
496 #}
497 #}
498 #}
499
500 if loop_complete:
501 #{
502 cc = Vector((obj.cv_data.colour[0],\
503 obj.cv_data.colour[1],\
504 obj.cv_data.colour[2],\
505 1.0))
506
507 for sj in range(si):
508 #{
509 sk = (sj+1)%si
510
511 if stack[sj].cv_data.classtype == 'classtype_gate' and \
512 stack[sk].cv_data.classtype == 'classtype_gate':
513 #{
514 dist = (stack[sj].location-stack[sk].location).magnitude
515 cv_draw_sbpath( stack[sj], stack[sk], cc*0.4, cc, dist, dist )
516 #}
517 else:
518 cv_draw_bpath( stack[sj], stack[sk], cc, cc )
519 #}
520
521 cv_view_course_i += 1
522 #}
523 #}
524
525 @staticmethod
526 def editor_interface( layout, obj ):
527 #{
528 layout.prop( obj.cv_data, "target", text="'Start' from" )
529 layout.prop( obj.cv_data, "colour" )
530 layout.prop( obj.cv_data, "strp", text="Name" )
531 #}
532 #}
533
534 # Classtype 12
535 #
536 # Purpose: links an mesh node to a type 11
537 #
538 class classtype_skin(Structure):
539 #{
540 _pack_ = 1
541 _fields_ = [("skeleton",c_uint32)]
542
543 def encode_obj(_, node,node_def):
544 #{
545 node.classtype = 12
546
547 armature_def = node_def['linked_armature']
548 _.skeleton = armature_def['obj'].cv_data.uid
549 #}
550 #}
551
552 # Classtype 11
553 #
554 # Purpose: defines the allocation requirements for a skeleton
555 #
556 class classtype_skeleton(Structure):
557 #{
558 _pack_ = 1
559 _fields_ = [("channels",c_uint32),
560 ("ik_count",c_uint32),
561 ("collider_count",c_uint32),
562 ("anim_start",c_uint32),
563 ("anim_count",c_uint32)]
564
565 def encode_obj(_, node,node_def):
566 #{
567 node.classtype = 11
568
569 _.channels = len( node_def['bones'] )
570 _.ik_count = node_def['ik_count']
571 _.collider_count = node_def['collider_count']
572 _.anim_start = node_def['anim_start']
573 _.anim_count = node_def['anim_count']
574 #}
575 #}
576
577
578 # Classtype 10
579 #
580 # Purpose: intrinsic bone type, stores collision information and limits too
581 #
582 class classtype_bone(Structure):
583 #{
584 _pack_ = 1
585 _fields_ = [("flags",c_uint32),
586 ("ik_target",c_uint32),
587 ("ik_pole",c_uint32),
588 ("hitbox",(c_float*3)*2),
589 ("conevx",c_float*3),
590 ("conevy",c_float*3),
591 ("coneva",c_float*3),
592 ("conet",c_float)]
593
594 def encode_obj(_, node,node_def):
595 #{
596 node.classtype = 10
597
598 armature_def = node_def['linked_armature']
599 obj = node_def['bone']
600
601 _.flags = node_def['deform']
602
603 if 'ik_target' in node_def:
604 #{
605 _.flags |= 0x2
606 _.ik_target = armature_def['bones'].index( node_def['ik_target'] )
607 _.ik_pole = armature_def['bones'].index( node_def['ik_pole'] )
608 #}
609
610 # For ragdolls
611 #
612 if obj.cv_data.collider != 'collider_none':
613 #{
614 if obj.cv_data.collider == 'collider_box':
615 _.flags |= 0x4
616 else:
617 _.flags |= 0x8
618
619 _.hitbox[0][0] = obj.cv_data.v0[0]
620 _.hitbox[0][1] = obj.cv_data.v0[2]
621 _.hitbox[0][2] = -obj.cv_data.v1[1]
622 _.hitbox[1][0] = obj.cv_data.v1[0]
623 _.hitbox[1][1] = obj.cv_data.v1[2]
624 _.hitbox[1][2] = -obj.cv_data.v0[1]
625 #}
626
627 if obj.cv_data.con0:
628 #{
629 _.flags |= 0x100
630 _.conevx[0] = obj.cv_data.conevx[0]
631 _.conevx[1] = obj.cv_data.conevx[2]
632 _.conevx[2] = -obj.cv_data.conevx[1]
633 _.conevy[0] = obj.cv_data.conevy[0]
634 _.conevy[1] = obj.cv_data.conevy[2]
635 _.conevy[2] = -obj.cv_data.conevy[1]
636 _.coneva[0] = obj.cv_data.coneva[0]
637 _.coneva[1] = obj.cv_data.coneva[2]
638 _.coneva[2] = -obj.cv_data.coneva[1]
639 _.conet = obj.cv_data.conet
640 #}
641 #}
642 #}
643
644 # Classtype 100
645 #
646 # Purpose: sends a signal to another entity
647 #
648 class classtype_trigger(Structure):
649 #{
650 _pack_ = 1
651 _fields_ = [("target",c_uint32)]
652
653 def encode_obj(_, node,node_def ):
654 #{
655 node.classtype = 100
656 if node_def['obj'].cv_data.target:
657 _.target = node_def['obj'].cv_data.target.cv_data.uid
658 #}
659
660 @staticmethod
661 def draw_scene_helpers( obj ):
662 #{
663 global cv_view_verts, cv_view_colours
664 cv_draw_ucube( obj.matrix_world, [0,1,0,1] )
665
666 if obj.cv_data.target:
667 cv_draw_arrow( obj.location, obj.cv_data.target.location, [1,1,1,1] )
668 #}
669
670 @staticmethod
671 def editor_interface( layout, obj ):
672 #{
673 layout.prop( obj.cv_data, "target", text="Triggers" )
674 #}
675 #}
676
677 # Classtype 101
678 #
679 # Purpose: Gives the player an achievement.
680 # No cheating! You shouldn't use this entity anyway, since only ME can
681 # add achievements to the steam ;)
682 #
683 class classtype_logic_achievement(Structure):
684 #{
685 _pack_ = 1
686 _fields_ = [("pstr_name",c_uint32)]
687
688 def encode_obj(_, node,node_def ):
689 #{
690 node.classtype = 101
691 _.pstr_name = encoder_process_pstr( node_def['obj'].cv_data.strp )
692 #}
693
694 @staticmethod
695 def editor_interface( layout, obj ):
696 #{
697 layout.prop( obj.cv_data, "strp", text="Achievement ID" )
698 #}
699 #}
700
701 # Classtype 102
702 #
703 # Purpose: sends a signal to another entity
704 #
705 class classtype_logic_relay(Structure):
706 #{
707 _pack_ = 1
708 _fields_ = [("targets",c_uint32*4)]
709
710 def encode_obj(_, node,node_def ):
711 #{
712 node.classtype = 102
713 obj = node_def['obj']
714 if obj.cv_data.target:
715 _.targets[0] = obj.cv_data.target.cv_data.uid
716 if obj.cv_data.target1:
717 _.targets[1] = obj.cv_data.target1.cv_data.uid
718 if obj.cv_data.target2:
719 _.targets[2] = obj.cv_data.target2.cv_data.uid
720 if obj.cv_data.target3:
721 _.targets[3] = obj.cv_data.target3.cv_data.uid
722 #}
723
724 @staticmethod
725 def draw_scene_helpers( obj ):
726 #{
727 global cv_view_verts, cv_view_colours
728
729 if obj.cv_data.target:
730 cv_draw_arrow( obj.location, obj.cv_data.target.location, [1,1,1,1] )
731 if obj.cv_data.target1:
732 cv_draw_arrow( obj.location, obj.cv_data.target1.location, [1,1,1,1] )
733 if obj.cv_data.target2:
734 cv_draw_arrow( obj.location, obj.cv_data.target2.location, [1,1,1,1] )
735 if obj.cv_data.target3:
736 cv_draw_arrow( obj.location, obj.cv_data.target3.location, [1,1,1,1] )
737 #}
738
739 @staticmethod
740 def editor_interface( layout, obj ):
741 #{
742 layout.prop( obj.cv_data, "target", text="Triggers" )
743 layout.prop( obj.cv_data, "target1", text="Triggers" )
744 layout.prop( obj.cv_data, "target2", text="Triggers" )
745 layout.prop( obj.cv_data, "target3", text="Triggers" )
746 #}
747 #}
748
749 # Classtype 14
750 #
751 # Purpose: Plays some audio (44100hz .ogg vorbis only)
752 # NOTE: There is a 32mb limit on the audio buffer, world audio is
753 # decompressed and stored in signed 16 bit integers (2 bytes)
754 # per sample.
755 #
756 # volume: not used if has 3D flag
757 # flags:
758 # AUDIO_FLAG_LOOP 0x1
759 # AUDIO_FLAG_ONESHOT 0x2 (DONT USE THIS, it breaks semaphores)
760 # AUDIO_FLAG_SPACIAL_3D 0x4 (Probably what you want)
761 # AUDIO_FLAG_AUTO_START 0x8 (Play when the world starts)
762 # ......
763 # the rest are just internal flags, only use the above 3.
764 #
765 class classtype_audio(Structure):
766 #{
767 _pack_ = 1
768 _fields_ = [("pstr_file",c_uint32),
769 ("flags",c_uint32),
770 ("volume",c_float)]
771
772 def encode_obj(_, node,node_def ):
773 #{
774 node.classtype = 14
775
776 obj = node_def['obj']
777
778 _.pstr_file = encoder_process_pstr( obj.cv_data.strp )
779
780 flags = 0x00
781 if obj.cv_data.bp0: flags |= 0x1
782 if obj.cv_data.bp1: flags |= 0x4
783 if obj.cv_data.bp2: flags |= 0x8
784
785 _.flags = flags
786 _.volume = obj.cv_data.fltp
787 #}
788
789 @staticmethod
790 def editor_interface( layout, obj ):
791 #{
792 layout.prop( obj.cv_data, "strp" )
793
794 layout.prop( obj.cv_data, "bp0", text = "Looping" )
795 layout.prop( obj.cv_data, "bp1", text = "3D Audio" )
796 layout.prop( obj.cv_data, "bp2", text = "Auto Start" )
797 #}
798
799 @staticmethod
800 def draw_scene_helpers( obj ):
801 #{
802 global cv_view_verts, cv_view_colours
803
804 cv_draw_sphere( obj.location, obj.scale[0], [1,1,0,1] )
805 #}
806 #}
807
808 # Classtype 200
809 #
810 # Purpose: world light
811 #
812 class classtype_world_light( Structure ):
813 #{
814 _pack_ = 1
815 _fields_ = [("type",c_uint32),
816 ("colour",c_float*4),
817 ("angle",c_float),
818 ("range",c_float)]
819
820 def encode_obj(_, node, node_def):
821 #{
822 node.classtype = 200
823
824 obj = node_def['obj']
825 data = obj.data
826 _.colour[0] = data.color[0]
827 _.colour[1] = data.color[1]
828 _.colour[2] = data.color[2]
829 _.colour[3] = data.energy
830 _.range = data.cutoff_distance # this has to be manually set
831 # TODO: At some point, automate a min
832 # threshold value
833
834 if obj.data.type == 'POINT':
835 #{
836 _.type = 0
837 _.angle = 0.0
838 #}
839 elif obj.data.type == 'SPOT':
840 #{
841 _.type = 1
842 _.angle = data.spot_size*0.5
843 #}
844
845 if data.cv_data.bp0:
846 _.type += 2
847 #}
848
849 @staticmethod
850 def editor_interface( layout, obj ):
851 #{
852 pass
853 #}
854 #}
855
856 # Classtype 201
857 #
858 # Purpose: lighting settings for world
859 #
860 class classtype_lighting_info(Structure):
861 #{
862 _pack_ = 1
863 _fields_ = [("colours",(c_float*3)*3),
864 ("directions",(c_float*2)*3),
865 ("states",c_uint32*3),
866 ("shadow_spread",c_float),
867 ("shadow_length",c_float),
868 ("ambient",c_float*3)]
869
870 def encode_obj(_, node, node_def):
871 #{
872 node.classtype = 201
873
874 # TODO
875 #}
876
877 @staticmethod
878 def editor_interface( layout, obj ):
879 #{
880 pass
881 #}
882 #}
883
884 class classtype_spawn_link(Structure):
885 #{
886 _pack_ = 1
887 _fields_ = [("connections",c_uint32*4)]
888
889 def encode_obj(_, node,node_def ):
890 #{
891 node.classtype = 0
892 #}
893
894 @staticmethod
895 def editor_interface( layout, obj ):
896 #{
897 pass
898 #}
899
900 @staticmethod
901 def draw_scene_helpers( obj ):
902 #{
903 global cv_view_verts, cv_view_colours
904
905 count = 0
906
907 for obj1 in bpy.context.collection.objects:
908 #{
909 if (obj1.cv_data.classtype != 'classtype_spawn_link') and \
910 (obj1.cv_data.classtype != 'classtype_spawn') :
911 continue
912
913 if (obj1.location - obj.location).length < 40.0:
914 #{
915 cv_draw_line( obj.location, obj1.location, [1,1,1,1] )
916 count +=1
917 #}
918
919 if count == 4:
920 break
921 #}
922
923 cv_draw_sphere( obj.location, 20.0, [0.5,0,0.2,0.4] )
924 #}
925 #}
926
927 # ---------------------------------------------------------------------------- #
928 # #
929 # Compiler section #
930 # #
931 # ---------------------------------------------------------------------------- #
932
933 # Current encoder state
934 #
935 g_encoder = None
936
937 # Reset encoder
938 #
939 def encoder_init( collection ):
940 #{
941 global g_encoder
942
943 g_encoder = \
944 {
945 # The actual file header
946 #
947 'header': mdl_header(),
948
949 # Options
950 #
951 'pack_textures': collection.cv_data.pack_textures,
952
953 # Compiled data chunks (each can be read optionally by the client)
954 #
955 'data':
956 {
957 #1---------------------------------
958 'node': [], # Metadata 'chunk'
959 'submesh': [],
960 'material': [],
961 'texture': [],
962 'anim': [],
963 'entdata': bytearray(), # variable width
964 'strings': bytearray(), # .
965 #2---------------------------------
966 'keyframe': [], # Animations
967 #3---------------------------------
968 'vertex': [], # Mesh data
969 'indice': [],
970 #4---------------------------------
971 'pack': bytearray() # Other generic packed data
972 },
973
974 # All objects of the model in their final heirachy
975 #
976 "uid_count": 1,
977 "scene_graph":{},
978 "graph_lookup":{},
979
980 # Allows us to reuse definitions
981 #
982 'string_cache':{},
983 'mesh_cache': {},
984 'material_cache': {},
985 'texture_cache': {}
986 }
987
988 g_encoder['header'].identifier = 0xABCD0000
989 g_encoder['header'].version = 1
990
991 # Add fake NoneID material and texture
992 #
993 none_material = mdl_material()
994 none_material.pstr_name = encoder_process_pstr( "" )
995 none_material.texture_id = 0
996
997 none_texture = mdl_texture()
998 none_texture.pstr_name = encoder_process_pstr( "" )
999 none_texture.pack_offset = 0
1000 none_texture.pack_length = 0
1001
1002 g_encoder['data']['material'] += [none_material]
1003 g_encoder['data']['texture'] += [none_texture]
1004
1005 g_encoder['data']['pack'].extend( b'datapack\0\0\0\0\0\0\0\0' )
1006
1007 # Add root node
1008 #
1009 root = mdl_node()
1010 root.co[0] = 0
1011 root.co[1] = 0
1012 root.co[2] = 0
1013 root.q[0] = 0
1014 root.q[1] = 0
1015 root.q[2] = 0
1016 root.q[3] = 1
1017 root.s[0] = 1
1018 root.s[1] = 1
1019 root.s[2] = 1
1020 root.pstr_name = encoder_process_pstr('')
1021 root.submesh_start = 0
1022 root.submesh_count = 0
1023 root.offset = 0
1024 root.classtype = 0
1025 root.parent = 0xffffffff
1026
1027 g_encoder['data']['node'] += [root]
1028 #}
1029
1030
1031 # fill with 0x00 until a multiple of align. Returns how many bytes it added
1032 #
1033 def bytearray_align_to( buffer, align, offset=0 ):
1034 #{
1035 count = 0
1036
1037 while ((len(buffer)+offset) % align) != 0:
1038 #{
1039 buffer.extend( b'\0' )
1040 count += 1
1041 #}
1042
1043 return count
1044 #}
1045
1046 # Add a string to the string buffer except if it already exists there then we
1047 # just return its ID.
1048 #
1049 def encoder_process_pstr( s ):
1050 #{
1051 global g_encoder
1052
1053 cache = g_encoder['string_cache']
1054
1055 if s in cache:
1056 return cache[s]
1057
1058 cache[s] = len( g_encoder['data']['strings'] )
1059
1060 buffer = g_encoder['data']['strings']
1061 buffer.extend( s.encode('utf-8') )
1062 buffer.extend( b'\0' )
1063
1064 bytearray_align_to( buffer, 4 )
1065 return cache[s]
1066 #}
1067
1068 def get_texture_resource_name( img ):
1069 #{
1070 return os.path.splitext( img.name )[0]
1071 #}
1072
1073 # Pack a texture
1074 #
1075 def encoder_process_texture( img ):
1076 #{
1077 global g_encoder
1078
1079 if img == None:
1080 return 0
1081
1082 cache = g_encoder['texture_cache']
1083 buffer = g_encoder['data']['texture']
1084 pack = g_encoder['data']['pack']
1085
1086 name = get_texture_resource_name( img )
1087
1088 if name in cache:
1089 return cache[name]
1090
1091 cache[name] = len( buffer )
1092
1093 tex = mdl_texture()
1094 tex.pstr_name = encoder_process_pstr( name )
1095
1096 if g_encoder['pack_textures']:
1097 #{
1098 tex.pack_offset = len( pack )
1099 pack.extend( qoi_encode( img ) )
1100 tex.pack_length = len( pack ) - tex.pack_offset
1101 #}
1102 else:
1103 tex.pack_offset = 0
1104
1105 buffer += [ tex ]
1106 return cache[name]
1107 #}
1108
1109 def material_tex_image(v):
1110 #{
1111 return {
1112 "Image Texture":
1113 {
1114 "image": F"{v}"
1115 }
1116 }
1117 #}
1118
1119 cxr_graph_mapping = \
1120 {
1121 # Default shader setup
1122 "Principled BSDF":
1123 {
1124 "Base Color":
1125 {
1126 "Image Texture":
1127 {
1128 "image": "tex_diffuse"
1129 },
1130 "Mix":
1131 {
1132 "A": material_tex_image("tex_diffuse"),
1133 "B": material_tex_image("tex_decal")
1134 },
1135 },
1136 "Normal":
1137 {
1138 "Normal Map":
1139 {
1140 "Color": material_tex_image("tex_normal")
1141 }
1142 }
1143 }
1144 }
1145
1146 # https://harrygodden.com/git/?p=convexer.git;a=blob;f=__init__.py;#l1164
1147 #
1148 def material_info(mat):
1149 #{
1150 info = {}
1151
1152 # Using the cv_graph_mapping as a reference, go through the shader
1153 # graph and gather all $props from it.
1154 #
1155 def _graph_read( node_def, node=None, depth=0 ):
1156 #{
1157 nonlocal mat
1158 nonlocal info
1159
1160 # Find rootnodes
1161 #
1162 if node == None:
1163 #{
1164 _graph_read.extracted = []
1165
1166 for node_idname in node_def:
1167 #{
1168 for n in mat.node_tree.nodes:
1169 #{
1170 if n.name == node_idname:
1171 #{
1172 node_def = node_def[node_idname]
1173 node = n
1174 break
1175 #}
1176 #}
1177 #}
1178 #}
1179
1180 for link in node_def:
1181 #{
1182 link_def = node_def[link]
1183
1184 if isinstance( link_def, dict ):
1185 #{
1186 node_link = None
1187 for x in node.inputs:
1188 #{
1189 if isinstance( x, bpy.types.NodeSocketColor ):
1190 #{
1191 if link == x.name:
1192 #{
1193 node_link = x
1194 break
1195 #}
1196 #}
1197 #}
1198
1199 if node_link and node_link.is_linked:
1200 #{
1201 # look for definitions for the connected node type
1202 #
1203 from_node = node_link.links[0].from_node
1204
1205 node_name = from_node.name.split('.')[0]
1206 if node_name in link_def:
1207 #{
1208 from_node_def = link_def[ node_name ]
1209
1210 _graph_read( from_node_def, from_node, depth+1 )
1211 #}
1212
1213 # No definition! :(
1214 # TODO: Make a warning for this?
1215 #}
1216 else:
1217 #{
1218 if "default" in link_def:
1219 #{
1220 prop = link_def['default']
1221 info[prop] = node_link.default_value
1222 #}
1223 #}
1224 #}
1225 else:
1226 #{
1227 prop = link_def
1228 info[prop] = getattr( node, link )
1229 #}
1230 #}
1231 #}
1232
1233 _graph_read( cxr_graph_mapping )
1234 return info
1235 #}
1236
1237 # Add a material to the material buffer. Returns 0 (None ID) if invalid
1238 #
1239 def encoder_process_material( mat ):
1240 #{
1241 global g_encoder
1242
1243 if mat == None:
1244 return 0
1245
1246 cache = g_encoder['material_cache']
1247 buffer = g_encoder['data']['material']
1248
1249 if mat.name in cache:
1250 return cache[mat.name]
1251
1252 cache[mat.name] = len( buffer )
1253
1254 dest = mdl_material()
1255 dest.pstr_name = encoder_process_pstr( mat.name )
1256
1257 flags = 0x00
1258 if mat.cv_data.collision:
1259 flags |= 0x2
1260 if mat.cv_data.skate_surface: flags |= 0x1
1261 if mat.cv_data.grind_surface: flags |= (0x8|0x1)
1262
1263 if mat.cv_data.grow_grass: flags |= 0x4
1264 dest.flags = flags
1265
1266 if mat.cv_data.surface_prop == 'concrete': dest.surface_prop = 0
1267 if mat.cv_data.surface_prop == 'wood': dest.surface_prop = 1
1268 if mat.cv_data.surface_prop == 'grass': dest.surface_prop = 2
1269
1270 if mat.cv_data.shader == 'standard': dest.shader = 0
1271 if mat.cv_data.shader == 'standard_cutout': dest.shader = 1
1272 if mat.cv_data.shader == 'terrain_blend':
1273 #{
1274 dest.shader = 2
1275
1276 dest.colour[0] = pow( mat.cv_data.sand_colour[0], 1.0/2.2 )
1277 dest.colour[1] = pow( mat.cv_data.sand_colour[1], 1.0/2.2 )
1278 dest.colour[2] = pow( mat.cv_data.sand_colour[2], 1.0/2.2 )
1279 dest.colour[3] = 1.0
1280
1281 dest.colour1[0] = mat.cv_data.blend_offset[0]
1282 dest.colour1[1] = mat.cv_data.blend_offset[1]
1283 #}
1284
1285 if mat.cv_data.shader == 'vertex_blend':
1286 #{
1287 dest.shader = 3
1288
1289 dest.colour1[0] = mat.cv_data.blend_offset[0]
1290 dest.colour1[1] = mat.cv_data.blend_offset[1]
1291 #}
1292
1293 if mat.cv_data.shader == 'water':
1294 #{
1295 dest.shader = 4
1296
1297 dest.colour[0] = pow( mat.cv_data.shore_colour[0], 1.0/2.2 )
1298 dest.colour[1] = pow( mat.cv_data.shore_colour[1], 1.0/2.2 )
1299 dest.colour[2] = pow( mat.cv_data.shore_colour[2], 1.0/2.2 )
1300 dest.colour[3] = 1.0
1301 dest.colour1[0] = pow( mat.cv_data.ocean_colour[0], 1.0/2.2 )
1302 dest.colour1[1] = pow( mat.cv_data.ocean_colour[1], 1.0/2.2 )
1303 dest.colour1[2] = pow( mat.cv_data.ocean_colour[2], 1.0/2.2 )
1304 dest.colour1[3] = 1.0
1305 #}
1306
1307 inf = material_info( mat )
1308
1309 if mat.cv_data.shader == 'standard' or \
1310 mat.cv_data.shader == 'standard_cutout' or \
1311 mat.cv_data.shader == 'terrain_blend' or \
1312 mat.cv_data.shader == 'vertex_blend':
1313 #{
1314 if 'tex_diffuse' in inf:
1315 dest.tex_diffuse = encoder_process_texture(inf['tex_diffuse'])
1316 #}
1317
1318 buffer += [dest]
1319 return cache[mat.name]
1320 #}
1321
1322 # Create a tree structure containing all the objects in the collection
1323 #
1324 def encoder_build_scene_graph( collection ):
1325 #{
1326 global g_encoder
1327
1328 print( " creating scene graph" )
1329
1330 # initialize root
1331 #
1332 graph = g_encoder['scene_graph']
1333 graph_lookup = g_encoder['graph_lookup']
1334 graph["obj"] = None
1335 graph["depth"] = 0
1336 graph["children"] = []
1337 graph["uid"] = 0
1338 graph["parent"] = None
1339
1340 def _new_uid():
1341 #{
1342 global g_encoder
1343 uid = g_encoder['uid_count']
1344 g_encoder['uid_count'] += 1
1345 return uid
1346 #}
1347
1348 for obj in collection.all_objects:
1349 #{
1350 #if obj.parent: continue
1351
1352 def _extend( p, n, d ):
1353 #{
1354 nonlocal collection
1355
1356 uid = _new_uid()
1357 tree = {}
1358 tree["uid"] = uid
1359 tree["children"] = []
1360 tree["depth"] = d
1361 tree["obj"] = n
1362 tree["parent"] = p
1363 n.cv_data.uid = uid
1364
1365 # Descend into amature
1366 #
1367 if n.type == 'ARMATURE':
1368 #{
1369 tree["bones"] = [None] # None is the root transform
1370 tree["ik_count"] = 0
1371 tree["collider_count"] = 0
1372 tree["compile_animation"] = collection.cv_data.animations
1373
1374 # Here also collects some information about constraints, ik and
1375 # counts colliders for the armature.
1376 #
1377 def _extendb( p, n, d ):
1378 #{
1379 nonlocal tree
1380
1381 btree = {}
1382 btree["bone"] = n
1383 btree["linked_armature"] = tree
1384 btree["uid"] = _new_uid()
1385 btree["children"] = []
1386 btree["depth"] = d
1387 btree["parent"] = p
1388 tree["bones"] += [n.name]
1389
1390 for c in n.children:
1391 #{
1392 _extendb( btree, c, d+1 )
1393 #}
1394
1395 for c in tree['obj'].pose.bones[n.name].constraints:
1396 #{
1397 if c.type == 'IK':
1398 #{
1399 btree["ik_target"] = c.subtarget
1400 btree["ik_pole"] = c.pole_subtarget
1401 tree["ik_count"] += 1
1402 #}
1403 #}
1404
1405 if n.cv_data.collider != 'collider_none':
1406 tree['collider_count'] += 1
1407
1408 btree['deform'] = n.use_deform
1409 p['children'] += [btree]
1410 #}
1411
1412 for b in n.data.bones:
1413 if not b.parent:
1414 _extendb( tree, b, d+1 )
1415 #}
1416
1417 # Recurse into children of this object
1418 #
1419 for obj1 in n.children:
1420 #{
1421 for c1 in obj1.users_collection:
1422 #{
1423 if c1 == collection:
1424 #{
1425 _extend( tree, obj1, d+1 )
1426 break
1427 #}
1428 #}
1429 #}
1430
1431 p["children"] += [tree]
1432 graph_lookup[n] = tree
1433
1434 #}
1435
1436 _extend( graph, obj, 1 )
1437
1438 #}
1439 #}
1440
1441
1442 # Kind of a useless thing i made but it looks cool and adds complexity!!1
1443 #
1444 def encoder_graph_iterator( root ):
1445 #{
1446 for c in root['children']:
1447 #{
1448 yield c
1449 yield from encoder_graph_iterator(c)
1450 #}
1451 #}
1452
1453
1454 # Push a vertex into the model file, or return a cached index (c_uint32)
1455 #
1456 def encoder_vertex_push( vertex_reference, co,norm,uv,colour,groups,weights ):
1457 #{
1458 global g_encoder
1459 buffer = g_encoder['data']['vertex']
1460
1461 TOLERENCE = 4
1462 m = float(10**TOLERENCE)
1463
1464 # Would be nice to know if this can be done faster than it currently runs,
1465 # its quite slow.
1466 #
1467 key = (int(co[0]*m+0.5),
1468 int(co[1]*m+0.5),
1469 int(co[2]*m+0.5),
1470 int(norm[0]*m+0.5),
1471 int(norm[1]*m+0.5),
1472 int(norm[2]*m+0.5),
1473 int(uv[0]*m+0.5),
1474 int(uv[1]*m+0.5),
1475 colour[0], # these guys are already quantized
1476 colour[1], # .
1477 colour[2], # .
1478 colour[3], # .
1479 weights[0], # v
1480 weights[1],
1481 weights[2],
1482 weights[3],
1483 groups[0],
1484 groups[1],
1485 groups[2],
1486 groups[3])
1487
1488 if key in vertex_reference:
1489 return vertex_reference[key]
1490 else:
1491 #{
1492 index = c_uint32( len(vertex_reference) )
1493 vertex_reference[key] = index
1494
1495 v = mdl_vert()
1496 v.co[0] = co[0]
1497 v.co[1] = co[2]
1498 v.co[2] = -co[1]
1499 v.norm[0] = norm[0]
1500 v.norm[1] = norm[2]
1501 v.norm[2] = -norm[1]
1502 v.uv[0] = uv[0]
1503 v.uv[1] = uv[1]
1504 v.colour[0] = colour[0]
1505 v.colour[1] = colour[1]
1506 v.colour[2] = colour[2]
1507 v.colour[3] = colour[3]
1508 v.weights[0] = weights[0]
1509 v.weights[1] = weights[1]
1510 v.weights[2] = weights[2]
1511 v.weights[3] = weights[3]
1512 v.groups[0] = groups[0]
1513 v.groups[1] = groups[1]
1514 v.groups[2] = groups[2]
1515 v.groups[3] = groups[3]
1516
1517 buffer += [v]
1518 return index
1519 #}
1520 #}
1521
1522
1523 # Compile a mesh (or use one from the cache) onto node, based on node_def
1524 # No return value
1525 #
1526 def encoder_compile_mesh( node, node_def ):
1527 #{
1528 global g_encoder
1529
1530 graph = g_encoder['scene_graph']
1531 graph_lookup = g_encoder['graph_lookup']
1532 mesh_cache = g_encoder['mesh_cache']
1533 obj = node_def['obj']
1534 armature_def = None
1535 can_use_cache = True
1536
1537 # Check for modifiers that typically change the data per-instance
1538 # there is no well defined rule for the choices here, its just what i've
1539 # needed while producing the game.
1540 #
1541 # It may be possible to detect these cases automatically.
1542 #
1543 for mod in obj.modifiers:
1544 #{
1545 if mod.type == 'DATA_TRANSFER' or mod.type == 'SHRINKWRAP' or \
1546 mod.type == 'BOOLEAN' or mod.type == 'CURVE' or \
1547 mod.type == 'ARRAY':
1548 #{
1549 can_use_cache = False
1550 #}
1551
1552 if mod.type == 'ARMATURE':
1553 armature_def = graph_lookup[mod.object]
1554
1555 # Check the cache first
1556 #
1557 if can_use_cache and (obj.data.name in mesh_cache):
1558 #{
1559 ref = mesh_cache[obj.data.name]
1560 node.submesh_start = ref.submesh_start
1561 node.submesh_count = ref.submesh_count
1562 return
1563 #}
1564
1565 # Compile a whole new mesh
1566 #
1567 node.submesh_start = len( g_encoder['data']['submesh'] )
1568 node.submesh_count = 0
1569
1570 dgraph = bpy.context.evaluated_depsgraph_get()
1571 data = obj.evaluated_get(dgraph).data
1572 data.calc_loop_triangles()
1573 data.calc_normals_split()
1574
1575 # Mesh is split into submeshes based on their material
1576 #
1577 mat_list = data.materials if len(data.materials) > 0 else [None]
1578 for material_id, mat in enumerate(mat_list):
1579 #{
1580 mref = {}
1581
1582 sm = mdl_submesh()
1583 sm.indice_start = len( g_encoder['data']['indice'] )
1584 sm.vertex_start = len( g_encoder['data']['vertex'] )
1585 sm.vertex_count = 0
1586 sm.indice_count = 0
1587 sm.material_id = encoder_process_material( mat )
1588
1589 for i in range(3):
1590 #{
1591 sm.bbx[0][i] = 999999
1592 sm.bbx[1][i] = -999999
1593 #}
1594
1595 # Keep a reference to very very very similar vertices
1596 #
1597 vertex_reference = {}
1598
1599 # Write the vertex / indice data
1600 #
1601 for tri_index, tri in enumerate(data.loop_triangles):
1602 #{
1603 if tri.material_index != material_id:
1604 continue
1605
1606 for j in range(3):
1607 #{
1608 vert = data.vertices[tri.vertices[j]]
1609 li = tri.loops[j]
1610 vi = data.loops[li].vertex_index
1611
1612 # Gather vertex information
1613 #
1614 co = vert.co
1615 norm = data.loops[li].normal
1616 uv = (0,0)
1617 colour = (255,255,255,255)
1618 groups = [0,0,0,0]
1619 weights = [0,0,0,0]
1620
1621 # Uvs
1622 #
1623 if data.uv_layers:
1624 uv = data.uv_layers.active.data[li].uv
1625
1626 # Vertex Colours
1627 #
1628 if data.vertex_colors:
1629 #{
1630 colour = data.vertex_colors.active.data[li].color
1631 colour = (int(colour[0]*255.0),\
1632 int(colour[1]*255.0),\
1633 int(colour[2]*255.0),\
1634 int(colour[3]*255.0))
1635 #}
1636
1637 # Weight groups: truncates to the 3 with the most influence. The
1638 # fourth bone ID is never used by the shader so it is
1639 # always 0
1640 #
1641 if armature_def:
1642 #{
1643 src_groups = [_ for _ in data.vertices[vi].groups \
1644 if obj.vertex_groups[_.group].name in \
1645 armature_def['bones']]
1646
1647 weight_groups = sorted( src_groups, key = \
1648 lambda a: a.weight, reverse=True )
1649 tot = 0.0
1650 for ml in range(3):
1651 #{
1652 if len(weight_groups) > ml:
1653 #{
1654 g = weight_groups[ml]
1655 name = obj.vertex_groups[g.group].name
1656 weight = g.weight
1657
1658 weights[ml] = weight
1659 groups[ml] = armature_def['bones'].index(name)
1660 tot += weight
1661 #}
1662 #}
1663
1664 if len(weight_groups) > 0:
1665 #{
1666 inv_norm = (1.0/tot) * 65535.0
1667 for ml in range(3):
1668 #{
1669 weights[ml] = int( weights[ml] * inv_norm )
1670 weights[ml] = min( weights[ml], 65535 )
1671 weights[ml] = max( weights[ml], 0 )
1672 #}
1673 #}
1674 #}
1675 else:
1676 #{
1677 li1 = tri.loops[(j+1)%3]
1678 vi1 = data.loops[li1].vertex_index
1679 e0 = data.edges[ data.loops[li].edge_index ]
1680
1681 if e0.use_freestyle_mark and \
1682 ((e0.vertices[0] == vi and e0.vertices[1] == vi1) or \
1683 (e0.vertices[0] == vi1 and e0.vertices[1] == vi)):
1684 #{
1685 weights[0] = 1
1686 #}
1687 #}
1688
1689 # Add vertex and expand bound box
1690 #
1691 index = encoder_vertex_push( vertex_reference, co, \
1692 norm, \
1693 uv, \
1694 colour, \
1695 groups, \
1696 weights )
1697 g_encoder['data']['indice'] += [index]
1698 #}
1699 #}
1700
1701 # How many unique verts did we add in total
1702 #
1703 sm.vertex_count = len(g_encoder['data']['vertex']) - sm.vertex_start
1704 sm.indice_count = len(g_encoder['data']['indice']) - sm.indice_start
1705
1706 # Make sure bounding box isn't -inf -> inf if no vertices
1707 #
1708 if sm.vertex_count == 0:
1709 for j in range(2):
1710 for i in range(3):
1711 sm.bbx[j][i] = 0
1712 else:
1713 #{
1714 for j in range(sm.vertex_count):
1715 #{
1716 vert = g_encoder['data']['vertex'][ sm.vertex_start + j ]
1717
1718 for i in range(3):
1719 #{
1720 sm.bbx[0][i] = min( sm.bbx[0][i], vert.co[i] )
1721 sm.bbx[1][i] = max( sm.bbx[1][i], vert.co[i] )
1722 #}
1723 #}
1724 #}
1725
1726 # Add submesh to encoder
1727 #
1728 g_encoder['data']['submesh'] += [sm]
1729 node.submesh_count += 1
1730
1731 #}
1732
1733 # Save a reference to this node since we want to reuse the submesh indices
1734 # later.
1735 g_encoder['mesh_cache'][obj.data.name] = node
1736 #}
1737
1738
1739 def encoder_compile_ent_as( name, node, node_def ):
1740 #{
1741 global g_encoder
1742
1743 if name == 'classtype_none':
1744 #{
1745 node.offset = 0
1746 node.classtype = 0
1747 return
1748 #}
1749 elif name not in globals():
1750 #{
1751 print( "Classtype '" +name + "' is unknown!" )
1752 return
1753 #}
1754
1755 buffer = g_encoder['data']['entdata']
1756 node.offset = len(buffer)
1757
1758 cl = globals()[ name ]
1759 inst = cl()
1760 inst.encode_obj( node, node_def )
1761
1762 buffer.extend( bytearray(inst) )
1763 bytearray_align_to( buffer, 4 )
1764 #}
1765
1766 # Compiles animation data into model and gives us some extra node_def entries
1767 #
1768 def encoder_compile_armature( node, node_def ):
1769 #{
1770 global g_encoder
1771
1772 entdata = g_encoder['data']['entdata']
1773 animdata = g_encoder['data']['anim']
1774 keyframedata = g_encoder['data']['keyframe']
1775 mesh_cache = g_encoder['mesh_cache']
1776 obj = node_def['obj']
1777 bones = node_def['bones']
1778
1779 # extra info
1780 node_def['anim_start'] = len(animdata)
1781 node_def['anim_count'] = 0
1782
1783 if not node_def['compile_animation']:
1784 #{
1785 return
1786 #}
1787
1788 # Compile anims
1789 #
1790 if obj.animation_data:
1791 #{
1792 # So we can restore later
1793 #
1794 previous_frame = bpy.context.scene.frame_current
1795 previous_action = obj.animation_data.action
1796 POSE_OR_REST_CACHE = obj.data.pose_position
1797 obj.data.pose_position = 'POSE'
1798
1799 for NLALayer in obj.animation_data.nla_tracks:
1800 #{
1801 for NLAStrip in NLALayer.strips:
1802 #{
1803 # set active
1804 #
1805 for a in bpy.data.actions:
1806 #{
1807 if a.name == NLAStrip.name:
1808 #{
1809 obj.animation_data.action = a
1810 break
1811 #}
1812 #}
1813
1814 # Clip to NLA settings
1815 #
1816 anim_start = int(NLAStrip.action_frame_start)
1817 anim_end = int(NLAStrip.action_frame_end)
1818
1819 # Export strips
1820 #
1821 anim = mdl_animation()
1822 anim.pstr_name = encoder_process_pstr( NLAStrip.action.name )
1823 anim.rate = 30.0
1824 anim.offset = len(keyframedata)
1825 anim.length = anim_end-anim_start
1826
1827 # Export the keyframes
1828 for frame in range(anim_start,anim_end):
1829 #{
1830 bpy.context.scene.frame_set(frame)
1831
1832 for bone_name in bones:
1833 #{
1834 for pb in obj.pose.bones:
1835 #{
1836 if pb.name != bone_name: continue
1837
1838 rb = obj.data.bones[ bone_name ]
1839
1840 # relative bone matrix
1841 if rb.parent is not None:
1842 #{
1843 offset_mtx = rb.parent.matrix_local
1844 offset_mtx = offset_mtx.inverted_safe() @ \
1845 rb.matrix_local
1846
1847 inv_parent = pb.parent.matrix @ offset_mtx
1848 inv_parent.invert_safe()
1849 fpm = inv_parent @ pb.matrix
1850 #}
1851 else:
1852 #{
1853 bone_mtx = rb.matrix.to_4x4()
1854 local_inv = rb.matrix_local.inverted_safe()
1855 fpm = bone_mtx @ local_inv @ pb.matrix
1856 #}
1857
1858 loc, rot, sca = fpm.decompose()
1859
1860 # local position
1861 final_pos = Vector(( loc[0], loc[2], -loc[1] ))
1862
1863 # rotation
1864 lc_m = pb.matrix_channel.to_3x3()
1865 if pb.parent is not None:
1866 #{
1867 smtx = pb.parent.matrix_channel.to_3x3()
1868 lc_m = smtx.inverted() @ lc_m
1869 #}
1870 rq = lc_m.to_quaternion()
1871
1872 kf = mdl_keyframe()
1873 kf.co[0] = final_pos[0]
1874 kf.co[1] = final_pos[1]
1875 kf.co[2] = final_pos[2]
1876
1877 kf.q[0] = rq[1]
1878 kf.q[1] = rq[3]
1879 kf.q[2] = -rq[2]
1880 kf.q[3] = rq[0]
1881
1882 # scale
1883 kf.s[0] = sca[0]
1884 kf.s[1] = sca[2]
1885 kf.s[2] = sca[1]
1886
1887 keyframedata += [kf]
1888 break
1889 #}
1890 #}
1891 #}
1892
1893 # Add to animation buffer
1894 #
1895 animdata += [anim]
1896 node_def['anim_count'] += 1
1897
1898 # Report progress
1899 #
1900 status_name = F" " + " |"*(node_def['depth']-1)
1901 print( F"{status_name} | *anim: {NLAStrip.action.name}" )
1902 #}
1903 #}
1904
1905 # Restore context to how it was before
1906 #
1907 bpy.context.scene.frame_set( previous_frame )
1908 obj.animation_data.action = previous_action
1909 obj.data.pose_position = POSE_OR_REST_CACHE
1910 #}
1911 #}
1912
1913 # We are trying to compile this node_def
1914 #
1915 def encoder_process_definition( node_def ):
1916 #{
1917 global g_encoder
1918
1919 # data sources for object/bone are taken differently
1920 #
1921 if 'obj' in node_def:
1922 #{
1923 obj = node_def['obj']
1924 obj_type = obj.type
1925 obj_co = obj.matrix_world @ Vector((0,0,0))
1926
1927 if obj_type == 'ARMATURE':
1928 obj_classtype = 'classtype_skeleton'
1929 elif obj_type == 'LIGHT':
1930 #{
1931 obj_classtype = 'classtype_world_light'
1932 #}
1933 else:
1934 #{
1935 obj_classtype = obj.cv_data.classtype
1936
1937 # Check for armature deform
1938 #
1939 for mod in obj.modifiers:
1940 #{
1941 if mod.type == 'ARMATURE':
1942 #{
1943 obj_classtype = 'classtype_skin'
1944
1945 # Make sure to freeze armature in rest while we collect
1946 # vertex information
1947 #
1948 armature_def = g_encoder['graph_lookup'][mod.object]
1949 POSE_OR_REST_CACHE = armature_def['obj'].data.pose_position
1950 armature_def['obj'].data.pose_position = 'REST'
1951 node_def['linked_armature'] = armature_def
1952 break
1953 #}
1954 #}
1955 #}
1956 #}
1957
1958 elif 'bone' in node_def:
1959 #{
1960 obj = node_def['bone']
1961 obj_type = 'BONE'
1962 obj_co = obj.head_local
1963 obj_classtype = 'classtype_bone'
1964 #}
1965
1966 # Create node
1967 #
1968 node = mdl_node()
1969 node.pstr_name = encoder_process_pstr( obj.name )
1970
1971 if node_def["parent"]:
1972 node.parent = node_def["parent"]["uid"]
1973
1974 # Setup transform
1975 #
1976 node.co[0] = obj_co[0]
1977 node.co[1] = obj_co[2]
1978 node.co[2] = -obj_co[1]
1979
1980 # Convert rotation quat to our space type
1981 #
1982 quat = obj.matrix_local.to_quaternion()
1983 node.q[0] = quat[1]
1984 node.q[1] = quat[3]
1985 node.q[2] = -quat[2]
1986 node.q[3] = quat[0]
1987
1988 # Bone scale is just a vector to the tail
1989 #
1990 if obj_type == 'BONE':
1991 #{
1992 node.s[0] = obj.tail_local[0] - node.co[0]
1993 node.s[1] = obj.tail_local[2] - node.co[1]
1994 node.s[2] = -obj.tail_local[1] - node.co[2]
1995 #}
1996 else:
1997 #{
1998 node.s[0] = obj.scale[0]
1999 node.s[1] = obj.scale[2]
2000 node.s[2] = obj.scale[1]
2001 #}
2002
2003 # Report status
2004 #
2005 tot_uid = g_encoder['uid_count']-1
2006 obj_uid = node_def['uid']
2007 obj_depth = node_def['depth']-1
2008
2009 status_id = F" [{obj_uid: 3}/{tot_uid}]" + " |"*obj_depth
2010 status_name = status_id + F" L {obj.name}"
2011
2012 if obj_classtype != 'classtype_none': status_type = obj_classtype
2013 else: status_type = obj_type
2014
2015 status_parent = F"{node.parent: 3}"
2016 status_armref = ""
2017
2018 if obj_classtype == 'classtype_skin':
2019 status_armref = F" [armature -> {armature_def['obj'].cv_data.uid}]"
2020
2021 print(F"{status_name:<32} {status_type:<22} {status_parent} {status_armref}")
2022
2023 # Process mesh if needed
2024 #
2025 if obj_type == 'MESH':
2026 #{
2027 encoder_compile_mesh( node, node_def )
2028 #}
2029 elif obj_type == 'ARMATURE':
2030 #{
2031 encoder_compile_armature( node, node_def )
2032 #}
2033
2034 encoder_compile_ent_as( obj_classtype, node, node_def )
2035
2036 # Make sure to reset the armature we just mucked about with
2037 #
2038 if obj_classtype == 'classtype_skin':
2039 armature_def['obj'].data.pose_position = POSE_OR_REST_CACHE
2040
2041 g_encoder['data']['node'] += [node]
2042 #}
2043
2044 # The post processing step or the pre processing to the writing step
2045 #
2046 def encoder_write_to_file( path ):
2047 #{
2048 global g_encoder
2049
2050 # Compile down to a byte array
2051 #
2052 header = g_encoder['header']
2053 file_pos = sizeof(header)
2054 file_data = bytearray()
2055 print( " Compositing data arrays" )
2056
2057 for array_name in g_encoder['data']:
2058 #{
2059 file_pos += bytearray_align_to( file_data, 16, sizeof(header) )
2060 arr = g_encoder['data'][array_name]
2061
2062 setattr( header, array_name + "_offset", file_pos )
2063
2064 print( F" {array_name:<16} @{file_pos:> 8X}[{len(arr)}]" )
2065
2066 if isinstance( arr, bytearray ):
2067 #{
2068 setattr( header, array_name + "_size", len(arr) )
2069
2070 file_data.extend( arr )
2071 file_pos += len(arr)
2072 #}
2073 else:
2074 #{
2075 setattr( header, array_name + "_count", len(arr) )
2076
2077 for item in arr:
2078 #{
2079 bbytes = bytearray(item)
2080 file_data.extend( bbytes )
2081 file_pos += sizeof(item)
2082 #}
2083 #}
2084 #}
2085
2086 # This imperitive for this field to be santized in the future!
2087 #
2088 header.file_length = file_pos
2089
2090 print( " Writing file" )
2091 # Write header and data chunk to file
2092 #
2093 fp = open( path, "wb" )
2094 fp.write( bytearray( header ) )
2095 fp.write( file_data )
2096 fp.close()
2097 #}
2098
2099 # Main compiler, uses string as the identifier for the collection
2100 #
2101 def write_model(collection_name):
2102 #{
2103 global g_encoder
2104 print( F"Model graph | Create mode '{collection_name}'" )
2105 folder = bpy.path.abspath(bpy.context.scene.cv_data.export_dir)
2106 path = F"{folder}{collection_name}.mdl"
2107 print( path )
2108
2109 collection = bpy.data.collections[collection_name]
2110
2111 encoder_init( collection )
2112 encoder_build_scene_graph( collection )
2113
2114 # Compile
2115 #
2116 print( " Comping objects" )
2117 it = encoder_graph_iterator( g_encoder['scene_graph'] )
2118 for node_def in it:
2119 encoder_process_definition( node_def )
2120
2121 # Write
2122 #
2123 encoder_write_to_file( path )
2124
2125 print( F"Completed {collection_name}.mdl" )
2126 #}
2127
2128 # ---------------------------------------------------------------------------- #
2129 # #
2130 # GUI section #
2131 # #
2132 # ---------------------------------------------------------------------------- #
2133
2134 cv_view_draw_handler = None
2135 cv_view_shader = gpu.shader.from_builtin('3D_SMOOTH_COLOR')
2136 cv_view_verts = []
2137 cv_view_colours = []
2138 cv_view_course_i = 0
2139
2140 # Draw axis alligned sphere at position with radius
2141 #
2142 def cv_draw_sphere( pos, radius, colour ):
2143 #{
2144 global cv_view_verts, cv_view_colours
2145
2146 ly = pos + Vector((0,0,radius))
2147 lx = pos + Vector((0,radius,0))
2148 lz = pos + Vector((0,0,radius))
2149
2150 pi = 3.14159265358979323846264
2151
2152 for i in range(16):
2153 #{
2154 t = ((i+1.0) * 1.0/16.0) * pi * 2.0
2155 s = math.sin(t)
2156 c = math.cos(t)
2157
2158 py = pos + Vector((s*radius,0.0,c*radius))
2159 px = pos + Vector((s*radius,c*radius,0.0))
2160 pz = pos + Vector((0.0,s*radius,c*radius))
2161
2162 cv_view_verts += [ px, lx ]
2163 cv_view_verts += [ py, ly ]
2164 cv_view_verts += [ pz, lz ]
2165
2166 cv_view_colours += [ colour, colour, colour, colour, colour, colour ]
2167
2168 ly = py
2169 lx = px
2170 lz = pz
2171 #}
2172 cv_draw_lines()
2173 #}
2174
2175 # Draw axis alligned sphere at position with radius
2176 #
2177 def cv_draw_halfsphere( pos, tx, ty, tz, radius, colour ):
2178 #{
2179 global cv_view_verts, cv_view_colours
2180
2181 ly = pos + tz*radius
2182 lx = pos + ty*radius
2183 lz = pos + tz*radius
2184
2185 pi = 3.14159265358979323846264
2186
2187 for i in range(16):
2188 #{
2189 t = ((i+1.0) * 1.0/16.0) * pi
2190 s = math.sin(t)
2191 c = math.cos(t)
2192
2193 s1 = math.sin(t*2.0)
2194 c1 = math.cos(t*2.0)
2195
2196 py = pos + s*tx*radius + c *tz*radius
2197 px = pos + s*tx*radius + c *ty*radius
2198 pz = pos + s1*ty*radius + c1*tz*radius
2199
2200 cv_view_verts += [ px, lx ]
2201 cv_view_verts += [ py, ly ]
2202 cv_view_verts += [ pz, lz ]
2203
2204 cv_view_colours += [ colour, colour, colour, colour, colour, colour ]
2205
2206 ly = py
2207 lx = px
2208 lz = pz
2209 #}
2210 cv_draw_lines()
2211 #}
2212
2213 # Draw transformed -1 -> 1 cube
2214 #
2215 def cv_draw_ucube( transform, colour ):
2216 #{
2217 global cv_view_verts, cv_view_colours
2218
2219 a = Vector((-1,-1,-1))
2220 b = Vector((1,1,1))
2221
2222 vs = [None]*8
2223 vs[0] = transform @ Vector((a[0], a[1], a[2]))
2224 vs[1] = transform @ Vector((a[0], b[1], a[2]))
2225 vs[2] = transform @ Vector((b[0], b[1], a[2]))
2226 vs[3] = transform @ Vector((b[0], a[1], a[2]))
2227 vs[4] = transform @ Vector((a[0], a[1], b[2]))
2228 vs[5] = transform @ Vector((a[0], b[1], b[2]))
2229 vs[6] = transform @ Vector((b[0], b[1], b[2]))
2230 vs[7] = transform @ Vector((b[0], a[1], b[2]))
2231
2232 indices = [(0,1),(1,2),(2,3),(3,0),(4,5),(5,6),(6,7),(7,4),\
2233 (0,4),(1,5),(2,6),(3,7)]
2234
2235 for l in indices:
2236 #{
2237 v0 = vs[l[0]]
2238 v1 = vs[l[1]]
2239 cv_view_verts += [(v0[0],v0[1],v0[2])]
2240 cv_view_verts += [(v1[0],v1[1],v1[2])]
2241 cv_view_colours += [(0,1,0,1),(0,1,0,1)]
2242 #}
2243 cv_draw_lines()
2244 #}
2245
2246 # Draw line with colour
2247 #
2248 def cv_draw_line( p0, p1, colour ):
2249 #{
2250 global cv_view_verts, cv_view_colours
2251
2252 cv_view_verts += [p0,p1]
2253 cv_view_colours += [colour, colour]
2254 cv_draw_lines()
2255 #}
2256
2257 # Draw line with colour(s)
2258 #
2259 def cv_draw_line2( p0, p1, c0, c1 ):
2260 #{
2261 global cv_view_verts, cv_view_colours
2262
2263 cv_view_verts += [p0,p1]
2264 cv_view_colours += [c0,c1]
2265 cv_draw_lines()
2266 #}
2267
2268 #
2269 #
2270 def cv_tangent_basis( n, tx, ty ):
2271 #{
2272 if abs( n[0] ) >= 0.57735027:
2273 #{
2274 tx[0] = n[1]
2275 tx[1] = -n[0]
2276 tx[2] = 0.0
2277 #}
2278 else:
2279 #{
2280 tx[0] = 0.0
2281 tx[1] = n[2]
2282 tx[2] = -n[1]
2283 #}
2284
2285 tx.normalize()
2286 _ty = n.cross( tx )
2287
2288 ty[0] = _ty[0]
2289 ty[1] = _ty[1]
2290 ty[2] = _ty[2]
2291 #}
2292
2293 # Draw coloured arrow
2294 #
2295 def cv_draw_arrow( p0, p1, c0 ):
2296 #{
2297 global cv_view_verts, cv_view_colours
2298
2299 n = p1-p0
2300 midpt = p0 + n*0.5
2301 n.normalize()
2302
2303 tx = Vector((1,0,0))
2304 ty = Vector((1,0,0))
2305 cv_tangent_basis( n, tx, ty )
2306
2307 cv_view_verts += [p0,p1, midpt+(tx-n)*0.15,midpt, midpt+(-tx-n)*0.15,midpt ]
2308 cv_view_colours += [c0,c0,c0,c0,c0,c0]
2309 cv_draw_lines()
2310 #}
2311
2312 # Drawhandles of a bezier control point
2313 #
2314 def cv_draw_bhandle( obj, direction, colour ):
2315 #{
2316 global cv_view_verts, cv_view_colours
2317
2318 p0 = obj.location
2319 h0 = obj.matrix_world @ Vector((0,direction,0))
2320
2321 cv_view_verts += [p0]
2322 cv_view_verts += [h0]
2323 cv_view_colours += [colour,colour]
2324 cv_draw_lines()
2325 #}
2326
2327 # Draw a bezier curve (at fixed resolution 10)
2328 #
2329 def cv_draw_bezier( p0,h0,p1,h1,c0,c1 ):
2330 #{
2331 global cv_view_verts, cv_view_colours
2332
2333 last = p0
2334 for i in range(10):
2335 #{
2336 t = (i+1)/10
2337 a0 = 1-t
2338
2339 tt = t*t
2340 ttt = tt*t
2341 p=ttt*p1+(3*tt-3*ttt)*h1+(3*ttt-6*tt+3*t)*h0+(3*tt-ttt-3*t+1)*p0
2342
2343 cv_view_verts += [(last[0],last[1],last[2])]
2344 cv_view_verts += [(p[0],p[1],p[2])]
2345 cv_view_colours += [c0*a0+c1*(1-a0),c0*a0+c1*(1-a0)]
2346
2347 last = p
2348 #}
2349 cv_draw_lines()
2350 #}
2351
2352 # I think this one extends the handles of the bezier otwards......
2353 #
2354 def cv_draw_sbpath( o0,o1,c0,c1,s0,s1 ):
2355 #{
2356 global cv_view_course_i
2357
2358 offs = ((cv_view_course_i % 2)*2-1) * cv_view_course_i * 0.02
2359
2360 p0 = o0.matrix_world @ Vector((offs, 0,0))
2361 h0 = o0.matrix_world @ Vector((offs, s0,0))
2362 p1 = o1.matrix_world @ Vector((offs, 0,0))
2363 h1 = o1.matrix_world @ Vector((offs,-s1,0))
2364
2365 cv_draw_bezier( p0,h0,p1,h1,c0,c1 )
2366 cv_draw_lines()
2367 #}
2368
2369 # Flush the lines buffers. This is called often because god help you if you want
2370 # to do fixed, fast buffers in this catastrophic programming language.
2371 #
2372 def cv_draw_lines():
2373 #{
2374 global cv_view_shader, cv_view_verts, cv_view_colours
2375
2376 if len(cv_view_verts) < 2:
2377 return
2378
2379 lines = batch_for_shader(\
2380 cv_view_shader, 'LINES', \
2381 { "pos":cv_view_verts, "color":cv_view_colours })
2382
2383 lines.draw( cv_view_shader )
2384
2385 cv_view_verts = []
2386 cv_view_colours = []
2387 #}
2388
2389 # I dont remember what this does exactly
2390 #
2391 def cv_draw_bpath( o0,o1,c0,c1 ):
2392 #{
2393 cv_draw_sbpath( o0,o1,c0,c1,1.0,1.0 )
2394 #}
2395
2396 # Semi circle to show the limit. and some lines
2397 #
2398 def draw_limit( obj, center, major, minor, amin, amax, colour ):
2399 #{
2400 global cv_view_verts, cv_view_colours
2401 f = 0.05
2402 ay = major*f
2403 ax = minor*f
2404
2405 for x in range(16):
2406 #{
2407 t0 = x/16
2408 t1 = (x+1)/16
2409 a0 = amin*(1.0-t0)+amax*t0
2410 a1 = amin*(1.0-t1)+amax*t1
2411
2412 p0 = center + major*f*math.cos(a0) + minor*f*math.sin(a0)
2413 p1 = center + major*f*math.cos(a1) + minor*f*math.sin(a1)
2414
2415 p0=obj.matrix_world @ p0
2416 p1=obj.matrix_world @ p1
2417 cv_view_verts += [p0,p1]
2418 cv_view_colours += [colour,colour]
2419
2420 if x == 0:
2421 #{
2422 cv_view_verts += [p0,center]
2423 cv_view_colours += [colour,colour]
2424 #}
2425 if x == 15:
2426 #{
2427 cv_view_verts += [p1,center]
2428 cv_view_colours += [colour,colour]
2429 #}
2430 #}
2431
2432 cv_view_verts += [center+major*1.2*f,center+major*f*0.8]
2433 cv_view_colours += [colour,colour]
2434
2435 cv_draw_lines()
2436 #}
2437
2438 # Cone and twist limit
2439 #
2440 def draw_cone_twist( center, vx, vy, va ):
2441 #{
2442 global cv_view_verts, cv_view_colours
2443 axis = vy.cross( vx )
2444 axis.normalize()
2445
2446 size = 0.12
2447
2448 cv_view_verts += [center, center+va*size]
2449 cv_view_colours += [ (1,1,1,1), (1,1,1,1) ]
2450
2451 for x in range(32):
2452 #{
2453 t0 = (x/32) * math.tau
2454 t1 = ((x+1)/32) * math.tau
2455
2456 c0 = math.cos(t0)
2457 s0 = math.sin(t0)
2458 c1 = math.cos(t1)
2459 s1 = math.sin(t1)
2460
2461 p0 = center + (axis + vx*c0 + vy*s0).normalized() * size
2462 p1 = center + (axis + vx*c1 + vy*s1).normalized() * size
2463
2464 col0 = ( abs(c0), abs(s0), 0.0, 1.0 )
2465 col1 = ( abs(c1), abs(s1), 0.0, 1.0 )
2466
2467 cv_view_verts += [center, p0, p0, p1]
2468 cv_view_colours += [ (0,0,0,0), col0, col0, col1 ]
2469 #}
2470
2471 cv_draw_lines()
2472 #}
2473
2474 # Draws constraints and stuff for the skeleton. This isnt documented and wont be
2475 #
2476 def draw_skeleton_helpers( obj ):
2477 #{
2478 global cv_view_verts, cv_view_colours
2479
2480 if obj.data.pose_position != 'REST':
2481 #{
2482 return
2483 #}
2484
2485 for bone in obj.data.bones:
2486 #{
2487 c = bone.head_local
2488 a = Vector((bone.cv_data.v0[0], bone.cv_data.v0[1], bone.cv_data.v0[2]))
2489 b = Vector((bone.cv_data.v1[0], bone.cv_data.v1[1], bone.cv_data.v1[2]))
2490
2491 if bone.cv_data.collider == 'collider_box':
2492 #{
2493
2494 vs = [None]*8
2495 vs[0]=obj.matrix_world@Vector((c[0]+a[0],c[1]+a[1],c[2]+a[2]))
2496 vs[1]=obj.matrix_world@Vector((c[0]+a[0],c[1]+b[1],c[2]+a[2]))
2497 vs[2]=obj.matrix_world@Vector((c[0]+b[0],c[1]+b[1],c[2]+a[2]))
2498 vs[3]=obj.matrix_world@Vector((c[0]+b[0],c[1]+a[1],c[2]+a[2]))
2499 vs[4]=obj.matrix_world@Vector((c[0]+a[0],c[1]+a[1],c[2]+b[2]))
2500 vs[5]=obj.matrix_world@Vector((c[0]+a[0],c[1]+b[1],c[2]+b[2]))
2501 vs[6]=obj.matrix_world@Vector((c[0]+b[0],c[1]+b[1],c[2]+b[2]))
2502 vs[7]=obj.matrix_world@Vector((c[0]+b[0],c[1]+a[1],c[2]+b[2]))
2503
2504 indices = [(0,1),(1,2),(2,3),(3,0),(4,5),(5,6),(6,7),(7,4),\
2505 (0,4),(1,5),(2,6),(3,7)]
2506
2507 for l in indices:
2508 #{
2509 v0 = vs[l[0]]
2510 v1 = vs[l[1]]
2511
2512 cv_view_verts += [(v0[0],v0[1],v0[2])]
2513 cv_view_verts += [(v1[0],v1[1],v1[2])]
2514 cv_view_colours += [(0.5,0.5,0.5,0.5),(0.5,0.5,0.5,0.5)]
2515 #}
2516 #}
2517 elif bone.cv_data.collider == 'collider_capsule':
2518 #{
2519 v0 = b-a
2520 major_axis = 0
2521 largest = -1.0
2522
2523 for i in range(3):
2524 #{
2525 if abs(v0[i]) > largest:
2526 #{
2527 largest = abs(v0[i])
2528 major_axis = i
2529 #}
2530 #}
2531
2532 v1 = Vector((0,0,0))
2533 v1[major_axis] = 1.0
2534
2535 tx = Vector((0,0,0))
2536 ty = Vector((0,0,0))
2537
2538 cv_tangent_basis( v1, tx, ty )
2539 r = (abs(tx.dot( v0 )) + abs(ty.dot( v0 ))) * 0.25
2540 l = v0[ major_axis ] - r*2
2541
2542 p0 = obj.matrix_world@Vector( c + (a+b)*0.5 + v1*l*-0.5 )
2543 p1 = obj.matrix_world@Vector( c + (a+b)*0.5 + v1*l* 0.5 )
2544
2545 colour = [0.2,0.2,0.2,1.0]
2546 colour[major_axis] = 0.5
2547
2548 cv_draw_halfsphere( p0, -v1, ty, tx, r, colour )
2549 cv_draw_halfsphere( p1, v1, ty, tx, r, colour )
2550 cv_draw_line( p0+tx* r, p1+tx* r, colour )
2551 cv_draw_line( p0+tx*-r, p1+tx*-r, colour )
2552 cv_draw_line( p0+ty* r, p1+ty* r, colour )
2553 cv_draw_line( p0+ty*-r, p1+ty*-r, colour )
2554 #}
2555 else:
2556 #{
2557 continue
2558 #}
2559
2560 center = obj.matrix_world @ c
2561 if bone.cv_data.con0:
2562 #{
2563 vx = Vector([bone.cv_data.conevx[_] for _ in range(3)])
2564 vy = Vector([bone.cv_data.conevy[_] for _ in range(3)])
2565 va = Vector([bone.cv_data.coneva[_] for _ in range(3)])
2566 draw_cone_twist( center, vx, vy, va )
2567
2568 #draw_limit( obj, c, Vector((0,0,1)),Vector((0,-1,0)), \
2569 # bone.cv_data.mins[0], bone.cv_data.maxs[0], \
2570 # (1,0,0,1))
2571 #draw_limit( obj, c, Vector((0,-1,0)),Vector((1,0,0)), \
2572 # bone.cv_data.mins[1], bone.cv_data.maxs[1], \
2573 # (0,1,0,1))
2574 #draw_limit( obj, c, Vector((1,0,0)),Vector((0,0,1)), \
2575 # bone.cv_data.mins[2], bone.cv_data.maxs[2], \
2576 # (0,0,1,1))
2577 #}
2578 #}
2579 #}
2580
2581 def cv_draw():
2582 #{
2583 global cv_view_shader
2584 global cv_view_verts
2585 global cv_view_colours
2586 global cv_view_course_i
2587
2588 cv_view_course_i = 0
2589 cv_view_verts = []
2590 cv_view_colours = []
2591
2592 cv_view_shader.bind()
2593 gpu.state.depth_mask_set(False)
2594 gpu.state.line_width_set(2.0)
2595 gpu.state.face_culling_set('BACK')
2596 gpu.state.depth_test_set('LESS')
2597 gpu.state.blend_set('NONE')
2598
2599 for obj in bpy.context.collection.objects:
2600 #{
2601 if obj.type == 'ARMATURE':
2602 #{
2603 if obj.data.pose_position == 'REST':
2604 draw_skeleton_helpers( obj )
2605 #}
2606 else:
2607 #{
2608 classtype = obj.cv_data.classtype
2609 if (classtype != 'classtype_none') and (classtype in globals()):
2610 #{
2611 cl = globals()[ classtype ]
2612
2613 if getattr( cl, "draw_scene_helpers", None ):
2614 #{
2615 cl.draw_scene_helpers( obj )
2616 #}
2617 #}
2618 #}
2619 #}
2620
2621 cv_draw_lines()
2622 return
2623 #}
2624
2625
2626 # ---------------------------------------------------------------------------- #
2627 # #
2628 # Blender #
2629 # #
2630 # ---------------------------------------------------------------------------- #
2631
2632 # Checks whether this object has a classtype assigned. we can only target other
2633 # classes
2634 def cv_poll_target(scene, obj):
2635 #{
2636 if obj == bpy.context.active_object:
2637 return False
2638 if obj.cv_data.classtype == 'classtype_none':
2639 return False
2640
2641 return True
2642 #}
2643
2644 class CV_MESH_SETTINGS(bpy.types.PropertyGroup):
2645 #{
2646 v0: bpy.props.FloatVectorProperty(name="v0",size=3)
2647 v1: bpy.props.FloatVectorProperty(name="v1",size=3)
2648 v2: bpy.props.FloatVectorProperty(name="v2",size=3)
2649 v3: bpy.props.FloatVectorProperty(name="v3",size=3)
2650 #}
2651
2652 class CV_LIGHT_SETTINGS(bpy.types.PropertyGroup):
2653 #{
2654 bp0: bpy.props.BoolProperty( name="bp0" );
2655 #}
2656
2657 class CV_LIGHT_PANEL(bpy.types.Panel):
2658 #{
2659 bl_label="[Skate Rift]"
2660 bl_idname="SCENE_PT_cv_light"
2661 bl_space_type='PROPERTIES'
2662 bl_region_type='WINDOW'
2663 bl_context='data'
2664
2665 def draw(_,context):
2666 #{
2667 active_object = context.active_object
2668 if active_object == None: return
2669
2670 if active_object.type != 'LIGHT': return
2671
2672 data = active_object.data.cv_data
2673 _.layout.prop( data, "bp0", text="Only on during night" )
2674 #}
2675 #}
2676
2677 class CV_OBJ_SETTINGS(bpy.types.PropertyGroup):
2678 #{
2679 uid: bpy.props.IntProperty( name="" )
2680
2681 strp: bpy.props.StringProperty( name="strp" )
2682 intp: bpy.props.IntProperty( name="intp" )
2683 fltp: bpy.props.FloatProperty( name="fltp" )
2684 bp0: bpy.props.BoolProperty( name="bp0" )
2685 bp1: bpy.props.BoolProperty( name="bp1" )
2686 bp2: bpy.props.BoolProperty( name="bp2" )
2687 bp3: bpy.props.BoolProperty( name="bp3" )
2688
2689 target: bpy.props.PointerProperty( type=bpy.types.Object, name="target", \
2690 poll=cv_poll_target )
2691 target1: bpy.props.PointerProperty( type=bpy.types.Object, name="target1", \
2692 poll=cv_poll_target )
2693 target2: bpy.props.PointerProperty( type=bpy.types.Object, name="target2", \
2694 poll=cv_poll_target )
2695 target3: bpy.props.PointerProperty( type=bpy.types.Object, name="target3", \
2696 poll=cv_poll_target )
2697
2698 colour: bpy.props.FloatVectorProperty( name="colour",subtype='COLOR',\
2699 min=0.0,max=1.0)
2700
2701 classtype: bpy.props.EnumProperty(
2702 name="Format",
2703 items = [
2704 ('classtype_none', "classtype_none", "", 0),
2705 ('classtype_gate', "classtype_gate", "", 1),
2706 ('classtype_spawn', "classtype_spawn", "", 3),
2707 ('classtype_water', "classtype_water", "", 4),
2708 ('classtype_route_node', "classtype_route_node", "", 8 ),
2709 ('classtype_route', "classtype_route", "", 9 ),
2710 ('classtype_audio',"classtype_audio","",14),
2711 ('classtype_trigger',"classtype_trigger","",100),
2712 ('classtype_logic_achievement',"classtype_logic_achievement","",101),
2713 ('classtype_logic_relay',"classtype_logic_relay","",102),
2714 ('classtype_spawn_link',"classtype_spawn_link","",150),
2715 ('classtype_nonlocal_gate', "classtype_nonlocal_gate", "", 300)
2716 ])
2717 #}
2718
2719 class CV_BONE_SETTINGS(bpy.types.PropertyGroup):
2720 #{
2721 collider: bpy.props.EnumProperty(
2722 name="Collider Type",
2723 items = [
2724 ('collider_none', "collider_none", "", 0),
2725 ('collider_box', "collider_box", "", 1),
2726 ('collider_capsule', "collider_capsule", "", 2),
2727 ])
2728
2729 v0: bpy.props.FloatVectorProperty(name="v0",size=3)
2730 v1: bpy.props.FloatVectorProperty(name="v1",size=3)
2731
2732 con0: bpy.props.BoolProperty(name="Constriant 0",default=False)
2733 mins: bpy.props.FloatVectorProperty(name="mins",size=3)
2734 maxs: bpy.props.FloatVectorProperty(name="maxs",size=3)
2735
2736 conevx: bpy.props.FloatVectorProperty(name="conevx",size=3)
2737 conevy: bpy.props.FloatVectorProperty(name="conevy",size=3)
2738 coneva: bpy.props.FloatVectorProperty(name="coneva",size=3)
2739 conet: bpy.props.FloatProperty(name="conet")
2740 #}
2741
2742 class CV_BONE_PANEL(bpy.types.Panel):
2743 #{
2744 bl_label="[Skate Rift]"
2745 bl_idname="SCENE_PT_cv_bone"
2746 bl_space_type='PROPERTIES'
2747 bl_region_type='WINDOW'
2748 bl_context='bone'
2749
2750 def draw(_,context):
2751 #{
2752 active_object = context.active_object
2753 if active_object == None: return
2754
2755 bone = active_object.data.bones.active
2756 if bone == None: return
2757
2758 _.layout.prop( bone.cv_data, "collider" )
2759 _.layout.prop( bone.cv_data, "v0" )
2760 _.layout.prop( bone.cv_data, "v1" )
2761
2762 _.layout.label( text="Angle Limits" )
2763 _.layout.prop( bone.cv_data, "con0" )
2764
2765 _.layout.prop( bone.cv_data, "conevx" )
2766 _.layout.prop( bone.cv_data, "conevy" )
2767 _.layout.prop( bone.cv_data, "coneva" )
2768 _.layout.prop( bone.cv_data, "conet" )
2769 #}
2770 #}
2771
2772 class CV_SCENE_SETTINGS(bpy.types.PropertyGroup):
2773 #{
2774 use_hidden: bpy.props.BoolProperty( name="use hidden", default=False )
2775 export_dir: bpy.props.StringProperty( name="Export Dir", subtype='DIR_PATH' )
2776 #}
2777
2778 class CV_COLLECTION_SETTINGS(bpy.types.PropertyGroup):
2779 #{
2780 pack_textures: bpy.props.BoolProperty( name="Pack Textures", default=False )
2781 animations: bpy.props.BoolProperty( name="Export animation", default=True)
2782 #}
2783
2784 class CV_MATERIAL_SETTINGS(bpy.types.PropertyGroup):
2785 #{
2786 shader: bpy.props.EnumProperty(
2787 name="Format",
2788 items = [
2789 ('standard',"standard","",0),
2790 ('standard_cutout', "standard_cutout", "", 1),
2791 ('terrain_blend', "terrain_blend", "", 2),
2792 ('vertex_blend', "vertex_blend", "", 3),
2793 ('water',"water","",4),
2794 ])
2795
2796 surface_prop: bpy.props.EnumProperty(
2797 name="Surface Property",
2798 items = [
2799 ('concrete','concrete','',0),
2800 ('wood','wood','',1),
2801 ('grass','grass','',2)
2802 ])
2803
2804 collision: bpy.props.BoolProperty( \
2805 name="Collisions Enabled",\
2806 default=True,\
2807 description = "Can the player collide with this material"\
2808 )
2809 skate_surface: bpy.props.BoolProperty( \
2810 name="Skate Surface", \
2811 default=True,\
2812 description = "Should the game try to target this surface?" \
2813 )
2814 grind_surface: bpy.props.BoolProperty( \
2815 name="Grind Surface", \
2816 default=False,\
2817 description = "Grind face?" \
2818 )
2819 grow_grass: bpy.props.BoolProperty( \
2820 name="Grow Grass", \
2821 default=False,\
2822 description = "Spawn grass sprites on this surface?" \
2823 )
2824 blend_offset: bpy.props.FloatVectorProperty( \
2825 name="Blend Offset", \
2826 size=2, \
2827 default=Vector((0.5,0.0)),\
2828 description="When surface is more than 45 degrees, add this vector " +\
2829 "to the UVs" \
2830 )
2831 sand_colour: bpy.props.FloatVectorProperty( \
2832 name="Sand Colour",\
2833 subtype='COLOR',\
2834 min=0.0,max=1.0,\
2835 default=Vector((0.79,0.63,0.48)),\
2836 description="Blend to this colour near the 0 coordinate on UP axis"\
2837 )
2838 shore_colour: bpy.props.FloatVectorProperty( \
2839 name="Shore Colour",\
2840 subtype='COLOR',\
2841 min=0.0,max=1.0,\
2842 default=Vector((0.03,0.32,0.61)),\
2843 description="Water colour at the shoreline"\
2844 )
2845 ocean_colour: bpy.props.FloatVectorProperty( \
2846 name="Ocean Colour",\
2847 subtype='COLOR',\
2848 min=0.0,max=1.0,\
2849 default=Vector((0.0,0.006,0.03)),\
2850 description="Water colour in the deep bits"\
2851 )
2852 #}
2853
2854 class CV_MATERIAL_PANEL(bpy.types.Panel):
2855 #{
2856 bl_label="Skate Rift material"
2857 bl_idname="MATERIAL_PT_cv_material"
2858 bl_space_type='PROPERTIES'
2859 bl_region_type='WINDOW'
2860 bl_context="material"
2861
2862 def draw(_,context):
2863 #{
2864 active_object = bpy.context.active_object
2865 if active_object == None: return
2866 active_mat = active_object.active_material
2867 if active_mat == None: return
2868
2869 info = material_info( active_mat )
2870
2871 if 'tex_diffuse' in info:
2872 #{
2873 _.layout.label( icon='INFO', \
2874 text=F"{info['tex_diffuse'].name} will be compiled" )
2875 #}
2876
2877 _.layout.prop( active_mat.cv_data, "shader" )
2878 _.layout.prop( active_mat.cv_data, "surface_prop" )
2879 _.layout.prop( active_mat.cv_data, "collision" )
2880
2881 if active_mat.cv_data.collision:
2882 _.layout.prop( active_mat.cv_data, "skate_surface" )
2883 _.layout.prop( active_mat.cv_data, "grind_surface" )
2884 _.layout.prop( active_mat.cv_data, "grow_grass" )
2885
2886 if active_mat.cv_data.shader == "terrain_blend":
2887 #{
2888 box = _.layout.box()
2889 box.prop( active_mat.cv_data, "blend_offset" )
2890 box.prop( active_mat.cv_data, "sand_colour" )
2891 #}
2892 elif active_mat.cv_data.shader == "vertex_blend":
2893 #{
2894 box = _.layout.box()
2895 box.label( icon='INFO', text="Uses vertex colours, the R channel" )
2896 box.prop( active_mat.cv_data, "blend_offset" )
2897 #}
2898 elif active_mat.cv_data.shader == "water":
2899 #{
2900 box = _.layout.box()
2901 box.label( icon='INFO', text="Depth scale of 16 meters" )
2902 box.prop( active_mat.cv_data, "shore_colour" )
2903 box.prop( active_mat.cv_data, "ocean_colour" )
2904 #}
2905 #}
2906 #}
2907
2908 class CV_OBJ_PANEL(bpy.types.Panel):
2909 #{
2910 bl_label="Entity Config"
2911 bl_idname="SCENE_PT_cv_entity"
2912 bl_space_type='PROPERTIES'
2913 bl_region_type='WINDOW'
2914 bl_context="object"
2915
2916 def draw(_,context):
2917 #{
2918 active_object = bpy.context.active_object
2919 if active_object == None: return
2920 if active_object.type == 'ARMATURE':
2921 #{
2922 row = _.layout.row()
2923 row.enabled = False
2924 row.label( text="This object has the intrinsic classtype of skeleton" )
2925 return
2926 #}
2927
2928 _.layout.prop( active_object.cv_data, "classtype" )
2929
2930 classtype = active_object.cv_data.classtype
2931
2932 if (classtype != 'classtype_none') and (classtype in globals()):
2933 #{
2934 cl = globals()[ classtype ]
2935
2936 if getattr( cl, "editor_interface", None ):
2937 #{
2938 cl.editor_interface( _.layout, active_object )
2939 #}
2940 #}
2941 #}
2942 #}
2943
2944 class CV_COMPILE(bpy.types.Operator):
2945 #{
2946 bl_idname="carve.compile_all"
2947 bl_label="Compile All"
2948
2949 def execute(_,context):
2950 #{
2951 view_layer = bpy.context.view_layer
2952 for col in view_layer.layer_collection.children["export"].children:
2953 if not col.hide_viewport or bpy.context.scene.cv_data.use_hidden:
2954 write_model( col.name )
2955
2956 return {'FINISHED'}
2957 #}
2958 #}
2959
2960 class CV_COMPILE_THIS(bpy.types.Operator):
2961 #{
2962 bl_idname="carve.compile_this"
2963 bl_label="Compile This collection"
2964
2965 def execute(_,context):
2966 #{
2967 col = bpy.context.collection
2968 write_model( col.name )
2969
2970 return {'FINISHED'}
2971 #}
2972 #}
2973
2974 class CV_INTERFACE(bpy.types.Panel):
2975 #{
2976 bl_idname = "VIEW3D_PT_carve"
2977 bl_label = "Skate Rift"
2978 bl_space_type = 'VIEW_3D'
2979 bl_region_type = 'UI'
2980 bl_category = "Skate Rift"
2981
2982 def draw(_, context):
2983 #{
2984 layout = _.layout
2985 layout.prop( context.scene.cv_data, "export_dir" )
2986
2987 col = bpy.context.collection
2988
2989 found_in_export = False
2990 export_count = 0
2991 view_layer = bpy.context.view_layer
2992 for c1 in view_layer.layer_collection.children["export"].children:
2993 #{
2994 if not c1.hide_viewport or bpy.context.scene.cv_data.use_hidden:
2995 export_count += 1
2996
2997 if c1.name == col.name:
2998 #{
2999 found_in_export = True
3000 #}
3001 #}
3002
3003 box = layout.box()
3004 if found_in_export:
3005 #{
3006 box.label( text=col.name + ".mdl" )
3007 box.prop( col.cv_data, "pack_textures" )
3008 box.prop( col.cv_data, "animations" )
3009 box.operator( "carve.compile_this" )
3010 #}
3011 else:
3012 #{
3013 row = box.row()
3014 row.enabled=False
3015 row.label( text=col.name )
3016 box.label( text="This collection is not in the export group" )
3017 #}
3018
3019 box = layout.box()
3020 row = box.row()
3021
3022 split = row.split( factor = 0.3, align=True )
3023 split.prop( context.scene.cv_data, "use_hidden", text="hidden" )
3024
3025 row1 = split.row()
3026 if export_count == 0:
3027 row1.enabled=False
3028 row1.operator( "carve.compile_all", \
3029 text=F"Compile all ({export_count} collections)" )
3030 #}
3031 #}
3032
3033
3034 classes = [CV_OBJ_SETTINGS,CV_OBJ_PANEL,CV_COMPILE,CV_INTERFACE,\
3035 CV_MESH_SETTINGS, CV_SCENE_SETTINGS, CV_BONE_SETTINGS,\
3036 CV_BONE_PANEL, CV_COLLECTION_SETTINGS, CV_COMPILE_THIS,\
3037 CV_MATERIAL_SETTINGS, CV_MATERIAL_PANEL, CV_LIGHT_SETTINGS,\
3038 CV_LIGHT_PANEL]
3039
3040 def register():
3041 #{
3042 global cv_view_draw_handler
3043
3044 for c in classes:
3045 bpy.utils.register_class(c)
3046
3047 bpy.types.Object.cv_data = bpy.props.PointerProperty(type=CV_OBJ_SETTINGS)
3048 bpy.types.Mesh.cv_data = bpy.props.PointerProperty(type=CV_MESH_SETTINGS)
3049 bpy.types.Scene.cv_data = bpy.props.PointerProperty(type=CV_SCENE_SETTINGS)
3050 bpy.types.Bone.cv_data = bpy.props.PointerProperty(type=CV_BONE_SETTINGS)
3051 bpy.types.Collection.cv_data = \
3052 bpy.props.PointerProperty(type=CV_COLLECTION_SETTINGS)
3053 bpy.types.Material.cv_data = \
3054 bpy.props.PointerProperty(type=CV_MATERIAL_SETTINGS)
3055 bpy.types.Light.cv_data = bpy.props.PointerProperty(type=CV_LIGHT_SETTINGS)
3056
3057 cv_view_draw_handler = bpy.types.SpaceView3D.draw_handler_add(\
3058 cv_draw,(),'WINDOW','POST_VIEW')
3059 #}
3060
3061 def unregister():
3062 #{
3063 global cv_view_draw_handler
3064
3065 for c in classes:
3066 bpy.utils.unregister_class(c)
3067
3068 bpy.types.SpaceView3D.draw_handler_remove(cv_view_draw_handler,'WINDOW')
3069 #}
3070
3071 # ---------------------------------------------------------------------------- #
3072 # #
3073 # QOI encoder #
3074 # #
3075 # ---------------------------------------------------------------------------- #
3076 # #
3077 # Transliteration of: #
3078 # https://github.com/phoboslab/qoi/blob/master/qoi.h #
3079 # #
3080 # Copyright (c) 2021, Dominic Szablewski - https://phoboslab.org #
3081 # SPDX-License-Identifier: MIT #
3082 # QOI - The "Quite OK Image" format for fast, lossless image compression #
3083 # #
3084 # ---------------------------------------------------------------------------- #
3085
3086 class qoi_rgba_t(Structure):
3087 #{
3088 _pack_ = 1
3089 _fields_ = [("r",c_uint8),
3090 ("g",c_uint8),
3091 ("b",c_uint8),
3092 ("a",c_uint8)]
3093 #}
3094
3095 QOI_OP_INDEX = 0x00 # 00xxxxxx
3096 QOI_OP_DIFF = 0x40 # 01xxxxxx
3097 QOI_OP_LUMA = 0x80 # 10xxxxxx
3098 QOI_OP_RUN = 0xc0 # 11xxxxxx
3099 QOI_OP_RGB = 0xfe # 11111110
3100 QOI_OP_RGBA = 0xff # 11111111
3101
3102 QOI_MASK_2 = 0xc0 # 11000000
3103
3104 def qoi_colour_hash( c ):
3105 #{
3106 return c.r*3 + c.g*5 + c.b*7 + c.a*11
3107 #}
3108
3109 def qoi_eq( a, b ):
3110 #{
3111 return (a.r==b.r) and (a.g==b.g) and (a.b==b.b) and (a.a==b.a)
3112 #}
3113
3114 def qoi_32bit( v ):
3115 #{
3116 return bytearray([ (0xff000000 & v) >> 24, \
3117 (0x00ff0000 & v) >> 16, \
3118 (0x0000ff00 & v) >> 8, \
3119 (0x000000ff & v) ])
3120 #}
3121
3122 def qoi_encode( img ):
3123 #{
3124 data = bytearray()
3125
3126 print(F" . Encoding {img.name}.qoi[{img.size[0]},{img.size[1]}]")
3127
3128 index = [ qoi_rgba_t() for _ in range(64) ]
3129
3130 # Header
3131 #
3132 data.extend( bytearray(c_uint32(0x66696f71)) )
3133 data.extend( qoi_32bit( img.size[0] ) )
3134 data.extend( qoi_32bit( img.size[1] ) )
3135 data.extend( bytearray(c_uint8(4)) )
3136 data.extend( bytearray(c_uint8(0)) )
3137
3138 run = 0
3139 px_prev = qoi_rgba_t()
3140 px_prev.r = c_uint8(0)
3141 px_prev.g = c_uint8(0)
3142 px_prev.b = c_uint8(0)
3143 px_prev.a = c_uint8(255)
3144
3145 px = qoi_rgba_t()
3146 px.r = c_uint8(0)
3147 px.g = c_uint8(0)
3148 px.b = c_uint8(0)
3149 px.a = c_uint8(255)
3150
3151 px_len = img.size[0] * img.size[1]
3152
3153 paxels = [ int(min(max(_,0),1)*255) for _ in img.pixels ]
3154
3155 for px_pos in range( px_len ):
3156 #{
3157 idx = px_pos * img.channels
3158 nc = img.channels-1
3159
3160 px.r = paxels[idx+min(0,nc)]
3161 px.g = paxels[idx+min(1,nc)]
3162 px.b = paxels[idx+min(2,nc)]
3163 px.a = paxels[idx+min(3,nc)]
3164
3165 if qoi_eq( px, px_prev ):
3166 #{
3167 run += 1
3168
3169 if (run == 62) or (px_pos == px_len-1):
3170 #{
3171 data.extend( bytearray( c_uint8(QOI_OP_RUN | (run-1))) )
3172 run = 0
3173 #}
3174 #}
3175 else:
3176 #{
3177 if run > 0:
3178 #{
3179 data.extend( bytearray( c_uint8(QOI_OP_RUN | (run-1))) )
3180 run = 0
3181 #}
3182
3183 index_pos = qoi_colour_hash(px) % 64
3184
3185 if qoi_eq( index[index_pos], px ):
3186 #{
3187 data.extend( bytearray( c_uint8(QOI_OP_INDEX | index_pos)) )
3188 #}
3189 else:
3190 #{
3191 index[ index_pos ].r = px.r
3192 index[ index_pos ].g = px.g
3193 index[ index_pos ].b = px.b
3194 index[ index_pos ].a = px.a
3195
3196 if px.a == px_prev.a:
3197 #{
3198 vr = int(px.r) - int(px_prev.r)
3199 vg = int(px.g) - int(px_prev.g)
3200 vb = int(px.b) - int(px_prev.b)
3201
3202 vg_r = vr - vg
3203 vg_b = vb - vg
3204
3205 if (vr > -3) and (vr < 2) and\
3206 (vg > -3) and (vg < 2) and\
3207 (vb > -3) and (vb < 2):
3208 #{
3209 op = QOI_OP_DIFF | (vr+2) << 4 | (vg+2) << 2 | (vb+2)
3210 data.extend( bytearray( c_uint8(op) ))
3211 #}
3212 elif (vg_r > -9) and (vg_r < 8) and\
3213 (vg > -33) and (vg < 32 ) and\
3214 (vg_b > -9) and (vg_b < 8):
3215 #{
3216 op = QOI_OP_LUMA | (vg+32)
3217 delta = (vg_r+8) << 4 | (vg_b + 8)
3218 data.extend( bytearray( c_uint8(op) ) )
3219 data.extend( bytearray( c_uint8(delta) ))
3220 #}
3221 else:
3222 #{
3223 data.extend( bytearray( c_uint8(QOI_OP_RGB) ) )
3224 data.extend( bytearray( c_uint8(px.r) ))
3225 data.extend( bytearray( c_uint8(px.g) ))
3226 data.extend( bytearray( c_uint8(px.b) ))
3227 #}
3228 #}
3229 else:
3230 #{
3231 data.extend( bytearray( c_uint8(QOI_OP_RGBA) ) )
3232 data.extend( bytearray( c_uint8(px.r) ))
3233 data.extend( bytearray( c_uint8(px.g) ))
3234 data.extend( bytearray( c_uint8(px.b) ))
3235 data.extend( bytearray( c_uint8(px.a) ))
3236 #}
3237 #}
3238 #}
3239
3240 px_prev.r = px.r
3241 px_prev.g = px.g
3242 px_prev.b = px.b
3243 px_prev.a = px.a
3244 #}
3245
3246 # Padding
3247 for i in range(7):
3248 data.extend( bytearray( c_uint8(0) ))
3249 data.extend( bytearray( c_uint8(1) ))
3250 bytearray_align_to( data, 16, 0 )
3251
3252 return data
3253 #}